行程问题之多次相遇问题奥数较难
五年级奥数思维多人多次的相遇与追及
多人多次的相遇与追及【知识导学】本讲我们要学习多个对象之间的行程问题.在本讲的学习中,大家一定要重视线段图的作用.本讲行程问题最大的特点就是“繁”——人多、车多、过程多.怎么解决这样复杂的问题呢?首先,必须有勇气,只要有勇气,你就敢面对这样的问题,积极开动脑筋去想;其次,必须有耐心,只要有耐心,你就能动手去画图,细致地分析每一组数量关系,再花上些时间,题目自然能够搞定.一、从不同的角度想问题,同一段路程通过不同的角度去分析,会有不同的发现.二、两人的运动时间相同时,他们的路程倍数关系就等于速度倍数关系.【例题精讲】【例1】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时7千米,铛铛的速度为每小时5千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时6千米,铛铛的速度为每小时4千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【例2】甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去.出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.铛铛出发5小时后遇到叮叮,6小时后遇到咚咚.已知叮叮每小时行2千米,咚咚每小时行1.6千米,请问:铛铛每小时能行多少千米?【例3】A、B两城相距48千米,甲、乙两人从A城,丙从B城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时4千米、2千米、2千米.请问:出发多长时间后,甲正好在乙和丙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A出发往B走,另外两人从B出发往A走.已知A、B两地相距28千米,老贺、老刘和老郭分别以每小时1千米、2千米、3千米的速度前进.那么在出发后多久,老郭正好在老贺与老刘的中点?【例4】A、B 两城相距 48 千米,甲、乙两人从A 城,丙从B 城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时 4 千米、2 千米、 2 千米.请问:出发多长时间后,丙正好在甲和乙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A 出发往B 走,另外两人从B 出发往A 走.已知A、B 两地相距 28 千米,老贺、老刘和老郭分别以每小时 1 千米、2 千米、3 千米的速度前进.那么在出发后多久,老刘正好在老郭与老贺的中点?【例5】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 3 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时,甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A地时,甲离B地有多远?【及时巩固】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 2 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A 地时,甲离B 地有多远?【课后作业】1. 北京和唐山之间的铁路长 210 千米,甲、乙两辆列车分别从北京和唐山同时出发,甲车的速度是每小时 57 千米,乙车的速度是每小时 90 千米.在甲车出发时,同时有一辆列车丙也从北京开出,车速为每小时 120 千米,那么当乙、丙相遇时,列车甲距离唐山多少千米?2. 甲、乙两人同时从A 骑车出发前往B 地,其中甲的速度为 12 米/ 秒,乙的速度为8 米/ 秒.出发后 10 分钟,甲遇到了迎面走来的丙,又过了 2 分 40 秒,乙也遇到了丙.那么丙的速度等于多少?3. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老郭正好在老贺与老刘的中点?4. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老贺正好在老郭与老刘的中点?5. 甲、乙两人从A 出发,丙从B 出发,三人出发时间相同,且相向而行.在出发时,甲和丙的速度相同,而乙是他们的 4 倍.当甲前进了 5 千米时,乙、丙两人相遇,而且两人相遇之后速度大小相互交换但方向保持不变.当甲、丙相遇时,两人也相互交换速度,但方向保持不变,那么当乙到达B 点时,甲在距离B 点多少千米的地方?。
通用版小学五年级奥数《多次相遇和追及问题》讲义(含答案)
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?例题精讲【例 2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。
奥数——行程、多次相遇和追及问题
奥数——行程、多次相遇和追及问题(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差知识框架多次相遇与追及问题三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
2超难奥数题之行程专题:多人与多次
1
【例1】
甲、乙两车上午从A 、B 两地同时相向出发,将在当天下午五点相遇。
如果两车每小时各多走1千米,那么将在当天下午4点时相遇;如果两车每小时各少走1.5千米,那么将在当天下午7点时相遇。
求两车出发的具体时间,及A 、B 两地距离。
【例2】
甲、乙两人从相距490米的A 、B 两地同时步行出发,相向而行,丙与甲同时从 A 出发,在甲、乙二人之间来回跑步(遇到乙立即返回,遇到甲也立即返回)。
已知丙每分钟跑240米,甲每分钟走40米,当丙第一次折返回来并与甲相遇时,甲、乙二人相距210米,那么乙每分钟走________米;甲下一次遇到丙时,甲、乙相距________米。
【例3】
甲、乙、丙、丁四车同时在一条路上行驶:甲车12点追上丙车,14点与丁相遇,16点与乙相遇;乙车17点与丙相遇,18点追上丁。
问:丙和丁几点几分相遇?
【例4】
如图,8点10分,有甲、乙两人以相同的速度分别从相距60米的A 、B 两地顺时针方向沿长方形ABCD 的边走向D 点,甲8点20分到D 后,丙、丁两人立即以相同速度从D 点出发,丙由D 向A 走去,8点24分与乙在E 点相遇,丁由D 向C 走去,8点30分在F 点被乙追上,则连接三角形BEF 的面积为 平方米。
多人与多次。
五年级奥数.行程 .多人多次相遇和追及问题 (C级 ).学生版
五年级奥数.行程 .多人多次相遇和追及问题(C级).学生版work Information Technology Company.2020YEAR一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;知识框架长方体与正方体表面积注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
五年级奥数.行程 .多次相遇和追及问题
多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
小学奥数重难点讲解:有关多次相遇的行程问题
⼩学奥数重难点讲解:有关多次相遇的⾏程问题多次相遇 1)2倍的关系(两头同时出发相向⽽⾏):对于单个⼈来讲,从⼀次相遇到相邻的下⼀次相遇⾛了他从出发到第⼀次相遇的2倍。
(关注2倍的关系,是因为很多题⽬,只告诉第⼀次相遇地点距离⼀段的路程) 【例1】⼩明和⼩英各⾃在公路上往返于甲、⼄两地。
设开始时他们分别从两地相向⽽⾏,若在距离甲地3千⽶处他们第⼀次相遇,第⼆次相遇的地点在距离⼄地2千⽶处,则甲、⼄两地的距离为多少千⽶? 2)对于⼀头同时出发同向⾏驶或者环型⾏程中,思路是从路程和或者某⼀个⼈在不同时间段的关系找到对应的时间关系,再找到单个⼈或另外⼀个⼈两个时间段的路程关系。
(路程关系~~~时间关系~~~~路程关系) 【例2】⼀列客车和货车从甲同时同向出发开往⼄地,货车速度是80千⽶/时,经过1⼩时两车在丙地相遇,两车到达了两端后都⽴即返回,第⼆次相遇的地点也在丙地。
求客车的速度。
【例3】甲⼄⼆⼈以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。
如果他们同时出发,并在甲跑完60⽶时第⼀次相遇,在⼄跑⼀圈还差80⽶时两⼈第⼆次相遇,求跑道的长度? 3)根据速度⽐m:n,设路程为m+n份 【例4】甲、⼄两车分别从AB两地出发,在AB之间不断的往返⾏驶,已知甲车的速度是每⼩时15千⽶,⼄车的速度是每⼩时35千⽶,并且甲、⼄两车第3次与第4次相遇点恰好为100千⽶,那么AB两地之间的距离是多少千⽶? 【例5】甲、⼄两车分别从A、B两地同时出发,在A、B两地之间不断往返⾏驶。
甲、⼄两车的速度⽐为3:7,并且甲、⼄两车第1996次相遇的地点和1997次相遇的地点恰好相距120千⽶(这⾥指⾯对⾯的相遇),那么A、B两地之间的距离是多少千⽶? 4)n次相遇---画平⾏线并结合周期性分析 【例6】甲⼄两⼈在相距90⽶的直路上来回跑步,甲的速度是每秒钟3⽶,⼄的速度是每秒钟2⽶。
如果他们同时分别从直路的两端出发,10分钟内共相遇了⼏次?(平⾏线+周期性分析) 【例7】A、B两地相距1000⽶,甲从A地、⼄从B地同时出发,在A、B间往返锻炼。
六年级奥数试题及答案:多次相遇问题(高难度)
六年级奥数试题及答案:多次相遇问题(高难度)1.甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有()米.甲追上乙()次,甲与乙迎面相遇()次.分析:8分32秒=512(秒).①当两人共行1个单程时第1次迎面相遇,共行3个单程时第2次迎面相遇,共行2n-1个单程时第n次迎面相遇.因为共行1个单程需100 (6.25+3.75)=10(秒),所以第n 次相遇需10 (2n-1)秒,由10 (2n-1)=510,解得n=26,即510秒时第26次迎面相遇.②此时,乙共行3.75 510=1912.5(米),离10个来回还差200 10-1912.5=87.5(米),即最后一次相遇地点距乙的起点87.5米.③类似的,当甲比乙多行1个单程时,甲第1次追上乙,多行3个单程时,甲第2次追上乙,多行2n-1个单程时,甲第n次追上乙.因为多行1个单程需100 (6.25-3.75)=40(秒),所以第n次追上乙需40 (2n-1)秒.当n=6时,40 (2n-1)=440<512;当n=7时,40 (2n-1)=520>512,所以在512秒内甲共追上乙6次.解答:解:①当两人共行1 个单程时第1 次迎面相遇,共行3 个单程时第2 次迎面相遇,共行2n-1个单程时第n次迎面相遇.因为共行1 个单程需100 (6.25+3.75)=10(秒),8 分32秒=512秒,(512-10)(10 2)25(次),所以25+1=26(次).②最后一次相遇地点距乙的起点:200 10-3.75 510,=2000-1912.5,=87.5(米).③多行1个单程需100 (6.25-3.75)=40(秒),所以第n次追上乙需40 (2n-1)秒.当n=6时,40 (2n-1)=440<512;当n=7时,40 (2n-1)=520>512,所以在512秒内甲共追上乙6次.故答案为:87.5米;6次;26次.点评:此题属于多次相遇问题,比较复杂,要认真分析,考查学生分析判断能力.。
六年级下册数学试题-奥数专题 行程问题(6)多次相遇问题
行程问题多次相遇的问题【题目1】甲、乙两人分别从A、B 两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达 B 地,乙到达 A 地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是12千米,求 A、B 两地的距离?【解答】12÷(3/5-1/5)=30【题目2】甲、乙两人在同一条椭圆形跑道上做特殊训练。
他们同时从同一地点出发,沿相反方向跑。
每人跑完第一圈到达出发点后,立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的2/3,甲跑第二圈时的速度比第一圈提高了1/3,乙跑第二圈时速度提高了1/5。
已知甲、乙两人第二次相遇点距第一次相遇点190米。
这条椭圆形跑道长多少米?【解答】190÷(7/8-2/5)=400米【题目3】A、B 两地之间有一条公路,甲从A 出发到 B 地,乙从 B 地出发不停地往返于A、B 之间,假如他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲。
问当甲到达 B 地时,乙追上几次?【解答】4次乙行20分钟相当于80+100=180分钟,乙的速度是甲的180÷20=9倍。
当甲从 A 到 B 时,乙就行了9个单程,乙每往返一次就追上甲一次,即能追上4次。
【题目4】甲、乙两个运动员同时从游泳池的两端相向下水做往、返游泳训练。
从池的一端到另一端甲要3分钟,乙要3.2分钟。
两人下水后连续游了48分钟,一共相遇了多少次?【解答】16次。
甲行48÷3=16个单程,乙行48÷3.2=15个单程,最后一次刚好在端点相遇,迎面和追及重合,只用讨论迎面的次数。
快的每行一个单程就会和慢的相遇一次,共相遇16次。
【题目5】一个游泳池长90米。
甲乙二人分别从游泳池的两端同时出发,游到另一端立即返回。
甲每秒游3米,乙每秒游2米。
二人往返游10分钟相遇了几次?【解答】10分钟共行(3+2)×60×10=3000米,〔3000÷90〕=33个单程。
行程问题多次相遇问题
课题多次相遇问题年级五年级(奥数)授课对象编写人时间学习目标学会画图解行程题,掌握多次相遇问题两个物体之间的关系。
区分两地同向出发和同地同向出发的区别。
多次相遇问题解题的关键:几个全程学习重点难点多次相遇或追击中物体之间的关系分析是难点教学过程T (测试)1.王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?2.小红和小强同时从家里出发相向而行。
小红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。
若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。
小红和小强的家相距多远?3.龟、兔进行1000米的赛跑.小兔斜眼瞅瞅乌龟,心想:“我小兔每分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.”比赛开始后,当小兔跑到全程的一半时,发现把乌龟甩得老远,便毫不介意地躺在旁边睡着了.当乌龟跑到距终点还有40米时,小兔醒了,拔腿就跑.请同学们解答两个问题:它们谁胜利了?为什么?4.上一次龟兔赛跑兔子输得很不服气,于是向乌龟再次下战书,比赛之前,为了表示它的大度,它让乌龟先跑10分钟,但是兔子不知道乌龟经过锻炼,速度已经提高到5倍,那么这一次谁将获得胜利呢?专题解析:S (归纳)由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,结合画行程图逐步表征题目中所涉及的数量,问题即可迎刃而解。
如果甲乙从A,B两点出发,甲乙第n次迎面相遇时,路程和为全长的2n-1倍,而此时甲走的路程也是第一次相遇时甲走的路程的2n-1倍(乙也是如此)。
掌握多次相遇追及的解题关键:几个全程E (典例)【例题1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?注:环型行程的多次相遇:要点第一是:两人同地背向运动,从第一次相遇到下一次相遇共行一个全程;第二是:同地、同向运动时,甲追上乙时,甲比乙多行1全程。
解析行程问题—“多次相遇”
解析行程问题—“多次相遇”行程问题是行测数学运算中必考题型。
同时也是相对较难解决的一种题型。
而路程=速度×时间是行程问题中最基本公式。
这个基本公式中暗含着的正反比关系也是考生在复习过程中需要重点注意的地方。
正因如此,比例思想是我们解决行程问题的常用方法。
其次,数形结合也是不可或缺的工具。
即对于行程问题,最主要的是根据题干信息画出行程图,理清路程、速度、时间三者之间的关系,进而解题。
行程问题实际上还包含很多小的模块,比如:简单的相遇和追及、多次相遇问题、流水行船、时钟问题、牛吃草问题等等。
在此,中公教育专家宋丽娜将对于比较难以掌握的多次相遇问题详细的阐述下其中蕴含的原理、公式及考题。
(1)最基本的多次相遇问题是指两人同时从不同的地点同时相向而行,在第一次相遇后没停,继续向前走到打对方终点后返回再次相遇,如此循环往返的过程是多次相遇问题。
基本模型如下:从出发开始到等等依次类推到第n次相遇。
在此运动过程中,基本规律如下:(1)从出发开始,到第n次相遇:每一次相遇会比前一次夺走2个全程;即:路程和具有的特点是1:2:2:2:……,含义是第一次走1个全程,第二次开始都增加2个全程;(2)由于二者在运动过程中,速度和是不变的,故每次相遇所用时间和路程和成正比,若设第一次相遇的时间为t,则第一次到第二次所用时间为2t,依次类推,每次相遇所用的时间关系也为1:2;2:2……,含义是第一次相遇用时间t,第二次开始相遇时间都会增加2t的时间;(3)各自所走路程也满足这个关系。
设第一次相遇甲走路程为S0,则从第二次相遇开始甲走的路程会增加2S0,即关系式仍为1:2:2:2……。
例题1:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A、B两地相距多少千米?A.10B.12C.18D.15【答案】D。
解析:直线多次相遇问题。
第一次相遇时,两人走的总路程为A、B之间的路程,即1个AB全程。
解析行程问题—多次相遇
解析行程问题—“屡次相遇〞行程问题是行测数学运算中必考题型。
同时也是相对较难解决的一种题型。
而路程=速度×时间是行程问题中最根本公式。
这个根本公式中暗含着的正反比关系也是考生在复习过程中需要重点注意的地方。
正因如此,比例思想是我们解决行程问题的常用方法。
其次,数形结合也是不可或缺的工具。
即对于行程问题,最主要的是根据题干信息画出行程图,理清路程、速度、时间三者之间的关系,进而解题。
行程问题实际上还包含很多小的模块,比方:简单的相遇和追及、屡次相遇问题、流水行船、时钟问题、牛吃草问题等等。
在此,中公教育专家宋丽娜将对于比拟难以掌握的屡次相遇问题详细的阐述下其中蕴含的原理、公式及考题。
(1)最根本的屡次相遇问题是指两人同时从不同的地点同时相向而行,在第一次相遇后没停,继续向前走到打对方终点后返回再次相遇,如此循环往返的过程是屡次相遇问题。
根本模型如下:从出发开场到等等依次类推到第n次相遇。
在此运动过程中,根本规律如下:(1)从出发开场,到第n次相遇:每一次相遇会比前一次夺走2个全程;即:路程和具有的特点是1:2:2:2:……,含义是第一次走1个全程,第二次开场都增加2个全程;(2)由于二者在运动过程中,速度和是不变的,故每次相遇所用时间和路程和成正比,假设设第一次相遇的时间为t,那么第一次到第二次所用时间为2t,依次类推,每次相遇所用的时间关系也为1:2;2:2……,含义是第一次相遇用时间t,第二次开场相遇时间都会增加2t的时间;(3)各自所走路程也满足这个关系。
设第一次相遇甲走路程为S0,那么从第二次相遇开场甲走的路程会增加2S0,即关系式仍为1:2:2:2……。
例题1:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,那么A、B两地相距多少千米?A.10B.12C.18D.15【答案】D。
解析:直线屡次相遇问题。
小学奥数 多次相遇和追及问题 精选例题练习习题(含知识点拨)
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题知识精讲教学目标3-1-4多次相遇和追及问题地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
【奥赛】小学数学竞赛:多次相遇和追及问题.学生版解题技巧 培优 易错 难
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题知识精讲教学目标3-1-4多次相遇和追及问题地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
【奥赛】小学数学竞赛:多次相遇和追及问题.学生版解题技巧培优易错难
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题知识精讲板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕 路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复 杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.甲、乙两名同学在 周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑 每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒 3米,乙的速度是每秒 2米.如果他们同时分别从直路两端出发, 10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点 A 背向同时出发,8分钟后两人第五次相遇,已知每秒 钟甲比乙多走0.1米,那么两人第五次相遇的地点与点 A 沿跑道上的最短路程是多少米 ?【例2】 甲、乙二人从相距 60千米的两地同时相向而行, 6时后相遇。
如果二人的速度各增加 1千米/时,那么相遇地点距前一次相遇地点 1千米。
问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题【例3】 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家 4千米的3-1-4多次相遇和追及问题【例1】 3.5米,乙地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好 是8千米,这时是几点几分?【例4】 甲、乙两车同时从 A 地出发,不停的往返行驶于A, B 两地之间。
已知甲车的速度比乙车快, 并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【例5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了 100米以后,他们第一次相遇,在甲走完一周前 60米处又第二次相遇.求此圆形场地的周长.在一圆形跑道上,甲从 A 点、乙从B 点同时出发反向而行, B 点,又过8分两人再次相遇。
小学奥数训练专题 多次相遇和追及问题.学生版【精品】.doc
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?知识精讲教学目标3-1-4多次相遇和追及问题|初一·数学·基础-提高-精英·学生版| 第1讲第页2板块二、运用倍比关系解多次相遇问题【例3】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
六年级下小升初典型奥数之多次相遇问题
六年级下小升初典型奥数之多次相遇问题在小学六年级的奥数学习中,多次相遇问题是一个较为复杂但又十分有趣的知识点。
对于即将面临小升初的同学们来说,掌握好这一类型的题目,不仅有助于提升数学思维能力,还能在考试中取得更好的成绩。
多次相遇问题通常涉及两个或多个物体在同一路线上不断往返运动,并在不同的位置相遇。
要解决这类问题,关键是要理解相遇时两者所走过的路程与总路程之间的关系。
我们先来看看直线型多次相遇的情况。
假设甲、乙两人分别从 A、B 两地同时出发,相向而行。
第一次相遇时,两人所走的路程之和等于 A、B 两地之间的距离,记为 S。
当他们第一次相遇后,继续前行到达对方的出发点后返回,第二次相遇时,两人所走的路程之和是3 倍的A、B 两地之间的距离,即3S。
为什么是 3S 呢?我们可以这样想,第一次相遇时,两人合走了 1个 S。
从第一次相遇到第二次相遇,两人又合走了 2 个 S。
所以两次相遇总共合走了 3 个 S。
同理,第三次相遇时,两人所走的路程之和是 5S;第四次相遇时,两人所走的路程之和是7S……以此类推,第 n 次相遇时,两人所走的路程之和是(2n 1)S。
再来看一个具体的例子。
甲、乙两人同时从 A、B 两地出发相向而行,甲的速度是 5 米/秒,乙的速度是 3 米/秒,A、B 两地相距 800 米。
求两人第二次相遇的地点距离 A 地多远?首先,第一次相遇时,两人所用的时间为:800÷(5 + 3) = 100(秒)此时甲走的路程为:5×100 = 500(米)也就是说,第一次相遇地点距离 A 地 500 米。
第二次相遇时,两人合走了 3 个 800 米,即 2400 米。
所用时间为:2400÷(5 + 3) = 300(秒)甲走的路程为:5×300 = 1500(米)因为 A、B 两地相距 800 米,所以甲走了一个完整的 800 米加上700 米。
那么第二次相遇地点距离 A 地 800 700 = 100(米)接下来,我们再看看环形跑道上的多次相遇问题。
解析行程问题—“多次相遇”
解析行程问题—“多次相遇”行程问题是行测数学运算中必考题型。
同时也是相对较难解决的一种题型。
而路程=速度×时间是行程问题中最基本公式。
这个基本公式中暗含着的正反比关系也是考生在复习过程中需要重点注意的地方。
正因如此,比例思想是我们解决行程问题的常用方法。
其次,数形结合也是不可或缺的工具。
即对于行程问题,最主要的是根据题干信息画出行程图,理清路程、速度、时间三者之间的关系,进而解题。
行程问题实际上还包含很多小的模块,比如:简单的相遇和追及、多次相遇问题、流水行船、时钟问题、牛吃草问题等等。
在此,中公教育专家宋丽娜将对于比较难以掌握的多次相遇问题详细的阐述下其中蕴含的原理、公式及考题。
(1)最基本的多次相遇问题是指两人同时从不同的地点同时相向而行,在第一次相遇后没停,继续向前走到打对方终点后返回再次相遇,如此循环往返的过程是多次相遇问题。
基本模型如下:从出发开始到等等依次类推到第n次相遇。
在此运动过程中,基本规律如下:(1)从出发开始,到第n次相遇:每一次相遇会比前一次夺走2个全程;即:路程和具有的特点是1:2:2:2:……,含义是第一次走1个全程,第二次开始都增加2个全程;(2)由于二者在运动过程中,速度和是不变的,故每次相遇所用时间和路程和成正比,若设第一次相遇的时间为t,则第一次到第二次所用时间为2t,依次类推,每次相遇所用的时间关系也为1:2;2:2……,含义是第一次相遇用时间t,第二次开始相遇时间都会增加2t的时间;(3)各自所走路程也满足这个关系。
设第一次相遇甲走路程为S0,则从第二次相遇开始甲走的路程会增加2S0,即关系式仍为1:2:2:2……。
例题1:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A、B两地相距多少千米?A.10B.12C.18D.15【答案】D。
解析:直线多次相遇问题。
第一次相遇时,两人走的总路程为A、B之间的路程,即1个AB全程。
小学数学行程问题之多人多次相遇和追及问题含答案
多次相遇和追及问题知识框架一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。
如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“多次相遇问题”剖析一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。
“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。
现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。
题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。
之后的每次相遇都多走了2个全程。
所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。
而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。
即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。
则第一次背面追及相遇在a 处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。
我们可以观察,第一次背面相遇时,两人的路程差是1个全程,第二次背面相遇时,两人的路程差为3个全程。
同样第二次相遇多走的路程是第一次相遇的2倍,单看每个人多走的路程也是第一次的2倍。
依次类推,得:第n次背面追及相遇两人的路程差为(2n-1)S。
(二)单岸型单岸型是两人同时从一端出发,与两岸型相似,单岸型也有迎面碰头相遇和背面追及相遇两种情况。
1、迎面碰头相遇:如下图,假设甲、乙两人同时从A端出发,假设全程为3份,甲每分钟走2份,乙每分钟走4份,则甲乙第一次迎面相遇在a处,此时甲走了2份,乙走了4份,再过1分钟,甲共走了4份,乙共走了8份,在b处迎面相遇,则第二次相遇多走的跟第一次相遇相同,依次类推,可得出:当第n次碰头相遇时,两人的路程和为2ns。
2、背面追及相遇与迎面相遇相似,假设全程为3份,甲每分钟走1份,乙每分钟走7份,则第一次背面相遇在a处,2分钟后甲走了2份,乙走了14份,两人在b处相遇。
第一次相遇,两人走的路程差为2S,第二次相遇两人走的路程差为4S,依次类推,可以得出:当第n 次追及相遇时,两人的路程差为2ns。
“直线型”总结(熟记)①两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。
第n次背面追及相遇,两人的路程差是(2n-1)S。
②单岸型:第n次迎面碰头相遇,两人的路程和为2ns。
第n次背面追及相遇,两人的路程差为2ns。
下面列出几种今后可能会考到的直线型多次相遇问题常见的模型:{模型一}:根据2倍关系求AB两地的距离。
【例1】甲、乙两人在A、B两地间往返散步,甲从A,乙从B同时出发,第一次相遇点距B60米,当乙从A处返回时走了10米第二次与甲相遇。
A、B相距多少米?A、150B、170C、180D、200【答案及解析】B。
如下图,第一次相遇在a处,第二次相遇在b处,aB的距离为60,Ab的距离为10。
以乙为研究对象,根据2倍关系,乙从a到A,再到b共走了第一次相遇的2倍,即为60×2=120米,Ab为10,则Aa的距离为120-10=110米,则AB距离为110+60=170米。
{模型二}:告诉两人的速度和给定时间,求相遇次数。
【例2】甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米。
两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。
如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇多少次?A、2B、3C、4D、5{模型三}:告诉两人的速度和任意两次迎面相遇的距离,求AB两地的距离。
【例3】甲、乙两车分别从A、B两地同时出发,在A、B间不断往返行驶。
甲车每小时行20千米,乙车每小时行50千米,已知两车第10次与第18次迎面相遇的地点相距60千米,则A、B相距多少千米?A、95B、100C、105D、110【答案及解析】C。
走相同时间内,甲乙走的路程比为20:50=2:5。
将全程看成7份,则第一次相遇走1个全程时,甲走2份,乙走5份。
以甲为研究对象(也可以以乙),第10次迎面相遇走的全程数为2×10-1=19个,甲走1个全程走2份,则走19个全程可走19×2=38份。
7份是一个全程,则38份共有38÷7=5…3份(当商是偶数时从甲的一端数,0也是偶数;当商是奇数时从乙的一端数,比如第1个全程在乙的一端,第2个全程在甲的一端)从乙端数3份。
同理当第18次相遇,甲走的份数为(2×18-1)×2=70份。
共有70÷7=10个全程,10为偶数在甲的端点。
如下图:则第10次相遇与第18次相遇共有4份为60千米,所以AB长为(60/4)×7=105千米。
点评:对于给定任意两次的距离,主要是根据速度转化为全程的份数,找一个为研究对象,看在相遇次数内走的全程数,从而转化为份数,然后根据一个全程的份数,将研究对象走的总份数去掉全程的个数看剩余的份数,注意由全程的个数决定剩余的份数从哪一端数。
【例4】甲、乙两车分别从A、B两地同时出发,在A、B间不断往返行驶。
甲车每小时行45千米,乙车每小时行36千米,已知两车第2次与第3次迎面相遇的地点相距40千米,则A、B相距多少千米?A、90B、180C、270 D、110【答案及解析】A。
法一:同上题。
相同时间,甲、乙路程比为45:36=5:4,则将全程分成9份。
则一个全程时甲走5份,乙走4份。
以甲为研究对象,第2次相遇,走的全程数为2×2-1=3个,则甲走的份数为3×5=15份,一个全程为9份,则第2次相遇甲走的份数转化为全程的个数为15÷9=1…6份,则从乙端数6份。
第3次相遇走的份数为(2×3-1)×5=25份,转化为全程的个数为25÷9=2…7,则从甲端数7份。
如下图:由图第2次和第3次相遇之间共有4份为40千米,则AB相距(40/4)×9=90千米。
法二:在此引入“沙漏模型”。
利用沙漏模型解题的前提是题干中已知两人的速度。
将速度转化为相同路程的条件下两人的时间比,则以时间为刻度,画出两人到达对岸的路线图,两人走的路线图相交的点即为两人相遇的地点。
s-t图中的路线因像古代记时间的沙漏故称为“沙漏模型”。
本题中,甲、乙走到端点用的时间比为36:45=4:5。
如下图:根据路线图看出甲乙第2次相遇和第3次相遇的交点E和O,根据三角形相似,可得CE:EG=3:6=1:2,则求得第2次相遇距A地的比例为S/3,同理DO:ON=7:2,则第3次相遇距A地的比例为7S/9,则两次相遇比例为为40千米,则S=90千米。
点评:考生如果能掌握“沙漏”模型,则会直观快速的提高解题速度。
用交点判断是迎面相遇还是背面相遇的技巧:看相交的两条线是由同一岸引出还是两岸,同一岸则说明是背面相遇,不同岸则说明是迎面相遇。
用时注意:一般题干涉及到的相遇次数较少时可画,相遇次数太多,则会花费大量时间,不利于提高速度;画时的单位刻度要看时间比,如果时间比中的数据较大可把刻度画大。
{模型四}:告诉两人的速度,相遇次数较少时,利用s-t图形成“沙漏”模型速解。
【例5】A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第几次迎面相遇时距B地最近。
A、1B、2C、3 D、4【答案及解析】B。
利用“沙漏模型”。
甲乙走到端点用的时间比为150:40=15:4,半小时两人共走的全程数为个。
对于单岸型,相遇6个全程,则是迎面第三次相遇(由前边公式推出)画出s-t图:观察上图可知,可第3次迎面相遇的过程中,甲乙有一次背面相遇(交点由同一点引出)。
而在三次迎面相遇中第2次相遇离B地最近,并且可根据三角形相似求出离B 地的距离。
【例6】河道赛道长120米,水流速度为2米/秒,甲船静水速度为6米/秒,乙船静水速度为4米/秒。
比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?A、48B、50C、52D、54【答案及解析】C。
由题知,得出如下关系:注:( )中为走完全程的时间。
假设A到B是顺流,由上表可知甲、乙两人第2次迎面相遇共有4个全程。
由于甲的速度快,则第2次相遇前甲已走了2个全程。
共15+30=45秒。
当第45秒时乙走了一个顺流全程20秒和25秒的逆流,走的路程为25×2=50米,则在剩余的70米内,甲乙分别以顺流和逆流相遇时间为t,则有70=(8+2)×t,求得t=7秒,则共用时间45+7=52秒。
本题同样可用“沙漏模型”解决。
根据上表中的速度关系,可得出一个全程时的时间关系如下:根据时间的关系,得出s-t图像,如下:观察上图,可看出第二次迎面相遇在P点,以甲为研究对象计算时间,此时甲走了一个顺流,一个逆流,另外EP段为顺流,根据三角形相似可求出走EP用的时间EP:PN=EF:MN=7:8,由上表,求出走EP用的时间为,则甲共走的时间为15+30+7=52。
二、环型环型主要分两种情况,一种是甲、乙两人同地同时反向迎面相遇(不可能背面相遇),一种是甲、乙两人同地同时同向背面追及相遇(不可能迎面相遇)。
分开讨论如下:(一)甲、乙两人从A地同时反向出发:如下图,一个周长分成4份,假设甲是顺时针每分钟走1份到B,乙是逆时针每分钟走3份到B,则第一次相遇两人走了1个周长,则再过1分仲,甲再走1份到C,同样乙走3份也到C,则第二次相遇共走了2个周长,依次类推,可得出:第n次迎面相遇共走了n圈。
(二)甲、乙两人从A地同时同向出发:如下图,全程分成4份。
假设甲、乙两人都是顺时针同时出发,甲每分钟走1份,乙每分钟走5份,则1分钟后两人在B处第一次背面追及相遇,两人走的路程差为1个周长。
再过1分钟后,甲到C处,乙也到C处,两人第二次背面追及相遇,多走的路程差同样为一个周长,依次类推,可以得出:第n次背面追及相遇,路程差为n圈。
环型多次相遇问题相对比较简单,当甲、乙不在同一地点出发时相对具有难度。
比如在直径两端出发。
考生可通过下面的例题把握。
【例1】老张和老王两个人在周长为400米的圆形池塘边散步。
老张每分钟走9米,老王每分钟走16米。