2015山东省大学生数学竞赛(专科)试卷2015总决赛答案
2015年高考真题:理科数学(山东卷)试卷(含答案)
2015年普通高等学校招生全国统一考试(山东卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一项是符合题目要求的. (1) 已知集合A=2{|430},{|24}x x x B x x -+<=<<,则A B =(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)解析:2{|430}{|13},(2,3)A x x x x x A B =-+<=<<= ,答案选(C)(2) 若复数z 满足1zi i=-,其中i 是虚数单位,则z = (A)1i - (B) 1i + (C) 1i -- (D) 1i -+解析:2(1)1,1z i i i i i z i =-=-+=+=-,答案选(A) (3)要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像(A)向左平移12π个单位 (B) 向右平移12π个单位(C)向左平移3π个单位 (D) 向右平移3π个单位解析:sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位答案选(B)(4)已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=(A)232a - (B) 234a - (C)234a (D) 232a 解析:由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+= ,答案选(D)(5)不等式|1||5|2x x ---<的解集是(A)(,4)-∞ (B) (,1)-∞ (C) (1,4) (D) (1,5)解析:当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,答案选(A)(6)已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =(A)3 (B) 2 (C) 2- (D) 3-解析:由z a x y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >;答案选(B) 7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)23π (B) 43π (C) 53π (D) 2π 解析:2215121133V πππ=⋅⋅-⋅⋅=,答案选(C)8.已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=.)(A)4.56% (B) 13.59% (C) 27.18% (D) 31.74%解析:1(36)(95.44%68.26%)13.59%2P ξ<<=-=,答案选(B) (9)一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为(A)53-或35- (B) 32-或32- (C) 54-或45- (D) 43-或34- 解析:(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则1,|55|d k ==+=解得43k =-或34-,答案选(D)(10)设函数31,1,()2, 1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是 (A)2[,1]3(B) [0,1] (C) 2[,)3+∞ (D) [1,)+∞解析:由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,答案选(C)二、填空题:本大题共5小题,每小题5分,共25分. (11)观察下列各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .解析:14n -.具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++ 021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 . 解析:“[0,],t a n 4xx mπ∀∈≤”是真命题,则tan14m π≥=,于是实数m 的最小值为1.(13)执行右边的程序框图,输出的T解析:11200111123T xdx x dx =++=++=⎰⎰(14)已知函数()xf x a b =+(0,a a >≠和值域都是[1,0]-,则a b += .解析:当1a >时101a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2,b =-则13222a b +=-=-. (15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 . 解析:22122:1(0,0)x y C a b a b -=>>的渐近线为by x a =±,则22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2p F ,则22222AF pb pa a k pb b a-==,即2222222593,,.442b c a b c e a a a a +===== 三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,.a b c 若()0,1,2Af a ==求ABC ∆面积的最大值. 解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=- 由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈. (Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1,a =由余弦定理可得2212cos2(26b c bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即2bc ≤=+1112sin sin 22644ABC S bc A bc bc π∆+===≤,故ABC ∆. (17)(本小题满分12分)如图,在三棱台DEF-2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,AB BC CF DE ⊥=∠求平面FGH 与平面ACFD 所成角(锐角)的大小. 解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T. 在三棱台DEF ABC -中,2,AB DE =则2AC DF =而G 是AC 的中点,DF//AC ,则//DF GC ,所以四边形DGCF是平行四边形,T是DC的中点,DG//FC. 又在BDC∆,H是BC的中点,则TH//DB,又BD⊄平面FGH,TH⊂平面FGH,故//BD(Ⅱ)由CF⊥平面ABC,可得DG⊥平面ABC而则GB AC⊥,于是,,GB GA GC两两垂直,以点G为坐标原点,,,GA GB GC所在的直线分别为,,x y z轴建立空间直角坐标系,设2AB=,则1,DE CF AC AG====((B C F H则平面ACFD的一个法向量为1(0,1,0)n=,设平面FGH的法向量为2222(,,)n x y z=,则22n GHn GF⎧⋅=⎪⎨⋅=⎪⎩,即222222x yz-=⎪⎨⎪+=⎩,取21x=,则221,y z==2(1,1n=,121cos,2n n<>==,故平面FGH与平面ACFD所成角(锐角)的大小为60 .(18)(本小题满分12分)设数列{}na的前n项和为nS,已知23 3.nnS=+(Ⅰ)求数列{}na的通项公式;(Ⅱ)若数列{}nb满足3logn n na b a=,求数列{}nb的前n项和nT.解:(Ⅰ)由233nnS=+可得111(33)32a S==+=,11111(33)(33)3(2)22n n nn n na S S n---=-=+-+=≥而11133a-=≠,则13,1,3, 1.n nnan-=⎧=⎨>⎩(Ⅱ)由3logn n na b a=及13,1,3, 1.n nnan-=⎧=⎨>⎩可得311,1,log31, 1.3nnnnnabnan-⎧=⎪⎪==⎨-⎪>⎪⎩2311123133333n n n T --=+++++ . 2234111123213333333n n n n n T ---=++++++ 2231223121111111333333331111111()33333331121213133193922331313211823n n n n n n n nnn n T n n n n ---=+-++++--=-+++++----=+-=+--⋅-+=-⋅ 113211243n n n T -+=-⋅19(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX. 解:(Ⅰ)125,135,145,235,245,345; (Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-===== 甲得分X 的分布列为:0(1)13144221EX =⨯+⨯-+⨯=(20)(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值. 解析:(Ⅰ)由椭圆2222:1(0)x y C a b a b +=>>的离心率为可知c e a ==,而222a b c =+则2,a b c ==,左、右焦点分别是12(,0),,0)F F ,圆1F:22()9,x y +=圆2F:22()1,x y +=由两圆相交可得24<<,即12<<,交点,在椭圆C 上,则224134b b =⋅, 整理得424510b b -+=,解得21,b =214b =(舍去) 故21,b =24,a =椭圆C 的方程为2214x y +=. (Ⅱ)(ⅰ)椭圆E 的方程为221164x y +=, 设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. (ⅱ)点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-= 2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->||AB =2211||||||36221414m m S AB d k k∆==⋅⋅⋅=++ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立. 而直线y kx m =+与椭圆C :2214x y +=有交点P ,则 2244y kx m x y =+⎧⎨+=⎩有解,即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解, 其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥,则上述2282m k =+不成立,等号不成立,设(0,1]t =,则2||614m S k ∆==+(0,1]为增函数,于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12. (21)(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点. 若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <, 且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减; 当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增. 因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<, 所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増; 当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减. 所以函数只有一个极值点。
山东省大学生数学竞赛(专科)试题及答案
山东省大学生数学竞赛(专科)试卷及标准答案(非数学类,2010)考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、填空(每小题5分,共20分).(1)计算)cos1(cos 1lim 0xx xx --+→= .(2)设()f x 在2x =连续,且2()3lim2x f x x →--存在,则(2)f = .(3)若txx xt t f 2)11(lim )(+=∞→,则=')(t f .(4)已知()f x 的一个原函数为2ln x ,则()xf x dx '⎰= .(1)21. (2) 3 . (3)t e t 2)12(+ . (4)C x x +-2ln ln 2.二、(5分)计算dxdy x y D⎰⎰-2,其中1010≤≤≤≤y x D ,:.解:dxdy x y D⎰⎰-2=dxdy y xxy D )(21:2-⎰⎰<+⎰⎰≥-22:2)(xy D dxdy xy -------- 2分=dy y x dx x )(2210-⎰⎰+dy x y dx x)(12102⎰⎰- -------------4分=3011 -------------5分.姓名:身份证号所在院校:年级专业线封密注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.三、(10分)设)](sin[2xf y =,其中f 具有二阶导数,求22dxy d .解:)],(cos[)(222x f x f x dxdy '=---------------3分)](sin[)]([4)](cos[)(4)](cos[)(222222222222x f x f x x f x f x x f x f dxy d '-''+'=-----7分=)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.四、(15分)已知3123ln 0=-⋅⎰dx e e a xx,求a 的值.解:)23(232123ln 0ln 0xa x a xxe d e dx e e ---=-⋅⎰⎰---------3分令t e x =-23,所以dtt dx e e a a xx⎰⎰--=-⋅231ln 02123---------6分=at 231233221-⋅-------------7分=]1)23([313--⋅-a ,-----------9分由3123ln 0=-⋅⎰dx e e axx,故]1)23([313--⋅-a =31,-----------12分即3)23(a -=0-----------13分 亦即023=-a -------------14分 所以23=a -------------15分.五、(10分)求微分方程0=-+'x e y y x 满足条件e yx ==1的特解.解:原方程可化为xey xy x=+'1-----------2分这是一阶线性非齐次方程,代入公式得⎥⎦⎤⎢⎣⎡+⎰⋅⎰=⎰-C dx e x e e y dxx xdx x 11----------4分=⎥⎦⎤⎢⎣⎡+⋅⎰-C dx e x e exx xln ln ----------5分 =[]⎰+C dx e xx1-----------6分 =)(1C e xx+.---------------7分所以原方程的通解是)(1C e xy x+=.----------8分再由条件e yx ==1,有C e e +=,即0=C ,-----------9分因此,所求的特解是xey x=.----------10分.六(10分)、若函数()f x 在(,)a b 内具有二阶导数,且123()()()f x f x f x ==,其中123a x x xb <<<<,证明:在13(,)x x 内至少有一点ξ,使()0f ξ'=。
(2021年整理)2015年山东春季高考数学试题及详解答案
(完整)2015年山东春季高考数学试题及详解答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015年山东春季高考数学试题及详解答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015年山东春季高考数学试题及详解答案的全部内容。
机密★启用前山东省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。
考试结束后,请将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0。
01。
卷一(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上) 1。
集合{}1,2,3A =,{}1,3B =,则A B 等于( ) A.{1,2,3} B.{1,3} C 。
{1,2} D 。
{2} 2。
不等式15x -<的解集是( )A.(6-,4) B 。
(4-,6) C.(,6)(4,)--+∞∞ D 。
(,4)(6,)--+∞∞3.函数1y x=的定义域是( )A.{}10x x x -≠且B.{}1x x -C.{}>10x x x -≠且D.{}>1x x -4.“圆心到直线的距离等于圆的半径”是“直线与圆相切"的( )A.充分不必要条件B.必要不充分条件 C 。
充要条件 D.既不充分也不必要条件 5.在等比数列{}n a 中,241,3a a ==,则6a 的值是( ) A 。
2015年山东卷理科数学高考试卷(原卷 答案)
绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)理科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题本部分共10小题,每小题5分,共50分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
1.已知集合{}243|0A x xx =−+<,{}24|B x x =<<,则A B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)2.若复数Z 满足1Zi i=−,其中i 为虚数为单位,则Z=( ) A .1-iB .1+iC .-1-iD .-1+i3.要得到函数sin(4)3y x π=−的图像,只需要将函数y=sin4x 的图像( )A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移3π个单位D .向右平移3π个单位4.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD ⋅=( ) A .232a −B .234a −C .234a D .232a 5.不等式|x-1|-|x-5|<2的解集是( ) A .(,4)−∞B .(,1)−∞C .(1,4)D .(1,5)6.已知x,y 满足约束条件020x y x y y −≥⎧⎪+≤⎨⎪≥⎩,若z=ax+y 的最大值为4,则a=( ) A .3B .2C .-2D .-37.在梯形ABCD 中,2ABC π∠=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .23π B .43π C .53π D .2π8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量服从正态分布2(,)N μσ, 则(P μσ−<)68.26%μσ<+=,(2P μσ−<2)95.44%μσ<+=。
2015年普通高等学校招生全国统一考试山东卷理科数学(2015年山东省高考理科数学)
2015年普通高等学校招生全国统一考试山东理科数学参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x|x 2﹣4x +3<0},B ={x|2<x<4},则A ∩B =( ) A .(1,3) B .(1,4) C .(2,3) D .(2,4) 答案:C 解析:A ={x|x 2﹣4x +3<0}={x|1<x<3},B ={x|2<x<4},结合数轴,知A ∩B ={x|2<x<3}. 2.若复数z 满足z 1−i=i ,其中i 为虚数单位,则z =( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i答案:A解析:∵z1−i =i ,∴z =i(1﹣i)=i ﹣i 2=1+i .∴z =1﹣i .3.要得到函数y =sin (4x −π3)的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位 B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案:B解析:∵y =sin (4x −π3)=sin [4(x −π12)],∴只需将函数y =sin4x 的图象向右平移π12个单位即可.4.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A .﹣32a 2 B .﹣34a 2 C .34a 2 D .32a 2答案:D解析:如图设BA⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =B .则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA ⃗⃗⃗⃗⃗ =(a +b)·a =a 2+a·b =a 2+a ·a ·cos60°=a 2+12a 2=32a 2.5.不等式|x ﹣1|﹣|x ﹣5|<2的解集是( )A .(﹣∞,4)B .(﹣∞,1)C .(1,4)D .(1,5) 答案:A解析:当x ≤1时,不等式可化为(1﹣x )﹣(5﹣x )<2,即﹣4<2,满足题意;当1<x<5时,不等式可化为(x ﹣1)﹣(5﹣x )<2,即2x ﹣6<2,解得1<x<4; 当x ≥5时,不等式可化为(x ﹣1)﹣(x ﹣5)<2,即4<2,不成立. 故原不等式的解集为(﹣∞,4). 6.已知x ,y 满足约束条件{x −y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .﹣2D .﹣3答案:B解析:由约束条件画出可行域,如图阴影部分所示.线性目标函数z =ax +y ,即y =﹣ax +z. 设直线l 0:ax +y =0.当﹣a ≥1,即a ≤﹣1时,l 0过O (0,0)时,z 取得最大值,z max =0+0=0,不合题意;当0≤﹣a<1,即﹣1<a ≤0时,l 0过B (1,1)时,z 取得最大值,z max =a +1=4,∴a =3(舍去); 当﹣1<﹣a<0时,即0<a<1时,l 0过B (1,1)时,z 取得最大值,z max =2a +1=4,∴a =32(舍去);当﹣a ≤﹣1,即a ≥1时,l 0过A (2,0)时,z 取得最大值,z max =2a +0=4,∴a =2. 综上,a =2符合题意.7.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .2π3B .4π3C .5π3D .2π答案:C解析:由题意可得旋转体为一个圆柱挖掉一个圆锥.V 圆柱=π×12×2=2π,V 圆锥=13×π×12×1=π3.∴V 几何体=V 圆柱﹣V 圆锥=2π﹣π3=5π3.8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%答案:B解析:由正态分布N (0,32)可知,ξ落在(3,6)内的概率为P(μ−2σ<ξ<μ+2σ)−P(μ−σ<ξ<μ+σ)2=95.44%−68.26%2=13.59%.9.一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x +3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( ) A .﹣53或﹣35 B .﹣32或﹣23 C .﹣54或﹣45D .﹣43或﹣34答案:D解析:如图,作出点P (﹣2,﹣3)关于y 轴的对称点P 0(2,﹣3).由题意知反射光线与圆相切,其反向延长线过点P 0.故设反射光线为y =k (x ﹣2)﹣3,即kx ﹣y ﹣2k ﹣3=0.∴圆心到直线的距离d =√1+k 2=1,解得k =﹣43或k =﹣34.10.设函数f (x )={3x −1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[23,1] B .[0,1] C .[23,+∞)D .[1,+∞)答案:C解析:当a =2时,f (2)=4,f (f (2))=f (4)=24,显然f (f (2))=2f (2),故排除A ,B .当a =23时,f (23)=3×23﹣1=1,f (f (23))=f (1)=21=2. 显然f (f (23))=2f(23).故排除D . 综上,选C .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.观察下列各式:C 10=40;C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43; ……照此规律,当n ∈N *时,C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=__________.答案:4n ﹣1解析:观察各式有如下规律:等号左侧第n 个式子有n 项,且上标分别为0,1,2,…,n ﹣1,第n 行每项的下标均为2n ﹣1.等号右侧指数规律为0,1,2,…,n ﹣1.所以第n 个式子为C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=4n ﹣1.12.若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为__________. 答案:1解析:由题意知m ≥(tan x )max .∵x ∈[0,π4],∴tan x ∈[0,1], ∴m ≥1.故m 的最小值为1.13.执行下边的程序框图,输出的T 的值为__________.答案:116解析:初始n =1,T =1.又∫1x n d x =1n +1x n +1|01=1n +1,∵n =1<3,∴T =1+11+1=32,n =1+1=2; ∵n =2<3,∴T =32+12+1=116,n =2+1=3;∵n =3,不满足“n<3”,执行“否”,∴输出T =116.14.已知函数f (x )=a x +b (a>0,a ≠1)的定义域和值域都是[﹣1,0],则a +b =__________. 答案:﹣32解析:f (x )=a x +b 是单调函数,当a>1时,f (x )是增函数,∴{a −1+b =−1,a 0+b =0,无解.当0<a<1时,f (x )是减函数,∴{a −1+b =0,a 0+b =−1,∴{a =12,b =−2. 综上,a +b =12+(﹣2)=﹣32.15.平面直角坐标系xOy 中,双曲线C 1:x 2a −y 2b =1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py (p>0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为__________. 答案:32解析:双曲线的渐近线为y =±ba x.由{y =ba x ,x 2=2py ,得A (2bp a ,2b 2p a ).由{y =−ba x ,x 2=2py ,得B (−2bp a ,2b 2p a 2). ∵F (0,p2)为△OAB 的垂心,∴k AF ·k OB =﹣1.即2b 2p a 2−p22bpa−0·(−ba )=﹣1,解得b 2a 2=54,∴c 2a 2=94,即可得e =32.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)设f (x )=sin x cos x ﹣cos 2(x +π4). (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,C .若f (A2)=0,a =1,求△ABC 面积的最大值. 解:(1)由题意知f (x )=sin2x 2−1+cos(2x +π2)2=sin2x 2−1−sin2x2=sin2x ﹣12.由﹣π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得﹣π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是[−π4+kπ,π4+kπ](k ∈Z);单调递减区间是[π4+kπ,3π4+kπ](k ∈Z).(2)由f (A2)=sin A ﹣12=0,得sin A =12,由题意知A 为锐角,所以cos A =√32. 由余弦定理a 2=b 2+c 2﹣2bc cos A , 可得1+√3bc =b 2+c 2≥2bc ,即bc ≤2+√3,且当b =c 时等号成立. 因此12bc sin A ≤2+√34.所以△ABC 面积的最大值为2+√34.17.(本小题满分12分)如图,在三棱台DEF ﹣ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证法一:连接DG ,CD ,设CD ∩GF =O ,连接OH.在三棱台DEF ﹣ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则O 为CD 的中点,又H 为BC 的中点,所以OH ∥BD ,又OH ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH.证法二:在三棱台DEF ﹣ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形.可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB . 又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH.(2)解法一:设AB =2,则CF =1.在三棱台DEF ﹣ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形,因此DG ∥FC .又FC ⊥平面ABC , 所以DG ⊥平面ABC .在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点,所以AB =BC ,GB ⊥GC ,因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G ﹣xyz. 所以G (0,0,0),B (√2,0,0),C (0,√2,0),D (0,0,1). 可得H (√22,√22,0),F (0,√2,1), 故GH ⃗⃗⃗⃗⃗⃗ =(√22,√22,0),GF ⃗⃗⃗⃗⃗ =(0,√2,1). 设n =(x ,y ,z )是平面FGH 的一个法向量, 则由{n ·GH ⃗⃗⃗⃗⃗⃗ =0,n ·GF ⃗⃗⃗⃗⃗ =0,可得{x +y =0,√2y +z =0.可得平面FGH 的一个法向量n =(1,﹣1,√2). 因为GB ⃗⃗⃗⃗⃗ 是平面ACFD 的一个法向量,GB⃗⃗⃗⃗⃗ =(√2,0,0), 所以cos <GB ⃗⃗⃗⃗⃗ ,n >=GB ⃗⃗⃗⃗⃗ ·n |GB ⃗⃗⃗⃗⃗ |·|n|√22√212. 所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.解法二:作HM ⊥AC 于点M ,作MN ⊥GF 于点N ,连接NH. 由FC ⊥平面ABC ,得HM ⊥FC , 又FC ∩AC =C ,所以HM ⊥平面ACFD . 因此GF ⊥NH ,所以∠MNH 即为所求的角.在△BGC 中,MH ∥BG ,MH =12BG =√22, 由△GNM ∽△GCF ,可得MNFC =GMGF ,从而MN =√66.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM ⊥MN ,因此tan ∠MNH =HM MN=√3,所以∠MNH =60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.18.(本小题满分12分)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3,当n>1时,2S n ﹣1=3n ﹣1+3,此时2a n =2S n ﹣2S n ﹣1=3n ﹣3n ﹣1=2×3n ﹣1,即a n =3n ﹣1,所以a n ={3,n =1,3n−1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n>1时,b n =31﹣n log 33n ﹣1=(n ﹣1)·31﹣n . 所以T 1=b 1=13;当n>1时,T n =b 1+b 2+b 3+…+b n =13+(1×3﹣1+2×3﹣2+…+(n ﹣1)×31﹣n ),所以3T n =1+(1×30+2×3﹣1+…+(n ﹣1)×32﹣n ),两式相减,得2T n =23+(30+3﹣1+3﹣2+ (32)n )﹣(n ﹣1)×31﹣n =23+1−31−n 1−3−1﹣(n ﹣1)×31﹣n =136−6n +32×3n,所以T n =1312−6n +34×3n.经检验,n =1时也适合. 综上可得T n =1312−6n +34×3n.19.(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得﹣1分;若能被10整除,得1分. (1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望EX.解:(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为C 93=84,随机变量X 的取值为:0,﹣1,1,因此P (X =0)=C 83C 93=23,P (X =﹣1)=C 42C 93=114,P (X =1)=1﹣114−23=1142.所以X 的分布列为则EX =0×23+(﹣1)×114+1×1142=421.20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆C :x 2a2+y 2b 2=1(a>b>0)的离心率为√32,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q.①求|OQ||OP|的值;②求△ABQ 面积的最大值.解:(1)由题意知2a =4,则a =2.又ca =√32,a 2﹣c 2=b 2,可得b =1,所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ||OP|=λ,由题意知Q (﹣λx 0,﹣λy 0).因为x 024+y 02=1,又(−λx 0)216+(−λy 0)24=1,即λ24(x 024+y 02)=1,所以λ=2,即|OQ||OP|=2. ②设A (x 1,y 1),B (x 2,y 2),将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2﹣16=0, 由Δ>0,可得m 2<4+16k 2.①则有x 1+x 2=﹣8km 1+4k 2,x 1x 2=4m 2−161+4k 2.所以|x 1﹣x 2|=4√16k 2+4−m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m||x 1﹣x 2|=2√16k 2+4−m 2|m|1+4k 2=2√(16k 2+4−m 2)m 21+4k 2=2√(4−m 21+4k2)m 21+4k 2.设m 21+4k 2=t.将y =kx +m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx +4m 2﹣4=0, 由Δ≥0,可得m 2≤1+4k 2. ②由①②可知0<t ≤1,因此S =2√(4−t)t =2√−t 2+4t .故S ≤2√3,当且仅当t =1,即m 2=1+4k 2时取得最大值2√3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6√3.21.(本小题满分14分)设函数f (x )=ln(x +1)+a (x 2﹣x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x>0,f (x )≥0成立,求a 的取值范围.解:(1)由题意知函数f (x )的定义域为(﹣1,+∞),f'(x )=1x +1+a (2x ﹣1)=2ax 2+ax−a +1x +1.令g (x )=2ax 2+ax ﹣a +1,x ∈(﹣1,+∞).当a =0时,g (x )=1,此时f'(x )>0,函数f (x )在(﹣1,+∞)单调递增,无极值点; 当a>0时,Δ=a 2﹣8a (1﹣a )=a (9a ﹣8).①当0<a ≤89时,Δ≤0,g (x )≥0,f'(x )≥0,函数f (x )在(﹣1,+∞)单调递增,无极值点;②当a>89时,Δ>0,设方程2ax 2+ax ﹣a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=﹣12,所以x 1<﹣14,x 2>﹣14.由g (﹣1)=1>0,可得﹣1<x 1<﹣14.所以当x ∈(﹣1,x 1)时,g (x )>0,f'(x )>0,函数f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f'(x )<0,函数f (x )单调递减, 当x ∈(x 2,+∞)时,g (x )>0,f'(x )>0,函数f (x )单调递增. 因此函数有两个极值点. 当a<0时,Δ>0,由g (﹣1)=1>0,可得x 1<﹣1.当x ∈(﹣1,x 2)时,g (x )>0,f'(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f'(x )<0,函数f (x )单调递减; 所以函数有一个极值点.综上所述,当a<0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a>89时,函数f (x )有两个极值点.(2)由(1)知,①当0≤a ≤89时,函数f (x )在(0,+∞)上单调递增,因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;②当89<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增.又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ③当a>1时,由g (0)<0,可得x 2>0. 所以x ∈(0,x 2)时,函数f (x )单调递减;因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a<0时,设h (x )=x ﹣ln(x +1). 因为x ∈(0,+∞)时,h'(x )=1﹣1x +1=xx +1>0,所以h (x )在(0,+∞)上单调递增.因此当x ∈(0,+∞)时,h (x )>h (0)=0, 即ln(x +1)<x.可得f (x )<x +a (x 2﹣x )=ax 2+(1﹣a )x , 当x>1﹣1a 时,ax 2+(1﹣a )x<0, 此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].。
15年高考真题——理科数学(山东卷)
2015年普通高等学校招生全国统一考试数学试卷(山东卷)一.选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2|430A x x x =-+<,{}|24B x x =<<,则A B = ( ) (A )()1,3 (B )()1,4 (C )()2,3 (D )()2,42.若复数z 满足1zi i=-,其中i 是虚数单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+3.要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x =的图像( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位4.已知菱形ABCD 的边长为a ,060ABC ∠=,则BD CD ⋅= ( )(A )232a - (B )234a - (C )234a (D )232a 5.不等式|1||5|2x x ---<的解集是( )(A )(),4-∞ (B )(),1-∞ (C )()1,4 (D ) ()1,56.已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )(A )3 (B )2 (C )2- (D )3-7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===。
将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B )43π (C )53π(D )2π 8.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间()3,6内的概率为(附:若随机变量ξ服从正态分布()2,N μσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=)( )(A )4.56% (B )13.59% (C )27.18% (D )31.74%9.一条光线从点()2,3--射出,经y 轴反射与圆()()22321x y ++-=相切,则反射光线所在的直线的斜率为( ) (A )53-或35- (B )32-或32- (C )54-或45- (D )43-或34- 10.设函数()()()31121xx x f x x -<⎧⎪=⎨≥⎪⎩,则满足()()()2f a f f a =的取值范围是( ) (A )[]2 (B )[]0,1 (C )[)2+∞ (D )[)1,+∞二.填空题:本大题共5小题,每小题5分,共25分 。
2015年山东春季高考数学试题 及详解答案
题列出的四个选项中,只有一项符合题目要求,请将符合题目
要求的选项字母选出,填涂在答题卡上)
ቤተ መጻሕፍቲ ባይዱ
1.若集合A={1,2,3},B={1,3},则 A ∩B等于( )
(A){1,2,3} (B){1,3}
(C) {1,2} (D){2}
2.|x-1|<5的解集是( )
(A)(-6,4)
(B)(-4,6)
(C) (-∞, -6)∪(4, +∞)
(A)
(B)2
(C)6
(D)5
14.关于x,y的方程x2+m y2=1,给出下列命题: ①当m<0时,方程表示双曲线;②当m=0时,方程表示抛物线;③当0 <m<1时,方程表示椭圆;④当m=1时,方程表示等轴双曲线;⑤当m >1时,方程表示椭圆。 其中,真命题的个数是( )
(A)2
(B)3
(C)4
24.已知椭圆的中心在坐标原点,右焦点与圆x2+m y2-6 m-7=0的圆 心重合,长轴长等于圆的直径,则短轴长等于________.
25.集合M,N,S都 是非空集合,现规定如下运算: M⊙N⊙S={x|x(M∩N)∪(N∩S)∪(S∩M),且x M∩N∩S }. 若集合A={x|a<x<b},B={x|c<x<d} ,C={x|e<x<f},其中实 数a,b,c,d,e,f满足: (1)ab<0,cd<0;ef<0;(2)b-a=d-c=f-e;(3)b+a<d +c<f+e. 计算A⊙B⊙C=_____________________________________.
(C){x|x=-+2k,kZ }
(D){x|x=-+k,kZ }
8.关于函数y=-x2+2x,下列叙述错误的是( )
15年高考真题——理科数学(山东卷)
2015年普通高等学校招生全国统一考试数学试卷(山东卷)一.选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2|430A x x x =-+<,{}|24B x x =<<,则AB =( )(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,42.若复数z 满足1zi i=-,其中i 是虚数单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+3.要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需将函数sin 4y x =的图像( ) (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位4.已知菱形ABCD 的边长为a ,060ABC ∠=,则BD CD ⋅=( ) (A )232a -(B )234a - (C )234a (D )232a5.不等式|1||5|2x x ---<的解集是( )(A )(),4-∞ (B )(),1-∞ (C )()1,4 (D ) ()1,56.已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )(A )3 (B )2 (C )2- (D )3- 7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===。
将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B )43π (C )53π(D )2π 8.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间()3,6内的概率为(附:若随机变量ξ服从正态分布()2,Nμσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=)( )(A )4.56% (B )13.59% (C )27.18% (D )31.74%9.一条光线从点()2,3--射出,经y 轴反射与圆()()22321x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或32- (C )54-或45- (D )43-或34- 10.设函数()()()31121xx x f x x -<⎧⎪=⎨≥⎪⎩,则满足()()()2f a f f a =的取值范围是( ) (A )[]23,1 (B )[]0,1 (C )[)23,+∞ (D )[)1,+∞二.填空题:本大题共5小题,每小题5分,共25分 。
2015年山东专升本(数学)真题试卷(题后含答案及解析)
2015年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题 4. 综合题 5. 证明题一、选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.=A.eB.C.e2D.正确答案:C解析:=e2 2.=A.B.0C.1D.2正确答案:A解析:由等价无穷小代换,.故应选A.3.函数y=ln?sin x?的定义域是_________.其中k为整数.A.x≠B.x∈(一∞,∞),x≠kπC.x=kπD.x∈(一∞,∞)正确答案:B解析:y=ln?sin x?,所以,0<?sin x?≤1,x∈(一∞,+∞),x≠kπ,k为整数,故应选B.4.函数y=是A.奇函数B.偶函数C.非奇非偶函数D.无法确定正确答案:A解析:f(x)==f(x),f(x)为奇函数,故应选A.5.若∫f(x)dx=xe-2x+c,则f(x)等于________.其中c为常数.A.一2xe-2xB.一2x2e-2xC.(1—2x)e-2xD.(1—2x2)e-2x正确答案:C解析:f(x)=(∫f(x)dx)'=e-2x+xe-2x(一2)=e-2x(1—2x),故应选C.6.下列级数中为条件收敛的级数是A.B.C.D.正确答案:D解析:选项A和B的级数通项极限均不存在,故发散;选项C中级数每一项加绝对值变成收敛,所以,该级数绝对收敛,故应选D.7.设∫0xf(t)dt=a3x,则f(x)等于A.3a3xB.a3xlnaC.3a3x-1D.3a3xlna正确答案:D解析:∫0xf(f)dt=a3x,方程两端同时求导得:f(x)=3a3xlna,故应选D.8.曲线y=的水平渐近线为A.y=1B.y=2C.x=一1D.x=50正确答案:B解析:=2,故已知曲线的水平渐近线为直线y=2,故应选B.9.积分区域D为x2+y2≤2,则xdσ=A.2πB.πC.1D.0正确答案:D解析:积分区域关于y轴对称,被积函数f(x,y)=x关于x为奇函数,所以积为0,故应选D.10.广义积分∫0+∞e-2xdx=A.不存在B.C.D.2正确答案:C解析:∫0+∞e-2xdx=,故应选C.二、填空题11.设函数f(x)=函数f(x)的间断点是________,间断点的类型是________.正确答案:x=0第二类间断点解析:因为sin在x=0处没有定义,且不存在,所以x=0为第二类间断点.12.函数f(x)在点x0处可微,f'(x0)=0是点x0为极值点的________条件.正确答案:必要解析:若函数f(x)在点x0处可微,且f'(x0)=0,则x0必为函数极值点,但函数的极值点处不一定导数为零,所以仅是必要条件.13.函数f(x)在点x0处的左、右导数存在且________是函数在点x0可与的________条件.正确答案:相等,充要解析:函数f(x)在点x0处的左右导数存在且相等是函数在点x0可导的充要条件.14.设≠0,则与向量同方向的单位向量=________.正确答案:解析:与非零向量口同方向的单位向量为15.广义积分dx(p>0)当________时收敛,当________时发散.正确答案:0<p<1,p≥1解析:广义积分收敛,即积分存在,且值为一个常数.∫01dx=100∫01x-pdx=(1一01-p)只有当p<1时,积存在,所以0<p<1时广义积分收敛;p≥1时,广义积分发散.16.已知y=xsinx,则dy=________.正确答案:xsinx(cosxlnx+)dx解析:利用对数求导法,先求导数再求微分.方程两边同时取对数,ln y=sinxlnx,方程两边同时关于x求导,y'=cosxlnx+sinx.,得y'=y·(cosxlnx+sinx)因此dy=y'dx=xsinx·(coslnx+sin x)dx.17.对函数f(x)=在区间[1,2]上应用拉格朗日中值定理得f(2)一f(1)=f'(ζ),则ζ=________,其中(1<ζ<2).正确答案:ζ=√2解析:因为f(x)在[1,2]上连续可导,所以由拉格朗日中值定理得:存在ζ∈(1,2),使得f(2)一f(1)=f'(ζ)(2—1),即一=f'(ζ),所以一,解得ζ=√2.18.如果闭区域D由x轴、y轴及x+y=1围成,则(x+y)2dσ________(x+y)3d σ.正确答案:≥解析:在闭区域内,0≤x+y≤1,因此(x+y)2≥(x+y)3,由二重积分保序性知(x+y)3dσ.19.曲线y=e-x2有_________拐点.正确答案:两个解析:y'=e-x3.(一3x2)=一3x2e-x3,y"=(一3x2e-x3)'=一3xe-x3(2—3x3),令y"=0,则x=0,x=.当x<0时,y">0;当0<x<时,y"<0;当x>时,y">0,所以函数有两个拐点.20.直线的方向向量=_________,与平面2x+5y一3z一4=0是_________的.正确答案:s={2,5,一3),垂直解析:该直线的方向向量为s={2,5,一3),平面的法向量为n={2,5,一3),s//n,因此直线垂直于平面.三、解答题解答时应写出推理、演算步骤。
2018决赛带答案山东省大学生数学竞赛(专科)试卷
绝密★启用前山东省大学生数学竞赛(专科)决赛试卷(非数学类(A ),2018)考试形式: 闭卷 考试时间: 120 分钟满分: 100 分一、填空题(每小题5分,共30分,请将答案填在题中横线上。
)[].________)(0)(1)(e )( .12=≥-==x x x x f x f x ϕϕϕ,则,且,已知[][][][].0 )1ln(.01)1(0)1ln()1ln()(1e 1)(e )(e )( 222)()()(故应填,即,所以而,解得,,所以而,,则因为≤-≤≥-≥--=-=-===x x x x x x x x x x f x f x f x x x ϕϕϕϕϕ解.________)100(lim .22=++-∞→x x x x 求注意:1.答题前,请竞赛选手将密封线内的项目填写清楚。
2.将答案直接答在试卷相应题目的位置,答错位置不得分。
线封密.50.5011001100lim100100lim)100(lim 222--=-+-=-+=++-∞→-∞→-∞→故应填xxx x x x x x x x 解.________)()2(lim1)( .30000=----='→x x f x x f xx f x ,则已知[][]1..1)()2(1lim )()2(lim 1)()(2)()()()2(lim)()2(lim0000000000000000故应填得,由=---=---='+'-=-----=---→→→→xx x f x x f x x f x x f x x f x f x x f x x f x f x x f x x x f x x f x x x x 解.________ 0)πsin( .4102='=-==y x y y xy ,则已知方程.π21.π21π2)πcos(0π2)πcos(0)πsin( 10222--='-='='-'+=-==故应填所以,,即求导得等式两边同时对方程y x y xy y yy y y y y x y x y xy 解 .________d 1ln .52=-⎰x x x 求.ln .ln d 1d 11ln d 11d ln d 1d ln d 1ln 222222C xxC xxx x x x x x x xx x x x x x x x x x +-+-=-+⋅-=--=-=-⎰⎰⎰⎰⎰⎰⎰故应填解.________)0(d )12()( .61,其单减区间为已知函数>-=⎰x t tx F x).41,0).41,0410001212)( 故应填(所以单减区间为(,,得,且由<<><-=-='x x xx x x F 解二、综合题(本题共6小题,共70分,请写出相应演算步骤。
2015年山东省高考数学试卷(理 科)答案与解析
=( )
A. ﹣
a2
a2
5.(5分)(2015•山东)不等式|x﹣1|﹣|x﹣5|<2的解集是( )
A.(﹣∞,4) B.(﹣∞,1) C.(1,4) D.(1,5)
6.(5分)(2015•山东)已知x,y满足约束条件
,若z=ax+y的最大值为4,则a=( )
二、填空题(本大题共5小题,每小题5分,共25分)
11.(5分)(2015•山东)观察下列各式: C
=40;
C
+C
=41;
C
+C
+C
=42;
C
+C
+C
+C
=43;
…
照此规律,当n∈N*时,
C
+C
+C
+…+C = .
12.(5分)(2015•山东)若“∀x∈[0, ],tanx≤m”是真命题,则实数m的最小值为 . 13.(5分)(2015•山东)执行如图程序框图,输出的T的值为 .
2015年山东省高考数学试卷(理科)
参考答案与试题解析
一、选择题(本大题共10小题,每小题5分,共50分)
1.(5分)(2015•山东)已知集合A={x|x2﹣4x+3<0},B={x|2<x<
4},则A∩B=( )
A.(1,3) B.(1,4) C.(2,3) D.(2,4)
2.(5分)(2015•山东)若复数z满足
三、解答题
16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+
). (Ⅰ)求f(x)的单调区间; (Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(
2016总决赛答案 山东省大学生数学竞赛(专科)试卷
绝密★启用前山东省大学生数学竞赛(专科)总决赛试卷答案(非数学类,2016)一、填空题(每小题5分,共30分) 1. []1,3--和][3,1 2. 2ln a 3. ()(]0-0-,或,∞∞ 4.C x f +22)]([41 5. 23. 6.2 二、综合题(本题共70分,请写出相应演算步骤。
)1.(11分)设n a a a ,,,10Λ是满足0132210=+++++n a a a a n Λ的实数,证明多项式 n n x a x a x a a x f ++++=Λ2210)(,在)1,0(内至少有一个零点.解:令132)(132210+++++=+n x a x a x a x a x F n n Λ (4分) )(x F 在]1,0[上连续,在)1,0(内可导,0)0(=F (2分)又因为0132210=+++++n a a a a n Λ,所以0)1(=F (2分) 所以由罗尔定理知在)1,0(内至少存在一点ξ,使0)(='ξF即0)()(2210=++++=='n n a a a a f F ξξξξξΛ 得证 (3分)2. (11分)求不定积分dx x x )1ln(2⎰++. 解:⎰⎰++-++=++)1ln()1ln()1ln(222x x xd x x x dx x x (3分) ⎰+-++⋅=dx x xx x x 221)1ln( (4分)⎰++-++⋅=)1(1121)1ln(222x d xx x x (2分) C x x x x ++-++⋅=221)1ln( (2分)3. (16分)设)(x f 连续,dt xt f x ⎰=10 )()(ϕ,且A xx f x =→)(lim 0(A 为常数),求)(x ϕ'并讨论)(x ϕ'在0=x 处的连续性.解:当0≠x 时,令u xt =,则du dt x =⋅,当0=t 时0=u ,当1=t 时x u =, 所以xduu f du x u f x x x ⎰⎰== 0 0 )()( )(ϕ (4分) 所以当0≠x 时,2 0)()()(x du u f x xf x x⎰-='ϕ (2分) 由A xx f x =→)(lim 0知0)0(=f (1分) 又由dt xt f x ⎰=10 )()(ϕ和0)0(=f 知0)0(=ϕ (1分) 则2 0 00)(lim 0)0()(lim )0(x du u f x x x x x ⎰→→=--='ϕϕϕ22)(lim 0A x x f x ==→ (4分) 所以⎪⎪⎩⎪⎪⎨⎧=≠-='⎰0 ,20,)()()(2 0 x A x x du u f x xf x x ϕ (1分) 又因为)0(22)(lim )(lim )()(lim )(lim 2 0 0202 0 00ϕϕ'==-=-=-='⎰⎰→→→→A A A x du u f x x xf x du u f x xf x xx x x x x (注意2 00)()(lim x duu f x xf x x ⎰-→直接用洛必达法则计算有一定问题,若直接用洛必达法则计算要得出结论,需证明)(x f '在0=x 处是连续的,而题设中没有此结论)所以)(x ϕ'在0=x 处连续 (3分)4. (16分)已知一开口向上的抛物线通过x 轴上的两点)0,1(A 和)0,3(B .(1)试证:两坐标轴与该抛物线所围图形的面积等于x 轴与该抛物线所围图形的面积;(2)计算上述两个平面绕x 轴旋转一周所产生的两个旋转体体积之比.解:由开口向上,通过x 轴上的两点)0,1(A 和)0,3(B ,得抛物线方程)0()34()3)(1(2>+-=--=a x x a x x a y (4分)(1)两坐标轴与该抛物线所围图形的面积 ()13122100443(23)33x s a x x dx a x x a =-+=-+=⎰ (2分)x 轴与该抛物线所围图形的面积()33 3222 114[43](23)33x s a x x dx a x x a =--+=--=⎰ (2分) 结论得证。
2015年普通高等学校招生全国统一考试理科数学(山东卷)(含答案全解析)
2015年普通高等学校招生全国统一考试山东理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015山东,理1)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)答案:C解析:A={x|x2-4x+3<0}={x|1<x<3},B={x|2<x<4},结合数轴,知A∩B={x|2<x<3}.2.(2015山东,理2)若复数z满足z=i,其中i为虚数单位,则z=()A.1-iB.1+iC.-1-iD.-1+i答案:A解析:∵z1−i=i,∴z=i(1-i)=i-i2=1+i.∴z=1-i.3.(2015山东,理3)要得到函数y=sin4x−π的图象,只需将函数y=sin 4x的图象()A.向左平移π个单位B.向右平移π个单位C.向左平移π个单位D.向右平移π3个单位答案:B解析:∵y=sin4x−π3=sin4 x−π12,∴只需将函数y=sin 4x的图象向右平移π12个单位即可.4.(2015山东,理4)已知菱形ABCD的边长为a,∠ABC=60°,则BD·CD=()A.-32a2 B.-34a2 C.34a2 D.32a2答案:D解析:如图设BA=a,BC=b.则BD·CD=(BA+BC)·BA=(a+b)·a=a2+a·b=a2+a·a·cos 60°=a2+1a2=3a2.5.(2015山东,理5)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)答案:A解析:当x≤1时,不等式可化为(1-x)-(5-x)<2,即-4<2,满足题意;当1<x<5时,不等式可化为(x-1)-(5-x)<2,即2x-6<2,解得1<x<4; 当x≥5时,不等式可化为(x-1)-(x-5)<2,即4<2,不成立.故原不等式的解集为(-∞,4).6.(2015山东,理6)已知x,y满足约束条件x−y≥0,x+y≤2,y≥0.若z=ax+y的最大值为4,则a=()A.3B.2C.-2D.-3答案:B解析:由约束条件画出可行域,如图阴影部分所示.线性目标函数z=ax+y,即y=-ax+z.设直线l0:ax+y=0.当-a≥1,即a≤-1时,l0过O(0,0)时,z取得最大值,z max=0+0=0,不合题意;当0≤-a<1,即-1<a≤0时,l0过B(1,1)时,z取得最大值,z max=a+1=4,∴a=3(舍去);当-1<-a<0时,即0<a<1时,l0过B(1,1)时,z取得最大值,z max=2a+1=4,∴a=3(舍去);当-a≤-1,即a≥1时,l0过A(2,0)时,z取得最大值,z max=2a+0=4,∴a=2.综上,a=2符合题意.7.(2015山东,理7)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案:C解析:由题意可得旋转体为一个圆柱挖掉一个圆锥.V圆柱=π×12×2=2π,V圆锥=13×π×12×1=π3.∴V几何体=V圆柱-V圆锥=2π-π=5π.8.(2015山东,理8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%答案:B解析:由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ−2σ<ξ<μ+2σ)−P(μ−σ<ξ<μ+σ)=95.44%−68.26%2=13.59%.9.(2015山东,理9)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-53或-35B.-32或-23C.-5或-4D.-4或-3答案:D解析:如图,作出点P(-2,-3)关于y轴的对称点P0(2,-3).由题意知反射光线与圆相切,其反向延长线过点P0.故设反射光线为y=k(x-2)-3,即kx-y-2k-3=0.∴圆心到直线的距离d=1+k=1,解得k=-4或k=-3.10.(2015山东,理10)设函数f (x )= 3x −1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A. 23,1 B.[0,1]C. 2,+∞ D.[1,+∞)答案:C解析:当a=2时,f (2)=4,f (f (2))=f (4)=24,显然f (f (2))=2f (2),故排除A,B .当a=2时,f 2 =3×2-1=1,f f 2 =f (1)=21=2. 显然f f 2 =2f 23 .故排除D . 综上,选C .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.(2015山东,理11)观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43; ……照此规律,当n ∈N *时,C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1= . 答案:4n-1解析:观察各式有如下规律:等号左侧第n 个式子有n 项,且上标分别为0,1,2,…,n-1,第n 行每项的下标均为2n-1.等号右侧指数规律为0,1,2,…,n-1.所以第n 个式子为C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=4n-1. 12.(2015山东,理12)若“∀x ∈ 0,π4,tan x ≤m ”是真命题,则实数m 的最小值为 . 答案:1解析:由题意知m ≥(tan x )max .∵x ∈ 0,π,∴tan x ∈[0,1], ∴m ≥1.故m 的最小值为1.13.(2015山东,理13)执行下边的程序框图,输出的T 的值为 .答案:11解析:初始n=1,T=1.又 10x n d x=1n +1x n+1|01=1n +1, ∵n=1<3,∴T=1+1=3,n=1+1=2; ∵n=2<3,∴T=32+12+1=116,n=2+1=3; ∵n=3,不满足“n<3”,执行“否”,∴输出T=11.14.(2015山东,理14)已知函数f (x )=a x +b (a>0,a ≠1)的定义域和值域都是[-1,0],则a+b= . 答案:-3解析:f (x )=a x +b 是单调函数,当a>1时,f (x )是增函数,∴ a −1+b =−1,a 0+b =0,无解.当0<a<1时,f (x )是减函数,∴ a −1+b =0,a 0+b =−1,∴ a =12,b =−2. 综上,a+b=1+(-2)=-3.15.(2015山东,理15)平面直角坐标系xOy 中,双曲线C 1:x 2a 2−y 2b2=1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py (p>0)交于点O ,A ,B.若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .答案:3解析:双曲线的渐近线为y=±ba x.由y =ba x ,x 2=2py ,得A 2bp a ,2b 2p a 2.由 y =−b a x ,x 2=2py ,得B −2bp a ,2b 2p a2 .∵F 0,p为△OAB 的垂心,∴k AF ·k OB =-1.即2b 2p a 2−p 22bpa−0· −b a =-1,解得b 2a2=54,∴c 2a 2=94,即可得e=32.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2015山东,理16)设f (x )=sin x cos x-cos 2 x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若f A 2=0,a=1,求△ABC 面积的最大值.解:(1)由题意知f (x )=sin2x −1+cos 2x +π2 =sin2x −1−sin2x =sin 2x-1.由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π+2k π≤2x ≤3π+2k π,k ∈Z ,可得π+k π≤x ≤3π+k π,k ∈Z .所以f (x )的单调递增区间是 −π+kπ,π+kπ (k ∈Z );单调递减区间是 π+kπ,3π+kπ (k ∈Z ).(2)由f A 2 =sin A-12=0,得sin A=12,由题意知A 为锐角,所以cos A= 32.由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+ 3bc=b 2+c 2≥2bc ,即bc ≤2+ 3,且当b=c 时等号成立. 因此12bc sin A ≤2+ 34. 所以△ABC 面积的最大值为2+ 3. 17.(本小题满分12分)(2015山东,理17)如图,在三棱台DEF-ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF=DE ,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形.可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解法一:设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=1AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC.又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(2,0,0),C(0,2,0),D(0,0,1).可得H2,2,0,F(0,2,1),故GH=2,2,0,GF=(0,.设n=(x,y,z)是平面FGH的一个法向量,则由n·GH=0,n·GF=0,可得x+y=0,2y+z=0.可得平面FGH的一个法向量n=(1,-1,2).因为GB是平面ACFD的一个法向量,GB=(2,0,0),所以cos<GB,n>=GB·n|GB|·|n|=222=12.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.解法二:作HM⊥AC于点M,作MN⊥GF于点N,连接NH.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.在△BGC中,MH∥BG,MH=1BG=2,由△GNM ∽△GCF ,可得MN FC=GMGF,从而MN= 66.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM ⊥MN ,因此tan ∠MNH=HM = 3,所以∠MNH=60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.18.(本小题满分12分)(2015山东,理18)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3, 当n>1时,2S n-1=3n-1+3,此时2a n =2S n -2S n-1=3n -3n-1=2×3n-1,即a n =3n-1,所以a n = 3,n =1,3n−1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n>1时,b n =31-n log 33n-1=(n-1)·31-n . 所以T 1=b 1=1;当n>1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n-1)×31-n ), 所以3T n =1+(1×30+2×3-1+…+(n-1)×32-n ),两式相减,得2T n =2+(30+3-1+3-2+…+32-n )-(n-1)×31-n =2+1−31−n 1−3−1-(n-1)×31-n =13−6n +3n, 所以T n =13−6n +3n.经检验,n=1时也适合. 综上可得T n =1312−6n +34×3n. 19.(本小题满分12分)(2015山东,理19)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望EX.解:(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为C 93=84,随机变量X 的取值为:0,-1,1,因此P (X=0)=C 83C 93=23,P (X=-1)=C 42C 93=114,P (X=1)=1-114−23=1142. 所以X 的分布列为则EX=0×23+(-1)×114+1×1142=421. 20.(本小题满分13分)(2015山东,理20)平面直角坐标系xOy 中,已知椭圆C :x 22+y 2b2=1(a>b>0)的离心率为3,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 24b2=1,P为椭圆C 上任意一点.过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E于点Q.①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解:(1)由题意知2a=4,则a=2.又c =3,a 2-c 2=b 2,可得b=1,所以椭圆C 的方程为x 2+y 2=1.(2)由(1)知椭圆E 的方程为x 2+y 2=1. ①设P (x 0,y 0),|OQ |=λ,由题意知Q (-λx 0,-λy 0).因为x 02+y 02=1,又(−λx 0)2+(−λy 0)2=1, 即λ24 x 024+y 02 =1,所以λ=2,即|OQ ||OP |=2. ②设A (x 1,y 1),B (x 2,y 2),将y=kx+m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-16=0, 由Δ>0,可得m 2<4+16k 2. ①则有x 1+x 2=-8km 1+4k2,x 1x 2=4m 2−161+4k2.所以|x 1-x 2|=4 16k 2+4−m 21+4k2.因为直线y=kx+m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S=12|m||x 1-x 2|=2 16k 2+4−m 2|m |1+4k2=2 (16k 2+4−m 2)m 21+4k2=2 4−m 1+4k2m 1+4k2.设m 21+4k2=t.将y=kx+m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx+4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2. ②由①②可知0<t ≤1,因此S=2 (4−t )t =22+4t . 故S ≤2 ,当且仅当t=1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6 3.21.(本小题满分14分)(2015山东,理21)设函数f (x )=ln(x+1)+a (x 2-x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x>0,f (x )≥0成立,求a 的取值范围. 解:(1)由题意知函数f (x )的定义域为(-1,+∞),f'(x )=1+a (2x-1)=2ax 2+ax−a +1. 令g (x )=2ax 2+ax-a+1,x ∈(-1,+∞).当a=0时,g (x )=1,此时f'(x )>0,函数f (x )在(-1,+∞)单调递增,无极值点; 当a>0时,Δ=a 2-8a (1-a )=a (9a-8).①当0<a ≤8时,Δ≤0,g (x )≥0,f'(x )≥0,函数f (x )在(-1,+∞)单调递增,无极值点;②当a>89时,Δ>0,设方程2ax 2+ax-a+1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-1,所以x 1<-1,x 2>-1. 由g (-1)=1>0,可得-1<x 1<-1.所以当x ∈(-1,x 1)时,g (x )>0,f'(x )>0,函数f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f'(x )<0,函数f (x )单调递减, 当x ∈(x 2,+∞)时,g (x )>0,f'(x )>0,函数f (x )单调递增. 因此函数有两个极值点. 当a<0时,Δ>0,由g (-1)=1>0,可得x 1<-1.当x ∈(-1,x 2)时,g (x )>0,f'(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f'(x )<0,函数f (x )单调递减; 所以函数有一个极值点.综上所述,当a<0时,函数f (x )有一个极值点; 当0≤a ≤8时,函数f (x )无极值点; 当a>89时,函数f (x )有两个极值点. (2)由(1)知,①当0≤a ≤8时,函数f (x )在(0,+∞)上单调递增, 因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;②当8<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增.又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ③当a>1时,由g (0)<0,可得x 2>0. 所以x ∈(0,x 2)时,函数f (x )单调递减;因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a<0时,设h (x )=x-ln(x+1). 因为x ∈(0,+∞)时,h'(x )=1-1=x>0, 所以h (x )在(0,+∞)上单调递增. 因此当x ∈(0,+∞)时,h (x )>h (0)=0, 即ln(x+1)<x.可得f (x )<x+a (x 2-x )=ax 2+(1-a )x , 当x>1-1a时,ax 2+(1-a )x<0, 此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].。
2015第七届全国大学生数学竞赛年试卷和答案
一、每小题 6 分,共计 30 分。 π 2 ⎛ ⎞ ⎜ sin n sin n π sin π ⎟ + 2 +L+ 2 (1) 极限 lim n ⎜ 2 ⎟= n →∞ n +n⎟ ⎜ n +1 n + 2 ⎝ ⎠
2
π
。
i π n sin i 1 n 1 n i n π ≤ sin 解:由于 ≤ ∑ sin π , 而 ∑ ∑ i n + 1 i =1 n n i =1 n i =1 n+ n
同样,方程对 y 求导,得到 y
于是 x
∂z ∂z z ( xFu + yFv ) − xy ( xFu + yFv ) +y = = z − xy ∂x ∂y xFu + yFv
(3)曲面 z = x + y + 1 在点 M(1,‐1,3)的切平面与曲面 z = x + y 所围区域的体积为
2 2 2 2
2
1 (e x−1 − 1),x ≠ 1 x −1 x =1
‐‐‐‐‐‐‐‐‐‐14 分
五、 (16 分)设函数 f 在[0,1]上连续,且 (1) ∃x0 ∈ [0,1] 使 f ( x0 ) > 4 (2) ∃x1 ∈ [0,1] 使 f ( x1 ) = 4
∫
1
0
f ( x)dx = 0,∫ xf ( x)dx = 1 。试证:
∞
S 2 ( x) = e x −1
( x − 1) S 3 ( x) = ∑
得到,当 x ≠ 1 时 S 3 ( x ) =
∞ 1 1 ( x − 1) n +1 = ∑ ( x − 1) n = e x −1 − 1 n = 0 ( n + 1)! n =1 n!
2015年高考理科数学山东卷及答案
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2430{|}A x x x =-+<,24{|}B x x =<<,则A B = ( )A .1,3()B .1,4()C .2,3()D .2,4() 2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+3.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位4.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD =( )A .232a -B .234a -C .234aD .232a5.不等式|||52|1x x ---<的解集是( )A .(,4)-∞B .(,1)-∞C .(1,4)D .(1,5)6.已知x ,y 满足约束条件0,2,0.x y x y y -⎧⎪+⎨⎪⎩≥≤≥若z ax y =+的最大值为4,则a =( )A .3B .2C .2-D .3-7.在梯形ABCD 中,π2ABC ∠=,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,23),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布2(,)N μσ,则(P μσ-<ξ)68.26%μσ<+=,(2P μσ-<ξ2)95.44%μσ<+=)A .4.56%B .13.59%C .27.18%D .31.74%9.一条光线从点(2-,3-)射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34-10.设函数31,1,()2, 1,x x x f x x -⎧=⎨⎩<≥则满足()(())2f a f f a =的a 取值范围是( )A .2[,1]3B .[0,1]C .2[,)3+∞D .[1,)+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.观察下列各式:01011330122555012337777C =4C +C =4C +C +C =4C +C +C +C =4;;;;……照此规律,当n ∈*N 时,012n-12n-12n-12n-12n-1C + C + C ++ C ⋯=_______. 12.若“∀x ∈[0,4π],tan x ≤m ”是真命题,则实数m 的最小值为_______. 13.执行如图所示的程序框图,输出的T 的值为_______.14.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=_______.15.平面直角坐标系xOy 中,双曲线222211 0,0x C a b y a b>->=:()的渐近线与抛物线222C x py =:0p >()交于点O ,A ,B .若OAB △的垂心为2C 的焦点,则1C 的离心率为_______.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________?数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设2π()sin cos cos ()4f x x x x =-+.(Ⅰ)求f x ()的单调区间; (Ⅱ)在锐角ABC △中,角A ,B ,C ,的对边分别为a ,b ,c .若2f A()=0,a =1,求ABC △面积的最大值.17.(本小题满分12分)如图,在三棱台DEF ABC -中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45︒,求平面FGH 与平面ACFD 所成的角(锐角)的大小.18.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知233n n S =+. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .19.(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是1F ,2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144 x y E a b +=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.21.(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a ∈R . (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(山东卷)理科数学答案解析答案选B .210121121212111+C ++C (2C 2C2n n n n n n n -------= 1222231212121212121)+(C +C )+(C +C )++(C +C )n n n nn n n n n n ---------⎤⎦1212112121211++C +C ++C )242n n n n n n n n -------== 【提示】仔细观察已知条件,找出规律,即可得到结果.。
2015年第五届大学生数学竞赛试卷 - 答案
第1页 共5页2015年大学生数学竞赛试卷答案___________专业________班级 学号________________ 姓名___________一、 解答下列各题(本题满分共20分)1. (10分,每5分)()332300tan 13lim lim s in 3(1)x x x x x xx x x x x ο→→++--== (2)求极限21/sin 02cos lim 3x x x →+⎛⎫ ⎪⎝⎭222221/sin 1/sin 001(cos 1)/3(/2)/362cos cos 1lim lim 133lim lim x x x x x x xx x x x x e e e→→---→→+-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭===2. (10分)设函数3222, 1(), 1157, 1x x f x Ax Bx Cx D x x x -<-⎧⎪=+++-≤≤⎨⎪+>⎩试确定常数A,B,C,D 的值,使()f x 处处可导。
第2页 共5页此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写……………………………………………装………………………………订…………………………线……………………………………………………1321121(10)lim(22)4(1).(1)(22)|2(1)()|(32)|32.(10)(10)12,(1)32(1) 5.x x x x f x f A B C D f x f Ax Bx Cx D Ax Bx C A B C f A B C D f f A B C f →--=-+=-=--+---=-=-=-+-+''''-=-==-=+++=++=-+-=+++=+=''=++==解:=43221232 5.{ -9/4, 3/4, 41/4, 13/4}.A B C D A B C A B C D A B C A B C D -+-+=-⎧⎪-+=⎪⎨+++=⎪⎪++=⎩====二、解答下列各题(本题满分共30分,每题10分)3.确定常数,a b R ∈,使2001lim2sin x x ax x →=-⎰。
2015-2018山东省专升本统一考试高等数学真题试卷公共数学真题及答案
则级数 对于任意的 都是收敛的.
29.证明:由已知在区间 上分别运用 中值定理得:
存在 ,使
;
又由 中值定理:存在 ,使
;
同理存在 ,使
;
所以存在 ,使
五、应用题(本大题10分)
30.解:设铁皮面积为 ,则
又 ,所以 ,
所用铁皮最省即求 的最小值;
由 ,得 , 在 上只有唯一的驻点,又
因而 是 的极小值点,所以是 在 内最小值点,此时, 即
1.解: (3分)
(3分)
2.解:由 (3分)
(3分)
3.解:两边对 求导,得 (3分)
(3分)
4.解:由于 (3分)
又 故 为极小值(3分)
5.解:令 ,(3分)
则 (3分)
6.解:由于 是由 所围成的区域,(3分)
故,原式 (3分)
7.解:由于 ,(3分)
又 收敛, 发散,
故收敛域为 .(3分)
3.第Ⅱ卷答题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使川涂改液、胶带纸、修正带。不按以上要求作答的答案无效。
第I卷
一、单项选择题(本大题共5小题,每小题3分,共15分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.证明方程 至少有一个不超过 的正根。
2.设 ,证明不等式 。
2017年山东省专升本统一考试
高等数学真题参考答案
一、选择题(本大题共5小題,每小题3分,共15分)
题号
1
2
3
4
5
答案
B
D
D
C
A
二、填空题(本大题共5小题,每小题3分,共15分)
2015山东省大学生数学竞赛(专科)试卷2015总决赛答案
绝密★启用前山东省大学生数学竞赛(专科)总决赛试卷(非数学类,2015)一、填空题(每小题5分,共30分)一、填空题(每小题5分,共30分,请将答案填在题中横线上。
)1.已知1)1(42+=+x x x x f ,)(x f =___________.2.设82(lim =-+∞→x x ax a x ,则a =___________.3.设方程x y e xy cos 2=+确定y 为x 的函数,则dxdy =_________________.4.曲线22)3()1(--=x x y 的拐点个数为__________个.5.求不定积分=___________.2 02 d 6.cos d ______.d x x t t x=⎰二、综合题(本题共6小题,共70分,请写出相应演算步骤。
)1.(15分)1cos ,0()sin 0,0(1)0(2)'().x x f x x x x x f x ⎧-≠⎪=⎨⎪=⎩=讨论函数在处的连续性和可导性;求出导函数2.(12分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,且0)1()0(==f f ,121(=f ,试证:(1)存在)1,21(∈η,使得ηη=)(f (2)对任意实数λ,必存在),0(ηξ∈,使得1])([)(=--'ξξλξf f 3.(13分)求dxx t t 10 ⎰-4.(10分)求平面上的圆盘)0()(222b a a y b x <<≤+-绕y 轴旋转所得圆环体的体积.5.(10分)选做题(考生在下面两道题中选择一道作答,答题时请标明题号,两题全答的只计算一题得分。
)2222222(1)r r r r r x y z ∂∂∂=++=∂∂∂已知成立.(2)设函数)(x f y =满足条件⎩⎨⎧-='==+'+''4)0(,2)0(044y y y y y ,求广义积分⎰∞+ 0 )(dx x y .6.(10分)选做题(考生在下面两道题中选择一道作答,答题时请标明题号,两题全答的只计算一题得分。
0.2.第十届山东省大学生数学竞赛(专科组)总决赛试卷答案2019.5.24
山东省大学生数学竞赛(专科)总决赛答案(非数学类(A ),2019)一、填空题(每小题5分,共30分,请将答案填在题中横线上。
)215,37.11x y x x x ⎧+<⎪=-≤≤⎨⎪>⎩1.22222..()ac bcx x b a +-123..-e 34. 2.2y x =+5.240.x y +-=6.ln 2.2π二、综合题(本题共7小题,共70分,请写出相应演算步骤。
)112222222201233232012223001()((1141; (4333)311()(3xxxxx x x f x t x t t x t x t t t x tx t t t x t x x x f x x t t x t t <≤=-+-=-+-⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫>=-=- ⎪⎝⎭⎰⎰⎰⎰⎰1.解:当0时,d d )d )d 分当时,)d ()12322322111;341,0133()......................................................................31,13412333(1)lim lim 422; (1)x x x x x x f x x x x x f x x x ---→→=-⎧-+<≤⎪⎪=⎨⎪->⎪⎩-+-'==-=-分212..............11233(1)lim 2; (11)42,01()...................................................2,1x x f x x x x f x x x ++→--'==-⎧-<≤'⎨>⎩分分故=..................1分[][](),(),()0,(),,()()()()().........................................3()()()()()(),......()bb baaab abaf xg x a b g x f x a b M m m f x M mg x f x g x Mg x mg x x f x g x x Mg x x f x g x xm M g x x>≤≤≤≤≤≤≤≤⎰⎰⎰⎰⎰2.解:由于在上连续,且由最值定理知在上有最大值和最小值即故,分d d d .d d [].............................................3,()()(),()()()()..........................................4()bb babaaaa b f x g x xf f xg x x f g x x g x xξξξ∈=⎰⎰⎰⎰分由介值定理知,存在,使d 即d =d 分d 22200000()()()()(1)()...............................2()(0)()()0(0)lim lim lim02()(0)1lim 22()x xxx xx x x x x x x g x g x xg x g x x f x x xf x fg x g x x f x x xg x g f x -----→→→-→≠'⎡⎤+-+'-++⎣⎦'=='--+'====-''''--=='3.解:时,e e e 分e e 时,由导数定义知e ,220000()()(1),0..........................................................2(0)1,02()()(1)()()()(1)lim ()lim lim ...22lim xx x xx x x x xg x g x x x x g x xg x g x x g x xg x g x x f x x x----→→→→'⎧-++≠⎪⎪=⎨''-⎪=⎪⎩'''''-+++-+-+'===e 分e e e 分()(0)1(0),22()0...............................................................2x g x gf f x x -''''--'=='=e 故在处连续分12''()(3,2)(0,0)(3,2)(0,0)2(0)2.......................................................1(3,2)2(3)2...............f x L L C f f ==-4.解:由有三阶连续导数且为其拐点,直线与分别是曲线在点与处的切线,通过观察图形可知,点处的切线斜率为,即 分点处的切线斜率为-,即 33332220.....................................2(3,2)(3)0..........................................................1()()()()()()(21)()(21f x x f x x x x f x x x f x x f x xx ''='''''''''+++++⎰⎰⎰分又因为点为拐点,即;分所以有d =d =-d =-3033300)()...........................................................................................3(21)()(21)()2()..................................................3f x xx f x x f x f x x'''''+++⎰⎰⎰d 分=-d =-d [][]307(2)22()162(3)(0)16420....................................1f x f f =-⨯--+=+-=+=分分1232322220,...............................................1();. (232)655(1)qqpp q x x x pp qq x A px qx x x p x y x y px q x y px qx--==-=+=+=+=+=⎧++⎨=+⎩⎰5.解:抛物线与轴交点的横坐标为分故抛物线与轴围成图形的面积d 分又抛物线与直线相切,故它们有唯一交点,由方程组解得22332450,(1)200,(1), (320)200()63(1)q p q p q q A q p q -=∆+=+==+其判别式=+故=-分所以324332485..12002003(1)4(1)200(3)(),3(1)3(1)3(1)3...............................................................................................303()0,q q q q q q q A q q q q q q A q '⎛⎫+-+-'==⋅=⋅ ⎪+++⎝⎭'<<>分得到唯一驻点=分时3()0;34225,3,. (3532)q A q q p q A '><=-=时,故=时函数取得极大值,也是最大值,此时=分22222222(,)442360 (2)1(,,)(236)(44)134(236)20136(236)8013440xyP x y x y P x yd d dF x y x y x yF x y xF x y xF x yλλλλλ+=+-===+-++-'=+-+='=+-+='=+-=6.解:设为椭圆上任意一点,则到的距离求的最小值即求最小值分令11221122(,)(,)8383,;, (4)555583, (2)55x y x yx y x yd d⎧⎪⎪⎪===-=-⎨⎪⎪⎪⎩==解得分由问题实际意义知最短距离存在,因此()即为所求点.分1111.1lim lim1,1 (2)1 (1)1nnnn nnnnxa nRa nx nx∞-=+→∞→∞∞=+=====∑∑7.解: (1)求的收敛域收敛半径,分在端点处,级数为发散,分在端点-11111111000111(1)(11) (1)().()(11),() (2)1nnnnnnx x xn n nn n nnnx S xS x nx xxS t t nt t nt t xx∞-=∞-=∞-=∞∞∞--===--∈-====-∑∑∑∑∑∑⎰⎰⎰处,级数为发散,故收敛域为,分(2)求的和函数设=,,d d d分()()2121111111() (2)11(11)111,4, 2..............................................22222nnn n nn n nx S xxnx xxn n nx∞-=∞∞∞--===-∈--===∑∑∑∑等式两边对求导得=分由于=,令故.......2分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
山东省大学生数学竞赛(专科)总决赛试卷
(非数学类,2015)
一、填空题(每小题5分,共30分)
一、填空题(每小题5分,共30分,请将答案填在题中横线上。
)
1. 已知1
)1(42
+=+x x x x f ,)(x f =___________. 2. 设8)2(lim =-+∞→x x a
x a x ,则a =___________. 3. 设方程x y e
xy cos 2=+确定y 为x 的函数,则dx
dy =_________________. 4. 曲线22)3()1(--=x x y 的拐点个数为__________个.
5. 求不定积分=___________.
2 02 d 6.
cos d ______.d x x t t x
=⎰
二、综合题(本题共6小题,共70分,请写出相应演算步骤。
)
1. (15分)
1cos ,0()sin 0,
0(1)0(2)'().
x x f x x x x x f x ⎧-≠⎪=⎨⎪=⎩=讨论函数在处的连续性和可导性;求出导函数
2. (12分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,且0)1()0(==f f ,1)21(=f ,试证:
(1)存在)1,21(∈η,使得ηη=)(f (2)对任意实数λ,必存在),0(ηξ∈,使得1])([)(=--'ξξλξf f
3. (13分)求dx x t t 1
0 ⎰-
4. (10分)求平面上的圆盘)0()(222b a a y b x <<≤+-绕y 轴旋转所得圆环体的体积.
5. (10分)选做题(考生在下面两道题中选择一道作答,答题时请标明题号,两题全答的只计算一题得分。
)
2222222(1)r r r r r x y z ∂∂∂=++=∂∂∂已知成立.
(2)设函数)(x f y =满足条件⎩⎨⎧-='==+'+''4
)0(,2)0(044y y y y y ,求广义积分⎰∞+ 0 )(dx x y . 6. (10分)选做题(考生在下面两道题中选择一道作答,答题时请标明题号,两题全答的只计算一题得分。
)
(1)一平面过M 1(1,1,1)和M 2(0,1,-1),且垂直于平面0=++z y x ,求其方程.
(2)已知级数Λ-+-=-∑∞=-3
2)1(3
211x x x n x n n n 求收敛半径及收敛域.。