变电站防雷保护及防雷范围计算

合集下载

煤矿供电中变电所的防雷保护设置

煤矿供电中变电所的防雷保护设置

煤矿供电中变电所的防雷保护设置摘要:安全供电是保证煤矿安全生产的基础之一,几乎所有煤矿生产装备都是直接或间接以电力为动力,而大多数煤矿企业又处在地势较高的地方,很容易遭受雷击,针对这个问题,本文介绍了煤矿供电中变电所的防雷保护标准。

关键词:煤矿变电所防雷保护1 35kV线路的防雷煤矿变电所内安装使用着类型繁多的电气设备,这些设备均直接和供电系统的线路相连,如果雷电冲击波由线路侵入变电所,过电压将使电气设备绝缘击穿损坏,造成事故。

直接影响矿井生产,为此,可使用避雷器防止上述过感应过电压所产生的雷电冲击波入侵变电所或其他设备。

35千伏架空线设置架空地线,并在进入变电所时设置管型雷器。

对于变电所附近导线上,遭受雷击时冲击波的陡度将会超过变电所的避雷器允许值,因此,对靠近变电所的一段进线上应装设避雷装置。

下面介绍35千伏变电所进线的标准保护方式。

架设1-2千米的避雷线是用以防止进线段遭受雷击及消弱雷电入侵波的陡度。

对绝缘水平特别高的木杆线路或钢筋混凝土电杆线路应装设管型避雷器GB1而对其它线路均不装设,用以限制进线段以外沿导线入侵的雷电冲击波幅值,GB1的工频接地电阻不大于10Ω,当线路进出线的断路器或隔离开关在雷雨季节可能经常拉开而线路侧又带电时。

装设管型避雷器GB2以防止开路状态的断路器DL2手2倍冲击波电压的作用而损坏。

2 变电所直击雷保护为了防止设备免受直接雷击,通常采用装设避雷针的措施。

避雷针高于被保护物,其作用是将雷电吸引到避雷针本身上来并安全地将雷电引入大地,从而保护了设备。

避雷针的保护范围可以用模拟试验和运行经验来确定,由于雷电的路径受很多偶然因素的影响,因此要保证被保护物绝对不受直接雷击是不现实的,一般,保护范围是指具有0.1%左右雷击概率的空间范围而言。

避雷针的保护范围计算:1)单支避雷针其保护范围可按下式计算。

2)双支等高避雷针其保护范围可按下式计算,两针外侧的保护范围可按单针计算方法确定,两针间的保护范围应按通过两针顶点及保护范围上部边缘最低点ho的圆弧来确定ho点的高度ho按下式计算:本变电站有三根避雷针,高度都为25米,其中每两根之间的保护范围外测,可按两根时计算。

发电厂和变电所的防雷保护

发电厂和变电所的防雷保护

分析用图
避雷器上的电压
变压器上的电压波形
变压器承受雷电波能力
U c.5
2
l
Uj
变电所中变压器距避雷器的最大允许电气距离
lm
U j U c.5
2 /
三.变电所的进线段保护
保护目的:
为使变电所内避雷器能可靠地保护电气设 备,限制流经避雷器的电流幅值不超过 5kv、限制侵入波陡度α不超过一定的允 许值
1.进线段首端落雷,流经避雷器电流的计算 计算条件:
进线段1---2公里 雷电侵入波最大幅值为线路绝缘50%冲击 闪络电压
原理接线和等值电路图
3. 35kv及以上变电所的进线段保护
计算方程:
2.进入变电所的雷电波陡度α的计算
u
u
l
0.5
0.008u hd
令v=300m/us,陡度化为kv/m单位
2u
ib
ub z1
z1
ub
ub
ib
z1 2
u
用图解法求解
分析
避雷器电压有两个峰值:
uch
避雷器冲击放电电压,由于阀式避雷
器的伏的特性较平,可认为是一个定

uca 避雷器最高的残压,由于流经避雷器
的雷电流一般不超过5kA,因此其值取 为5kA下的残压
(2).变压器和避雷器之间有一定的电器距离 接线图
110kv及以上 可以相连,若ρ>1000Ω·m 应 加集中接地装置
35—60kv 当ρ<=500Ω·m 允许相连,但应 加集 中接地装置
当ρ>500Ω·m 不允许相连
二.变电所的侵入波保护
1.阀式避雷器的保护作用分析
(1).变压器与避雷器之间的距离为零

10 发电厂和变电站的防雷保护

10 发电厂和变电站的防雷保护
避雷器动作后:
变压器(也是避雷器)上电压有两个峰值: Uch :避雷器冲击放电电压 Ubm:避雷器残压的最大值,取5kA下的数值
两个峰值Uch和Ubm基本相同
1.避雷器与被保护设备距离为零时的过电压
变压器得到可靠保护条件:变压器冲击放电电压大于避雷 器的冲击放电电压和5kA下的残压 110kV~220kV变电所雷电流不得超过5kA,故5kA下的 残压用Ub.5表示。
§10-3 变电所的进线段保护
进线段:输电线靠近变电站1-2km的线段 进线段保护:加强进线段防雷保护措施(无避雷线的架设
避雷线,有避雷线减小保护角,增加绝缘子片数,加强检查巡 视);使进线段耐雷水平高于线路其它部分,减小进线段发生 绕击和反击形成侵入波的概率,这样侵入变电站的雷电波主要 来自进线段之外.
32
例:220kV线路的冲击绝缘强度U50%=1200kV,线 路波阻400,变电站中氧化锌避雷器的残压520kV
21200 520
Ibm
400
4.7kA
避雷器中的雷电流不超过5kA ,这也是避雷器残
压按照5kA考虑的原因。
33
2. 进入变电站的雷电波陡度a
τ

τ0

(0.5

0.008U hc

2a
l2 v
uT
(t)

2at p
Ub5

2a
l2 v
由于入侵波在变压器与避雷器之间多次反射,作用
在变压器上的电压具有振荡性质,相当于截波的作用。
uT
U b5
变压器上典型的实际电压波形
t
22
3.变压器与避雷器之间允许的最大电气距离
实际中以变压器承受多次截波的能力(多次截波耐压值 uj)表示承受雷电波的能力。

变电站防雷与接地

变电站防雷与接地
41 41
第四十一页,编辑于星期六:点 五十三分。
4、变电所进线段的保护 变电所进线段保护的作用在于限制流经 避雷器的雷电流和限制入侵波的陡度。 5、三相绕组变压器的防雷保护 当变压器高压侧有雷电波入侵时,通过 绕组间的静电和电磁耦合,在其低压侧 也将出现过电压。为了限制这种过电压, 只要在任一相低压绕组直接出口处对地 加装一个避雷器即可,中压绕组虽也有 开路的可能,但其绝缘水平较高,一般 不装。
1、中性点直接接地电力系统 主要优点是:单相接地时,其中性点电 位不变,非故障相对地电压接近于相电 压(可能略有增大),因此降低了电力 网绝缘的投资,而且电压越高,其经济 效益也越大。
5
第五页,编辑于星期六:点 五十三分。
2、中性点不接地电力系统 主要优点是运行可靠性高。单相接地时, 不能构成短路回路,接地相电流不大, 电力网线电压的大小和相位关系仍维持 不变,但非接地相的对地电压升为线电 压。
第三节 防雷装置
一、避雷针 二、避雷线(又称架空地线) 三、避雷器
2222
第二十二页,编辑于星期六:点 五十三分。
一、避雷针
1、用途 为了防止设备免受直接雷击,通常采用装 设避雷针或避雷线的措施,避雷针高于被 保护物,其作用是将雷电吸引到避雷针本 身上来并安全地将雷电流引入大地,从而 保护了设备。
一、雷电的形成 二、雷电过电压 三、雷电的危害
17 17
第十七页,编辑于星期六:点 五十三分。
一、雷电的形成
雷电产生原因的解释很多,现象也比较复 杂。几个主要名次如下: (1)雷云 (2)导电通道 (3)先导放电 (4)主放电阶段(回击放电)
1188
第十八页,编辑于星期六:点 五十三分。
二、雷电过电压
3333

变电站防雷计算书

变电站防雷计算书

1、计算目的:
为保证所内构架,电气设备不受直击雷袭击,在要求的保护高度下,校验该变电所全部避雷针的保护范围,并根据计算结果绘制全所避雷针保护范围图。

为保证运行人员和设备的安全,根据当地土壤电阻率计算出接地导体截面,接地电阻,跨步电势,接触电势,校验是否满足要求,不满足应采取相应措施。

2、设计依据:
DL/T620-1997 《交流电气装置的过电压保护和绝缘配合》
DL/T 621 1997 《交流电气装置的接地》
《电力工程电气设计手册》一次部分
3、原始数据的来源:
勘测专业提供的水文气象资料、土壤电阻率;
电气初设短路电流计算结果。

4、计算方法:程序手工√
程序名称:软件版本号
(或手算时引用的公式)
新疆电力设计院220kV瑶池变电站工程计算书。

发电厂和变电站的防雷保护

发电厂和变电站的防雷保护

➢ 避雷针的设计计算
1. 独立避雷针
uA
Rii
L0h
di dt
uB Rii
i = 100kA,L = 1.55hμH/m,
空气击穿场强500 kV/m, 土壤击穿场强300kV/m, di / dt按斜角波头= 2.6 μs。
s1 0.2Ri 0.1h s2 0.3Ri
➢ 构架避雷针
(1)对于110kV及以上的配电装置,由于绝缘较强,不 易反击,一般可将避雷针装设在构架上。构架避雷针有造价 低廉,便于布置的优点。但因构架离电气设备较近,必须保 证不发生反击的要求。在土壤电阻率 10的00地Ω区 m,仍宜 装设独立避雷针,以免发生反击。
(2)35kV 及以下配电装置的绝缘较弱,所以其构架或 房顶上不宜装设避雷针,而需要装设独立避雷针。
(3)60kV的配电装置,在 500的Ω地 m区宜装设独立避
雷针,在
的地区50容0Ω许采m用、阀型避雷器保护作用的分析
采用阀型避雷器是变电所对入侵波进行防护的主要措施,其保护售后服
第一节 变电所的直击雷保护
变电站防止直击雷的措施:采用避雷针、避雷线及良好的 接地网。
➢ 装设避雷针(线)的原则
装设的避雷针(线)应该使所有设备均处于避雷针及避 雷线的保护范围之内。
另外,要注意防止反击。即雷击于避雷针及避雷线后, 它们的地电位可能提高,如果它们与被保护设备的距离不够 大,则有可能在避雷针、避雷线与被保护设备之间发生放电, 或叫做逆闪络。此类放电现象不但会在空气中发生,而且还 会在地下接地装置间发生,一旦出现,高电位就将加到电力 设备上,有可能导致电力设备的绝缘损坏。
务主要是限制来波的幅值。配合进线段保护,是现代变电所防雷接线的基
本思路

变电站的防雷及接地保护

变电站的防雷及接地保护

变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。

条件许可时,Sk与Sd应尽量大。

一般情况下,Sk>5m,Sd>3m。

避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。

一般土壤工频接地电阻不大于10Ω。

35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。

60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。

所有被保护的设备均应在避雷针保护范围内。

一、电气装置接地要求1.接地要求(1)一般要求①接地。

为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。

②接地电阻。

设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。

③接地距离。

不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。

④中性线。

中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。

(2)防静电接地要求①可靠连接。

车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。

②接地连接。

车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。

③气体场所接地。

气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。

(3)特殊设备接地要求①接地体。

110kv变电所防雷设计方案

110kv变电所防雷设计方案

摘要依照设计任务书的要求,本次设计为110kV变电所的防雷设计,变电所是电力系统中重要组成部分,而且变电所的电气部分要装设合理的避雷装置和接地装置,因此,它是防雷的重要保护对象。

若是变电所发生雷击事故,将造成大面积的停电,给人民生活和社会生产带来重要不便,还有可能给国家造成大经济损失,这就要求防雷措施必定十分可靠变电所的防雷设计应做到设施先进、保护动作矫捷、安全可靠、保护方便,在此前提下,力求经济合理的原则。

本次设计,主要对变电所的主要设施进行选择,重点设计变电所的防雷部分,包括变电所进线段保护、防直击雷、防感觉雷以及变电所二次设施的防雷。

经过对各种避雷器的性能比较,结合变电所实质情况,确定变电所的避雷器的选择,并考虑变电所控制系统的防雷,提出防雷方案。

氧化锌避雷器以其优越的性能,越来越碰到电力行业的关注。

本次设计,将结合氧化锌避雷器性能的优点,并结合变电所设计的情况,议论氧化锌避雷器在变电所中的应用远景。

重点词:变电所避雷器防雷保护目录1 序言 (1)1.1 课题背景 (1)1.2 课题研究的意义 (1)2 系统设计方案的研究 (3)2.1雷电对变电所的危害 (3)2.1.1雷的直击和绕击危害 (3)2.1.2雷电反击危害 (3)2.1.3 感觉雷危害 (3)2.1.4雷电侵入波危害 (4)2.2变电所简介 (4)2.2.1变电所归纳 (4)2.2.2变电所主要任务 (5)2.2.3变电所主接线 (5)2.3变电所防雷措施 (6)2.3.1变电所碰到雷击的本源 (6)2.3.2变电所防雷详尽措施 (7)2.3.3变电所对直击雷防范 (7)2.3.4变电所对雷电侵入波的防范 (7)2.3.5变电站的进线防范 (7)2.3.6变压器的防范 (8)2.3.7变电所的防雷接地 (8)3 防雷保护装置 (9)3.1避雷针 (9)3.1.1避雷针原理 (9)3.1.2避雷针设置原则 (9)避雷针保护范围的计算 (10)3.2避雷器 (16)3.2.1避雷器作用原理 (16)3.2.2氧化锌避雷器的研究与应用 (17)氧化锌避雷器的特点 (17)氧化锌避雷器的优势 (18)3.2.5氧化锌避雷器在变电所中的发展远景 (18)3.2.6氧化锌避雷器的安装要求 (19)3.3主控室及屋内配电装置对直击雷的防雷措施 (19)3.4防雷接地 (20)4 本设计的防雷方案 (21)4.1 电工装置的防雷设计 (21)4.1.1进线段保护 (21)4.1.2 直击雷的保护 (21)4.1.3雷电入侵波的保护 (23)4.1.4 变电所二次设施防雷保护 (24)4.2 接地装置 (26)4.2.1 接地网 (26)4.2.2接地线 (27)防雷接地 (28)总结 (29)致谢................................................................................................. 错误!未定义书签。

35KV变电站防雷接地保护设计

35KV变电站防雷接地保护设计

35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。

本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。

首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。

最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。

关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protectiondesign of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷器 (21)第3章变电站直击雷的防护 (23)3.1变电站直击雷防护概述 (23)3.2建、构筑物年预计年雷击次数 (23)3.2.1年预计雷击次数计算公式 (23)3.2.2 35KV变电站年预计雷击次数N (24)3.3反击 (24)3.3.1反击的产生 (24)3.3.2反击的防止 (24)3.4 35KV变电站直击雷防护的避雷针设计 (26)3.4.1采用两根等高避雷针进行防护设计 (26)3.4.2采用四根等高避雷针进行防护设计 (27)第4章变电站雷电侵入波防护 (29)4.1变电站对雷电侵入波防护概述 (29)4.2 避雷器的设计 (29)4.2.1避雷器的防护距离 (29)4.2.2避雷器与变压器的最大电气距离 (31)4.3变电站的进线段雷电防护设计 (32)4.3.1进线段防护必要性 (32)4.3.2进线保护段接线设计 (33)4.4运行方式的设计 (35)4.4.1雷雨季节在运行方式上尽量保证母线并列运行 (35)4.4.2电缆进出线有利于降低雷电侵入波的幅值和陡度 (35)第5章接地的基本常识 (37)5.1接地、接地电阻及接地装置 (37)5.1.1接地概念及分类 (37)5.1.2接地电阻与对地电压 (38)5.1.3接地装置 (39)5.1.4接触电压和跨步电压 (39)5.2工频接地电阻、冲击接地电阻和冲击系数 (40)5.3接地体工频接地电阻计算 (41)5.3.1自然接地体及其工频接地电阻计算 (41)5.3.2人工接地体及工频接地电阻计算 (42)第6章变电站的接地设计 (44)6.1变电站接地装置的型式 (44)6.2变电站的接地装置要求 (44)6.2.1接地电阻值的要求 (44)6.2.2变电站主接地网的均压要求及计算 (46)6.3 35KV变电站接地设计 (47)致谢 (51)参考文献 (52)第1章前言1.1课题的提出和意义在现代社会里,电力已成为国民经济和人民生活必不可少的二次能源,它在现代工农业生产、人们日常生活及各个领域中已获得了广泛应用。

特高压变电站的防雷保护

特高压变电站的防雷保护

特高压变电站的防雷保护特高压变电站是负责输电的重要设施,其稳定运行与安全操作至关重要。

雷电是特高压变电站运行中必须防范的自然现象之一,如果不采取有效的防雷保护措施,将会给变电站造成严重的损失。

因此,特高压变电站的防雷保护措施十分重要。

一、防雷保护的基本原理防雷保护的基本原理是采取一定的防护措施,使雷电电流在安全的通道上流动,保护特高压变电设施和相关设备,避免雷电直接击中变电站从而造成设备的损坏和人员的伤亡。

1. 建造避雷针:特高压变电站上方需要建造一定高度的避雷针,使其成为电气系统的最高点,引导雷电电流沿路排放,形成安全的通道。

2. 接地网:在特高压变电站周围铺设接地网,将雷电过电压与大地直接接触,保护变电站不受到雷电的损害。

3. 屏蔽和接地:在特高压设备周围设置防雷屏蔽,有效防止雷电直接击中电气设备。

4. 安装避雷器:在特高压变电站安装避雷器能有效保护电器设备,避免雷电过压对设备造成损害。

5. 特别地面处理:特高压变电站周围的地面需要进行特别的处理,以防止地面反射雷电。

特高压变电站的防雷保护方案的制定是十分关键的,下面介绍几个方案应该获得重点关注。

对于架空线路电缆的防雷保护,主要是通过在高杆上建造避雷针进行防护和按规定距离安装避雷器来达到防雷的目的。

2. 金属屏蔽试验3. 天线防护策略天线是特高压变电站所必须安装的重要设备,防护其又尤为重要。

天线防护策略主要采用金属线圈的方式来实现,这可以有效地抵抗雷电对天线的破坏。

四、总结特高压变电站的防雷保护对于保障电力的稳定和安全至关重要。

在制定防雷保护方案时,需要充分考虑变电站周围的环境和设备,采取针对性的措施,确保有效的防护。

需要指出的是,特高压变电站防雷保护是一项复杂的工程,需要专业人员在工程设计和建设中进行全方位、细致的考虑和措施。

避雷线的防雷保护原理及保护范围

避雷线的防雷保护原理及保护范围
式中,h0为2根避雷线之间保护范围上部边缘最低点的高度(m);D为2根避雷线之间的距离(m);h为避雷(上接第28页)
线的高度(m)。
2.3不等高避雷线的保护范围
在实际工程中,有时用2根不等高避雷线。建立避雷针和避雷线保护范围截面如图3所示。
2根不等高避雷线外侧的保护范围分别按单根避雷线的计算方法确定。先确定最高避雷线1的保护范围,然后由较低避雷线2的顶点作水平线与避雷线1保护范围相交于点3,取点3为虚拟避雷线的顶点,建立避雷线2和具有等高h2的点3的保护范围,2与3之间距离D′,确定h0。对多根不等高避雷针,各相邻两避雷针的外侧保护范围,按2根不等高避雷针的计算方法确定;如在多角形内被保护物最大高度hx水平面上,各相邻避雷针间保护范围的一侧最小宽度bx≥0,则全部面积即受到保护。
2.4斜坡地面设置避雷线的保护范围
若被保护物需要布置在具有较大坡度地方,则避雷线的保护范围亦要倾斜,其保护范围如图4所示[1]。避雷线仅是它自己顶点影响放电过程。首先接近的地表面可以作为零电位面,所以保护范围按垂直斜坡地面高度计算确定。避雷线保护范利用山势设立的远离被保护物的避雷线,不能作为主要保护装置。
2.5相互靠近的避雷针和避雷线的联合保护范围
联合保护范围可近似地按图5中所示方法确定。避雷针、避雷线外侧保护范围分别按单针、单线的保护范围确定。内侧首先将不等高针、线划为等高避雷线,然后将等高针、线视为等高避雷线计算其保护范围。避雷线高度虽然有扩大用到120 m规定,但在实际工程中,并不希望用较高的避雷线,通常选用不超过30 m的。这是因为:避雷线高度不超过30 m,保护有效性非常高;避雷针是引雷的,过高避雷线要增加遭受雷击频率的。若是利用建筑物或结构物上安装高避雷线是要增加该建筑物或结构遭受的雷击频率。虽然建筑物采用了正确配置的防雷保护系统,但增加了雷击频率,对建筑物内部电子设备的运行不利。所以大面积的被保护物,宜用多线,不宜用很高的少线来保护。例如露天大型110 kV及以上配电装置,适宜采用安装在变电架构上的多避雷线防雷保护系统。例如保护长形物体,可用避雷线在被保护物上部并通过杆(塔)接地。

变电所的防雷设计

变电所的防雷设计
技 术 创 新
7 9
变 电 所 的 陆 雷 设 计
◇新 乡职 业技 术学 院 徐 小明
雷害事故在现在 电力系统的跳 『 申 J 停 电事故中占有很大的比
重 ,除 了那 些 地 处 寒 带 和 雷 暴 日数 很 少 的 国 家 和地 区之 外 ,其
余 各 国对 电 力 系统 的防 雷 保护给 予了 极 大的 关注 。
二 、 防雷计 算
h : 一 旦 : 3 5 一
… 7J D
:2 9 07

7x0. 93
最 小保 护 宽度 为 : b m =1 . 5 ( h 0 l 2 一h ) =1 . 5 x ( 2 2 . 3 3 —1 0 ) =1 8 . 4 9 m b 2 3 =1 . 5 ( h 0 2 3 一h ) =1 . 5 x ( 2 6 . 6 7 —1 0 ) =2 0 . 0 1 m b Ⅲ =1 . 5 ( h 0 1 ] 一h ) =1 . 5 x( 2 9 . 0 7 —1 0 ) =2 8 . 6 1 m
、 /
故避 雷 针 保护 半径 =( 1 . 5 ×3 5 —2 × l o ) x0 . 9 3:3 0 . 2 2 5 m
我国规程有 以下一些规定:
( 1 )l 1 0 K V 及 以 上 的 配 电 装 置 ,一 般 将 避 雷 针 装 在 构 架 上 但 在 土 壤 电阻 率 大 于 l ( 1 0 《 ) l/ f m的地 区 ,仍 宜 装 设独 立 避 雷
从避雷针定点向下作4 s 度斜线 ,此 斜线旋转形成的锥体 .
构成 h ~ ≥h / 2时的 保 护 范 围 ,从地 平 面 距 避 雷针 1 . 5 h 处 按 照下 步骤 计 算 。两 针 之 间 的保 护 范 围 由通过 l ,2 ,a ,三个 点 的 圆弧 画 出a 点 的高 度按 下式 计算 :

35KV变电所防雷接地保护设计

35KV变电所防雷接地保护设计

35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。

本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。

首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。

最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。

关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protection design of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷带和避雷网........................................................错误!未定义书签。

防雷设计中保护范围计算方法分析

防雷设计中保护范围计算方法分析

防雷设计中保护范围计算方法分析发布时间:2021-05-08T04:56:29.596Z 来源:《防护工程》2021年2期作者:夏鑫鑫[导读] 雷电防护中接闪器保护范围的计算是防雷设计的基础,计算方法主要有折线法和滚球法两种,在不同的行业采用的方法也不尽相同。

南阳市气象局河南南阳 473000摘要:雷电防护中接闪器保护范围的计算是防雷设计的基础,计算方法主要有折线法和滚球法两种,在不同的行业采用的方法也不尽相同。

本文重点从两种计算方法的理论基础进行深度剖析和对比,指出了它们的优缺点,为雷电防护中保护范围的设计提供理论和方法支持。

关键词:接闪器;保护范围;计算方法;分析引言雷电是自然界中常见的自然灾害,每年给各行业带来巨大经济损失和人员伤亡。

雷电放电的危害分为3种方式:直击雷,感应雷和雷电过电压波入侵。

富兰克林根据雷电的特性发明了“避雷针”--接闪器,从而有效的降低或减少了雷电灾害。

但它们接闪器的保护范围的计算成为了学者们的研究对象,目前,不同行业对其保护范围的计算方法不尽相同,但折线法和滚球法是被普遍采用的。

多年的实践和文献证明,这两种方法都是行之有效和可靠的。

但两者也存在着差异,在实践中应根据不同的具体情况区别对待,否则混淆使用两种计算方法,就会造成不必要的浪费,甚至出现雷击安全事故。

1防雷保护范围计算的重要性雷击作为一种自然灾害,由于破坏力巨大,造成的损失也相当严重。

随着经济的发展,需要进行防雷保护的设施也越来越多,发生雷电灾害的概率也同时提高。

由于设计时对保护范围的计算方法不当,不仅造成巨大浪费,甚至发生雷击安全事故。

而在直击雷事故中,已有防雷设施,因为不在保护范围之内造成的雷击事故占有很大比例,防雷设施形同虚设。

因此,防雷保护范围的计算方法在防雷设计、防雷装置安全性能检测中就显得尤为重要[1-2]。

2折线法与滚球法在防雷保护范围计算中的比较2.1滚球法和折线法原理滚球法是设想一个半径为R的球围绕避雷针两侧滚动,被球体和球面接触的地方为可能被雷电击中的地方,未能触及的地方为保护区域。

避雷线的防雷保护原理及保护范围

避雷线的防雷保护原理及保护范围
3参考文献
[1]许颖.避雷线保护范围不应“绝对化”[J].中国雷电与防护,2003(3):57-60.
[2]中华人民共和国机械工业部.GB50057—94建筑物防雷设计规范[S].2004版.北京:中国水利电力出版社,2004.
[3]许颖.浅析避雷线防直击雷的作用[J].防雷世界,2003(12):28-31.
[4]许颖.再析避雷线防直击雷的作用[J].雷电防护与标准化,2005(1):19-122.
[5]中华人民共和国水利水电部.DL/T 620—1997交流电气装置的过电压保护和绝缘配合[S].北京:中电水利电力出版社,1981.
避雷线的防雷保护原理及保护范围
摘要分析了避雷线的防雷保护原理,介绍了不同情况下避雷线的保护范围,以为避雷线的合理使用提供参考。
关键词防雷;避雷线;防雷原理;保护范围
1避雷线的防雷保护原理
在雷电先导阶段,避雷线顶部聚积电荷,在发展先导和避雷线顶端之间的通道中建立了很大的电场强度,避雷线迎面先导的产生和发展大大加强这个通道中的电场强度,最后选定击中避雷线,靠近避雷线的被保护物比避雷线低,由于避雷线的屏蔽和迎面先导作用,使被保护物遭受雷击的概率很小。利用避雷线可实现直击雷保护。虽然这种方法不是主动的,但能提供99.5%~99.9%的保护效果。对密闭在完全金属壳体(或金属网)内的被保护物才能提供完全保护。例如,人在金属壳体内或在停放的金属壳体汽车内,能安全免遭雷击伤害。按引雷的性能,避雷线的确切名称应是“引雷线”,因避雷线这一名称已被广泛使用,所以成为惯用名词[1]。
式中,rx为每侧保护范围的宽度(m)。
当hx<■时,rx=(h-1.53hx)p(2)
2.22根等高平行避雷线的保护范围
2根避雷线外侧的保护范围按单根避雷线的计算方法确定(图2)。2根避雷线之间各横截面的保护范围,由通过2根避雷线1、2点及保护范围上部边缘最低点0的圆弧确定。0点的高度h0为:

007--发电厂和变电所的防雷保护

007--发电厂和变电所的防雷保护
高电压技术
第七章
发电厂和变电所的
防雷保护
高电压技术


一、发、变电所雷电过电压来源及危害: 发电厂、变电所是电力系统的中心环节,另外变电所是 多条输电线路的交汇点和电力系统的枢纽。 1、雷电直击发电厂和变电所 2、雷击线路产生的雷电过电压沿线路侵入发、变电所 3、雷电直击发电厂和变电所造成大面积停电,影响工 业生产和人民生活。 4、雷击线路产生的雷电过电压沿线路侵入发、变电所电 气设备,发电机、变压器等主要电器设备的内绝缘大都没 有自恢复的能力,一旦受损,直接经济损失严重;同时修 复困难,影响时间较长,间接损失无法估量。
旋转电机的防雷保护要比变压器困难得多,其雷害事故 也往往大于变压器,这是由它的绝缘结构、运行条件等方 面的特殊性造成的。 1、旋转电机主绝缘的冲击耐压值远低于同级变压器的冲 击耐压值。在同一电压等级的电气设备中,以旋转电机的冲 击电气强度为最低。运行中的旋转电机主绝缘更低于出厂时 的核定值。
高电压技术
第一节 发电厂、变电所的直击雷保护
发电厂、变电所防雷保护的措施: 按照安装方式的不同,装设独立避雷针、构架避雷针。
直击雷防护设计内容:
选择避雷针的支数、高度、装设位置、验算它们的保护范 围、应有的接地电阻、防雷接地装置设计等。
高电压技术
一、独立避雷针
适用范围:35kv及以下变电所 1、 避雷针的反击问题: 雷电经引下线入地时,在引下线上产生高电位,会 对被保护对象或与其有联系的物体(母线、电缆、金属 管道等)产生反击。 2、安全距离的确定: 为避免反击发生,就要求避雷针的引下线与被保护物体之 间有一定的安全距离。
设辅助集中接地装置,且避雷针与主接地网的地下连接 点到变压器接地线到主接地网的地下连接点,沿接地体

220千伏变电站防雷保护设计

220千伏变电站防雷保护设计

原始资料及要求120m80m图0-1 杨村220kV变电站平面图图0-2 110kV线路杆塔图0-3 220kV线路杆塔220千伏变电站防雷保护设计及计算摘要雷电是大自然最宏伟壮观的气体放电现象。

雷电放电所产生的雷电流高达数十乃至数百千安,从而会引发庞大的电磁效应,机械效应和热效应。

变电站作为电力系统的重要组成部份,很容易产生事故,专门是,最近几年来随着经济的进展,对于电力系统的稳固性有很高的要求。

因此,要求有靠得住的防雷办法。

本设计是针对220kV变电站的防雷保护进行设计及计算,按照变电站雷击事故来源不同,提出了相应的解决方案:1、雷电直击变电站设备和线路,解决方式:采用四支等高避雷针别离安装在变电站的双侧墙上,距四个墙角的距离均为20m,针高33.77m。

接地装置选用五根长2.5米,外径为0.050米,壁厚4毫米,理论重量为4.54kg/m 的钢管。

2、沿线路传入变电站的雷电波,解决方式:设计入侵波保护。

经计算220kV侧及110kV侧都采用2km的进线段,其中220kV侧' 1.50/a kv m=。

=,110kV侧'0.82/a kv m3、由于输电线路是电力系统的大动脉,担负着将发电厂和通过变电所后的电力输送到各地域用电中心的重任。

所以,对其也应该进行保护。

对输电线路防雷性能计算。

其结果为:110kV线路平原雷击跳闸率为,山区雷击跳闸率为;220kV线路平原雷击跳闸率为,山区雷击跳闸率为。

关键词:防雷,接地装置,入侵波,雷击跳闸率THE AVOIDING FORM THUNDER STOKE ANDCOUNT OF POWER SYSTEMABSTRACTThe thunder is to be turned on electricity to the building of the ground and the nature of the earth by the cloud(take the bank of clouds of the electricity) of, it will break to the building or equipments creation is the greatest view in the world . The power flow flow made by thunder will be about tens, even hundreds A,change relatively system have become more reliability . So we need successful protection.It has two aspects about source of transformer thunder stoke , we make the solution following it:1.Thunder stoke on transformer transmission line and device . The designed transformer pointed the thunder stoke directing. As designing four lighting rob in the wall of the choose four same lighting rob is m to protect . The join-ground devices choose 5 steel tubes , the length of which is 2.5 m,the diameter of which is 50 mm , the thickness of steel tube outer is 4 mm and the theory weight is 4.54 kg/m.2.Thunder electric wave along the line . Avoid form attacking wave design . By counting 220kv side and 110kv side all use 2 km,there into 110kv side a' is m, and 220kv side a' is 1.50km/m3.Because the lines are important for the system . Will transmit the power made by the station to the local of 110kv line is on plain area; the thunder stoke ratio of 110kv line is on mountains area. The thunder stoke ratio of 220kv line is on plain area; the thunder stoke ratio of 220kv line is on mountains area.My graduation design is about the avoiding form thunder stoke of substation . The main part of graduation design talk falls into three parts .Keyword : avoiding form thunder stoke , the join-ground device , attacking wave , the thunder stoke ratio目录摘要 (I)ABSTRACT (II)1 绪论 (1)2直击雷的防护 (2)避雷针的介绍和计算原理 (3)2.1.1避雷针的保护范围计算公式 (4)2.1.2避雷针的计算 (7)接地装置的设计 (13)2.2.1接地装置的介绍 (13)2.2.2地装置的计算 (15)2.2.3接地装置的选择与安装 (17)3入侵波的防护 (19)进线段的设计 (19)3.1.1进线段保护介绍 (19)3.1.2进线段的计算 (21)避雷器原理介绍及选择 (23)3.2.1避雷器的原理介绍 (23)3.2.2避雷器的选择与安装 (26)4 输电线路防雷性能计算 (32)线路防雷介绍 (32)4.1.1输电线路的耐雷性能和雷击跳闸率 (33)4.1.2雷击线路的三种情形 (34)4.1.3线路的雷击跳闸率 (38)输电线路防雷性能计算 (39)110kV线路雷击跳闸率计算 (39)220kV线路雷计算击跳闸率 (42)结论 (48)附录 (49)致谢 (52)参考文献 (53)1 绪论雷电放电作为一种壮大的自然力的暴发是难以制止的,产生的雷电过电压可高达数十,乃至数百千伏,如不采取防护办法,将引发电力系统故障,造成大面积停电。

(最新版)35KV变电站防雷接地技术_毕业设计

(最新版)35KV变电站防雷接地技术_毕业设计

网络教育学院本科生毕业论文(设计)题目:变电站防雷接地技术学习中心:层次:专科起点本科专业:年级:年春秋季学号:学生:指导教师:完成日期:年月日内容摘要变电站是电力系统中对电能的电压和电流进行变换、集中和分配的场所,是联系发电厂与电力用户的纽带,担负着电压变换和电能分配的重要任务。

如果变电所发生雷击事故,会给国家和人民造成巨大的损失。

所以变电所的防雷是不可忽视的问题。

随着电力系统的快速发展,使得电能这一清洁能源在人民生产、生活中得到了普遍使用。

但当高压输电网在为人们提供动力和照明时,不能忽视自然界产生的雷电对高压输变电设备产生的大量危害。

因此,必须加强变电站防雷接地问题的认识与研究。

本论文针对目前变电站设备中防雷接地技术的中存在的问题,针对35KV变电站进行防雷接地保护设计;根据变电站国家防雷接地标准,结合35KV变电站电气接线图以及具体情况,学习利用各种防雷接地装置等,实现对变电站的直击雷防护、雷电侵入波防护以及变电站的接地保护设计。

关键词:变电站;防雷接地;直击雷防护;雷电侵入波防护目录内容摘要 (I)1 绪论 (1)1.1 变电站防雷接地的意义 (1)1.2 变电站防雷接地的研究背景 (1)1.3 本次论文的主要工作 (4)2 变电站的防雷保护 (6)2.1 变电站的直击雷保护 (8)2.2 变电站的侵入波保护 (11)2.3 变电站的进线段保护 (12)2.4 避雷针与避雷线的保护范围的计算 (14)3 变电站的防雷接地 (16)3.1 接地概述 (16)3.2 接地电阻 (17)3.3 变电所接地装置 (18)3.4 变电站的接地原则 (18)3.5 降低变电所接地装置工频接地电阻的措施 (18)4 变电所防雷接地设计实例 (20)4.1 变电所的规模 (20)4.2 变电所位置的自然条件 (20)4.3 避雷针的设置及防雷保护校验 (21)4.4 接地装置的设置 (22)5 结论 (24)参考文献 (25)附录 (26)1 绪论1.1 变电站防雷接地的意义雷电是大自然中最宏伟但又最恐怖的气体放电现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷电侵入波的防护,主要是在进线上加装避雷器。
晋煤供电
☆ 第三章 避雷针保护范围计算
变电站防雷装置种类繁多,但是常用的防雷装置主要有避雷针、避雷线、避雷网、 避雷带以及避雷器比较常见。
避雷针主要是对整个变电站的建筑物实施防雷。 避雷线主要是对高压输电线路以及进出变电站的线路实施防雷保护。 避雷网和避雷带也同样是对建筑物防雷。 避雷器主要对电力设备实施防雷保护的。 无论哪种防雷装置,总体上都是由三大部分组成分别称为接闪器、引下线和接地装 置三部分。 接闪器主要是接受雷击的部件,一般突出于建筑物或建筑物的金属屋顶都可做接 闪器,主要是把雷电引向自身,通过自身放电保护周围建筑物的,例如避雷针、避雷 线、避雷网和避雷带突出上面的部分都称为接闪器。引下线主要作用是通过雷电流, 保证雷电流通过时不至于融化引下线,一般用直径不小于 10mm 的圆钢或截面不小于 80mm2 的扁钢制成。接地装置指的是埋在地下的部分,防雷装置的接地装置与一般的 接地装置基本相同,所不同的是防雷装置的接地体更大。
晋煤供电
☆第二章 变电站防雷措施
※具体防护措施: 因为对于下形雷来说,雷电直接击打变电所电气设备上,或者架
空线路上的感应过电压都会以雷电波的形式侵入变电所,所以如何对 直击雷和雷电侵入波的防护称为变电站防雷的关键点。
直击雷的防护,主要采用的措施是避雷针,避雷针把雷电引向自 身,并把雷电流泄漏到大地中,整个变电站的建筑物和整个电力设备 的全部必须在避雷针的保护范围内,对于避雷针的保护范围,在下章 会做整体介绍。
内部防雷则是防止内部过电压对电力设备的危害,是外部防雷系统无法满足对 于内部过电压的危害,为了防止内部过电压的危害,需要对电缆及保护设备进行 等电位连接。因为雷电引起损害的原因也是有巨大电位差的存在,对于防雷的等 电位连接,需要对进出线电缆,信号线,金属管道等都需要与避雷器进行等电位 连接,首先进行局部等电位连接,最后还要进行主等电位连接。
晋本上可以分为三个阶段,即先导放电、主放电和余光三个阶段。
雷电放电原理
雷电放电的雷电流波形
晋煤供电
☆ 第二章 变电站防雷措施
通过前面对雷电知识的简单介绍,大家都知道雷电的危害极大。对于电力系统 中的变电站而言,站内电气设备正常运行时,设备的绝缘水平都处于正常的工作 电压之下,设备的绝缘不会遭到损坏,但是当雷电发生时,雷电过电压和雷电过 电流会侵入电力设备,使电力设备的绝缘遭到破坏,超过了电气设备正常的绝缘 水平,雷电直接击中电气设备,会产生巨大的雷电流和雷电压,当通过设备时, 会产生电作用和热作用甚至机械作用的破坏。另外雷云在空中漂浮时,会在架空 线路上感应出相反的电荷,当雷云离开时或者雷云对地建筑物放电时,架空线路 中的感应电荷失去束缚,会沿着输电线路传播进入变电站,这就是我们说的感应 过电压也就是感应雷。都会造成变电站电气设备的损害。所以对变电站的雷电防 护尤其重要。
晋煤供电分公司
变电站防雷保护与防雷范围计算
二0一七年六月
晋煤供电
变电站防雷保护与防雷范围计算
☆雷电知识简述 ☆变电站防雷措施 ☆避雷针保护范围计算(滚球法) ☆接地体及接地网
晋煤供电
☆第一章 雷电知识简述
雷电的实质是一种气体放电现象,叫做大气过电压。雷电的实质是云团在 大气中上下翻滚不断的摩擦碰撞而使某些云团带正电荷,而某些云团带负电荷, 当两个云团接近到一定距离时,击穿大气互相放电的过程,这就是人们在天空 经常看到的雷电,当带电云团接近大地附近的比较高的建筑物或者物体时,会 在建筑物或比较高的物体中感应出相反的电荷,会产生雷云对大地的放电,即 我们经常说的雷击现象,遭受雷击时,会产生很大的雷电流和雷电压,对于建 筑物及设备甚至人身都会产生极大的威胁。通常建筑物遭受雷击都是下形雷造 成的,下形雷主要是指雷电由雷云向地面建筑物行进的,反之称为上形雷,比 较少见。雷电的种类通常有三类,比较常见的是线形雷。片形雷比较少见,另 外有时候还能看到球形雷。
晋煤供电
☆第二章 变电站防雷措施
※变电站的防雷措施 主要分为外部防护和内部防护。
外部防护即把雷电通过接闪器接收,通过引下线导入大地把雷电流泄露到大地 中。第二是阻塞防护,即阻塞沿着输电线路或信号线侵入的过电压,此种防护不 仅用于雷电过电压防护也适用于内部过电压防护。第三,限制被保护设备上的过 电压幅值,主要由避雷器实现。避雷针、避雷网和避雷带及其引下线和接地体构 成了外部防雷系统,主要是对建筑物实施防雷保护的。
晋煤供电
☆第一章 雷电知识简述
※ 危害
雷击的破坏主要包括电作用的破坏、机械作用的破坏和热作用的破坏三个方面。电 作用的破坏主要有产生几百万伏的冲击电压能损坏电气设备的绝缘,造成大面积停电甚 至设备的报废,高电压损坏绝缘的同时,产生电火花或者爆炸事故的发生,另外,巨大 的雷电流可能引发周围产生强电场,可能导致触电伤亡事故的发生。机械作用主要是雷 电流通过被击物时,产生大量的热量,使气体气化膨胀可能导致爆炸,另外,由于电动 力的产生,也可能损坏电气设备。热作用的破坏主要是雷电流通过导体,产生的大量的 热量可能引发火灾,如果接触到易燃易爆物,则可能发生爆炸。
晋煤供电
☆第一章 雷电知识简述
雷电通常有直击雷、感应雷和雷电侵入波三种形式。 ◇直击雷 带电荷的雷云电压可以达到几亿伏特,当雷云接近地面并对地面 物体放电时,就是我们常说的雷击,这种情况会发生激烈放电,并伴随着闪电 和雷鸣称为直击雷,雷电的放电过程通常分为先导放电、主放电和余光三个阶 段。 ◇感应雷 也叫作感应过电压或雷电过电压,一般有静电感应和电磁感应两 种。静电感应的产生是由于雷云接近地面建筑物,在建筑物顶端感应出大量异 性电荷,而雷云并没有对建筑物放电,当雷云对其它物体或雷云放电时,建筑 物中的电荷会失去束缚,而沿着建筑物传播,这就形成了静电感应。电磁感应 是因为雷电流会在周围产生强烈变化的电磁场,而变化的电磁场会使周围的导 体产生很高的感应电压。 ◇雷电侵入波 指的是雷击过程中,产生的冲击波沿着高压输电线路传播。
相关文档
最新文档