蒸汽管道水力计算算例

合集下载

蒸汽管路计算公式

蒸汽管路计算公式

9.1蒸汽网路系统一、蒸汽网路水力计算的基本公式计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1)d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2)Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3)式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ;G t ——管段的蒸汽质量流量,t/h;d ——管道的内径,m;K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m;ρ ——管段中蒸汽的密度,Kg/m3。

为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。

附录9-1给出了蒸汽管道水力计算表。

二、蒸汽网路水力计算特点1、热媒参数沿途变化较大蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。

2、ρ值改变时,对V、R值进行的修正在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。

如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi 不相同,则应按下式对附表中查出的流速和比摩阻进行修正。

v sh = ( ρbi / ρsh) · v bi m/s (9-4)R sh= ( ρbi / ρsh) · R bi Pa/m (9-5)式中符号代表的意义同热水网路的水力计算。

3、K值改变时,对R、L d值进行的修正(1)对比摩阻的修正、当蒸汽管道的当量绝对粗糙度K sh与计算采用的蒸汽水力计算表中的K bi=0.2mm不符时,同样按下式进行修正:R sh=(K sh / K bi)0.25 · R bi Pa/m (9-6)式中符号代表意义同热水网路的水力计算。

蒸汽管道计算实例

蒸汽管道计算实例

、尸■、亠前言本设计目的是为一区VOD-40t 钢包精练炉提供蒸汽动力。

设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。

主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道终端温度240C,压力0.7MP (设定);VOD用户端温度180C,压力0.5MP;耗量主泵11.5t/h 辅泵9.0t/h一、蒸汽管道的布置本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容:1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户;2、蒸汽管线布置时尽量减少了与公路、铁路的交叉3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。

并在自然补偿达不到要求时使用方型补偿器。

4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。

6、管道与其它建、构筑物之间的间距满足规范要求。

二、蒸汽管道的水力计算已知:蒸汽管道的管径为Dg200,长度为505m。

蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该状态下的密度p为4.21kg/m3。

假设:蒸汽管道的终端压力为0.7Mp,温度为240C查《管道设计》表1 —3得蒸汽在该状态下的密度p为2.98kg/m3。

(一)管道压力损失:2、压力损失式中△ p —介质沿管道内流动的总阻力之和,Pa;Wp —介质的平均计算流速,m/s ;查《管道设计》表5-2 取Wp=40m/s ;g —重力加速度,一般取 9.8m/s ";u p —介质的平均比容,m 3/kg ;入—摩擦系数,查《动力管道手册》(以下简称《管道》)表4— 9得 管道的摩擦阻力系数 入=0.0196 ;d —管道直径,已知d=200mm ; L —管道直径段总长度,已知 L=505m ;艺E —局部阻力系数的总和,由表(一)得 艺E =36H 1、战一管道起点和终点的标高,m ; 1/Vp= p p —平均密度,kg/m 3 ; 1.15—安全系数。

(蒸汽)管道管径计算公式与管径温度压力流量对照选型表

(蒸汽)管道管径计算公式与管径温度压力流量对照选型表
1、水管流速和压力的计算公式:流速=流量、管道截面积。假设流量为S立方米每秒,圆形管道内半径R米,则流速v:v=S每(3.14×RR)。
2、流量=流速×(管道内径×管道内径×π÷4),管道内径=sqrt(353.68X流量、流速),sqrt:开平方。
3、流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L每s或(`m^3`每h),用重量表示流量单位是kg每s或t每h。
76534
五、饱和蒸汽管道流量选型表:
饱和蒸汽管道流量选型表(流速30米/秒)(流量:公斤/小时)
压力BAR
管道口径(mm)
15
20
25
32
40
50
65
80
100
125
150
200
250
300
0.35
14
31
55
85
123
219
342
492
875
1367
1969
3500
5468
7874
0.5
15
33
70455
101455
26
183
411
731
1142
1645
2924
4568
6578
11695
18273
26313
46778
73091
105251
27
189
426
757
1183
1704
3029
4733
6815
12116
18923
27262
48465
75727
109047
28
196
441

蒸汽管道计算实例(完整资料).doc

蒸汽管道计算实例(完整资料).doc

此文档下载后即可编辑前言本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。

设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。

主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定);VOD用户端温度180℃,压力0.5MP;耗量主泵11.5t/h 辅泵9.0t/h一、蒸汽管道的布置本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容:1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户;2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。

3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。

并在自然补偿达不到要求时使用方型补偿器。

4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。

6、管道与其它建、构筑物之间的间距满足规范要求。

二、蒸汽管道的水力计算已知:蒸汽管道的管径为Dg200,长度为505m。

蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得为4.21kg/m3。

蒸汽在该状态下的密度ρ1假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管为2.98kg/m3。

道设计》表1—3得蒸汽在该状态下的密度ρ2(一)管道压力损失:1、管道的局部阻力当量长度表(一)2、压力损失2—1式中Δp—介质沿管道内流动的总阻力之和,Pa ;Wp —介质的平均计算流速,m/s ; 查《管道设计》表5-2取Wp=40m/s ;g —重力加速度,一般取9.8m/s 2; υp—介质的平均比容,m 3/kg ; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得 管道的摩擦阻力系数λ=0.0196 ; d —管道直径,已知d=200mm ;L —管道直径段总长度,已知L=505m ;Σξ—局部阻力系数的总和,由表(一)得Σξ=36; H 1、H 2—管道起点和终点的标高,m ; 1/Vp=ρp—平均密度,kg/m 3; 1.15—安全系数。

蒸汽管道计算实例(DOC)

蒸汽管道计算实例(DOC)

蒸汽管道计算实例介绍蒸汽管道通常用于工业领域中,用来传输蒸汽。

为保证蒸汽管道系统的正常运行,需要进行合理的管径和流量计算,以确保适当的压力和流量。

本文将介绍蒸汽管道计算的基本知识,并提供一个实际的计算实例。

基本理论蒸汽管道流量计算公式蒸汽管道的流量计算公式如下:Q = 3600 x D² x C x √P其中,Q表示流量(kg/h),D表示管径(mm),C表示流量系数,P表示差压(MPa)。

蒸汽管道流量系数流量系数C与管道阻力有关,通常可以参考表格获得具体数值。

蒸汽管道阻力蒸汽管道阻力由以下几个因素组成:•管道摩阻:蒸汽在管道内流动时会与管道内壁发生摩擦,产生摩阻力。

•管道弯头:管道中弯头对蒸汽产生阻力。

•管道机件:如减压阀、流量计等都会对蒸汽产生阻力。

计算实例假设我们需要计算一个长度为200m、DN100的蒸汽管道的流量和压力。

已知管道的起点处蒸汽压力为1.6MPa,终点处需要维持1.2MPa的使用压力。

我们可以采用以下步骤来进行计算:1.计算蒸汽在管道中的速度首先,我们需要计算蒸汽在管道中的速度,以确保蒸汽不会在管道内过度加速或减速。

我们可以使用以下公式来计算蒸汽速度:V = Q / (π x D² / 4) / 3600其中,V表示蒸汽的速度(m/s),Q表示流量(kg/h),D表示管径(mm)。

本实例中,管道的流量为2000kg/h,管径为DN100(约为114mm),因此可得到蒸汽速度为11.4m/s。

2.计算流量系数接下来,我们需要计算流量系数C。

由于我们的管道是直线管道,因此流量系数为1。

3.计算差压我们需要计算蒸汽在管道中的压力损失,并最终计算出需要的使用压力。

使用以下公式可以计算蒸汽在管道中的压力损失:ΔP = λ x L / D x (V² / 2g)其中,ΔP表示压力损失(MPa),λ表示管道的摩阻系数,L表示管道长度(m),D表示管径(mm),V表示蒸汽速度(m/s),g表示重力加速度。

蒸汽管道水力计算算例

蒸汽管道水力计算算例
解: 根据已知描述,管道的始端压力 p1=6MP,末端环境压力 p2=1MP,管道始端的介质比容 1 为 0.0324m3/kg 。为了判断气流是临界还是压临界,先计算管道始端和末端环境压力之比
p1 p 2 6 。根据式 6.3.3-3 计算临界比容比 c ,介质为干饱和蒸汽,绝热指数 k 取
这里需要指出的是,加入孔板后,管道的主要流速降到 40m/s,管道末端的流速依然很高, 为 240m/s。该算例仅仅为了说明计算过程,实际应用中还需要根据流速要求重新进行设计 计算。
Ho ts on
孔板能起到“憋压”的作用,及孔板上游的管道压降较小,流速较低,下游相应的变化量较 大。因此,孔板通常安装于管道靠后位置。这里,暂定需要将管道的流速限制在 40m/s(应 指的是上游的管道) 。由于上游的介质压力变化不大,介质比容按管道始端比容取值。则可 求得管道的质量流量为 2.424kg/s,即 8726.4kg/h,质量流速 1234.568 kg/m2s,相应的动压力 按式 6.1.9-2 计算,求得动压为 24691.32Pa。按式 6.2.4 计算上游的压损,由于管道上游占主 要长度,总阻力系数取 4,求得压损为 98765.28Pa,则孔板前压力为 5901235Pa,压损与管 道始端的压力比为 0.0165,小于 0.1,因此按式 6.2.4 计算的压降可以接受,无需进行修正。
Ho ts on
临界流速(见式 6.3.3-4 或 6.3.3-5) ,原文中式 6.3.3-5 根号里面多了 2,是错误的。将以下若
干计算式整理后,可以导出临界流量的便捷计算式 m
kp c c ,根据以上的结果可以
求得临界质量流速为 5431.565kg/m2s ,由管道的内径求得临界质量流量为 10.66kg/s ,即 38.393t/h。管道末端的流速即临界流速为 456.79m/s,管道始端的流速为 175.9m/s,流速远 高于 30~50m/s 范围,因此考虑加入限流孔板Байду номын сангаас制管道的流速。

蒸汽管路计算公式

蒸汽管路计算公式

9.1蒸汽网路系统一、蒸汽网路水力计算的基本公式计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1)d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2)Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3)式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ;G t ——管段的蒸汽质量流量,t/h;d ——管道的内径,m;K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m;ρ ——管段中蒸汽的密度,Kg/m3。

为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。

附录9-1给出了蒸汽管道水力计算表。

二、蒸汽网路水力计算特点1、热媒参数沿途变化较大蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。

2、ρ值改变时,对V、R值进行的修正在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。

如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi 不相同,则应按下式对附表中查出的流速和比摩阻进行修正。

v sh = ( ρbi / ρsh) · v bi m/s (9-4)R sh= ( ρbi / ρsh) · R bi Pa/m (9-5)式中符号代表的意义同热水网路的水力计算。

3、K值改变时,对R、L d值进行的修正(1)对比摩阻的修正、当蒸汽管道的当量绝对粗糙度K sh与计算采用的蒸汽水力计算表中的K bi=0.2mm不符时,同样按下式进行修正:R sh=(K sh / K bi)0.25 · R bi Pa/m (9-6)式中符号代表意义同热水网路的水力计算。

蒸汽网路水力计算

蒸汽网路水力计算

蒸汽网路系统一、蒸汽网路水力计算的基本公式计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1)d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2)Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3)式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ;G t ——管段的蒸汽质量流量,t/h;d ——管道的内径,m;K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m;ρ ——管段中蒸汽的密度,Kg/m3。

为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。

附录9-1给出了蒸汽管道水力计算表。

二、蒸汽网路水力计算特点1、热媒参数沿途变化较大蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。

2、ρ值改变时,对V、R值进行的修正在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。

如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi不相同,则应按下式对附表中查出的流速和比摩阻进行修正。

vsh = ( ρbi/ ρsh) · vbim/s (9-4)R sh = ( ρbi/ ρsh) · RbiPa/m (9-5)式中符号代表的意义同热水网路的水力计算。

3、K值改变时,对R、L d值进行的修正(1)对比摩阻的修正、当蒸汽管道的当量绝对粗糙度K sh与计算采用的蒸汽水力计算表中的K bi=0.2mm不符时,同样按下式进行修正:Rsh =(Ksh/ Kbi)0.25 · RbiPa/m (9-6)式中符号代表意义同热水网路的水力计算。

蒸汽管道计算实例

蒸汽管道计算实例

前言本设计目(de)是为一区VOD-40t钢包精练炉提供蒸汽动力.设计参数是由动力一车间和西安向阳喷射技术有限公司提供(de).主要参数:蒸汽管道始端温度 250℃,压力 1.0MP;蒸汽管道终端温度 240℃,压力 0.7MP(设定);VOD用户端温度 180℃,压力 0.5MP;耗量主泵 11.5t/h 辅泵 9.0t/h一、蒸汽管道(de)布置本管道依据一区总体平面布置图所描述(de)地形进行(de)设计,在布置管道时本设计较周详地考虑到了多方面(de)内容:1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大(de)主要用户;2、蒸汽管线布置时尽量减少了与公路、铁路(de)交叉.3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿.并在自然补偿达不到要求时使用方型补偿器.4、在蒸汽管道相对位置最低处设置了输水阀.5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座.6、管道与其它建、构筑物之间(de)间距满足规范要求.二、蒸汽管道(de)水力计算已知:蒸汽管道(de)管径为Dg200,长度为505m.蒸汽管道(de)始端压力为1.0MP,温度为250℃查动力管道设计手册第一册热力管道(以下简称管道设计)1—3得蒸汽在该状态下(de)密度ρ1为4.21kg/m3.假设:蒸汽管道(de)终端压力为0.7Mp,温度为240℃查管道设计表为2.98kg/m3.1—3得蒸汽在该状态下(de)密度ρ2(一)管道压力损失:1、管道(de)局部阻力当量长度表(一)器 R=3D2、压力损失2—1式中Δp—介质沿管道内流动(de)总阻力之和,Pa ; Wp —介质(de)平均计算流速,m/s ; 查管道设计表5-2取Wp=40m/s ;g —重力加速度,一般取9.8m/s 2; υp—介质(de)平均比容,m 3/kg ;λ—摩擦系数,查动力管道手册(以下简称管道)表4—9得 管道(de)摩擦阻力系数λ=0.0196 ; d —管道直径,已知d=200mm ; L —管道直径段总长度,已知L=505m ;Σξ—局部阻力系数(de)总和,由表(一)得Σξ=36; H 1、H 2—管道起点和终点(de)标高,m ; 1/Vp=ρp—平均密度,kg/m 3; 1.15—安全系数.在蒸汽管道中,静压头(H2-H1)10/Vp很小,可以忽略不计所以式2—1变为2—2在上式中:5·Wp2/gυp=5·Wp2ρp /g表示速度头(动压头)λ103L/d为每根管子摩擦阻力系数.把上述数值代入2—2中得Δp=1.15×5×402×3.595 (0.0196×103×505/200+36)/9.8=0.316 Mp计算出(de)压力降为0.447Mp,所以蒸汽管道(de)终端压力P2=P1-Δp=1.0-0.316=0.684 Mp.相对误差为:(0.7-0.684)/0.7=2.3% .所以假设压力合理(二)管道(de)温度降:1、蒸汽在管道中输送时,由于对周围环境(de)散热损失,过热蒸汽温降按下式计算:Δt=Q·10-3/(G·C)℃P式中Q—所计算蒸汽管段对周围环境(de)散热损失(千卡/时);G —管段计算蒸汽流量(吨/时);Cp —在管段平均蒸汽参数时,过热蒸汽(de)定压比热 (千卡/千克·℃).总散热损失:Q=1.2·q·L=1.2·148.5·505=89991 千卡/小时 蒸汽流量:G=11.5+9.0=20.5 吨/小时定压比热:Cp 查管道设计图5-5得Cp =0.515 千卡/千克·℃. Δt=89.991/(20.5·0.515)=8.524 ℃2、蒸汽管道(de)出口温度为t2=t1-Δt=250-8.524=241.48 ℃ .3、相对误差:8.524/250=3.4% .蒸汽管道终端(de)出口参数为:压力 0.684MP 温度 241.48℃ ,其计算结果和假设相一致. 三、管道伸长量和补偿计算 (以管段3-4为例) (一)伸长量:公式: ΔL=а·L(t 2-t 1) ㎝式中L —计算管长,m,3-4管段(de)长度为46.57m ;а—管道(de)线膨胀系数,㎝/(m·℃),查表5-1得α=12.25㎝/(m·℃);t 2—管内介质温度,℃,已知t 2=220; t 1—管道安装温度,℃,已知t 1=20. ΔL=12·46.57(245-20)=12.57㎝所以,管段3—4(de)热膨胀量为125.7mm 小于补偿器(de)补偿量150mm,及本段管道在受热时不会因线性膨胀而损坏. (二)补偿器选型及校核计算:采用(de)补偿方式为人工补偿,选取(de)补偿器为矩型补偿器,其型号为:150-2型,其补偿能力为150mm,所以3-4管段(de)伸长125.7mm<150mm 补偿器能满足要求. 其它管段(de)伸长及补偿情况见下表:表(二)由上表可以看出整个VOD管道能在等于或低于设计参数(de)工况下正常运行.四、管道(de)保温防腐设计为了节约能源,提高经济效益,减少散热损失,满足工艺要求,改善工作环境,防止烫伤,一般设备、管道,管件、阀门等(以下对管道、管件、阀门等统称为管道)必须保温.(一)保温材料(de)选择:由于超细玻璃棉(de)纤维细而柔,呈白色棉状物,其单纤维直径4微米,对人(de)皮肤无刺痒感.超细玻璃棉优点很多,其容重小,导热系数底,燃点高、不腐蚀是良好(de)保温、吸声材料.同时有良好(de)吸附过滤性能,用途十分广泛.因此在本次设计中保温我材料(de)是选择超细玻璃棉.保护层采用玻璃布.(二)保温层厚度(de)确定:根据国标保温层厚度表(动力设施标准图集R410-2)超细玻璃棉制品保温层(de)厚度为70mm. (三)保温层单位散热量计算:公式: 千卡/米·时q —管道单位长度热损失(千卡/米·时); t —介质温度(℃); t 0—周围环境温度(℃);λ—保温材料在平均温度下(de)导热系数(千卡/米·时·℃)查管道与设备保温表2-45得λ=0.028+0.0002t p ( t p —保温层平均温度查管道与设备保温表3—8得t p =145℃)λ=0.057 千卡/米·时·℃;—保温结构外表面向周围空气(de)放热系数(千卡/米2时)千卡/米2时千卡/米·时所以,每米长管道在每小时(de)散热量为148千卡.(四)保温结构:保温层用包扎保温结构,用一层超细玻璃棉毡包扎在管道上,再用铁丝绑扎起来.保护层采用油毡玻璃布,第一层,用石油沥青毡(GB325—73)、粉毡350号.在用18镀锌铁丝直接捆扎在超细玻璃棉毡层外面.油毡纵横搭接50毫米,纵向接缝应在管子侧面,缝口朝下.第二层,把供管道包扎用(de)玻璃布螺旋式地缠卷在石油沥青毡外面,连后用18镀锌铁丝或宽16毫米、厚0.41毫米(de)钢带捆扎住.五、管道及附件(de)设计和选择(一)管道选型:本设计所选择(de)管道为GB8163-87φ219×6DN200无缝钢管.其许用应力:常温强度指标温度(℃)钢号钢管标准壁厚(mm)δb MPaδs MPa200250 10GB8163≤103352051019220GB8163≤10390245123110由于本设计蒸汽(de)最高压力为1.0MP远低于92MP,所以所选管道安全可行.(二)减压阀选型:因为本设计蒸汽管道(de)出口压力为0.684MP而VOD正常工作压力为0.5MP所以在蒸汽管道(de)出口处应设一减压阀.1、已知减压阀前压力为0.684MP,阀后压力为0.5MP根据管道设计图6-75查得每平方厘米阀座面积(de)理论流量q=300kg/㎝2·h;2、已知蒸汽流量为20.5t/h,求得所需减压阀阀座面积为㎝23、根据需减压阀阀座面积,查管道表9-11直径和减压阀(de)公称直径DN=200mm.(三)支架及方型补偿器(de)选择:为了保证管道在热状况下(de)稳定和安全,减少管道受热膨胀时所产生(de)应力,管道每隔一定距离应该设固定支架及热膨胀(de)补偿器.支架(de)选择根据动力设施国家标准图籍R402室内热力管道支吊架和R403室外热力管网支吊架为依据进行(de),在两固定支架之间设置一方型补偿器,其型号根据所在管段(de)热伸长量选择.。

蒸汽管道计算书

蒸汽管道计算书

蒸汽管道计算书1. 蒸汽管道管径选择:①管径按质量流量计算d = 式中m q 表示工作状态下的质量流量(t/h ),已经条件0.5MPa 下m q =10t/h ; w 表示工作状态下的流速(m/s ),取w=35m/s ;ρ表示工作状态下的密度(kg/m ³),0.5MPa 下饱和蒸汽压密度为2.679kg/m ³;d ==197.0mm ,取DN200管径满足要求。

②按管径DN150计算蒸汽流速22(594.5)m q w dρ==58.6m/s (超出饱和蒸汽安全流速30~40m/s ) ③综上所述选择DN200管径较为合适。

2. 压力降计算:2321101.15[()]10()2w p L H H d ρλξρ∆=++-∑式中1.15为安全裕度;ρ表示介质的平均密度(kg/m ³),起点0.5MPa 下饱和蒸汽压密度为 2.679kg/m ³,终点0.3MPa 下饱和蒸汽压密度为1.672kg/m ³,平均密度 ρ=2.176kg/m ³;w 表示介质平均流速(m/s ),取平均值35m/s ;λ表示摩擦阻力系数,DN200常用钢管摩擦阻力系数取值0.0379; d 表示管道内径,已知值200mm ;L 表示管道直线段总长度,已知值230m ;对于气体,10 ρ(H2-H1)忽略;ξ∑局部阻力系数的总和,包括8个R=4d 光滑弯头1ξ=8×3.2=25.6m ,5个DN200闸阀2ξ=5×3.2=16m ,1个DN100闸阀3ξ=1.3m ,1个焊接 异径管4ξ=3.2m ,5个DN200光滑矩形补偿器5ξ=5×12=60m ,进出设备扩大与缩小6ξ=2m ,ξ∑= 1ξ+2ξ+3ξ+4ξ+5ξ+6ξ=108.1m2321101.15[()]10()2w p L H H d ρλξρ∆=++-∑=232.4KPa 。

蒸汽管道水力计算

蒸汽管道水力计算

四 .中间计算结果
管道内径 d= 0.378 m 雷诺数 Re = 5.29E+06 计算得 λ = 0.00659814 管道局部阻力系数Σ ζ = 管道总阻力系数 ξ = 相对粗糙度 1.85 3.6479 1.06E-04
五 .计算结果
管道阻力 Δ P = 0.0554 MPa 管道阻力与蒸汽进口压力得比值: 2.22%
管道外径D 管道壁厚δ mm mm 406.4 14.2
二. 参数取值
大小头局部 管道粗糙 允许的管道 弯头局部阻 三通阻力系 保留小数点 阻力系数 度e 取值 压力损失比 力系数 ξ 1 数 ξ 2 位数 参数 mm ξ 3 例 0.25 0 0.05 0.04 4 3.50%
三 .使用的公式
管道阻力 Δ P = ξ × w × w ÷ ( 2 × v × 1000000 ) MPa 管道总阻力系数 ξ = λ ÷ d × L + Σ ζ 管道局部阻力系数 Σ ζ = n1 × ξ 1 + n2 × ξ 2 + n3 × ξ 3 雷诺数 Re = w × d ÷( η × v )
蒸汽管道水力计算
蒸汽管道名称:
一. 已知条件
蒸汽 参数 蒸汽流量Q t/h 363.3 管道 参数 蒸汽进口压 蒸汽进口温 蒸汽工况 蒸汽工况下 蒸汽工况下 下的比容 动力粘度η 推荐流速w 力P 度t V MPa Pa.s m/s ℃ m3/kg 2.5 540 0.15 3.22E-05 67.48 弯头数 管道长度L 90° 大小头数量 三通数量n2 n3 m 量n1 103 7 0 2
管道阻力满足要求!
注:1 计算方法来自《火力发电厂汽水管道设计技术规定》(DL/T5054-1996) 2 摩擦系数的计算公式来自……

蒸汽管道计算实例之欧阳学文创作

蒸汽管道计算实例之欧阳学文创作

前言欧阳学文本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。

设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。

主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定);VOD用户端温度180℃,压力0.5MP;耗量主泵11.5t/h 辅泵9.0t/h一、蒸汽管道的布置本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容:1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户;2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。

3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。

并在自然补偿达不到要求时使用方型补偿器。

4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。

6、管道与其它建、构筑物之间的间距满足规范要求。

二、蒸汽管道的水力计算已知:蒸汽管道的管径为Dg200,长度为505m。

蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4.21kg/m3。

假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2.98kg/m3。

(一)管道压力损失:1、管道的局部阻力当量长度表(一)阻力系数名称数量管子公称直径(毫米)总阻力数(ξ)止回阀旋启式312003煨弯R=3D0.3102003煨弯5620030方型伸缩器R=3D2、压力损失2—1式中Δp—介质沿管道内流动的总阻力之和,Pa;Wp—介质的平均计算流速,m/s;查《管道设计》表5-2取Wp=40m/s ;g—重力加速度,一般取9.8m/s2;υp—介质的平均比容,m3/kg;λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0.0196 ;d—管道直径,已知d=200mm ;L—管道直径段总长度,已知L=505m ;Σξ—局部阻力系数的总和,由表(一)得Σξ=36;H1、H2—管道起点和终点的标高,m;1/Vp=ρp—平均密度,kg/m3;1.15—安全系数。

蒸汽管路计算公式

蒸汽管路计算公式

9.1蒸汽网路系统一、蒸汽网路水力计算的基本公式计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1)d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2)Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3)式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ;G t ——管段的蒸汽质量流量,t/h;d ——管道的内径,m;K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m;ρ ——管段中蒸汽的密度,Kg/m3。

为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。

附录9-1给出了蒸汽管道水力计算表。

二、蒸汽网路水力计算特点1、热媒参数沿途变化较大蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。

2、ρ值改变时,对V、R值进行的修正在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。

如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi 不相同,则应按下式对附表中查出的流速和比摩阻进行修正。

v sh = ( ρbi / ρsh) · v bi m/s (9-4)R sh= ( ρbi / ρsh) · R bi Pa/m (9-5)式中符号代表的意义同热水网路的水力计算。

3、K值改变时,对R、L d值进行的修正(1)对比摩阻的修正、当蒸汽管道的当量绝对粗糙度K sh与计算采用的蒸汽水力计算表中的K bi=0.2mm不符时,同样按下式进行修正:R sh=(K sh / K bi)0.25 · R bi Pa/m (9-6)式中符号代表意义同热水网路的水力计算。

输配管网 低压蒸汽管路水力计算

输配管网 低压蒸汽管路水力计算

2 .最不利管路的水力计算
采用控制比压降法进行最不利管路的水力计算。

低压蒸汽供暖系统摩擦压力损失约占总压力损失的60 %,因此,根据预计的平均比摩阻:
=100 × 0.6 =60Pa /m 左右和各管段的热负荷,选择各管段的管径及计算其压力损失。

计算时利用附录5 — 3 ,附录5 — 4 和附录4 — 2 。

附带说明,利用附录5 — 3 时,当计算热量在表中两个热量之间,相应的流速值可用线性关系折算。

比摩阻R 与流速( 热量Q) ,可按平方比关系折算得出。

如计算管段1 ,热负荷Q l =71000 w ,按附录5 — 3 ,现选用d =70mm 。

根据表中数据可知:当d =70mm ,Q =61900W 时,相应的流速=12 .1m /s ,比摩阻R =20Pa /m 。

当选用相同的管径d =70mm ,热负荷改变为Q l =71000w 时,相应的流速 1 和比摩阻R 1 的数值,可按下式关系式折算得出
m /s
pa /m
计算结果列于表5 — 2 和在5 — 3 中。

蒸汽管路计算公式

蒸汽管路计算公式

9.1蒸汽网路系统一、蒸汽网路水力计算的基本公式计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1)d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2)Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3)式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ;G t ——管段的蒸汽质量流量,t/h;d ——管道的内径,m;K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m;ρ ——管段中蒸汽的密度,Kg/m3。

为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。

附录9-1给出了蒸汽管道水力计算表。

二、蒸汽网路水力计算特点1、热媒参数沿途变化较大蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。

2、ρ值改变时,对V、R值进行的修正在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。

如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi 不相同,则应按下式对附表中查出的流速和比摩阻进行修正。

v sh = ( ρbi / ρsh) · v bi m/s (9-4)R sh= ( ρbi / ρsh) · R bi Pa/m (9-5)式中符号代表的意义同热水网路的水力计算。

3、K值改变时,对R、L d值进行的修正(1)对比摩阻的修正、当蒸汽管道的当量绝对粗糙度K sh与计算采用的蒸汽水力计算表中的K bi=0.2mm不符时,同样按下式进行修正:R sh=(K sh / K bi)0.25 · R bi Pa/m (9-6)式中符号代表意义同热水网路的水力计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ho ts on
道的压力比,因此管道处于亚临界流动状态。通过式 6.3.4-16~18 所述方法计算管道质量流 速,这里指出的是,管道末端压力即为背压,因此可以通过查询的方法直接获得管道末端的 比容,进而求出比容比,计算出的质量流速相差甚微。根据以上计算结果,求得管道的质量 流速为 1174.215 kg/m2s,与 1234.568 kg/m2s 相差仅 4.9%,计算结果可以接受。
1.135,求得 c =2.596。
根据式 6.3.4-8 计算临界压力比 c 为临界流动,末端的压力将达到临界压力 p c ,由临界压力 比可求得 p c 为 2.186MP,高于环境压力(背压) 。同时由临界比容比可求得管道末端临界比 容 c 为 0.0841 m3/kg。 管道的临界质量流速通过式 6.3.4-19 计算, 这是规范里面的描述 (原文公式有错误, 已修改) , 而公式中滞止参数的求解需要已知介质的质量流速, 实际上从规范中不难发现, 临界质量流 速可以通过式 6.3.3-1 来求解,两个式子是等效的。另外,式 6.3.3-1 中,根号部分其实就是
这里需要指出的是,加入孔板后,管道的主要流速降到 40m/s,管道末端的流速依然很高, 为 240m/s。该算例仅仅为了说明计算过程,实际应用中还需要根据流速要求重新进行设计 计算。
Ho ts on
以下对各限流孔板进行设计计算。
孔板的流量可通过式 3.0.1-1 来计算(关于绝热指数的表述有无,规范里的表述仅适用于理 想气体) 。HG/T 20570.15-95 有孔径计算的具体步骤,这里采用 EXCEL 表格方法(见面如 下)计算,其中,压缩系数用公式z = z PrVr⁄Tr计算,其中 zc 为临界压缩系数,对于水蒸 气为 0.23,Pr、Vr 和 Tr 分别为对比压力、对比比容和对比温度(实际值和临界值的比值) 。 这里假设蒸汽的温度不变,严格意义讲,蒸汽不是理想气体,经节流后温度将发生变化,这 里为了简化计算,假定温度不变,管道的雷诺数为 3.33×106。
解: 根据已知描述,管道的始端压力 p1=6MP,末端环境压力 p2=1MP,管道始端的介质比容 1 为 0.0324m3/kg 。为了判断气流是临界还是压临界,先计算管道始端和末端环境压力之比
p1 p 2 6 。根据式 6.3.3-3 计算临界比容比 c ,介质为干饱和蒸汽,绝热指数 k 取
Ho ts on
通过上述方法,可求得各块孔板的设计参数分别为: C1=0.62 , d1=24.37mm ; C2=0.65 , d2=29.89mm;C3=0.7,d3=35.97mm;C4=0.81,d4=41.65mm。 现对管道流量进行核算。 由上述计算结果, 根据式 6.3.8-2 计算孔板的阻力系数。 对四块孔板的阻力系数分别为 68.89、 33.81、13.89 和 5.78,于是管道的总阻力系数为 126.87。根据式 6.3.3-3 计算管道的临界比 容比为 c =11.868,根据式 6.6.4-8 计算管道的临界压力比为 c =12.663,临界压力比大于管
Ho ts on
孔板的阻力系数通过式 6.3.8-2 计算,需要计算孔板前后的压差。由于孔板临近管道末端, 因此孔板后压力以管道末端压力计,为 1MPa,管道末端与孔板前压力比为 1/5.90=0.165, 小于临界压力比 0.58。因此若采用单块孔板,流动达到临界状态,孔板后压力达不到背压。 所以, 需要多块孔板才能将压力将到背压 1MPa, 此时多块孔板的前后总压差为 4901235Pa。 孔板的数量通过式 3.0.2-1 计算,求得 n=3.26,因此需要 4 块孔板来限流。每块孔板后的压 力 通 过 式 3.0.2-2 计 算 , 分 别 为 P2-1=3786232Pa 、 P2-2=2429246Pa 、 P2-3=1558604Pa 、 P2-4=1000000Pa。
Ho ts on
临界流速(见式 6.3.3-4 或 6.3.3-5) ,原文中式 6.3.3-5 根号里面多了 2,是错误的。将以下若
干计算式整理后,可以导出临界流量的便捷计算式 m
kp c c ,根据以上的结果可以
求得临界质量流速为 5431.565kg/m2s ,由管道的内径求得临界质量流量为 10.66kg/s ,即 38.393t/h。管道末端的流速即临界流速为 456.79m/s,管道始端的流速为 175.9m/s,流速远 高于 30~50m/s 范围,因此考虑加入限流孔板限制管道的流速。
蒸汽管道水力计算 (参考标准《DL/T 5054-1996 火力发电厂汽水管道设计技术规范》 、 《HG/T 20570.15-95 管路限流孔板的设置》 )
问题描述:一根无缝钢管,内径为 50mm,总阻力系数为 t =4.5,钢管一端连接 6MP 的干饱和蒸汽压力容器,另一端连接 1MP 的容器,进行设计计算,使得管道的流速控 制在 30~50m/s 范围内。 (以上压力均为绝对压力)
孔板能起到“憋压”的作用,及孔板上游的管道压降较小,流速较低,下游相应的变化量较 大。因此,孔板通常安装于管道靠后位置。这里,暂定需要将管道的流速限制在 40m/s(应 指的是上游的管道) 。由于上游的介质压力变化不大,介质比容按管道始端比容取值。则可 求得管道的质量流量为 2.424kg/s,即 8726.4kg/h,质量流速 1234.568 kg/m2s,相应的动压力 按式 6.1.9-2 计算,求得动压为 24691.32Pa。按式 6.2.4 计算上游的压损,由于管道上游占主 要长度,总阻力系数取 4,求得压损为 98765.28Pa,则孔板前压力为 5901235Pa,压损与管 道始端的压力比为 0.0165,小于 0.1,因此按式 6.2.4 计算的压降可以接受,无需进行修正。
相关文档
最新文档