解绝对值不等式的方法总结

合集下载

解绝对值不等式的基本思想

解绝对值不等式的基本思想

一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。

(一)、公式法:即利用x a >与x a <的解集求解。

主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;12x x -是指数轴上1x ,2x 两点间的距离.。

2、x a >与x a <型的不等式的解法。

当0a >时,不等式x >的解集是{},x x a x a ><-或不等式x a <的解集是{}x a x a -<<;当0a <时,不等式x a >的解集是{}x x R ∈不等式x a <的解集是∅;3.ax b c +>与ax b c +<型的不等式的解法。

把 ax b + 看作一个整体时,可化为x a <与x a >型的不等式来求解。

当0c >时,不等式ax b c +>的解集是{},x ax b c ax b c +>+<-或不等式ax b c +<的解集是{}x c ax b c -<+<;当0c <时,不等式ax b c +>的解集是{}x x R ∈不等式a bx c +<的解集是∅;例1 解不等式23x -<分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2x -” 看着一个整体。

答案为{}15x x -<<。

(解略)(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。

例2。

解不等式22x xx x >++。

分析:由绝对值的意义知,a a =⇔a ≥0,a a =-⇔a ≤0。

解:原不等式等价于2xx +<0⇔x(x+2)<0⇔-2<x <0。

高考数学含绝对值的不等式的解法

高考数学含绝对值的不等式的解法

x aa 0 a x a
x aa 0 x a或x a
ax b cc 0 c ax b c
ax b cc 0 ax b c或ax b c
f x g x g x f x g x
作业:
; 冷库建造 冷库工程
Байду номын сангаас

于说这看似厉害无比の中品神丹,似乎一点用处没有? "嗯,俺也一样!但是却感觉似乎俺の心灵更加静怡了,这感觉…很好!"月倾城微微沉吟也开口说道,半年の修炼,让她变得似乎更加飘渺出尘了,一颦一笑中,不经意释放出一丝圣洁. "具体の俺也不清楚,但是中品神丹の能量和神奇, 绝对超过你呀们の想象,日后你呀们就会慢慢感受到变化.最少一点,不咋大的倾城你呀就算不能成神,你呀の寿命绝对能有千年!"鹿老一捋胡须,微笑说道. "一千年?" 两人同时一惊,要知道大陆普通人の寿命,只有近百年,就算是圣级强者寿命也只能达到两百岁,现在她们只是吸收了一 点点菜力却能达到千年寿命?那…完全吸收了这神丹の不咋大的白,实力会有怎样の变化? "不咋大的白?它绝对能在数年内完成进化,达到成熟期,变成真正意义の神智!"鹿老见两人吃惊の望着不咋大的白,呵呵一笑非常肯定の说道. "嘻嘻,不咋大的白变成神智,它能不能和那个…九大 人一样会说话啊?还有他实力会不会很厉害啊?"夜轻语一听见两只眼睛眯成一条缝,不咋大的白一被召唤出来,她就非常の喜欢,要是能说话の话,那就更好玩了. "说话?当然能,神智一入神级就能说话,并且根据神智の等级,还能化形哪?九大人只要再突破一步就能变化成人了,不过不咋大 的白是属于那种很变taiの神智,它要化形の话估计还要很久の时候." 鹿老似乎对不咋大的白是很熟悉,言语中隐隐有些疼爱,低头看了一眼呼呼大睡の不咋大的白,面色却突然带起了一丝狂热和尊敬:"至于它成神之后厉害不厉害,这点俺也不清楚,毕竟它不是独立の噬魂智,而是变成了 你呀哥の战智.但是有一点俺可以肯定,如果它能觉醒……噬魂智の天赋神通の话,全大陆出了神主和噬大人,没有一些神级是它の对手,甚至可以说轻易秒杀!也包括俺!" "什么?" 两人完全被震惊了,一入神级凭借一些天赋神通,竟然可以秒杀任何神级强者?听鹿老の意思神主屠如果没 有领主意志の话,也能轻易秒杀?就连天神巅峰の鹿老都能秒杀?这是什么天赋神通,怎么会如此变tai? "现在说这个还太早,等不咋大的白觉醒了天赋神通再说吧!"鹿老对不咋大的白の事情,似乎不愿多说,没有过多解释,转而说道:"走吧,俺们去紫岛吧,让不咋大的白好好炼化这神丹! " …… 白重炙借助修炼战气,终于将心态完全稳定了下来,此时内心一片坦然,一心沉寂在修炼之中. 他知道练家子修炼到帝王境之后,战气变得无足轻重了.一些领悟了天地法则,并且创造出强烈攻击の帝王境二重练家子,甚至可以轻易击败战气修为达到帝王巅峰の练家子. 所以他果断 停止了战气修炼,开始全心全意,感悟起法则来.他开始回想起天地之中の重重奇妙,开始回想起月惜水成神の那道七彩霞光,和那恐怖の紫雷.开始回想起雾霭城外噬大人の那只巨手,开始回想起那副雨打沙滩图… 慢慢の,他の脑海中又浮现出,那时而平静,时而汹涌澎湃の大海,那时而刮 起の微风,那时而落下,时而停止の雨滴,那展开而又复原の沙坑… "咦?" 想着想着,他突然睁开了眼睛,而后瞳孔迅速放大,满脸の诧异和惊讶. 不对! 好像一年半年前,自己再去看雨打沙滩图.除了看图の那会,自己能看清楚,能感受到那幅图,而后自己被强行退出之后,脑海内无论自己 在怎么想,都毫无半点雨打沙滩图の记忆!现在怎么? 还有不对! 似乎原先自己看到の是很模糊の景象,现在怎么变清晰了许多? 这… 这地方太诡异了,不对!是太神奇了! 白重炙不敢多想,生怕脑海内の记忆消除,立刻凝神静气,再次感悟起来.随着他不断の回想,他脑海内再次浮现 出一幅清楚の雨打沙滩图. 大海一会澎湃,一会突然静止,风一会刮起,一会突然停止,雨一会落下,一会消失,沙坑一会展开,一会复原… "轰!" 白重炙看着眼前清晰无比の图案,看着眼前突然静止の一切,脑海中陡然间感应到什么,宛如漆黑の夜里亮起了一条闪电,划破了长空,照亮了夜. "静止,空间静止!空间静止!俺明白了!哈哈…" 突兀の—— 白重炙放声大笑起来,笑声充满了惊喜,充满了快意,肆意の笑声在梦幻宫内回响起来,久久不息. "讨厌,明白了就明白了,有必要兴奋成这样嘛,吵得人家睡觉都不安心…"突兀の笑声却将沉睡の妖姬吵醒了,她撅起了不咋大 的嘴呢喃了一句,继续睡去,但是微微睁开の美眸那瞬间,眼中却是充满了赞赏和惊yaw之色… 当前 第肆肆壹章 他还是逃了 这地方果然无比神奇! 此时此刻白重炙才明白,为何这地方无数人都想进来一年甚至一些月都好.请大家检索(品&书¥网)看最全!更新最快の自己修炼了一些 月,战气修为大涨,现在仅仅感悟了半天,一直摸不到边の其余三大空间玄奥,竟然立刻感悟了一种,空间静止玄奥. 虽然仅仅是才入门,才摸到一丝玄奥の大门,但是万事开头难.不怕路难走,就怕找不到路,既然已经入门了,那么剩下の就是不断推衍,不断印证,空间静止玄奥大成算是板上 钉钉の事情了. 不再浪费时候,白重炙开始全心全意の推衍印证起来,这地方每一秒都是珍贵无比啊! 逍遥阁内. 不咋大的白还在沉睡,而夜轻舞一直在炼化神晶,看她这架势,不修炼到圣人境是不会出来了. 紫岛安静の很,鹿老带着夜轻语和月倾城,在紫岛算是定居下来了.夜轻语踏入 神级,突破已经很是缓慢了.神晶内の玄奥宛如大海一样,而她参悟の玄奥仅仅才是一条大河般,入了神级玄奥参悟才是大事,所以她没有进逍遥阁修炼神力,而是直接在紫岛闭关了. 月倾城每天除了弹琴,就是一人在不咋大的山谷附近散步,感受着自然,感受着天地中神奇の音律.很奇怪の 是,她在紫岛の地位却已经超过了不咋大的白,紫岛の魔智对不咋大的白是源于神智の神威.而对月倾城却是发自内心の亲昵,每日她一弹琴,几乎全岛の高级魔智都会聚集不咋大的山谷,而后慢慢散去.在外面遇到行走の月倾城,也都会亲昵の叫上一声,表达对她内心の尊敬. 炽火大陆这 段时候很安静. 除了妖族东南部和破仙府西南部发了一些不咋大的骚乱外,其余倒是没有什么大事. 焚神卫不惜暴露大量隐城の魂奴,不断の在两处地方秘密抓捕容貌上等の少男少女.虽然破仙府和妖神府人口众多,但是隔三差五の失踪几十上百人,还是引发了sa动. 这事开始一段时候 引起了龙城和天妖城の注意,派出大量强者前去调查,但是一调查下来,很容易就把事情摸清楚了.但是破仙府和妖神府非但不敢闹事,反而还主动帮神城压制下去. 神主屠,在隐城の肆无忌惮の出手,并且还是对着和噬大人有关系の白家出手.最后白重炙失踪,夜若水自爆,并且现在还明目 张胆の把雾霭城给困死了.大陆所有神级强者都被吓破了胆子,他们担心一旦惹怒丧心病狂のの神主,第一次灭世大战就会重演. 虽然龙城和天妖城,在不断の秘密转移容貌好の少男少女,但是神城の魂奴却无处不在.每日还是不断の有人在失踪,sa动还在继续,破仙府和妖神府の神级强者, 很担心继续下去の话,整个破仙府和妖神府会不会彻底**起来. 雾霭城の人,也在担心.雾霭城の天空依旧阴暗了,几年了还不见放光芒. 斩神卫入住雾霭城家主府已经几年了,白家堡却几年没见人出来了,雾霭城の天似乎已经不再姓夜了. 但是就在今夜,白家堡却突然飘出了一条黑影,这 道黑影速度奇快,竟然没有引起白家堡护卫队の注意,眨眼就消失在雾霭城の长街不咋大的巷中. "他…还是走了!" 白家后山不咋大的阁楼,夜白虎望着对面盘坐の夜青牛长长吐出一口气,眼中充满了无尽の失望和落寞. "哼!族长心软,要是俺早就击杀这畜生了,这等狼子野心の人留着 何用?当年将不咋大的夜刀害死,后面又几次三番想害不咋大的寒子.现在倒好,白家受难了,直接叛逃出去了,哼!气死老子了,下次给俺看到他,一定亲手击杀这个畜生!" 夜青牛扑腾一声站了

绝对值不等式的解法

绝对值不等式的解法
只要完成这两个步骤,就可以断定命题对于从 n0开始的所有正整数n都成立.
这种证明方法叫做数学归纳法.
数学归纳法:
验证n=n0时 命题成立.
归纳奠基
若n = k ( k ≥ n0) 时命题成立, 证明n=k+1时命题也成立.
归纳递推
命题对从n0开始所有 的正整数n 都成立.
两个步骤 一个结论 缺一不可
练习 6. 解不等式 2 x 3 5
答案:x | 8 x 2
例 4. 解不等式 x 1 2x 3 。 解析:原不等式 (x 1)2 (2x 3)2 (2x 3)2 (x 1)2 0 (2x-3+x-1)(2x-3-x+1)<0 (3x-4)(x-2)<0 4 x 2 。
11 1 1 4 4 7 710
(3k

1 2)(3k
1)

k 3k 1
那么
11 1 1 4 4 7 7 10
(3k

1 2)(3k
1)
(3k
1 1)(3k

4)
k
1
3k 1 (3k 1)(3k 4)
3k 2 4k 1 (3k 1)(3k 4)
21. 解关于 x 的不等式 2x 1 x x 3 1
解:

x

3时,得
x
3 (2x
1)

x

(
x

3)

1
,无解


3

x

1 2
,得


3 x 1 2
(2x 1)

绝对值不等式的解法

绝对值不等式的解法
y
-3
O -2
2 x
由图象可知原不等式的解集为(− ∞,−3] ∪ [2,+∞ )
(2) − a + x − b ≥ c 和 x − a + x − b ≤ c x 型不等式的解法
①利用绝对值不等式的几何意义 ②零点分区间法 ③构造函数法
补充练习:解不等式: (1)1<|2x+1|≤3. (2)||x-1|-4|<2. (3)|3x-1|>x+3. 答案:(1){x|0<x≤1或-2≤x<-1} (2){x|-5<x<-1或3<x<7}
例1 解不等式|3x-1|≤2 解: 3x − 1 ≤ 2 ⇒ −2 ≤ 3x − 1 ≤ 2
1 ∴− ≤ x ≤ 1 3
例2 解不等式|2-3x|≥7 解:
2 − 3 x ≥ 7 ⇒ 2 − 3 x ≥ 7或2 − 3 x ≤ −7 5 ⇒ x ≤ − 或x ≥ 3 3
|ax+b|<c和|ax+b|>c(c>0)型不等式比较:
x ≥ 2 所以不等式组 的解集是 x −1 + x − 2 < 2 1 5 综上所述 , 原不等式的解集是 , . 2 2
小结: (1)|ax+b|≤c和|ax+b|≥c(c>0)型不等式的 解法: ①换元法:令t=ax+b, 转化为|t|≤c和|t|≥c 型不等式,然后再求x,得原不等式的解集。 ②分段讨论法: ax + b ≥ 0 ax + b < 0 | ax + b |≤ c(c > 0) ⇔ 或 ax + b ≤ c −(ax + b) ≤ c ax + b ≥ 0 ax + b < 0 或 | ax + b |≥ c(c > 0) ⇔ ax + b ≥ c −(ax + b) ≥ c

解绝对值不等式的方法总结

解绝对值不等式的方法总结

解绝对值不等式的方法总结
1. 分类讨论法:
根据绝对值符号,将条件分为两种情况,分别对式子做处理,最后将解集联合起
来就可以求出绝对值不等式的解集。

例如:解不等式|2x+3|<5,可以写成如下形式:
2x+3<5 且 -2x-3<5,解出两个不等式的解集,解集:x<1 且 x>-2,因此解集为 x<1 U
x>-2,其中U表示并。

2. 代入法:
根据条件可以得到相应绝对值不等式,首先将相关数字代入不等式中,质疑是否
满足不等式,如果满足,表示相应数属于此绝对值不等式解集;如果不满足,表示该数不
属于此绝对值不等式解集。

例如:解不等式|x-5|≤2,x=7时,将x=7代入不等式,可得
|7-5|≤2,满足不等式,因此x=7属于此不等式的解集。

4. 化简法:
根据不等式的特殊性可以将不等式转化为熟悉的不等式,再求其解,最后再转化
回原来的绝对值不等式,以求出解集。

例如:解不等式|5x-6|>10,先将左边绝对值分离,变为 5x-6>10 且 -(5x-6)>10 ,即 5x>16 且 5x<-4,可以写为 x>16/5 且 x<-4/5,再
转化为原来的绝对值表示形式,可得解集:|5x-6|>10,x>3 且 x<-2/5。

绝对值不等式的解法

绝对值不等式的解法
1 2 或x 2}
第 (1) 解不等式 1 3 x 4 6
解 : 原不等式等价于下列不
3x 4 1 等式组 3x 4 6 5 x 1或 x 3 10 x 2 3 3 2 3
3 x 4 1或 3 x 4 1 即 6 3 x 4 6 10 3 故原不等式的解集为 5 3
分ab>0和ab<0两种情形讨论:
(1)当ab>0时,如下图可得|a+b|=|a|+|b|
x
O
a
b
a+b
a+b
b
a
O
x
(2)当ab<0时,也分为两种情况:如果a>0,b<0, 如下图可得:|a+b|<|a|+|b|
b
a+b
O
a
x
如果a<0, b>0,如下图可得:|a+b|<|a|+|b|
a
O
a+b
x 1 的解集是 x 1 x 2 2 ( x 1) ( x 2 ) 2,
当 1 x 2 时 , 原不等式可化为 即 1 2 显然成立 解集是 ( 1 , 2 ). 当 x 2 时 , 原不等式可化为 , 所以不等式组
①利用绝对值不等式的几何意义
②零点分区间法
③构造函数法
练习:P20第8题(2)
8 .( 2 ) 解不等式 x 2 x 3 4
作业:P20第7题、第8题(1)(3)
补充练习:解不等式:
(1)1<|2x+1|≤3.
(2)||x-1|-4|<2.

巧解绝对值不等式

巧解绝对值不等式

巧解绝对值不等式
绝对值不等式即含有绝对值的不等式,例如|x-2|≥3,|1-2x|<3等,绝对值不等式怎么解呢?含绝对值的一元一次不等式的基本解题思路是去掉绝对值符号,把绝对值不等式化为一般的一元一次不等式来解。

下面介绍四种转化方法仅供参考。

1.零点分段法
解不等式|x-2|≥3
分析:分为x-2≥0时和x-2<0两种情况讨论,转化为不等式组求解.
解题过程(1)当x-2≥0时,原不等式等价于x-2≥3解得,x≥5
(2)当x-2<0时.,原不等式等价于-(x-2)≥3解得x≤-1.
∴原不等式的解集为x≥5或者x≤-1.
2.绝对值定义法
解不等式|x-2|≥3
分析:根据绝对值定义x-2≥3或x-2≤-3
解题过程(1)当x-2≥3时解得,x≥5
(2)当x-2≤-3时解得x≤-1
∴原不等式的解集为x≥5或者x≤-1.
3.平方法
解不等式|x+1|>|x-2|
解题过程:将两边同时平方得x2+2x+1>x2-4x+4
化为一元一次不等式6x>3
1
解得,x>
2
4.分段讨论法
解不等式|x+1|>|x-2|
分析:可以分成三段来完成即x<-1, -1≤x≤2,x≥2
解题过程:
(1)当x<-1时原不等式等价于—(x+1)>2—x即—1>2,不成立
(2)当-1≤x ≤2时原不等式等价于x+1>2—x 即x >21得2
1<x ≤2 (3)当x >2时原不等式等价于x+1>x -2即1>—2显然成立得x >2
综上所述原不等式的解集为x >2
1。

解绝对值不等式的几种常用方法以及变形

解绝对值不等式的几种常用方法以及变形

解绝对值不等式的几种常用 【2 】办法以及变形一. 前提:0a >;情势: ()f x a >; ()f x a <; (),()f x a f x a ≥≤等价转化为()()()f x a f x a f x a >⇔><-或; ()()f x a a f x a <⇔-<<()()()f x a f x a f x a ≥⇔≥≤-或; ()()f x a a f x a ≤⇔-≤≤例1.(1) |2x -3|<5解:-5<2x -3<5,得-1<x <4 -------------------------转化为一元一次不等式(2) |x 2-3x -1|>3解:x 2-3x -1<-3 或 x 2-3x -1>3 ---------------------转化为一元二次不等式 即:x 2-3x +2<0 或 x 2-3x -4>0∴不等式的解为1<x <2或x <-1或x >4 (3) 2x 3x 2-+>1 解:2x 3x 2-+<-1 或2x 3x 2-+>1 --------------------绝对值不等式转化为分式不等式 解之得:-2<x <13或 x <-2或x >5∴不等式的解为x <-2或-2<x <13或x >5反思:(1)转化的目标在于去失落绝对值.(2)规范解答,可以避免少犯错误.二. 形如|()f x |<()g x ,|()f x |>()g x , ()()f x g x >型不等式(1)︱f(x)︱<g(x)⇔- g(x)<f(x)<g(x)(2)︱f(x)︱>g(x)⇔ f(x)<-g(x)或f(x)>g(x)(3)︱f(x)︱>︱g(x)︱⇔f 2(x)>g 2(x); (4)︱f(x)︱<︱g(x)︱⇔f 2(x)<g 2(x)例2. (1) |x +1|>2-x ; 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x )---------------应用绝对值概念转化为整式不等式解得x >12或无解,所以原不等式的解集是{x |x >12} (2)|2x -2x -6|<3x解: 原不等式等价于-3x <2x -2x -6<3x即222226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ⎧⎧-->-+->+-><->⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨+-<-<<--<--<⎪⎪⎩⎩⎩⎩或 即: 2<x <6所以原不等式的解集是{x |2<x <6}(3) 解不等式123x x ->-.解:原不等式⇔22(1)(23)x x ->-⇔22(23)(1)0x x ---<⇔(2x-3+x-1)(2x-3-x+1)<0⇔(3x-4)(x-2)<0 ⇔423x <<. 解释:求解中以平方后移项再用平方差公式分化因式为宜.三. 前提:,0a b >形如:()a f x b <<x a x b⎧>⎪⇔⎨<⎪⎩ ----------------转化为不等式组来解决例3.解不等式 1≤ | 2x-1 | < 5解:原不等式等价于⎩⎨⎧≥-<-1|12|5|12|x x 5215211211x x x -<-<⎧⇔⎨-≥-≤-⎩或 2310x x x -<<⎧⇔⎨≥≤⎩或 ∴原不等式的解集为 {x | -2< x ≤0或1≤x<3}四.含有两个绝对值的不等式---------------(常常采用零点分段法来评论辩论) 例4 : 解不等式:|x-3|-|x+1|<1解:原不等式等价于①11(3)(1)141x x x x ≤-≤-⎧⎧⇒⎨⎨--++<<⎩⎩⇒无解 ②13131(3)(1)12x x x x x -<<⎧-<<⎧⎪⇒⎨⎨---+<>⎩⎪⎩132x ⇒<< ③33(3)(1)141x x x x ≥≥⎧⎧⇒⎨⎨--+<-<⎩⎩3x ⇒≥ 综上原不等式的解集为}21|{>x x 演习.不等式|x+3|-|2x-1|<2x +1的解集为五. 含有参数的不等式例5(1)解关于x 的不等式①)(R a a x ∈<,②)(R a a x ∈> 解:∵R a ∈,分类评论辩论如下 ,0∅≤时,解集为aⅡ},|{0a x a x a <<->时,解集为当,0R a 时,解集为<Ⅱ},0|{0≠=x x a 时,解集为当Ⅲ},|{0a x a x x a >-<>或时,解集为当 解关于x 的不等式(132R a a x ∈<-+解:原不等式化为:132+<+a x ,在求解时因为a+1的正负不肯定,需分情形评论辩①当a+1≤0即a ≤-1时,因为任何实数的绝对值非负,∴解集为②当a+1>0即a> -1时,- (a+1)<2x+3< a+1 => 24+-a 2综上得:①;时,解集为∅-≤1a②}2224|{1-<<+-->a x a x a 时,解集为六:含有绝对值不等式有解. 解集为空, 与与恒成立问题 例6:若不等式|x -4|+|3-x |<a 的解集为空集,求a 的取值规模. [解题]解法一(1)当a ≤0时,不等式的解集是空集.(2)当a >0时,先求不等式|x -4|+|3-x |<a 有解时a 的取值规模. 令x -4=0得x =4,令3-x =0得x =3①当x ≥4时,原不等式化为x -4+x -3<a ,即2x -7<a解不等式组474272x a x x a≥⎧+⇒≤<⎨-<⎩,∴a >1 ②当3<x <4时,原不等式化为4-x +x -3<a 得a >1③当x ≤3时,原不等式化为4-x +3-x <a 即7-2x <a 解不等式377337222x a a x x a≤⎧--⇒<≤⇒<⎨-<⎩,∴a >1 分解①②③可知,当a >1时,原不等式有解,从而当0<a ≤1时,原不等式解集为空集.由(1)(2)知所求a 取值规模是a ≤1办法二∵a >|x -4|+|3-x |≥|x -4+3-x |=1∴当a >1时,|x -4|+|3-x |<a 有解从而当a ≤1时,原不等式解集为空集.总结(1) : ()f x a <有解()min a f x ⇒>;()f x a <解集为空集()min a f x ⇒≤;这两者互补.()f x a <恒成立()max a f x ⇒>.(2) ()f x a >有解()max a f x ⇒<;()f x a >解集为空集()max a f x ⇒≤;这两者互补.()f x a >恒成立()min a f x ⇒≤。

绝对值不等式公式有哪些该如何解

绝对值不等式公式有哪些该如何解

绝对值不等式公式有哪些该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。

下面是由编辑为大家整理的“绝对值不等式公式有哪些该如何解”,仅供参考,欢迎大家阅读本文。

绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。

解绝对值不等式的方法总结

解绝对值不等式的方法总结

解绝对值不等式的方法总结绝对值不等式是数学中常见的一类不等式,它涉及到绝对值的大小关系。

解绝对值不等式的关键是确定不等式中的变量可能取的范围,并结合绝对值的性质进行推导。

下面将从基本方法、分析方法和图像法等角度给出解绝对值不等式的方法总结。

一、基本方法1.消去绝对值:当绝对值不等式中只有一个绝对值符号时,我们可以通过将绝对值号内的条件进行分类讨论来消去绝对值。

例如,对于不等式,x-2,<3,我们可以将其分类讨论为两种情况:x-2>0时,不等式可转化为x-2<3,即x<5;x-2<0时,不等式可转化为-(x-2)<3,即-x+2<3,即x>-1、因此,原不等式的解集为-1<x<52.分离绝对值:当绝对值不等式中有两个绝对值符号时,我们可以通过分离绝对值的方法将其转化为一个带有正负号的二次不等式。

例如,对于不等式,x-2,>,x+3,由于绝对值的性质,我们有两种情况:x-2>x+3,即-5>0,这个情况显然不成立;x-2<-(x+3),即-2x-1>0,即x<-1/2、综上所述,原不等式的解集为x<-1/23.基本不等式法:针对绝对值不等式中的特殊形式,f(x),>c或,f(x),<c,其中c是正实数,通过化简找到f(x)的取值范围。

例如,对于不等式,2x-3,>5,我们可以将其转化为两个不等式:2x-3>5和2x-3<-5、从第一个不等式中解得x>4,从第二个不等式中解得x<-1、因此,原不等式的解集为x<-1或x>4二、分析方法1. 区间法:对于绝对值不等式,ax+b, < c (或 > c),我们可以通过给定 a、b 和 c 的符号情况来确定 x 的取值范围。

例如,对于不等式,4x+5, < 3,我们可以根据 4x+5 和 -4x-5 的正负号进行分类讨论。

高一绝对值不等式知识点

高一绝对值不等式知识点

高一绝对值不等式知识点绝对值不等式是高中数学中重要的一部分,对于解题和理解数学概念都具有重要意义。

本文将介绍高一绝对值不等式的基本概念、性质及解题方法,帮助同学们更好地掌握这一知识点。

一、绝对值的定义和性质绝对值是数学中常见的概念,表示一个量的大小,用符号“|x|”表示。

其定义如下:当x ≥ 0时,|x| = x;当x < 0时,|x| = -x。

绝对值具有以下性质:1. 非负性:对于任意实数x,有|x| ≥ 0。

2. 三角不等式:对于任意实数x和y,有|x + y| ≤ |x| + |y|。

3. 符号性:对于任意实数x,有-|x| ≤ x ≤ |x|。

二、绝对值不等式的基本形式绝对值不等式是一个不等式中涉及到绝对值的情况。

一般来说,绝对值不等式可以分为以下两种基本形式:1. |ax + b| < c,其中a、b、c为常数,且a ≠ 0。

2. |ax + b| > c,其中a、b、c为常数,且a ≠ 0。

三、解绝对值不等式的方法解绝对值不等式的方法主要有以下几种:1. 分情况讨论法:根据绝对值的性质,将绝对值不等式分成几种情况讨论,并求出每个不等式的解,然后合并得到最终的解集。

2. 全开法:将绝对值展开成两个方程,去掉绝对值符号后得到的两个方程组,然后通过求解这两个方程组来得到解集。

3. 区间法:将不等式进行合并,然后根据合并后的不等式的符号性质,确定解集所处的区间范围。

四、绝对值不等式的常见题型绝对值不等式常见的题型包括:1. 绝对值与数轴:给定一个绝对值不等式,要求求出解集,并在数轴上表示出来。

2. 绝对值与变量范围:给定一个绝对值不等式,要求求出变量x的范围。

3. 绝对值与其他不等式:给定一个绝对值不等式,要求将其与其他不等式进行组合,解决相关问题。

五、绝对值不等式的应用绝对值不等式在实际问题中具有广泛的应用,常见的应用场景包括:1. 不等关系的判断:通过解绝对值不等式,可以确定两个数的大小关系。

解答绝对值不等式问题的四个“妙招”

解答绝对值不等式问题的四个“妙招”

一、分类讨论
一般地,若 x 为非负数,则 |x| = x;若 x 为负数,则
|x| = -x. 由于绝对值内部式子的符号决定去掉绝对值
符号后式子的表示形式,所以在解绝对值不等式时,
往往要采用分类讨论法,对绝对值内部式子的符号进
行讨论.可令每个绝对值内部的式子为零,然后将其零
点标在数轴上,于是这些零点把数轴分成若干个区
方法集锦
解答绝对值不等式问题的四个“妙招”
吴笋
绝对值不等式问题的常见命题形式有:(1)解绝对
值不等式;(2)求含有绝对值代数式的取值范围.其中
解绝对值不等式问题比较常见,解这类题目的关键是
去掉绝对值符号,将绝对值不等式转化为不含绝对值
的常规不等式去求解.本文介绍解绝对值不等式问题
的四个“妙招”,以供大家参考.
4
的点,只要将点向右移
1 2
个单位,那么它们的距离之
和就增加了
1
个单位,也就是把点
B(1)
移到点
B1(
3 2
)

位置;或者将点
A(-2)
向左移
1 2
个单位,也就是把点
A(-2)
移到点
A1(-
5 2
)
的位置,
由图可以看出,在数轴上位于
B1(
3 2
)

A1(-
5 2
)

间的点 P(x) 都满足 | x + 2 | + | x - 1| < 4 ,
解(1)得 -2 < x < -1 ,或 3 < x < 4 ,
解(2)得解集为空集, 所以原不等式的解集为{x| - 2 < x < - 1或3 < x < 4}.

求绝对值不等式解集的方法

求绝对值不等式解集的方法

求绝对值不等式解集的方法
绝对值不等式解法的基本思路是去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有绝对值定义法、平方法、零点区域法。

在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。

它们都是通过非负数来度量的。

解决与绝对值有关的问题(如解绝对值不等式,解绝对值方程,研究含有绝对值符号的函数等等),其关键往往在于去掉绝对值符号。

而去掉绝对值符号的基本方法有二。

其一为平方,所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;其二为讨论,所谓讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了。

说到讨论,就是令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的.x值,取交集,综上所述即可。

在运用上述方法谋绝对值不等式的边值问题时,例如能够根据未知条件有效率地运用绝对值不等式的常用形式,不仅可以精简运算、方便快捷地求出来它的边值问题,而且有助于培育学生思维灵活性。

绝对值不等式(绝对值三角不等式与绝对值不等式的解法)知识讲解

绝对值不等式(绝对值三角不等式与绝对值不等式的解法)知识讲解
1.求 x 3 的x最大9 值 2.求 x 3 的x最 9小值
3.若变为|x+1|+|x-2|>k恒成立,则k的取值范围是 4.若变为不等式|x-1|+|x-3|<k的解集为空集,则k的 取值范围是
3、已知 0, x a , y b ,
求证 2x 3y 2a 3b 5
绝对值不等式的解法(一)
2x 4, x 1
例1. 解不等式|x-1|+|x+2|≥5
y
2x 6, x 2 y 2, 2 x 1
2x 4, x 1
如图,作出函数的图象,
函数的零点是-3,2.
-2 1
-3
2x
-2
由图象可知,当x 3或x 2时,y 0,
∴原不等式的解集为{x|x≤-3 或 x≥2}.
取值范围是-(------,--2-]
3.解不等式1<|2x+1|<3. 答案:(-2,-1)∪(0,1)
4.解不等式|x+3|+|x-3|>8. 答案: {x|x<-4或x>4}.
5.解不等式:|x-1|>|x-3|. 答案: {x|x>2}.
6.解不等式|5x- 6|<6-x. 答案:(0,2)
思考四:若变为不等式|x-1|+|x+2|<k的解集 为 ,则k的取值范围是 k 3
练习:解不等式│x+1│–│x–2│≥1
x | x 1
作出f (x) │x +1│–│x – 2│的图像, 并思考f (x)的最大和最小值
│x +1│–│x – 2│ k恒成立,k的取值范围是 │x +1│–│x – 2│ k恒成立,k的取值范围是

高中数学绝对值不等式的解法

高中数学绝对值不等式的解法

-2
1 2
3
巩固练习:
解下列不等式:
1 1 (1) | x | 4 2
(3) | 5 x 4 | 6 (5)1 | 3 x 4 | 6
2 1 ( 2) | x | 3 3 (4) | 3 2 x | 7
(6) | x 3 x | 4
2
(7) | 3 2 | 1
2017/4/20


-m -n 0 n m 题型3: 形如n<| ax + b | <m (m>n>0)不等式
等价于不等式组

n ax b m, 或 m ax b n
推广: | f(x) | <g(x), | f(x) | >g(x)
2017/4/20 南粤名校——南海中学
3 x 4, 或 1 x 0 .
原不等式的解集是 {x | 1 x 0, 或3 x 4}.
2017/4/20 南粤名校——南海中学
解不等式 3<|3-2x|≤5 .
解法3:3 | 3 2 x | 5 3 | 2 x 3 | 5
3 2 x 3 5, 或 5 2 x 3 3
2 3 4
这是解含绝对值不等式的四种常用思路
1.探索:不等式|x|<1的解集。 方法一: 利用绝对值的几何意义观察
不等式|x|<1的解集表示到原点的距离小于1 的点的集合。
-1 0Байду номын сангаас1
所以,不等式|x|<1的解集为{x|-1<x<1}
探索:不等式|x|<1的解集。 方法二: 利用绝对值的定义去掉绝对值符号, 需要分类讨论 ①当x≥0时,原不等式可化为x<1

解绝对值不等式的方法总结

解绝对值不等式的方法总结

解绝对值不等式的方法总结绝对值不等式是数学中一类重要的问题,它涉及到不等式的解法和绝对值函数的性质。

下面是解绝对值不等式的方法总结:一、定义法绝对值的定义是:|a|=a(a>0),|a|=-a(a<0),|a|=0(a=0)。

利用这个定义,我们可以将绝对值不等式转化为普通不等式,然后求解。

例如,解不等式|x-3|>4,我们可以转化为解不等式x-3>4或x-3<=-4,即x>7或x<=1。

二、实数性质法利用实数的性质,我们知道对于任意实数a和b,有|a+b|<=|a|+|b|。

这个性质可以用来解一些含有绝对值的三角不等式。

例如,解不等式|x+y|<=|x|+|y|,我们可以令x=a, y=b,得到|a+b|<=|a|+|b|,即-|a+b|<=|a|-|b|<=|a+b|,从而得到-1<=cosθ<=1,其中θ为a和b的夹角。

三、平方法对于形如|ax+b|>c的不等式,我们可以利用平方法将其转化为普通不等式。

具体地,我们先将ax+b的绝对值平方,得到a^2x^2+2abx+b^2>c^2,然后解这个普通不等式。

例如,解不等式|x+3|>4,我们先将x+3的绝对值平方,得到x^2+6x+9>16,即x^2+6x-7>0。

然后解这个不等式得到x<1或x>7。

四、零点分段法对于形如|f(x)|>g(x)的不等式,我们可以先令f(x)=0,找到可能使不等式成立的x的取值范围,然后在这些范围内分别讨论g(x)的符号情况,从而得到不等式的解集。

例如,解不等式|x^2-3x+2|>x+1,我们先令x^2-3x+2=0,得到x=1或x=2。

在区间(-∞,1)内,f(x)=-x^2+3x-2<0,所以在这个区间内不等式不成立。

在区间[1,2)内,f(x)=-x^2+3x-2>0且g(x)=x+1<0,所以在这个区间内不等式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<.[题根4]解不等式2|55|1x x -+<.[思路]利用|f(x)|<a(a>0) ⇔-a<f(x)<a去掉绝对值后转化为我们熟悉的一元二次不等式组21551x x -<-+<即22551(1)551(2)x x x x ⎧-+<⎪⎨-+>-⎪⎩求解。

[解题]原不等式等价于21551x x -<-+<,即22551(1)551(2)x x x x ⎧-+<⎪⎨-+>-⎪⎩由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。

2)本题也可用数形结合法来求解。

在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程2551x x -+=,再对照图形写出此不等式的解集。

第1变 右边的常数变代数式[变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x[思路]利用|f(x)|<g(x) ⇔-g(x)<f(x)<g(x)和|f(x)|>g(x) ⇔f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。

解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x )解得x >12或无解,所以原不等式的解集是{x |x >12} (2)原不等式等价于-3x <2x -2x -6<3x即222226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ⎧⎧-->-+->+-><->⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨+-<-<<--<--<⎪⎪⎩⎩⎩⎩或 2<x <6所以原不等式的解集是{x |2<x <6}[收获]形如|()f x |<()g x ,|()f x |>()g x 型不等式这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ⇔-()g x <()f x <()g x ②|()f x |>()g x ⇔()f x >()g x 或()f x <-()g x1.解不等式(1)|x-x 2-2|>x 2-3x-4;(2)234xx -≤1 解:(1)分析一 可按解不等式的方法来解. 原不等式等价于:x-x 2-2>x 2-3x-4 ①或x-x 2-2<-(x 2-3x-4) ② 解①得:1-2<x<1+2 解②得:x>-3故原不等式解集为{x |x>-3}分析二 ∵|x-x 2-2|=|x 2-x+2| 而x 2-x+2=(x-14)2+74>0 所以|x-x 2-2|中的绝对值符号可直接去掉.故原不等式等价于x 2-x+2>x 2-3x-4 解得:x>-3∴ 原不等式解集为{x>-3} (2)分析 不等式可转化为-1≤234xx -≤1求解,但过程较繁,由于不等式234x x -≤1两边均为正,所以可平方后求解.原不等式等价于2234xx -≤1⇒9x 2≤(x 2-4)2 (x ≠±2) ⇒x 4-17x 2+16≥0 ⇒x 2≤1或x 2≥16⇒-1≤x ≤1或x ≥4或x ≤-4注意:在解绝对值不等式时,若|f(x)|中的f(x)的值的范围可确定(包括恒正或恒非负,恒负或恒非正),就可直接去掉绝对值符号,从而简化解题过程.第2变 含两个绝对值的不等式[变题2]解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5. [思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|⇒f 2(x)〈g 2(x)两边平方去掉绝对值符号。

(2)题可采用零点分段法去绝对值求解。

[解题](1)由于|x -1|≥0,|x +a |≥0,所以两边平方后有:|x -1|2<|x +a |2即有2x -2x +1<2x +2ax +2a ,整理得(2a +2)x >1-2a 当2a +2>0即a >-1时,不等式的解为x >12(1-a ); 当2a +2=0即a =-1时,不等式无解; 当2a +2<0即a <-1时,不等式的解为x <1(1)2a - (2)解不等式|x-2|+|x+3|>5.解:当x ≤-3时,原不等式化为(2-x)-(x+3)>5⇒-2x>6⇒x<-3. 当-3<x<2时,原不等式为(2-x)+(x+3)>5⇒5>5无解. 当x ≥2时,原不等式为(x-2)+(x+3)>5⇒2x>4⇒x>2. 综合得:原不等式解集为{x |x>2或x<-3}.[收获]1)形如|()f x |<|()g x |型不等式此类不等式的简捷解法是利用平方法,即:|()f x |<|()g x |⇔22()()f x g x <⇔[()()][()()]f x g x f x g x +-<02)所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化1 解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1) 解析:易知-1<x <1,换成常用对数得:lg(1)lg(1)||||lg lg x x a a-+> ∴22|lg(1)||lg(1)|x x ->+ 于是22lg (1)lg (1)0x x --+>∴[lg(1)lg(1)][lg(1)lg(1)]0x x x x -++--+> ∴21lg(1)lg 01xx x-->+ ∵-1<x <1 ∴0<1-2x <1 ∴lg (1-2x )<0∴1lg1xx -+<0 ∴1011x x -<<+解得0<x <12.不等式|x+3|-|2x-1|<2x+1的解集为 。

解:|x+3|-|2x-1|=⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤-<<-+≥-)3(4)213(24)21(4x x x x x x ∴当21≥x 时124+<-xx ∴x>2当-3<x<21时4x+2<2x +1 ∴723-<<-x 当3-≤x 时124+<-xx ∴3-≤x综上72-<x 或x>2故填),2()72,(+∞⋃--∞。

3.求不等式1331log log 13x x+≥-的解集. 解:因为对数必须有意义,即解不等式组0103x x>⎧⎪⎨>⎪-⎩,解得03x << 又原不等式可化为()33log log 31x x +-≥(1)当01x <≤时,不等式化为()33log log 31x x -+-≥即()33log 3log 3x x -≥∴ 33x x -≥ ∴ 34x ≤综合前提得:304x <≤。

(2)当1<x ≤2时,即()333log log 3log 3x x +-≥.∴ 2330x x -+≤ x ∴∈∅。

(1) 当23x <<时,()333log log 3log 3x x --≥ (2) ∴()33x x ≥- ∴94x ≥,结合前提得:934x ≤<。

综合得原不等式的解集为390,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭第3变 解含参绝对值不等式[变题3]解关于x 的不等式34422+>+-m m mx x[思路]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大。

若化简成3|2|+>-m m x ,则解题过程更简单。

在解题过程中需根据绝对值定义对3m +的正负进行讨论。

[解题]原不等式等价于 3|2|+>-m m x当03>+m 即3->m 时, )3(232+-<-+>-m m x m m x 或 ∴333-<+>m x m x 或当03=+m 即3-=m 时, 0|6|>+x ∴x ≠-6 当03<+m 即3-<m 时, x ∈R[收获]1)一题有多解,方法的选择更重要。

2)形如|()f x |<a ,|()f x |>a (a R ∈)型不等式此类不等式的简捷解法是等价命题法,即:① 当a >0时,|()f x |<a ⇔-a <()f x <a ;|()f x |>a ⇔()f x >a 或()f x <-a ; ② 当a =0时,|()f x |<a 无解,|()f x |>a ⇔()f x ≠0 ③ 当a <0时,|()f x |<a 无解,|()f x |>a ⇔()f x 有意义。

第4变 含参绝对值不等式有解、解集为空与恒成立问题[变题4]若不等式|x -4|+|3-x |<a 的解集为空集,求a 的取值范围。

[思路]此不等式左边含有两个绝对值符号,可考虑采用零点分段法,即令每一项都等于0,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集,这是按常规去掉绝对值符号的方法求解,运算量较大。

相关文档
最新文档