全等三角形复习学案Word版

合集下载

人教版八年级数学全等三角形全章复习学案

人教版八年级数学全等三角形全章复习学案

全等三角形全章复习学案12.1全等三角形一.全等三角形能够完全重合的两个三角形。

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

二.全等三角形的性质全等三角形对应边,对应角。

全等三角形的对应边上的中线、高线及对应角的平分线也相等。

全等三角形的周长和面积相等。

≌全等符号:“”练习:△ABE≌△ACD∠1=∠2∠B=∠C1.如图,已知,,,指出对应边和其它对应角。

△ABC△BAD∠C∠D AC BD2.如图,与全等,这可表示为;其中与是对应角,与是对应边,其余的对应角是;其余的对应边是。

△ABC A△ADE∠CAE=65°∠E=70°AD⊥BC∠BAC3.将绕点逆时针旋转一定角度,得到,若,,且,则的度数为()A.60°B.75°C.85°D.90°类型题:类型一:确定全等三角形的对应边、对应角△ABC A△ADE∠BAD如图,若把绕点旋转一定角度得到,则与相等的角是,图中相等的线段有_______对,分别是。

类型二:利用全等三角形的性质解决问题△OAD≌△OBC∠O=70°∠C=25°∠AEB=如图所示,,且,,则。

类型三:全等三角形的性质与三角形内角和的综合△ABC≌△ADE∠CAD=10°∠B=∠D=25°∠EAB=120°∠DFB∠DGB1.如图所示,,且,,,试求和的度数。

△ABE△ADC△ABC AB AC180°∠1:∠2:∠3=28:5:3∠2.如图所示,和是分别沿着、边翻折形成的,若,则α=。

△ABC D E AC BC△ADB≌△EDB≌△EDC∠C3.如图所示,中,、分别是边、上的点,若,则的度数为()A.15°B.20°C.25°D.30°类型四:全等三角形的性质与平行线的综合△ADF≌△CBE E B D F AD BC如图所示,,且点、、、在一条直线上,判断与的位置关系,并加以证明。

新人教八上第12章全等三角形复习学案

新人教八上第12章全等三角形复习学案

《全等三角形》章节复习学习路线图一.知识要点:角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等.⑵角平分线的判定:教的内部到角两边距离相等的点在角的平分线上. ⑶三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等. 二.解题技巧:SAS HL SSS AAS SAS AAS ASA ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎪⎧⎪⎨⎪⎩⎩找夹角()已知两边找直角()找第三边()若边为角的对边,则找任意角()找已知角的另一边()已知一边一角边为角的邻边找已知边的对角()找夹已知边的另一角()找两角的夹边()已知两角找任意一边() 1.寻找全等三角形对应边、对应角的规律:⑴全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. ⑵全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角. ⑶有公共边的,公共边一定是对应边.⑷有公共角的,公共角一定是对应角. ⑸有对顶角的,对顶角是对应角.⑹全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角) 三.典型例析 ㈠.证明角相等1.如图,AC ⊥CB ,DB ⊥CB ,AB =DC .观察图中有哪些全等三角形,你能分别予以证明吗?能运用你找到的全等三角形证明∠ABD =∠DCA 吗?DCBA2.如图,P 为∠AOB 内一点,已知P A =PB ,∠1+∠2=180°,求证:∠3=∠4.4321ABP3.如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC =26°,求∠CAP 的度数.PDCBA4.如图,△ABC 中,∠C =90°,AC =BC ,D 为BC 边中点,CG ⊥AD 于点F ,交AB 边于点E ,BG ⊥CB 于点B .观察图中有哪些三角形是全等的?你能对以上观察结论予以证明吗?利用以上观察结论求证:∠CDA =∠EDB .GFEDCBA㈡.证明线段相等5.如图,△ABC 的∠ABC 的平分线BD 与∠C 的外角的平分线CE 相交与点P ,作出点P 到三边AB 、BC 、CA 所在直线的距离,并观察该三条距离是否相等,你能证明吗?ABC DPE6.如图,△ABC 中,∠B =60°,AE 、CD 分别平分∠BAC 、∠ACB ,在AC 上取AF =AD ,则观察发现图中有哪些三角形全等?.运用以上发现,你能证明OD=OE 吗?.60oOEDCBA7.如图,分别倍延△ABC 的中线CD 、BE 至F 、G ,求证:A 为FG 中点.A BCDE FG㈢证明线段的和差倍分8.如图,AB =AC ,∠A =∠E =90°,BE 平分∠ABC ,①求证:DB =2CE .②若BC =16,DF ⊥BC 于F ,求△DFC 的周长.ADEC BF EDCBA9.如图,正方形ABCD 中,BE =CE ,AE 平分∠BAF ,求证:AF =BC +CF .FE AB CD10.如图,△ABC 中,D 为BC 边的中点,E 、F 两点分别在AB 、AC 边上,且∠EDF =Rt ∠,试比较BE +CF 与EF 的大小,并说明理由.FEDCBA11.△ABC 中,BD =CD ,AB =m ,AC =n ,①求AD 的取值范围;②若BE 、CF 分别垂直直线AD于点E 、F ,求证:AD =12(AE +AF ).ABC四.巩固训练1.全等三角形的性质有:① ;② . 2、普通三角形的全等判定方法有:① ;② ; ③ ;④ . 直角三角形全等的判断方法除以上四种方法外,还有 .3、角平分线的性质为: . 的点在角的平分线上.4、△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______.5、△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.6、△ABC ≌△DEF ,∠B =100°, ∠A =30°,那么∠F =______.7、下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( ) A .①和② B .②和③ C .①和③ D .①②③8.如图,AB =CD ,DE ⊥AC 于E ,BF ⊥AC 于F ,DE =BF .求证:⑴AF =CE ;⑵AB ∥CD .9.如图,∠ABC 中,BA =BC ,CD ⊥AB 于D ,AE ⊥BC 于D ,CD 、AE 交于点O ,求证:BO 平分∠ABC.10.如图⑴,B 、C 、D 三点在一条直线上,△ABC 、△CED 都是等边三角形。

全等三角形复习导学案

全等三角形复习导学案

全等三角形复习导学案一、学习目标1、理解全等三角形的概念和性质,能够准确识别全等三角形的对应边和对应角。

2、掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),并能熟练运用这些方法证明两个三角形全等。

3、能够运用全等三角形的性质和判定解决与三角形有关的计算和证明问题。

4、通过复习,提高逻辑推理能力和综合运用知识的能力。

二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形的对应边相等。

(2)全等三角形的对应角相等。

3、全等三角形的判定方法(1)“边边边”(SSS):三边对应相等的两个三角形全等。

(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、典型例题例 1:已知,如图,△ABC≌△DEF,AB = DE,∠A =∠D,求证:BC = EF。

证明:因为△ABC≌△DEF,AB = DE,∠A =∠D,所以∠B =∠E。

又因为 AB = DE,∠A =∠D,所以△ABC≌△DEF(ASA),所以 BC = EF。

例 2:如图,在△ABC 中,AD 是中线,BE⊥AD 于点 E,CF⊥AD 交 AD 的延长线于点 F。

求证:BE = CF。

证明:因为 AD 是中线,所以 BD = CD。

因为 BE⊥AD,CF⊥AD,所以∠BED =∠CFD = 90°。

在△BED 和△CFD 中,∠BED =∠CFD,∠BDE =∠CDF,BD = CD,所以△BED≌△CFD(AAS),所以 BE = CF。

例 3:如图,已知 AC = BD,∠C =∠D = 90°,求证:Rt△ABC≌Rt△BAD。

三角形的全等复习学案教案

三角形的全等复习学案教案

全等三角形一、知识梳理1、_________的两个三角形全等;2、全等三角形的对应边_____;对应角______;3、证明全等三角形的基本思路 (1)已知两边⎪⎩⎪⎨⎧_____)(___________)(_____________)__________看是否是直角三角形找夹角找第三边( (2)已知一边一角⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧(_____)(_______)(_____)(_____)(______)已知是直角,找一边找一角已知一边与对角找这边的对角找这个角的另一边找这边的另一邻角已知一边与邻角(3)已知两角 ⎪⎩⎪⎨⎧_____)(_____________)__________找夹边外任意一边找夹边( 4、角平分线的性质为________________________________________ 用法:∵_____________;_________;_________∴QD=QE5、角平分线的判定_____________________________________ 用法:∵_____________;_________;_________∴点Q 在∠AOB 的平分线上(4与5的图如下)二、基础过关1、下列条件能判断△ABC和△DEF全等的是()A)、AB=DE,AC=DF,∠B=∠EB)、∠A=∠D,∠C=∠F,AC=EFC)、∠A=∠F,∠B=∠E,AC=DED)、AC=DF,BC=DE,∠C=∠D2、在△ABC和△DEF中,如果∠C=∠D,∠B=∠E,要证这两个三角形全等,还需要的条件是()A)、AB=ED B)、AB=FD C)、AC=DF D)、∠A=∠F3、在△ABC和△A’B’C’中,AB=A’B’,AC=A’C’,要证△ABC≌△A’B’C’,有以下四种思路证明: ①BC=B’C’;②∠A=∠A’;③∠B=∠B’;④∠C=∠C’,其中正确的思路有() A)、①②③④B)、②③④C)、①②D)、③④4、判断下列命题:①对顶角相等;②两条直线平行,同位角相等;③全等三角形的各边对应相等;④全等三角形的各角对应相等。

第十二章全等三角形章末复(教案)

第十二章全等三角形章末复(教案)
6.章末总结与拓展
-对全等三角形的知识点进行梳理
-引导学生探讨全等三角形在其他学科领域的应用
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的判定与性质的探讨,使学生能够运用逻辑思维进行推理,形成严谨的证明过程。
2.提升学生的空间想象力:通过全等三角形的作图与分析,培养学生的空间想象力,提高对几何图形的理解与识别能力。
2.全等三角形的性质
-对应角相等
-对应边相等
3.应用全等三角形解决实际问题的方法
-识别图形中的全等三角形
-利用全等三角形的性质进行计算
4.全等三角形的作图
-已知两边一角作全等三角形
-已知两角一边作全等三角形
5.综合习题
-设计具有代表性的习题,巩固全等三角形的判定与性质
-结合生活实际,设计应用题,培养学生的实际应用能力
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指在大小和形状上完全相同的两个三角形。它是解决几何问题的重要工具,广泛应用于工程、建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。
-例:给出一个三角形ABC,其中AB=AC,点D是BC上的一个点,且BD=DC。要求证明三角形ABD全等于三角形ACD。
-突破方法:引导学生观察图形,识别出已知信息,然后选择合适的判定方法(SSS或SAS)进行证明。
-难点二:全等三角形的作图。学生在根据给定条件作全等三角形时,可能会对如何准确画出全等图形感到困难。
6.培养学生的几何审美观念:通过对全等三角形的学习,使学生感受几何图形的和谐美,提高对几何美的鉴赏能力。

全等三角形复习学案

全等三角形复习学案

《全等三角形》复习学案一、命题与定理1、 叫做命题.正确的命题称为 ,错误的命题称为 。

如:(1) 如果两个角是对顶角,那么这两个角相等;( ) (2) 三角形的内角和是180°;( ) (3) 同位角相等;( )(4) 平行四边形的对角线相等;( ) (5) 菱形的对角线相互垂直( )2、把一个命题改写成“如果……那么……”的形式.其中,用“如果”开始的部分是 ,用“那么”开始的部分是 .3、从公理或其他真命题出发,用逻辑推理的方法判断是正确的命题,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做 .二、逆命题与逆定理1、原命题和逆命题的关系: 。

每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,使可得到原命题的逆命题。

例如: 条件 结论原命题:两直线平行,同位角相等。

逆命题: , 2.定理、逆定理: 例如:勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(1) 勾股定理的逆命题: (是真还是假命题)(2)∴(1)与(2)互为逆定理3..等腰三角形的判定 1)。

等腰三角形的判定: 。

2)。

勾股定理的逆定理: 。

例1.如图7,P 是等边三角形A B C 内的一点,连结P A P B P C ,,,以B P 为边作60P B Q ∠=,且B Q B P =,连结C Q .(1)观察并猜想A P 与C Q 之间的大小关系,并证明你的结论.2.如图,在△ABC 中,AB=AC,∠BAD=20°,且AE=AD,则∠CDE= 。

例3.如图在6×6的网格(小正方形的边长为1)中有一个△ABC ,则△ABC 的周长是 。

图7Q C P A B例3.请作一条直线,将下面的三角形分成两个三角形,是每个三角形都是 等腰三角形,并标出相关的数据。

三.角平分线、线段的垂直平分1)。

角平分线性质定理: 。

逆定理: 。

2)。

垂直平分线定理: 。

逆定理: 。

人教版八年级数学上册1三角形全等的判定复习学案

人教版八年级数学上册1三角形全等的判定复习学案

12.2全等三角形的判定复习【学习目标】1、进一步熟练掌握三角形全等的判定方法,并能利用全等三角形的判定证明有关线段相等、角相等的问题;2、经历运用三角形全等的条件解决问题的过程,发展合情推理能力和演绎推理能力.【重点难点】重点:利用全等三角形的判定证明有关线段相等、角相等的问题;难点:根据已知条件选择合适的判定方法证明两个三角形全等【学习过程】一、知识回顾:1、判定两个三角形全等的方法有哪些?2、判定两个直角三角形全等的方法有哪些?二、合作探究:证明两个三角形全等常见思路有哪些?(1)当条件中有两条边对应相等时,如何选择判定方法?(2)当条件中有一条边对应相等,一个角对应相等时,如何选择判定方法?(3)当条件中有两个角对应相等时,如何选择判定方法?三、例题探究:例1、已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEF(1)若要以“SAS”为依据,还缺条件__;(2) 若要以“ASA”为依据,还缺条件__;(3) 若要以“AAS”为依据,还缺条件__;(4)若要以“SSS”为依据,还缺条件__;(5)若∠B=∠DEF=90°要以“HL”为依据还缺条件__;例2、已知:如图,AD是△ABC 的中线,求证:ACABAD+<2四、尝试应用1、如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形共有()A、1对B、2对C、3对D、4对2、下列条件中,不能判定两个直角三角形全等的是()A、一锐角和斜边对应相等B、两条直角边对应相等C、斜边和一直角边对应相等D、两个锐角对应相等3、下列四组中一定是全等三角形的为()A.三内角分别对应相等的两三角形B、斜边相等的两直角三角形C、两边和其中一条边的对角对应相等的两个三角形D、三边对应相等的两个三角形4、已知:如图∠ABC=∠DCB, AB=DC,求证: (1)AC=BD; (2)S△AOB = S△DOC5、如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,只需添加一个条件是_____________。

全等三角形复习教案(全)

全等三角形复习教案(全)

全等三角形一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质 (1)全等三角形对应边相等; (2)全等三角形对应角相等; (3)全等三角形周长、面积相等。

3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。

运用定理证明三角形全等时要注意以下几点。

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找: ①夹边相等(ASA )②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS) (三)疑点、易错点 1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。

全等三角形的复习学案

全等三角形的复习学案

全等三角形的复习学案
【学习目标】
1、熟练掌握全等三角形的判定方法和性质,并能熟练应用.
2、通过对图形的剖析,培养学生观察、对图形结构特征识别的能力以及概括综合分析能力,从而进一步提高学生的推理论证能力.
【学习重点、难点】
重点:熟练掌握全等三角形的性质以及判定三角形全等的条件,灵活运用它们解决与线段、角有关的问题.
难点:能较熟练地进行文字语言、符号语言和图形语言之间的表达和相互转化.
【学习过程】
(一)知识回顾
引例:已知:△ABC 中,AB=AC,在AB,AC 上分别取点D,E, 使得AD=AE.
问题:图中全等三角形共有几对?如何证明呢?
归纳:全等三角形性质:
全等三角形判定:
(二)基本应用
已知:如图,ED ⊥AB,FC ⊥AB,垂足分别为D,C , AC=BD,AF=BE.
(1)求证:△ACF ≌△BDE
(2)求证:AE ∥BF
A
F
E
C B A
D
(三)拓展应用
例题:已知△ACM和△BCN是等边三角形,点A,B,C在同一直线上.(注:等边三角形的三条边相等,三个角都是60°)
求证:AN=BM
A
B
变式1:变式1:将△BCN沿着直线AB翻折,探究(1)AN=BM (2)CE=CD,EN=BD
(3)∠DFN=60°
A
B
变式2:将△ACM绕着点C逆时针方向旋转180°,使得点A落在CB上,“
AN=MB”是否还成立?
(四)小结思考。

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

《全等三角形的复习课》教案

《全等三角形的复习课》教案

《全等三角形的判定复习课》教案老湾回族乡中心学校:吕梅一、教学目标1、了解判定两个三角形全等的5种方法,并能应用它们解决简单问题;2、学会用全等的方法证明线段(角)的相等,了解全等的证明思路;3、培养学生观察和理解能力,几何语言的叙述能力。

二、教学的重点和难点重点:学会用全等的方法证明线段(角)的相等。

难点:1:如何灵活运用合适的判定方法进行全等证明;2:初步认识并获得全等的证明思路。

三、教学过程(一)温故知新:(直接导入复习内容)学生回顾旧知识1、全等三角形的定义2、全等三角形的性质3、全等三角形的判定方法4、全等三角形的应用(二)基础训练已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC ≌ ΔDEF(1)如图一,若要以“SAS ”为依据,还缺条件 ____(2)如图一,若要以“ASA ”为依据,还缺条件____(3)如图一,若要以“AAS ”为依据,还缺条件____(4)如图二,若∠B=∠DEF=90°要以“HL ” 为依据,还缺条件_____图一 (三)探求新知例1:已知:如图AB=AE,∠B=∠E ,BC=ED , AF ⊥CD ,垂足为F ,求证:点F 是CD 的中点【变式训练】:已知:如图AB=AE,∠B=∠E ,BC=ED ,点F 是CD 的中点 , 求证:AF ⊥CD F DEA B C 图二例2 已知AD ∥BC , ∠1=∠2, ∠3=∠4, 直线DC 过点E 交AD 于D ,交BC 于C.求证:AD+BC=AB你还有其它的解题方法吗?【方法归纳】要证明两条线段的和与一条线段相等时常用的两种方法:1、截长法 :可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。

2、补短法 :将两线段中的一条延长,使延长部分等于另一线段,再证它与较长线段相等。

【变式训练】已知:AC 平分∠BAD ,CE ⊥AB ,垂足为E ,∠B+∠D=180°,求证:AE=AD+BE(四)课堂小结通过本节的学习,谈谈你在全等证明问题中的收获和经验。

全等三角形复习学案

全等三角形复习学案

全等三角形- 中考总复习学案学习目标1.复习巩固全等三角形的概念、性质和判定方法,使学生能够熟练地利用全等三角形知识进行简单证明,掌握综合法证明的表达格式。

2.通过对图形的观察和分析,鼓励学生探索并发现规律,培养学生的探究意识和能力。

3.渗透图形变换和转化等数学思想,引导学生拓展思维空间,提升解题能力。

学习重点:运用全等三角形的性质和判定,证明简单的几何问题,规范综合法证明的格式。

学习难点:引导学生通过添加辅助线构造全等三角形解决综合问题。

学习过程:(一)以小组内讨论提问方式呈现知识要点。

1、什么叫全等三角形2.一个三角形通常可以通过怎样的变换,得到与它全等的三角形?ppt 展示三种变换.全等变换:平移、翻折、旋转。

观察变化的过程,体会重合含义。

3、全等三角形有哪些性质?4、全等三角形的判定方法有哪些?每一种方法的具体含义是什么?(1)一般三角形的判定方法:4种 SSS 、SAS 、ASA 、AAS(2)直角三角形全等的判定方法:5种 SSS 、SAS 、ASA 、AAS 、HL5.请注意:(1)有三个角对应相等的两个三角形不一定全等。

(2)有两边及其中一边的对角对应相等的两个三角形不一定全等。

(二)基础练习1、判断对错(1)面积相等的两个三角形一定全等。

( )(2)有一个角及两条边对应相等的两个三角形全等。

( )(3)边长相等的两个等边三角形全等。

( )(4)有两边分别相等的两个直角三角形全等。

( )2、如图,△ABD ≌△COD ,∠A=∠C ,则∠ADB 的对应角是_____,图中相等的线段有___________ 。

3、如图,将长方形纸片ABCD 沿AE 向上折叠,使B 落在DC 边上的F 点处,若△AFD 的周长为9,△ECF 的周长为3,则长方形ABCD 的周长为 。

4、已知:如图,D 、C 、F 、B 共线,已知AC ∥EF 且AC=EF,若只添加一个条件,使△ABC ≌△EDF, F A B C D ED则还需要补充的条件可以是________、(三)简单证明 5.已知:如图,OP 是∠AOC 和∠BOD 的平分线,OA=OC,OB=OD.求证:AB=CD.6.已知:如图,C 为BE 上一点,点A 、D 分别在BE 两侧,AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .7.已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点=BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =FC .(四)尝试探究8、已知:如图,在直线ABC 的同一侧作两个等边三角形△ABD 与△BCE ,连结AE 与CD ,请问: AE 与CD 有怎样的大小关系?并说明理由。

课题全等三角形的复习教案

课题全等三角形的复习教案

课题:全等三角形复习教案(第一课时)欧阳荣富教学目标1.知识与技能(1)知道全等三角形的概念、弄清全等三角形性质和判定,会用全等三角形的性质与判定定理来证明线段相等和角相等的问题.(2)发展学生的逻辑思维,提高合情推理能力2.过程与方法经历探究、合作、交流、展示全等三角形有关性质和判定的运用,掌握几何的分析思想,能应用“综合法”表达问题.3.情感、态度与价值观(1) 让学生体会几何学的实际应用价值。

(2)感受合作交流、展示带来的成功体验,激发学生学习数学的热情享受快乐,树立自信心。

教法与学法;启发探究法、合作交流法、自主探究法。

重点:弄清全等三角形性质和判定难点:会用全等三角形的性质与判定定理来证明线段相等和角相等的问题.教学过程;一、创设问题情境:(1′)某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?请同学们先独立思考上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。

二、自主学习(2′)1、将一个平面图形上的每一点,绕这个平面内一定点旋转 ,得到的图形,图形的这种变换叫 。

2、对应点到旋转中心的 。

3、对应点与旋转中心的连线所成的角 ,且等于 ,旋转不改变图形的 。

4、_________的两个三角形全等;、5、全等三角形的对应边_____;对应角______;6、全等三角形的判定定理有7、如图1,若 △ABC ≌△DEF ,则∠E= 。

1 2 38、如图2△ABC 以A 为旋转中心,逆时针旋转至△ADE ,∠1=30°,则∠2= 9、如图3,要使△ABC ≌△DEC ,除公共边BC 外,请再添加两个条件使它全等,你有哪几种方法?图2 三、合作探究。

(20′)1、已知:如图A B ∥DE ,且AB=DE ,BE=CF,你认为∠A 与∠B 相等吗?请你说明理由。

分析 :要证△ABF ≌△DEC 只要找出 :直接的一个条件 和间接的两个条件A2、、已知:如图AB=AC,BD=CD,D 在AM 上,求证:∠BDM=∠CDM.分析:、要证∠BDM=∠CDM. 只要证∠ =∠ .再要证△ ≌△3. 如图,已知AB 平分∠BAC ,∠C=∠D 求证:AC=AD分析:1、要证AC=AD 只要证△ABC ≌△ABD,2、由AB 平分∠BAC 得3、由图可得 四、拓展创新(15′)4. 如图,∠1=∠2,AE 平分∠BAC ,你认为AB 与AC 相等吗?请你说明理由。

《全等三角形的复习》优秀教案.docx

《全等三角形的复习》优秀教案.docx

全等三角形的复习【教学目标】:(1)知识与技能目标:通过对典型例题评析,使学生进一步熟悉三角形全等的判定、性质及其综合应用,提高学生的逻辑推理能力和逻辑表达能力;学生通过参与开放性变式题的练习、分析,培养思维的发散性、探究性、发展性、创新性,进一步深化学生对全等三角形的认识。

(2)过程与方法目标:利用相关的知识和例题,通过学生的观察、思考、论证,培养学生的观察能力、逻辑推理能力、发散思维能力;通过同桌间的合作交流,培养学生的合作探究意识;通过学生的猜想,培养学生敢于发表见解的勇气。

利用“归纳小结”这一环节,培养学生自我反思的习惯及归纳概括能力。

(3)情感与态度目标:利用图形的变换,对学生进行所谓“形变质不变,万变不离其宗”的数学思想渗透;让学生知道数学内容中普遍存在着的运动、变化、相互联系和相互转化的规律,体会事物之问相互联系相互转化的辩证唯物主义观点;通过展示多彩的几何变换图形,激发学生的学习动机,拓宽学生的信息量、思维角度,激发学生的探索欲望;通过对几个变式问题的探究分析,培养学生多角度探究问题的习惯。

【教学重点】:常握全等三角形的性质与判定方法【教学难点】:对全等三角形性质及判定方法的运用【教学突破点】:学生通过在探究问题时的合作交流与对结论的探求猜想、教师对例题及学生回答的评析,培养学生的观察能力、发现问题能力、探究问题的兴趣、发散思维能力、归纳概括能力。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件、三角板【教学弓程设计】:教学环节教学活动~设计意图已知一边一角(边与角相邻):找夹这个角的另一边 —AD=CB(SAS)找夹这条边的另一角—a zACD=zCA«ASA),找边的对角 —► zD=zB(AAS)思路引导9 促 进 发展 1、如图,已知△ ABC 和ADCB 屮,AB 二DC,请补充一个条 件 ______________________ ,使AABC 竺 ADCBo 找夹角一► ZABC=ZDCB (SAS)培养学生结合 题目中的已知 条件、图形中 的隐含条件, 分析和寻找全 等三角形证明 的所须条件, 训练学生的解 题思路和解题 技巧。

1.八年级第十一章全等三角形复习教案

1.八年级第十一章全等三角形复习教案

1.八年级第十一章全等三角形复习教案第一篇:1.八年级第十一章全等三角形复习教案第十一章全等三角形一、知识点:本章主要内容:全等三角形的性质;三角形全等的判定;角的平分线的性质.本章重点:探究三角形全等的条件和角的平分线的性质.难点:三角形全等的判定方法及应用;角的平分线的性质及应用.基础知识梳理教材知识全扫描1.全等三角形:1.⑴全等形:能够完全重合的两个图形叫全等形。

⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。

表示:△ABC≌△DEF教材P3一句话:2.三角形全等的性质:全等三角形对应边相等,对应角相等。

全等三角形对应边上的中线、高、对应角平分线相等。

全等三角形的周长、面积相等。

3.全等三角形的判定:SAS,ASA,AAS,SSS,HL(直角三角形)特别提醒: “有两个角和一边分别相等的两个三角形全等”这句话正确吗?由于没有“对应”二字,结论不一定正确,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.SSA不能判定两三角形全等的例子在教材P10.4.尺规作图:(1)作一个角等于已知角(教材P7_8):步骤(2)作已知角的平分线(教材P19):步骤3.角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。

⑵角平分线的判定:教的内部到角两边距离相等的点在角的平分线上。

⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。

3.角的平分线是射线,三角形的角平分线是线段。

4.证明线段相等的方法:(1)中点定义;(2)等式的性质;(3)全等三角形的对应边相等;(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。

随着知识深化,今后还有其它方法。

三角形全等复习学案

三角形全等复习学案

图6图7 第11章全等三角形复习学习目标:1.对本章知识系统化;2.推理更严密化,有逻辑性知识回顾:一、全等三角形1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?2:全等三角形有哪些性质?方法指引证明两个三角形全等的基本思路:(1):已知两边----已知一边和它的邻角(2):已知一边一角---已知一边和它的对角(3):已知两角---例题分析:例2如图2,AE=CF,AD∥BC,例3AD=CB,求证:已知△ADF≌△CBE例3已知:如图3,△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.求证:AD=A1D1用语言叙述此命题是:例5:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

已知:求证:证明:练习1、如图6,已知:△ABC中,DF=FE,BD=CE,AF⊥BC于F,则此图中全等三角形共有()A、5对B、4对C、3对D2对2、如图7,已知:在△ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC于F,求证:BF是△ABC中边上的高. (提示:关键证明△ADC≌△BFC)3、如图8,已知:∠A=90°,AB=BD,ED⊥BC于D.求证:AE=ED(提示:构造两个三角形,证明全等)图8例4、如图5ACEBDACEBD拓展题14.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF拓展题25.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD(提示:要证明两条线段的和与一条线段相等时常用的两种方法:1、(用割的方法)可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。

2、(用补的方法)把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。

)二.角的平分线:角平分线的性质:练习1、如图:在△ABC中,∠C =900,AD平分∠BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《全等三角形》复习学案
一、全等三角形
1、全等三角形的概念及其性质
1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。

2).全等三角形性质: (1)对应边相等 (2)对应角相等(3)周长相等 (4)面积相等 2.全等三角形的判定方法 1)、三边对应相等的两个三角形全等 ( SSS )
例1.如图,AB=AC,BE 和CD 相交于P ,PB=PC,求证:PD=PE.
例2. 如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 。

求证:MB=MC
2)、两边和夹角对应相等的两个三角形全等( SAS )
例3.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠
例4.如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG 。

观察猜想BE 与DG 之间的大小关系,并证明你的结论。

3)、两角和夹边对应相等的两个三角形全等 ( ASA ) 例5.如图, AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F ,求证:ABE ∆≌FCE ∆
4)、两角和夹边对应相等的两个三角形全等 ( AAS )
例6.如图,在ABC ∆中,AB=AC ,D 、E 分别在BC 、AC 边上。

且B ADE ∠=∠, AD=DE 求证:ADB ∆≌DEC ∆.
例7.如图,在ABC ∆中,延长BC 到D ,延长AC 到E ,AD 与BE 交于F ,∠ABC=45˚,试将下列假设中的两个作为题设,另一个作为结论组成一个正确的命题,并加以证明。

(1)AD ⊥BD, (2)AE ⊥BF (3)AC=BF.
5)、一条直角边和斜边对应相等的两个直角三角形全等 ( H L )
例8、如图在ABC ∆中,
90=∠C ,沿过点B 一条直线BE 折叠ABC ∆,使点C 恰好落在AB 的中点处,则∠A 的度数等于多少?
例9.如图,AD 为ABC ∆的高,E 为AC 上一点,BE 交AD 于F ,且BF=AC,FD=CD. 求证:BE ⊥AC
6)、三.角平分线、线段的垂直平分
1)。

角平分线性质定理: 。

逆定理: 。

例10.如图,在ABC △中,90C ∠=,
AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点 到直线AB 的距离是 cm .
例11.如图,
90=∠=∠C B ,M 是BC 中点,DM 平分ADC ∠。

求证:AM 平分DAB ∠
A
B
C
1、尺规作图举例
1.如图,已知AOB ∠和射线O B '',用尺规作图法作A O B AOB '''∠=∠(要求保留作
图痕迹).
2.如图,已知ABC △。

(1)BC 边的垂直平分线(2)作AC 上的高(3)作C ∠的平分线(不写作法,保留作图痕迹).
3.如图,内宜高速公路OA 和自雅路OB 在我市相交于点O ,在AOB ∠内部有五宝和正
紫两个镇C D ,,若要修一个大型农贸市场P ,使P 到OA OB ,的距离相等,且使PC PD =,用尺规作出市场P 的位置(不写作法,保留作图痕迹).
A
B B 'O
' A B
C。

相关文档
最新文档