柯西不等式常见题型解法例说
柯西不等式
柯西不等式例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:证明:左边³例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边=³==例8.利用柯西不等式证明(1)(ab+cd) (ac+bd)≥4abcd;(2)若a、b、c∈R+,则(3)若a、b、c∈R+,且ab+bc+cd=1,则.(4).证明(1)∵(ab+cd)(ac+bd)等式当且仅当且a=d 即b=c,a=d 时成立.(2)=(1+1+1)2=9当且仅当a=b=c时,等式成立.(3)注意到(a2+b2+c2)2=(a2+b2+c2)·(b2+c2+a2)≥(ab+bc+ca)2=1 , ∵(a+b+c)2=a2+b2+c2+2(ab+bc+ca)≥1+2=3 ,又由a+b+c>0,故,当且仅当时,等式成立.(4)注意到柯西不等式(3) 2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 .当且仅当 时, 等号成立.变式10. 若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,则222222()()a b c d a c b d +++-+- ;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:222212122323()()()()x x y y x x y y -+-+-+-≥3. 一般形式的柯西不等式:设n 为大于1的自然数,,i ia b R ∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立.(若0=i a 时,约定0=i b ,=i 1,2,…,n ).变式10. 设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( . 当且仅当 时, 等号成立.变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii i ni i i b a a b a 21)(.当且仅当n b b b === 21时,等号成立. 变式30. (积分形式)设)(x f 与)(x g 都在],[b a 可积,则dx x g dx x f dx x g x f ba b a b a )()()()(222⎰⎰⎰⋅≤⎥⎦⎤⎢⎣⎡,当且仅当)()(x g t x f ⋅=时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面都有联系. 所以, 它的重要性是不容置疑的!☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的半径, 证明22212x y z a b c R ++≤++例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。
不等式专题4柯西不等式
不等式专题(四)------柯西不等式一.知识方法扫描:1.柯西不等式的内容是:定理:设,i i a b R ∈(i=1,2……n ),则222111n n n i i i i i i i a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑时成立时,等号当且仅当不全为当数组)1(0,,,;,,,2121n i a b b b b a a a i i n n ≤≤=λ 2.柯西不等式的变形:变形1:)(2222121n n a a a n a a a +++≤+++ )(2121n n a a a n a a a +++≤+++变形2:nn n n i i b b b a a a b a b a b a b a ++++++≥+++ 212212222121)(0,,则:同号且不为设 变形3:nn n n n b a b a b a a a a b a b a b a ++++++≥+++ 22112212211)( 变形4:nn b b b n b b b +++≥+++ 21221111 二.合作探究例1. 设4 12,,,n x x x R +∈ ,且4 121n x x x +++= 。
求证:4 22212121.1111n n x x x x x x n +++≥++++例2 21,5632,3,,,2222≤≤=+++=+++a d c b a d c b a d c b a 求证:满足条件:设实数变式1:的实数是满足:已知16,8,,,22222=++++=++++e d c b a e d c b a d c b a , 求e 的最大值。
变式2: 的最小值。
求已知22232,1232z y x z y x ++=++变式3:的最大值求满足设实数y x y x y x +≤+2,623,22例3.解方程1534212=++-x x例4.证明:对于任意实数4 ,,x y z ,不等式4 222222()()()()()()x y y z z x xyz x y y z z x +++≥+++成立。
由柯西不等式的几种证法所挖掘出的解题技巧
由柯西不等式的几种证法所挖掘出的解题技巧邓军民(广州市育才中学数学科)柯西不等式:设n n b b b a a a ,......,,;,......,,2121为两组实数,则()()()222212222122211.n n n n b b b a a a b a b a b a ++++++≤+++当且仅当时取等号,,,,约定)210(2211n i a a b a b a b i nn =≠===。
柯西不等式证法一:构造二次函数(n i a i ,,, 21,0=≠)()()()()2222122112222212n n n n b b b x b a b a b a x a a a x f +++++++-+++=()()()()()()()()()()时取等号。
即,,当且仅当nn n n nn n n n n n n n n a b a b a b b x a b x a b x a b b b a a a b a b a b a b b b a a a b a b a b a b x a b x a b x a x f ====-=-=-++++++≤+++∴≤++++++-+++=∆∴≥-++-+-= 2211221122221222212221122221222212221122222110000440这种证法则是利用了二次函数()()∑=-=ni i i b x a x f 12的两个特点:(1)、二次项系数大于0 ;(2)、函数值 ()0,0≤∆≥则可得出结论:x f 。
有些不等式题则可根据已知条件和条件的特点,巧妙地构造二次函数()()∑=-=ni i i b x a x f 12,从而利用()0≥x f 恒成立,0≤∆来求解。
例1、 设()n i x i ,2,10=>,求证:n n x x x x x x xx x +++≥+++ 2112322221()()()()⎪⎪⎭⎫⎝⎛+++++++-++++=∴=>123222212121322,2,10x x x x x x x x x x x x x x x x f n i x n n n i 可构造函数证明:21123232212⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=x x x x x x x x x x x x n()()()()()nn n nn nn n x x x x x x x xx x x x x xx x x x x x x x x xx x x x x x x x x x x x x f ++++≥+++∴+++≥⎪⎪⎭⎫⎝⎛+++++++∴≤⎪⎪⎭⎫⎝⎛+++++++-+++=∆∴≥ 3211232222122112322221132123222211322210440恒成立例2、已知实数a 、b 、c 、d 满足a+b+c+d=3,56322222=+++d c b a ,试求a 的最大值和最小值。
柯西不等式微专题(学生版)
《柯西不等式》微专题二维形式的柯西不等式:若,,,a b c d 都是实数,则22222()()()a b c d ac bd ++≥+当且仅当a c =b d 时,等号成立。
ac bd ≥+ac bd ≥+柯西不等式的向量形式:设 ,αβ是两个向量,则αβαβ≤,当且仅当β是零向量,或存在实数k ,使得k αβ=时,等号成立。
三维形式的柯西不等式:2222222123123112233()()()a a a b b b a b a b a b ++++≥++当且仅当0(1,2,3)i b i ==,或a 1b 1=a 2b 2=a 3b 3时,等号成立。
一般形式的柯西不等式: 222222212121122(+)(+)(+)n n n n a a a b b b a b a b a b ++++≥++………当且仅当0(1,2,n)i b i ==…,,或a 1b 1=a 2b 2=a 3b 3=⋯=an b n 时,等号成立。
例1 已知,a b 为实数,证明:4422332()()()a b a b a b ++≥+【证明】 4422222222222332()()[()()]()()()a b a b a b a b a a b b a b ++=++≥⋅+⋅=+例2.求函数y =5x -1+10-2x 的最大值.【思维导图】变形→构造柯西不等式的形式→巧拆常数→凑出定值【解析】函数的定义域为{x |1≤x ≤5}.y =5x -1+25-x ≤52+2x -1+5-x =27×2=63,当且仅当55-x =2x -1,即x =12727时取等号,故函数的最大值为6 3. 例3 已知3x 2+2y 2=6,求证:2x +y ≤11.【思维导图】观察结构→凑成柯西不等式的结构→利用公式得出结论【证明】由于2x +y =23(3x )+12(2y ). 由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得(2x +y )2≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122(3x 2+2y 2)≤⎝ ⎛⎭⎪⎫43+12×6=116×6=11, ∴|2x +y |≤11,∴2x +y ≤11.例4 设123,,x x x 为正数,求证:123123111()()9x x x x x x ++++≥【解析】2123123111()()9x x x x x x ++++≥= 例5 设,,x y z R ∈,且满足:2221xy z ++=,23x y z ++=,则x y z ++= 。
柯西不等式与排序不等式及其应用经典例题透析
经典例题透析类型一:利用柯西不等式求最值1.求函数的最大值.思路点拨:利用不等式解决最值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。
解析:法一:∵且,∴函数的定义域为,且,当且仅当时,等号成立,即时函数取最大值,最大值为法二:∵且,∴函数的定义域为由,得即,解得∴时函数取最大值,最大值为.总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键.举一反三:【变式1】(2011辽宁,24)已知函数f(x)=|x-2|-|x-5|。
(I)证明:-3≤f(x)≤3;(II)求不等式f(x)≥x2-8x+15的解集。
【答案】(Ⅰ)当时,.所以.…………5分(Ⅱ)由(Ⅰ)可知,当时,的解集为空集;当时,的解集为;当时,的解集为.综上,不等式的解集为.……10分【变式2】已知,,求的最值.【答案】法一:由柯西不等式于是的最大值为,最小值为.法二:由柯西不等式于是的最大值为,最小值为.【变式3】设2x+3y+5z=29,求函数的最大值.【答案】根据柯西不等式,故。
当且仅当2x+1=3y+4=5z+6,即时等号成立,此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑.类型二:利用柯西不等式证明不等式利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。
如常数的巧拆、结构的巧变、巧设数组等。
(1)巧拆常数:2.设、、为正数且各不相等,求证:思路点拨:∵、、均为正,∴为证结论正确只需证:而,又,故可利用柯西不等式证明之。
证明:又、、各不相等,故等号不能成立∴。
(2)重新安排某些项的次序:3.、为非负数,+=1,,求证:思路点拨:不等号左边为两个二项式积,,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。
柯西不等式常见题型解法例说
上海中学数学2014年第3期柯西不等式常见题型解法例说315500浙江省奉化中学陈晴应向明柯西不等式≥:d;≥:研≥f≥]ni.6。
1‘是基本百鬲、百7而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.三维的柯西不等式(盘;+丑;+口;)(躇+6;+鹾)≥(n。
6,+口:6:+a。
63)2揭示了任意两组数组即(n。
,n。
,n。
)、(6,,6。
,63)的平方和之积与实数积之和的平方的大小关系.应用时要解决的核心问题就是如何通过变换不等式,向柯西不等式“逼近”,构造出不等式所需要的两组数组(乜,,乜。
,以。
)、(6。
,6:,6。
),这也是运用柯西不等式解题的基本策略.1一次与二次例1(2013湖南高考)已知口、6、c∈R,盘+26 +3c一6,则n2+462+9c2的最小值为——.解:n+26+3c一6,由柯西不等式得(n2+462 +9c2)(12+12+12)≥(n+26+3c)2,可知n。
+462+9c。
≥婺一12,即最小值为12.例2设.r,y,z∈R,且满足T2+y2+z2—5,则Lr+2y+3z之最大值为——.解:(.f r+2y+32)2≤(L z’2+y2+z2)(12+22+ 32)一70,.‘.Ir+2y+3z最大值为√而.例3如啪2∈R且与≯+≮型+竖j翌一1,求T+y+z的最大值、最小值.解:与竽+≮型+半一,,由柯西不等式得[4z+渺+22]『c孚)2+c警)2+c字,2]≥…孚)惭(害)+z.(字)]2号25×1≥b+y+z一2)2≥5≥l L r+y+z一2≥一5≤z+y+z一2≤5..‘.一3≤T+y+z≤7.故T+y+z之最大值为7,最小值为一3.评注:这类题型的最大特征就是条件与结论中分别出现了一次式与两次式,而要实现一次与两次不等关系的关键就是根据柯西不等式的形态进行构造,让其中一个数组为常数组,这样问题往往可以奏效.2整式与分式2.1两组数组对应的数分别为倒数型例4(2012福建高考)已知函数厂(T)一m—z一2I,m∈R且,(z+2)≥o的解集为[一1,1].(1)求m的值;(2)若口,6,c∈R,且丢+去+去一m,求证:n+26+3c≥9.解:(1)厂(.r+2)一m—f.r},/(T+2)≥o等价于I T l≤m,由I T l≤m有解,得m≥O,且其解集为{丁l —m≤z≤m1),又,(z+2)≥o的解集为[一1,1],故m一1.(2)由(1)知丢+去+去一1,又&,6,c∈R,由柯西不等式得Ⅱ+26+3c一(n+26+3c)f丢+去+去)≥F‘去+何‘去+厄’去)2姐评注:这类题型从结构来讲,两组数组分别是整式类型(口,,n z,n。
02柯西不等式与平均值不等式(含经典例题+答案)
柯西不等式与平均值不等式一、比较法1.求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为求差比较法.2.求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明1a b即可,这种方法称为求商比较法.二、分析法从所要证明的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的命题成立,这种证明方法称为分析法,即“执果索因”的证明方法.三、综合法从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理,论证而得出命题成立,这种证明方法称为综合法即“由因寻果”的方法.四、放缩法在证明不等式时,有时我们要把所证不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.这种方法称为放缩法.五、反证法的步骤1.作出否定结论的假设;2.进行推理,导出 矛盾;3.否定假设,肯定结论.六、柯西不等式的二维形式1.柯西不等式的代数形式:设a ,b ,c ,d 都是实数,则(a 2+b 2).(c 2+d 2)≥(ac +bd)2,其中等号当且仅当a 1b 2=a 2b 1时成立.2.柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中等号当且仅当两个向量方向相同或相反时成立.3.二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2七、柯西不等式的一般形式柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…b n 为实数,则(a 21+a 22+…+a 2n )·(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2.八、基本不等式的一般形式a 1+ a 2+…a n n≥n (a 1+ a 2+...a n ) 例3:设n 是正整数,求证:12≤1+1+ (12)<1.解:(1)由|2x -1|<1,得-1<2x -1<1,解得0<x <1,所以M ={x|0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b)=(a -1)(b -1)>0, 故ab +1>a +b. 本例条件不变,试比较logm(ab +1)与logm(a +b)(m >0且m≠1)的大小.解:∵0<a <1,0<b <1,∴(ab +1)-(a +b)=(a -1)(b -1)>0.故ab +1>a +b.当m >1时,y =logmX 在(0,+∞)上递增,∴logm(ab +1)>logm(a +b)当0<m <1时logmX 在(0,+∞)上单调递减,∴logm(ab +1)<logm(a +b).例6:设a >b >0,求证:a2+b 2>a -b .例8:已知m >0,a ,b ∈R ,求证:a mb +⎛⎫ ⎪≤a 2+mb 21+m . 它的变形形式又有(a +b )2≥4ab ,a 2+b 22≥22a b +⎛⎫ ⎪⎝⎭等;(4)a +b 2≥ab (a ≥0,b ≥0),它的变形形式又有a +1a ≥2 (a >0),b a +a b ≥2(ab >0),b a +a b≤-2(ab <0)等. 2.分析法证明不等式的注意事项:用分析法证明不等式时,不要把“逆求”错误地作为“逆推”,分析法的过程仅需要寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接“关键词”.例10:设m 是|a |,|b |和1中最大的一个,当|x |>m 时,求证:⎪⎪⎪⎪a x +b x 2<2. [证明]由已知m ≥|a |,m ≥|b |,m ≥1.又|x |>m ,∴|x |>|a |,|x |>|b |,|x |>1.∴⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪a x +⎪⎪⎪⎪b x 2=|a ||x |+|b ||x |2<|x ||x |+|x ||x |2=1+1|x |<1+|x ||x |=2.∴|a x +b x2|<2成立. 例11:已知a >0,b >0,c >0,a +b >c .求证:a 1+a +b 1+b >c 1+c. 证明:∵a >0,b >0,∴a 1+a >a 1+a +b ,b 1+b >b 1+a +b .∴a 1+a +b 1+b >a +b 1+a +b. 而函数f (x )=x 1+x =1-11+x 在(0,+∞)上递增,且a +b >c ,∴f (a +b )>f (c ),则a +b 1+a +b >c 1+c, 所以a 1+a +b 1+b >c 1+c,则原不等式成立. 例12:求证:32-1n +1<1+122+132+…+1n 2<2-1n(n ≥2,n ∈N +). 证明:∵k (k +1)>k 2>k (k -1),k ≥2,∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k ,分别令k =2,3,…,n 得12-13<122<1-12;13-14<132<12-13;…1n -1n +1<1n 2<1n -1-1n; 将上述不等式相加得:12-13+13-14+…+1n -1n +1<122+132+…+1n 2<1-12+12-13+…+1n -1-1n, 即12-1n +1<122+132+…+1n 2<1-1n ,∴32-1n +1<1+122+132+…+1n 2<2-1n. (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析得出的.常见的放缩变换有变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N +,k >1.利用函数的单调性,真分数性质“若0<a <b ,m >0,则a b <a +m b +m ”,添加或减少项,利用有界性等. (2)在用放缩法证明不等式时,“放”和“缩”均有一个度.例13:已知x ,y 均为正数,且x >y,2x +1x 2-2xy +y 2≥2y +3. 解:因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1x -y 2=(x -y )+(x -y )+1x -y 2≥33x -y 21x -y 2=3,所以2x +1x 2-2xy +y 2≥2y +3. 例14:设a ,b ,c 为正实数,求证:1a 3+1b 3+1c3+abc ≥2 3. 证明:因为a ,b ,c 为正实数,由平均不等式可得1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3,即1a 3+1b 3+1c 3≥3abc. 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc +abc ≥2 3abc ·abc =2 3.所以1a 3+1b 3+1c3+abc ≥2 3. 例15:若n 为大于1的自然数,求证:n n n +1<n +1+12+13+ (1). 证明:由柯西不等式右边=1+1+1+12+1+13+…+1+1n =2+32+43+54+…+n +1n ≥n ·n 2·32·43·…·n +1n=n .n n +1=左边.∵2≠32≠43,故不取等号.∴不等式n n n +1<n +1+12+13+ (1)成立. 例16:已知f (x )=x 2+px +q ,求证|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥|f (1)+f (3)-2f (2)|=|(1+p +q )+(9+3p +q )-(8+4p +2q )|=2,与|f (1)|+2|f (2)|+|f (3)|<2矛盾,∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12. 例17:设a 、b 、c 均为正数,求证:12a +12b +12c ≥1b +c +1c +a +1a +b. 证明:∵a 、b 、c 均为正数,∴121122a b ⎛⎫+ ⎪⎝⎭≥12ab ≥1a +b,当a =b 时等号成立;12(12b +12c )≥12bc ≥1b +c ,当b =c 时等号成立;12(12c +12a )≥12ca ≥1c +a ,当a =c 时等号成立.三个不等式相加即得12a +12b +12c ≥1b +c +1c +a+1a +b,当且仅当a =b =c 时等号成立. 例18:已知:a n =1×2+2×3+3×4+…+n n +1(n ∈N +),求证:n n +12<a n <n n +22. 证明:∵n n +1=n 2+n ,∴n n +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵n n +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=12+(2+3+…+n )+n +12=n n +22.综上得:n n +12<a n <n n +22. 例19:设a ,b ,c 为正数且a +b +c =1,求证:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭≥1003. 证明:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭=13(12+12+12)[21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭] ≥132111111a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⨯++⨯++⨯+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=2111113a b c ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=()2111113a b c a b c ⎡⎤⎛⎫+++++ ⎪⎢⎥⎝⎭⎣⎦≥13(1+9)2=1003. 例20:已知a ,b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =1-x 2x+x 21-x(0<x <1)的最小值. 解:(1)证明:法一:∵a >0,b >0,∴(a +b )22a b b a ⎛⎫+ ⎪⎝⎭=a 2+b 2+a 3b +b 3a ≥a 2+b 2+2ab =(a +b )2. ∴a 2b +b 2a≥a +b ,当且仅当a =b 时等号成立。
柯西不等式
柯西不等式【摘要】本文将给出柯西不等式及其应用时需注意的几点说明、柯西不等式的几种形式和证明以及关于柯西不等式的几种题型。
我们知道,柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程组等问题上得到应用。
【关键词】柯西(Cauchy )不等式;函数最值;解三角形问题;不等式的证明;不等式的应用。
【正文】一、柯西不等式及其证明。
定理: 设i a ,i b ∈R (i=1,2,3........,n ),则2112n 1i 2⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∑===ni i i n i i i b a b a ,当且仅当i a =λi b ,即11a b =22a b =nn b a =λ等号成立。
此不等式称为柯西不等式。
说明1:由于“∑==ni i a 120,∑==ni i b 120,∑==ni i i b a 10”情况之一出现时,不等式显然成立,因此,在下面的讨论中不妨设∑=≠ni i a 120,∑=≠ni i b 120,∑=≠ni i i b a 10都成立。
说明2:柯西不等式取等号的条件常常写成比例形式11a b =22a b =nn b a ,并约定:分母为0时,相应的分子也为0。
“等号成立”是柯西不等式应用的一个重要组成部分。
说明3:使用柯西不等式的方便之处在于,对任意的两组实数都成立,这个不等式告诉我们,任意两组数 1a ,2a , n a , 1b ,2b , n b ,其对应项“相乘”之后、“求和”、再“平方”这三种运算不满足交换律,先各自平方,然后求和,最后相乘,运算的结果不会变小。
现将它的证明介绍如下:证明1:构造二次函数()()()2222211)(nn b x a b x a b x a x f ++++++= =222221......x a a a n )(+++x b a b a b a n n )(++++......22211)(22221......n b b b ++++0 (2)2221>++n a a a ,0)(≥x f 恒成立,∴)......()......(4 (42)22212222122211n n n n b b b a a a b a b a b a +++∙+++-+++=∆)(0≤即22211......)(n n b a b a b a +++≤)......( (2)222122221n n b b b a a a ++++++)( 当且仅当 0=+i i b x a ),....,2,1(n i =即1212n na a ab b b ===时等号成立证明2 数学归纳法(1)当1n =时 ,右式=()211a b ,左式=2121b a ,显然 ,左式=右式。
高考数学柯西不等式的应用分析
柯西不等式的应用柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。
本文仅就使用柯西不等式的技巧做一粗略归纳。
主要就是使用一些方法构造符合柯西不等式的形式及条件,继而达到使用柯西不等式证明有关的不等式。
一、巧拆常数:例:设a 、b 、c 为正数且各不相等。
求证:cb a ac c b b a ++>+++++9222 分析:∵a 、b 、c 均为正 ∴为证结论正确只需证:9]111)[(2>+++++++a c c b b a c b a 而)()()()(2a c c b b ad b a +++++=++又2)111(9++=)111)](()()[( )111)((2ac c b b a a c c b b a a c c b b a c b a ++++++++++=+++++++ 证明: 9)111(2=++≥又a 、b 、c 各不相等,故等号不能成立∴原不等式成立。
二、重新安排某些项的次序:例:a 、b 为非负数,a +b =1,+∈R x x 21,求证:212121))((x x ax bx bx ax ≥++ 分析:不等号左边为两个二项式积,+-∈∈R x x R b a 21,,,,每个两项式可以使柯西 不等式,直接做得不到预想结论,当把节二个小括号的两项前后调换一下位置,就能证明结论了。
212122212112212121)( )())(( ))((x x x x b a x x b x x a bx ax bx ax ax bx bx ax =+=+≥++=++证:(∵a +b =1)三、结构的改变从而达到使用柯西不等式:例若a >b >c求证:ca cb b a -≥-+-411 分析:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了)()(c b b a c a -+-=- c a > ∴ 0>-c a ∴结论改为4)11)((≥-+--c b b a c a4)11( )11)](()[()11)((2=+≥-+--+-=-+--c b b a c b b a c b b a c a 证明:∴ c a c b b a -≥-+-411四、添项:例:+∈R c b a ,, 求证:23≥+++++b a ca cbc b a 分析:左端变形111++++++++b a ca cbc b a)111)((b a a c c b c b a +++++++=∴只需证此式29≥即可23329 29)111(21 )111)](()()[(21 )111)(( )1()1()1(32=-≥+++++∴=++≥++++++++++=+++++++=++++++++=++++++b a c c a bc b ab a ac c b b a a c c b b a a c c b c b a b c cc a bc b ab C ca c bc b a证明 注:柯西不等式:a 、+∈R b ,则ab b a 2≥+ 推论:2)11(4)11)((+=≥++b a b a 其中a 、+∈R b2)111(9)111)((++=≥++++c b a c b a 其中a 、b 、+∈R c。
巧用柯西不等式解题
z = 13 …(1), 4x2 + 9y2 + z2 − 2x +15y + 3z = 82
…(2)
解 可令: x1 = 2x, x2 = 3y + 3, x3 = z + 2 .则
x1
+
x2
+
x3
= 18
且
x2 1
+
x2 2
+
x2 3
= 108
,由此及
柯西不等式得:
182 = (x1 + x2 + x3 )2
所组成的方程组无解,故所求值不存在.
例 7(第 18 届全俄中学生数学奥林匹克试
题)求满足方程 x2 + (1− y)2 + ( y − x)2 = 1 / 3 的
一切实数解( x, y ).解设 x1= Nhomakorabeax, y 1
=1−
y, z1
=
y−
x, 则 x1
+
y1
+z1 = 1, x12 + y12 + z12 = 1 / 3 由柯西不等式得:
2
)
=(1 +
n i =1
1 ai
)2
≥(n2
+ 1)2
.
n
2
∑ 所以 (ai + (1/ ai )) ≥ (n2 +1)2 / n .
i =1
2 用于求解最值问题
利用柯西不等式的等号与最值的密切关
系来求最值问题. 例 4 (第七届美国数学奥林匹克试题)设
实数 a, b, c, d, e 满足 a + b + c + d + e = 8 ,且 a2
柯西不等式中取等条件的妙用
柯西不等式中取等条件的妙用设,,,,,321n a a a a n b b b b ,,,,321 是实数,则))((2222122221n n b b b a a a ++++++ 22211)(n n b a b a b a +++≥ ,当且仅当),,2,1(0n i b i ==或存在一个数k ,使得),,2,1(n i kb a i i ==时,等号成立.以上不等式就是选修4-5《不等式选讲》中所介绍的柯西不等式(简记为“方和积不小于积和方”),其应用十分广泛和灵活,善于挖掘等号成立的条件具有的潜在功能,可用于求代数式的值、解方程、证明等式、判断三角形的形状、确定点的位置等.下面分类例析,旨在探索题型规律,揭示解题方法。
一、妙用取等条件求代数式的值例1 设0abc ≠,且()()22222314a b c a b c ++=++,求b c a c a b a b c +++++的值。
解析:构造两组实数,,a b c ;1,2,3.由柯西不等式,得()()()222222212323a b c a b c ++++≥++,即()()22221423a b c a b c ++≥++,上式等号成立的充要条件是.123a b c== 令123a b ck ===,则a k =,2b k =,3.c k = 所以5438.23b c a c a b k k k a b c k k k+++++=++=点评:本题若直接求解,过程较繁.借助柯西不等式,顺利地实现了从不等到相等的转化,干净利落.其中不等式等号成立的条件及其适当的变形是实现这一转化的桥梁。
二、妙用取等条件解方程例2 解方程1521234=-++x x .分析: 利用二维形式的柯西不等式把x x y 21234-++=变形后求最值,取“="号时x 的值即为原方程的根。
解析: 2152= ])21()232[(]2)2[(2222x x -++⋅+≤15256)21232(6=⨯=-++≤x x 。
柯西不等式、反柯西不等式与权方和不等式(十一大题型)(解析版)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~不等式柯西不等式、反柯西不等式与权方和不等式目录1方法技巧与总结 12题型归纳与总结 2题型一:柯西不等式之直接套公式型 2题型二:柯西不等式之根式下有正负型 3题型三:柯西不等式之高次定求低次型 4题型四:柯西不等式之低次定求高次型 5题型五:柯西不等式之整式与分式型 6题型六:柯西不等式之多变量型 7题型七:柯西不等式之三角函数型 8题型八:Aczel 不等式 9题型九:权方和不等式之整式与分式综合型 10题型十:权方和不等式之三角函数型 11题型十一:权方和不等式之杂合型 123过关测试 131方法技巧与总结1、柯西不等式(Cauchy 不等式)(1)二元柯西不等式:对于任意的a ,b ,c ,d ∈R ,都有(ac +bd )2≤(a 2+b 2)(c 2+d 2).(2)n 元柯西不等式:(a 21+a 22+⋯+a 2n )(b 21+b 22+⋯+b 2n )≥(a 1b 1+a 2b 2+⋯+a n b n )2,取等条件:a i =λb i 或b i =λa i (i =1,2,⋯,n ).2、Aczel 不等式(反柯西不等式)设a 1,a 2,⋯,a n ;b 1,b 2,⋯,b n 均为实数,a 21-a 22-⋯-a 2n >0或b 21-b 22-⋯-b 2n >0,则有(a 21-a 22-⋯-a 2n )(b 21-b 22-⋯-b 2n )≤(a 1b 1-a 2b 2-⋯-a n b n )2.当且仅当a k ,b k 成比例时取等.3、权方和不等式(1)二维形式的权方和不等式对于任意的a ,b ,x ,y >0,都有a 2x +b 2y ≥(a +b )2x +y .当且仅当a x =by时,等号成立.(2)一般形式的权方和不等式若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n ≥(a 1+a 2+⋯a n )m +1(b 1+b 2+⋯b n )m,当a i =λb i 时等号成立.2题型归纳与总结题型一:柯西不等式之直接套公式型1已知x ,y ,z ∈R +且x +y +z =1则x 2+y 2+z 2的最小值是()A.1B.13C.23D.2【答案】B【解析】由柯西不等式可得:x 2+y 2+z 2 ×12+12+12 ≥x +y +z 2=1,即3x 2+y 2+z 2 ≥1所以x 2+y 2+z 2≥13,当且仅当x =y =z x +y +z =1 即x =y =z =13时取等号,故x 2+y 2+z 2的最小值为13,故选:B .2若a 21+a 22+⋯+a 2n =8,则a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1的最小值为()A.25B.8C.-8D.-25【答案】C【解析】由柯西不等式,得(a 21+a 22+⋯+a 2n -1+a 2n )(a 22+a 23+⋯+a 2n +a 21)≥(a 1a 2+a 2a 3+⋯+a n -1a n +a n a 1)2,∴(a 1a 2+a 2a 3+⋯+a n -1a n +a n a 1)2≤8×8,∴-8≤a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1≤8,当a 1a 2=a 2a 3=a 3a 4=⋯=a n -1a n =a n a 1=-1且a 21+a 22+⋯+a 2n =8时,即a 1 =a 2 =a 3 =⋯=a n -1 =a n =22nn,且a 1,a 3,a 5,⋯与a 2,a 4,a 6,⋯异号时,a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1=-8,则a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1的最小值为-8.选:C .3已知a ,b ,c ∈R ,满足a +2 2+b 2+c +1 2=12,则a +b +c 的最大值为()A.2B.3C.4D.6【答案】B【解析】设a +2=w ,b =v ,c +1=u ,可得w 2+v 2+u 2=12,所以a +b +c =w +v +u -3.因为w +v +u 2≤12+12+12 w 2+v 2+u 2 =36,所以-6≤w +v +u ≤6,当且仅当w =v =u =2,w +v +u 取得最大值6,此时a +2=b =c +1=2,所以a +b +c 的最大值为6-3=3.故选:B4(2024·高三·山东青岛·期中)柯西不等式(Caulhy -Schwarz Lnequality )是法国数学家柯西与德国数学家施瓦茨分别独立发现的,它在数学分析中有广泛的应用.现给出一个二维柯西不等式:a 2+b 2c 2+d 2≥ac +bd 2,当且仅当a c =b d时等号成立.根据柯西不等式可以得知函数f x =34-3x +3x -2的最大值为()A.25 B.23 C.12 D.20【答案】A 【解析】由4-3x ≥03x -2≥0,解得23≤x ≤43,所以函数f x 的定义域为23,43,由柯西不等式得,f x =34-3x +3x -2≤32+12 4-3x +3x -2=25,当且仅当34-3x=13x -2,即x =1115时等号成立,所以f x 的最大值为25.故选:A .5柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a =x 1,y 1 ,b =x 2,y 2 ,由a ⋅b≤a b 得到(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22),当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =5,则2a +2+b +3的最大值为()A.18B.9C.23D.33【答案】D【解析】因为(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22),令x 1=2,y 1=1,x 2=a +1,y 2=b +3,又a ≥0,b ≥0,a +b =5,所以2a +2+b +3 2=2⋅a +1+1⋅b +3 2≤2 2+12 ⋅a +1+b +3 =27,当且仅当2⋅b +3=1⋅a +1即a =5,b =0时等号成立,即2a +2+b +3≤33,故选:D .6(2024·浙江·模拟预测)已知x >0,y ∈R ,且x 2+xy -x +5y =30,则2-x +30-3y 的最大值为()A.3 B.6C.26D.32【答案】C【解析】由x 2+xy -x +5y =30可得x 2-x -30+xy +5y =0,即x +5 x +y -6 =0.由x >0可知x +y =6,所以2-x +30-3y =2-x +12+3x =2-x +3⋅4+x .由x >0,2-x ≥0可得0<x ≤2,由柯西不等式得2-x +3⋅4+x 2≤12+3 2⋅2-x 2+4+x 2=24,所以2-x +3⋅4+x ≤26,当4+x3=2-x 1即x =12时,取等号.所以2-x +30-3y 的最大值为26.故选:C .7设a ,b ,c 为正数,且a 2+b 2+c 2=1,则a (a +b +c )的最大值为()A.3+12B.2+12C.32D.22【答案】A【解析】解法一根据题意,有a (a +b +c )≤a 2+λa 2+1λb 22+μa 2+1μc 22=1+λ2+μ2 a 2+12λb 2+12μc 2,其中λ,μ>0,令1+λ2+μ2=12λ=12μ,解得λ=μ=3-12,于是a (a +b +c )≤12λa 2+b 2+c 2 =3+12,等号当a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.解法二令a =cos φ,b =sin φsin θ,c =sin φcos θ,其中0≤φ≤π,0≤θ<2π,则a (a +b +c )=cos 2φ+sin φcos φ(sin θ+cos θ)≤cos 2φ+2sin φcos φ=22sin2φ+12cos2φ+12≤3+12,等号当a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.解法三根据题意,有a (a +b +c )≤a a +2b 2+c 2 =a 2+2a 21-a 2 =a 2-12 2+2⋅14-a 2-12 2+12≤3+12,等号当b 2=c 2,且14a 2-12 2=2a 2-12 2即a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.故选:A .8(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a 3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14B.12C.10D.8【答案】A【解析】由题干中柯西不等式可得x +2y +3z 2≤x 2+y 2+z 2 12+22+32 =14×14=196,所以x +2y +3z 的最大值为14,当且仅当x =1,y =2,z =3时取等号.故选:A9已知实数a i i =1,2,3,4,5 满足(a 1-a 2)2+(a 2-a 3)2+(a 3-a 4)2+(a 4-a 5)2=1,则a 1-2a 2-a 3+2a 5的最大值是()A.22B.25C.5D.10【答案】D【解析】设c =a 1-a 2,b =a 2-a 3,c =a 3-a 4,d =a 4-a 5,则条件为a 2+b 2+c 2+d 2=1,所以a 1-2a 2-a 3+2a 5=a -b -2c -2d ≤12+-1 2+-2 2+-2 2⋅a 2+b 2+c 2+d 2=10,等号当a 1=b -1=c-2=d -2且a >0时取得,因此所求代数式的最大值为10.故选:D10若实数a ,b ,c ,d 满足ab +bc +cd +da =1,则a 2+2b 2+3c 2+4d 2的最小值为()A.1B.2C.3D.以上答案都不对【答案】B【解析】根据题意,有ab +bc +cd +da =1⇒(a +c )(b +d )=1,而a 2+3c 2 1+13 ≥a +c 2,当且仅从a =3c 时等号成立.同理2b 2+4d 2 12+14≥b +d 2,当且仅当2b =4d 式等号成立,记题中代数式为M ,于是M =a 2+3c 2 +2b 2+4d 2≥(a +c )21+13+(b +d )212+14=34(a +c )2+43(b +d )2≥2(a +c )(b +d )=2,等号当a c =3,b d =2,a +c b +d =43,⇒a :b :c :d =3:2:1:1时取得,因此所求代数式的最小值为2.故选:B .11已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP的最小值为()A.2B.3C.2D.4【答案】B【解析】因为OP =xOA +yOB +zOC =x 1,12,0 +y 1,2,0 +z 0,1,12=x +y ,12x +2y +z ,12z ,所以OP 2=x +y 2+12x +2y +z 2+12z 2=13x +y 2+12x +2y +z 2+12z 2 1+1+1 ≥13x +y +12x +2y +z +12z 2=1332x +3y +32z 2=34x +2y +z 2=3,当且仅当x +y =12x +2y +z =12z 时等号成立,即x =2,y =-1,z =2时等号成立.所以OP ≥3,所以OP 的最小值为3.故选:B12已知a ,b ,c 为实数,且a +b +c =5,则a 2+2b 2+c 2的最小值为()A.5B.1C.2D.52【答案】C【解析】由三维柯西不等式:a 12+a 22+a 32b 12+b 22+b 32 ≥a 1b 1+a 2b 2+a 2b 2 2当且仅当a 1b 1=a 2b 2=a 3b 3时取等,所以12+222+12 a 2+2b 2+c 2 ≥1×a +22×2b +c ×1 2=a +b +c 2=5所以a 2+2b 2+c 2≥552=2,当且仅当a 1=2b 22=c1时取等,所以a 2+2b 2+c 2的最小值为:2故选:C题型五:柯西不等式之整式与分式型13(2024·高三·浙江台州·期末)已知正实数a ,b 满足a +2b =1,则a 4b+32b 4a 的最小值为.【答案】12/0.5【解析】由柯西不等式a 4b +32b 4a =a 4b+32b 4a (2b +a )≥(2a 2+42b 2)2=2(a 2+4b 2)2而a 2+4b 2=12(a 2+4b 2)(1+1)≥12(a +2b )2=12,所以a 4b+32b 4a ≥2a 2+4b 2 2≥12,a =12,b =14时等号成立,故答案为:12.14已知a 、b 、c ∈R +,且满足a +2b +3c =1,则1a +12b+13c 的最小值为.【答案】9【解析】因为a 、b 、c ∈R +,且满足a +2b +3c =1,所以,1a +12b+13c =a +2b +3c 1a +12b +13c ≥a a +2b 2b +3c 3c 2=9,当且仅当a =2b =3c =13时,等号成立,故1a +12b+13c 的最小值为9.故答案为:9.15已知a ,b ,c ∈(0,1),且ab +bc +ac =1,则11-a +11-b+11-c 的最小值为()A.3-32B.9-32C.6-32D.9+332【答案】D【解析】因为a ,b ,c ∈(0,1)且ab +bc +ac =1,∴(a +b +c )2≥3(ab +bc +ca )=3,∴a +b +c ≥3,因为11-a +11-b +11-c(1-a +1-b +1-c )≥1+1+1 2所以11-a +11-b +11-c ≥9(1-a +1-b +1-c )≥93-3=9+332,当且仅当a =b =c =33时,11-a +11-b+11-c 的最小值为9+332.故选:D .题型六:柯西不等式之多变量型16已知x ,y ,z >0且x +y +z =1,a ,b ,c 为常数,则a 2x +b 2y +c 2z的最小值为()A.a 2+b 2+c 2B.3a 2+b 2+c 2C.(a +b +c )3D.前三个答案都不对【答案】D【解析】根据柯西不等式,有a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z=(a +b +c )2,等号当a x =b y =cz >0时取得,因此所求最小值为(a +b +c )2.故选:D .17已知实数a ,b ,c ,d ,e 满足a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16, 则e 的取值范围是()A.[-2,2]B.[0,1]C.[0,2)D.以上答案都不对【答案】D【解析】根据柯西不等式,有-4⋅a 2+b 2+c 2+d 2≤a +b +c +d ≤4⋅a 2+b 2+c 2+d 2,从而|8-e |≤216-e 2⇒0≤e ≤165,因此e 的取值范围是0,165.故选:D .18已知a ,b ,c ∈R +,且(a +b -c )1a +1b-1c =3,则a 4+b 4+c 4 1a 4+1b 4+1c4 的最小值是()A.417+2403B.417-2403C.417D.以上答案都不对【答案】A【解析】由(a +b -c )1a +1b-1c=3可得a 2+b 2ab ×1a +b =c ×1ab+1c ,由对称性可设ab =1,则条件即(a +b -c )a +b -1c =3即c +1c =a 2+b 2a +b,从而a 2+b 2a +b≥2⇒a +b ≥1+3,根据柯西不等式a 4+b 4+c 4 a 4+b 4+1c4 ≥a 4+b 4+1 2=(a +b )4-4(a +b )2+32≥417+2403,等号当c =1,a +b =1+3时取得.因此所求最小值为417+2403.故选:A .题型七:柯西不等式之三角函数型19函数3+23cosθ+cos2θ+5-23cosθ+cos2θ+4sin2θ的最大值为()A.2+3B.22+3C.2+23D.前三个答案都不对【答案】D【解析】题中代数式为3+cosθ+10-(3cos+1)2=3cosθ+13+10-(3cosθ+1)2+23≤13+1×10+23=210+23,等号当10-(3cosθ+1)23cosθ+1=3⇒cosθ=10-223时可以取得,因此所求最大值为210+23.故选:D.20(2024·浙江·一模)若sin x+cos y+sin x+y=2,则sin x的最小值是() A.0 B.2-3 C.3-7 D.12【答案】C【解析】由已知sin x+cos y+sin x cos y+cos x sin y=2整理得2-sin x=sin x+1cos y+cos x sin y,由柯西不等式得sin x+1cos y+cos x sin y≤1+sin x2+cos2x⋅cos2y+sin2y=2+2sin x,当sin x+1sin y=cos y cos x时取等号,所以2-sin x2≤2+2sin x,即sin2x-6sin x+2≤0,解得3-7≤sin x≤1,所以sin x的最小值为3-7.故选:C.21函数y=2cos x+31-cos2x的最大值为()A.22B.5C.4D.13【答案】A【解析】利用柯西不等式进行求最值.y=2cos x+31-cos2x=2cos x+32sin2x ≤cos2x+sin2x22+(32)2=22当且仅当cos xsin2x=232,即tan x=±322时,函数有最大值22.故选:A.题型八:Aczel 不等式22f (x )=5x -4-x -4的最小值为.【答案】855【解析】f (x )=5x -4-x -4=5⋅x -45-1⋅x -4≥(5-1)x -45 -(x -4)=4×165=85当且仅当x -45x -4=51即x =245时取等号,故f (x )=5x -4-x -4的最小值为855.23为提高学生的数学核心素养和学习数学的兴趣,学校在高一年级开设了《数学探究与发现》选修课.在某次主题是“向量与不等式”的课上,学生甲运用平面向量的数量积知识证明了著名的柯西不等式(二维);当向量a =x 1,y 1 ,b =x 2,y 2 时,有a ⋅b 2≤a 2b 2,即x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时等号成立;学生乙从这个结论出发.作一个代数变换,得到了一个新不等式:x 1x 2-y 1y 2 2≥x 21-y 21 x 22-y 22 ,当且仅当x 1y 2=x 2y 1时等号成立,并取名为“类柯西不等式”.根据前面的结论可知:当x ∈R 时,12x 2+1-2x 2+1的最小值是.【答案】-1【解析】由题意得12x 2+1-2x 2+1=12x 2+1-42x 2+2,则12x 2+1-42x 2+22x 2+1 -2x 2+2 =12x 2+1 2-22x 2+222x 2+1 2-2x 2+2 2 ≤12x 2+1⋅2x 2+1-22x 2+2⋅2x 2+22=1,当且仅当12x 2+1⋅2x 2+2=22x 2+2⋅2x 2+1,即x =0时,等号成立,即12x 2+1-42x 2+22x 2+1 -2x 2+2 ≤1,则-12x 2+1-42x 2+2 ≤1,所以12x 2+1-2x 2+1=12x 2+1-42x 2+2≥-1,最小值为-1,此时x =0.故答案为:-1.题型九:权方和不等式之整式与分式综合型24已知正数x ,y ,z 满足x +y +z =1,则x 2y +2z +y 2z +2x +z 2x +2y的最小值为【答案】13【解析】因为正数x ,y 满足x +y +z =1,所以x 2y +2z +y 2z +2x +z 2x +2y ≥x +y +z 2y +2z +z +2x +x +2y =13,当且仅当x y +2z =y z +2x =z x +2y 即x =y =z =13时取等号.故答案为:13.25权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f (x )=2x+91-2x 0<x <12的最小值为()A.16 B.25 C.36 D.49【答案】B【解析】因a ,b ,x ,y >0,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时等号成立,又0<x <12,即1-2x >0,于是得f (x )=222x +321-2x ≥(2+3)22x +(1-2x )=25,当且仅当22x =31-2x ,即x =15时取“=”,所以函数f (x )=2x +91-2x 0<x <12的最小值为25.故选:B26已知a ,b ,c 为正实数,且满足a +4b +9c =4,则1a +1+1b +1+1c +1的最小值为.【答案】2【解析】由权方和不等式,可知1a +1+1b +1+1c +1=1a +1+44b +4+99c +9≥1+2+3 2a +1 +4+4b +9c +9=3618=2,当且仅当a =2,b =12,c =0时等号成立,所以1a +1+1b +1+1c +1的最小值为2.故答案为:2.27已知正实数x 、y 且满足x +y =1,求1x 2+8y2的最小值.【答案】27【解析】设x =cos 2α,y =sin 2α,α∈0,π2,由权方和不等式,可知1x 2+8y 2=13cos 2α 2+23sin 2α 2≥1+2 3cos 2α+sin 2α2=27,当且仅当1cos 2α=2sin 2α,即x =13,y =23时取等号,所以1x 2+8y2的最小值为27.故答案为:2728已知θ为锐角,则1sin θ+8cos θ的最小值为.【答案】55【解析】1sin θ+8cos θ=132sin2θ12+432cos2θ12≥1+4 32sin2θ+cos 2θ12=532=55当且仅当1sin 2θ=4cos 2θ即sin θ=55,cos θ=255时取“=”.故答案为:5529(2024·四川·模拟预测)“权方和不等式”是由湖南理工大学杨克昌教授于上世纪80年代初命名的.其具体内容为:设a n >0,b n >0,n ∈N *,m >0,则a m +11b m 1+a m +12b m 2+a m +13b m3+⋯+a m +1n b m n ≥a 1+a 2+a 3+⋯+a nm +1b 1+b 2+b 3+⋯+b n m,当且仅当a 1b 1=a 2b 2=a 3b 3=⋯=a n b n 时,等号成立.根据权方和不等式,若x ∈0,π2 ,当33sin x +1cos x取得最小值时,x 的值为()A.π12 B.π6 C.π3D.5π12【答案】C【解析】由题意得,sin x >0,cos x >0,则33sin x +1cos x=332sin 2x 12+132cos 2x 12≥(3+1)32sin 2x +cos 2x 12=432=8,当且仅当3sin 2x =1cos 2x ,即cos x =12时等号成立,所以x =π3.故选:C .30已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【解析】由题意得,1=1x +22y =132x 2 12+232y 2 12≥1+2 32x 2+y 212=33x 2+y 2.(权方和的一般形式为:a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1nb m n ≥a 1+a 2+a 3+⋯+a n m +1b 1+b 2+b 3+⋯+b n m ,a i >0,b i >0,当且仅当a i =λb i 时等号成立)当1x 2=2y 21x +22y =1 ,即x =3,y =32时,x 2+y 2取得最小值33.故答案为:3331已知x +2y +3z +4u +5v =30,求x 2+2y 2+3z 2+4u 2+5v 2的最小值为【答案】60【解析】x 2+2y 2+3z 2+4u 2+5v 2=x 21+2y 22+3z 23+4u 24+5v 25≥x +2y +3z +4u +5v 21+2+3+4+5=30215=60当且仅当x =y =z =u =v 时取等号故答案为:6032求f x =x 2-3x +2+2+3x -x 2的最大值为【答案】22【解析】f (x )=x 2-3x +2+2+3x -x 2=x 2-3x +2 121-12+2+3x -x 2 121-12≤x 2-3x +2+2+3x -x 2 121+1-12=22当且仅当x 2-3x +2=2+3x -x 2,即x =0或x =3时取等号故答案为:2 2.3过关测试33(2024·吉林白山·一模)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设正数a ,b ,x ,y ,满足a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时,等号成立.则函数f x =3x +161-3x 0<x <13的最小值为()A.16 B.25 C.36 D.49【答案】D【解析】因为a ,b ,x ,y ,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时等号成立,又0<x <13,即1-3x >0,于是得f x =323x +421-3x ≥3+4 23x +1-3x =49,当且仅当1x =41-3x ,即x =17时取“=”,所以函数的f x =3x +161-3x 0<x <13最小值为49.故选:D34已知a ,b ,c 均大于1,log a 3+log b 9+log c 27=12,则ab 2c 3的最小值为()A.243B.27C.81D.9【答案】B【解析】由log a 3+log b 9+log c 27=12得log a 3+2log b 3+3log c 3=12,所以log 3ab 2c 3 =log 3a +log 3b 2+log 3c 3=log 3a +2log 3b +3log 3c =112log 3a +2log 3b +3log 3c log a 3+2log b 3+3log c 3 ≥112log 3a ⋅log a 3+2log 3b ⋅2log b 3+3log 3c ⋅3log c 3 2=1121+2+3 2=3,当且仅当log 3a log a 3=log 3b log b 3=log 3clog c 3时取等,所以log 3ab 2c 3 ≥3=log 327,所以ab 2c 3≥27,即ab 2c 3的最小值为27,故选:B35(2024·福建·模拟预测)设p 、q ∈R +,x ∈0,π2,则psin x+qcos x的最小值是()A.p 35+q 3553B.p 45+q4554C.p 12+q 122 D.p 14+q144【答案】B 【解析】设f =psin x+q cos x,因为x ∈0,π2 ,则0<sin x <1且0<cos x <1,因为sin 2x +cos 2x =1,构造数字式5=1+4=1+4p f sin x +qf cos x=4p f sin x +sin 2x +4q f cos x+cos 2x≥55p f sin x4⋅sin 2x +55q f cos x4⋅cos 2x =5⋅5p 4+5q 45f4,所以,5f 4≥5p 4+5q 4=p 45+q 45,故f ≥p 45+q 4554,当且仅当p f sin x =sin 2x q f cos x =cos 2x ,即当tan x =pq25时,等号成立,因此,psin x+q cos x的最小值是p 45+q 45 54.故选:B .36由柯西不等式,当x +2y +z =4时,求x +y +z 的最大值为()A.10 B.4C.2D.10【答案】D【解析】由柯西不等式,得(x +2y +z )(4+2+4)≥(2x +2y +2z )2,当且仅当x 4=2y 2=z 4,即x =z =82,y =25时,等号成立.因为x +2y +z =4,所以(x +y +z )2≤10,则x +y +z ≤10,故x +y +z 的最大值为10.故选:D37已知3x +2y +z =3,则x 2+y 2+2z 2的取最小值时,xyz 为()A.7B.83C.3D.73【答案】B【解析】由柯西不等式得:3=3x +2y +z ≤32+22+122⋅x 2+y 2+2z 2则x 2+y 2+2z 2≥23.则根据等号成立条件知3x +2y +z =33x =2y =12z⇒x =23,y =49,z =19,所以xy z =23×4919=83故选:B38已知:a 2+b 2=1,x 2+y 2=1,则ax +by 的取值范围是()A.0,2B.-1,1C.-2,2D.0,1【答案】B【解析】利用柯西不等式,可得1≥ax +by 2,解不等式即可.解:利用柯西不等式,得a 2+b 2=1,1=a 2+b 2 x 2+y 2 ≥ax +by 2,解得-1≤ax +by ≤1.故选:B39实数x 、y 满足3x 2+4y 2=12,则z =2x +3y 的最小值是()A.-5B.-6C.3D.4【答案】A【解析】∵实数x 、y 满足3x 2+4y 2=12,∴x 24+y 23=1,∴x 24+y 2316+9 ≥2x +3y 2,-5≤2x +3y ≤5,当且仅当33x =8y 时取等号,∴z =2x +3y 的最小值是-5.故选:A .40已知a ,b >0,a +b =5,则a +1+b +3的最大值为()A.18B.9C.32D.23【答案】C【解析】由题意,a +1+b +3 2≤1+1 a +1+b +3 =18,当且仅当a +1=b +3时等号成立,∴当a =72,b =32时,故a +1+b +3的最大值为3 2.故选:C .41若实数x +2y +3z =1,则x 2+y 2+z 2的最小值为()A.14B.114C.29D.129【答案】B【解析】根据柯西不等式:x 2+y 2+z 2 1+4+9 ≥2+2y +3z =1,即x 2+y 2+z 2≥114,当且仅当x =114,y =17,z =314时等号成立.故选:B .42函数y =x 2-2x +3+x 2-6x +14的最小值是A.10B.10+1C.11+210D.210【答案】B【解析】y =x 2-2x +3+x 2-6x +14=(x -1)2+2+(3-x )2+5根据柯西不等式,得y 2=(x -1)2+2+(3-x )2+5+2(x -1)2+2 (3-x )2+5 ≥(x -1)2+2+(3-x )2+5+2[(x -1)(3-x )+10]=[(x -1)+(3-x )]2+2+5+210=11+210当且仅当x -13-x =25,即x =210-13时等号成立.此时,y min =11+210=10+1 2=10+1,故选:B .43若x 2+4y 2+9z 2=4,则x +y +3z 的最大值()A.3 B.6C.9D.27【答案】A【解析】根据柯西不等式可得:(x +2y +3z )2≤(x 2+4y 2+9z 2)12+122+12 =4×94=9∴x +y +3z ≤3,当且仅当x =4y =3z ,即x =43,y =13,z =49时,等号成立.故选:A .44函数y =x -5+26-x 的最大值是()A.3B.5C.3D.5【答案】B【解析】利用柯西不等式求解.因为y =x -5+26-x ≤x -5 2+6-x 212+22 =5当且仅当x -5=6-x 2,即x =265时,取等号.故选:B45已知a 21+a 22+⋯+a 2n =1,x 21+x 22+⋯+x 2n =1,则a 1x 1+a 2x 2+⋯+a n x n 的最大值是()A.1B.2C.3D.4【答案】A【解析】利用柯西不等式求解.a 1x 1+a 2x 2+⋯+a n x n 2≤a 21+a 22+⋯+a 2n x 21+x 22+⋯+x 2n =1×1=1,当且仅当x 1a 1=x 2a 2=⋯=xn a n=1时取等号.∴a 1x 1+a 2x 2+⋯+a n x n 的最大值是1故选:A46函数f x =1-cos2x +cos x ,则f x 的最大值是()A.3B.2C.1D.2【答案】A【解析】将f x 化为f x =2sin 2x +cos x ,利用柯西不等式即可得出答案.因为f x =1-cos2x +cos x所以f x =2sin 2x +cos x ≤2+1 sin 2x +cos 2x=3当且仅当cos x =33时取等号.故选:A47(2024·高三·河北衡水·期末)已知a ,b ,c >0,且a +b +c =1,则3a +1+3b +1+3c +1的最大值为()A.3B.32C.18D.9【答案】B【解析】由柯西不等式得:3a +1+3b +1+3c +1 2≤12+12+12 3a +1 2+3b +1 2+3c +1 2=3×3a +b +c +3 =18,所以3a +1+3b +1+3c +1≤32,当且仅当a =b =c =13时,等号成立,故选B .48已知x ,y 均为正数,且x +y =2,则x +4xy +4y 的最大值是()A.8 B.9C.10D.11【答案】C【解析】x +4xy +4y =x +2y 2≤x +2y 2+2x -y 2=5x +y =10当且仅当2x =y ,即x =25,y =85时,等式成立.故选:C49(2024·广西南宁·二模)设实数a ,b ,c ,d ,e 满足关系:a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16,则实数e 的最大值为A.2 B.165C.3D.25【答案】B【解析】根据柯西不等式知:4(a 2+b 2+c 2+d 2)=(1+1+1+1)(a 2+b 2+c 2+d 2)≥(a +b +c +d )2,当且仅当a =b =c =d 时等号成立,所以4(16-e 2)≥(8-e )2,即64-4e 2≥64-16e +e 2,所以5e 2-16e ≤0,解得0≤e ≤165,即实数e 的最大值为165.故选:B .50(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.【答案】6【解析】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,又a ≥0,b ≥0,a +b =9,所以2a +4+b +1 2≤2+1 a +2+b +1 =3×12=36,所以2a +4+b +1≤6,当且仅当2⋅b +1=a +2,即a =6,b =3时取等号,所以2a +4+b +1的最大值为6.故答案为:651若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k 的最小值为.【答案】305/1530【解析】由柯西不等式的变形可知5x +y =x215+y21≥x +y15+1,整理得x +y5x +y≤305,当且仅当x15=y1,即y=25x时等号成立,则k的最小值为30 5.故答案为:30 552已知x,y,z>0,且x+y+z=9,则x2+4y2+z2的最小值为.【答案】36【解析】由柯西不等式可得x2+4y2+z212+122+12≥(x+y+z)2,所以94x2+4y2+z2≥81,即x2+4y2+z2≥36,当且仅当x1=2y12=z1即x=4y=z也即x=4,y=1,z=4时取得等号,故答案为:36.53(2024·高三·江苏苏州·开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.【答案】1,3 2【解析】因为角α、β均为锐角,所以sinα,cosα,sinβ,cosβ的范围均为0,1,所以sinα+β=sinαcosβ+cosαsinβ<sinα+sinβ,所以sinα+sinβ+cosα+β>sinα+β+cosα+β=2sinα+β+π4因为0<α<π2,0<β<π2,π4<α+β+π4<3π4,所以2sinα+β+π4>2×22=1,sinα+sinβ+cosα+β=sinα+sinβ+cosαcosβ-sinαsinβ=1-sinβsinα+cosαcosβ+sinβ≤1-sinβ2+cos2β+sinβ=21-sinβ+sinβ,当且仅当1-sinβcosα=sinαcosβ时取等,令1-sinβ=t,t∈0,1,sinβ=1-t2,所以=21-sinβ+sinβ=2t+1-t2=-t-2 22+32≤32.则sinα+sinβ+cosα+β的范围是:1,3 2.故答案为:1,3 254在锐角△ABC中,tan A tan B+2tan B tan C+3tan C tan A的最小值是.【答案】6+22+23+26【解析】记题中代数式为M,我们熟知三角形中的三角恒等式:cot A cot B+cot B cot C+cot C cot A= 1,于是M=tan A tan B+2tan B tan C+3tan C tan A≥(1+2+3)2cot A cot B+cot B cot C+cot C cot A=(1+2+3)2=6+22+23+26,等号当tan A tan B =2tan B tan C =3tan C tan A ⇒tan A :tan B :tan C =2:3:1时取得,因此所求最小值为6+22+23+26故答案为:6+22+23+2655函数f (x )=2020-x +x -2010的最大值与最小值之积为.【答案】102【解析】函数f (x )的定义域为[2010,2020],一方面,2020-x +x -2010≥(2020-x )+(x -2010)=10,等号当x =2010,2020时取得;另一方面,2020-x +x -2010≤2⋅(2020-x )+(x -2010)=20,当且仅当x =2015时等号成立,于是最大值为20,最小值为10,所求乘积为102.故答案为:10 2.56(2024·高三·天津南开·期中)已知正实数a ,b 满足a +b =1,则1a +2a b +1的最小值为.【答案】52/2.5【解析】由题设,a =1-b ,则1a +2a b +1=1a +2-2b b +1=1a +4b +1-2,又(a +b +1)1a +4b +1 =a ⋅1a +b +1⋅2b +12=9,∴1a +4b +1≥92,当且仅当a =b +12时等号成立,∴1a +2a b +1≥92-2=52,当且仅当a =b +12=23时等号成立.∴1a +2a b +1的最小值为52.故答案为:52.57已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【解析】令a +b -2=t >0,则a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥24+4=8,当a +b -2=2a b -1=b a -1时,即a =2,b =2时,两个等号同时成立,原式取得最小值8.故答案为:858已知x >0,y >0,且12x +y +1y +1=1,则x +2y 的最小值为.【答案】3+12【解析】解法一:设x +2y =λ1(2x +y )+λ2(y +1)+t ,可解得λ1=12,λ2=32,t =-32,从而x +2y =12(2x +y )+32(y +1)-32=12(2x +y )+32(y +1)12x +y +1y +1 -32≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.解法二:考虑直接使用柯西不等式的特殊形式,即权方和不等式:a 2x +b 2y ≥(a +b )2x +y,1=12x +y +33y +3≥(1+3)22x +4y +3⇒2x +4y +3≥4+23,所以x +2y ≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.。
高中数学复习系列---柯西不等式
高中数学复习系列---不等式(柯西不等式)【柯西不等式的主要内容】 1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等. 2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 当且仅当 时, 等号成立. 变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20.若,,,a b c d R ∈,则222222()()a b c d a c b d +++-+- ;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:222212122323()()()()x x y y x x y y -+-+-+-≥3. 一般形式的柯西不等式:设n 为大于1的自然数,,i i a b R∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立. (若0=i a 时,约定0=i b ,=i 1,2,…,n ). 变式10.设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( .当且仅当 时, 等号成立. 变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii i ni i i b a a b a 21)(. 当且仅当n b b b === 21时,等号成立. 如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面都有联系. 所以, 它的重要性是不容置疑的! ☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆 的半径,证明:22212x y z a b c R++≤++例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。
柯西不等式6个基本公式和例题
柯西不等式是一个重要的数学不等式,广泛应用于数学分析、概率论和其他领域。
它由法国数学家奥古斯丁·路易·柯西在1821年提出,是数学分析中的一项重要成果。
柯西不等式在实际问题中具有重要的应用价值,特别是在概率论和统计学中的应用,能够帮助人们更好地理解和解决实际问题。
一、柯西不等式的基本原理1. 柯西不等式是数学分析中的一个重要定理,它描述了内积空间中向量的长度和夹角之间的关系。
具体来说,对于内积空间中的任意两个向量a和b,柯西不等式可以表达为:|⟨a, b⟨| ≤ ||a|| ||b||2. 其中,⟨a, b⟨表示向量a和b的内积(或称点积),||a||和||b||分别表示向量a和b的长度。
柯西不等式告诉我们,两个向量的内积的绝对值不会大于它们长度的乘积。
二、柯西不等式的六个基本公式3. 柯西不等式有许多不同的形式和推广,但最基本的形式是针对实数向量空间的柯西不等式。
具体来说,对于实数向量空间中的任意两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),柯西不等式可以表达为:|a1b1 + a2b2 + ... + anbn| ≤ √(a1^2 + a2^2 + ... + an^2)√(b1^2 + b2^2 + ... + bn^2)4. 在复数向量空间中,柯西不等式的形式稍有不同。
对于复数向量空间中的任意两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),柯西不等式可以表达为:|a1b1* + a2b2* + ... + anbn*| ≤ √(|a1|^2 + |a2|^2 + ... + |an|^2) √(|b1|^2 + |b2|^2 + ... + |bn|^2)5. 在积分的应用中,柯西不等式的形式也有所不同。
对于连续函数f和g,柯西不等式可以表达为:|∫(f*g)dx| ≤ √(∫f^2 dx) √(∫g^2 dx)6. 这些是柯西不等式的基本形式,它们描述了向量的长度和夹角之间的关系,以及函数的积分之间的关系。
(原创)最新柯西不等式习题及解析
柯西不等式习题及解析一、二维形式的柯西不等式.),,,,,()())((22222等号成立时当且仅当bc ad R d c b a bd ac d c b a =∈+≥++ 二、二维形式的柯西不等式的变式bd ac d c b a +≥+⋅+2222)1( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈ bd ac d c b a +≥+⋅+2222)2( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈.),0,,,()())()(3(2等号成立,时当且仅当bc ad d c b a bd ac d c b a =≥+≥++三、二维形式的柯西不等式的向量形式.),,,(等号成立时使或存在实数是零向量当且仅当βαβk k =≤题型参考:例1:设a 、b 、c 为正数且各不相等。
求证:cb a ac c b b a ++>+++++9222 (2)重新安排某些项的次序:例2:a 、b 为非负数,a +b =1,+∈R x x 21,求证:212121))((x x ax bx bx ax ≥++ (3)改变结构:例3、若a >b >c 求证:ca cb b a -≥-+-411 (4)添项:例4:+∈R c b a ,,求证:23≥+++++b a c a c b c b a 【1】、设6 ),2,1,2(=-=b a,则b a ⋅之最小值为________;此时=b ________。
答案:-18; )4,2,4(-- 解析:b a b a ≤⋅ ∴18≤⋅b a∴1818≤⋅≤-b ab a⋅之最小值为-18,此时)4,2,4(2--=-=a b 【2】 设a = (1,0,- 2),b = (x ,y ,z),若x 2 + y 2 + z 2= 16,则a b 的最大值为 。
【解】∵ a = (1,0,- 2),b = (x ,y ,z) ∴ a .b= x - 2z 由柯西不等式[12 + 0 + (- 2)2](x 2 + y 2 + z 2) ≥ (x + 0 - 2z)2⇒ 5 ⨯ 16 ≥ (x - 2z)2 ⇒ - 45≤ x ≤ 45⇒ - 45≤ a .b ≤ 45,故a .b的最大值为45【3】空间二向量(1,2,3)a =,(,,)b x y z =,已知56b =,则(1)a b ⋅的最大值为多少?(2)此时b =? Ans :(1) 28:(2) (2,4,6)【4】设a 、b 、c 为正数,求4936()()a b c a b c++++的最小值。
柯西不等式常见题型解法例说
作者: 陈晴;应向明
作者机构: 315500,浙江省奉化中学
出版物刊名: 上海中学数学
年卷期: 2014年 第3期
摘要:柯西不等式∑ni=1a2i·∑ni=1b2i≥(∑ni=1ai·bi)2是基本而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.。
高考自选模块柯西不等式常见题型解法例说
高考自选模块柯西不等式常见题型解法例说
陈晴
【期刊名称】《数理化学习(高一二版)》
【年(卷),期】2014(000)001
【摘要】柯西不等式∑n i=1 a2i ·∑n i=1 b2i ≥∑n i=1( aibi )2是重要的基本不等式,是推证其它许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值。
它原先只是在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4-5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求。
用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强。
其中一些常见的问题,其解决策略往往与其呈现方式直接相关。
笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略。
【总页数】2页(P4-5)
【作者】陈晴
【作者单位】浙江省奉化中学 315500
【正文语种】中文
【相关文献】
1.柯西不等式常见题型解法例说
2.关于2010年浙江省高考自选模块题的解法
3.高考自选模块柯西不等式常见题型解法例说
4.高考中含绝对值不等式常见题型归纳及解法探究
5.高考中线性规划常见题型及解法
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海中学数学2014年第3期
柯西不等式常见题型解法例说315500浙江省奉化中学陈晴应向明
柯西不等式≥:d;≥:研≥f≥]ni.6。
1‘是基本
百鬲、百7
而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.三维的柯西不等式(盘;+丑;+口;)(躇+6;+鹾)≥(n。
6,+口:6:+a。
63)2揭示了任意两组数组即(n。
,n。
,n。
)、(6,,6。
,63)的平方和之积与实数积之和的平方的大小关系.应用时要解决的核心问题就是如何通过变换不等式,向柯西不等式“逼近”,构造出不等式所需要的两组数组(乜,,乜。
,以。
)、(6。
,6:,6。
),这也是运用柯西不等式解题的基本策略.
1一次与二次
例1(2013湖南高考)已知口、6、c∈R,盘+26 +3c一6,则n2+462+9c2的最小值为——.解:n+26+3c一6,由柯西不等式得(n2+462 +9c2)(12+12+12)≥(n+26+3c)2,
可知n。
+462+9c。
≥婺一12,即最小值为12.
例2设.r,y,z∈R,且满足T2+y2+z2—5,则Lr+2y+3z之最大值为——.
解:(.f r+2y+32)2≤(L z’2+y2+z2)(12+22+ 32)一70,.‘.Ir+2y+3z最大值为√而.
例3如啪2∈R且与≯+≮型+竖j翌一1,求T+y+z的最大值、最小值.解:与竽+≮型+半一,,由柯西不等式得
[4z+渺+22]『c孚)2+c警)2+c字,2]≥…孚)惭(害)+z.(字)]2
号25×1≥b+y+z一2)2≥5≥l L r+y+z一2
≥一5≤z+y+z一2≤5.
.‘.一3≤T+y+z≤7.
故T+y+z之最大值为7,最小值为一3.
评注:这类题型的最大特征就是条件与结论中分别出现了一次式与两次式,而要实现一次与两次不等关系的关键就是根据柯西不等式的形态进行构造,让其中一个数组为常数组,这样问题往往可以奏效.
2整式与分式
2.1两组数组对应的数分别为倒数型
例4(2012福建高考)已知函数厂(T)一m—z一2I,m∈R且,(z+2)≥o的解集为[一1,1].
(1)求m的值;
(2)若口,6,c∈R,且丢+去+去一m,求证:n+26+3c≥9.
解:(1)厂(.r+2)一m—f.r},/(T+2)≥o等价于I T l≤m,
由I T l≤m有解,得m≥O,且其解集为{丁l —m≤z≤m1),
又,(z+2)≥o的解集为[一1,1],故m一1.
(2)由(1)知丢+去+去一1,又&,6,c∈R,
由柯西不等式得
Ⅱ+26+3c一(n+26+3c)f丢+去+去)≥F‘去+何‘去+厄’去)2姐
评注:这类题型从结构来讲,两组数组分别是整式类型(口,,n z,n。
)与分式类型(署,昙,去)(其中夕,q,,一为常数),其实属于对勾函数的范畴,运用均值不等式也能完成,但不如柯西不等式简洁、方便.2.2分式中分子的次数高于分母型
例5(2009浙江高考)已知正数T,y,2,z+y 忙1.掘彘+毫+彘≥专.
V十Z Z z十Z.r.r十二V0证法1:利用柯西不等式
(惫+矗+南)№他川z+ 2.十r)+(z+2v)]≥(.r+v+z)2.
72
上海中学数学2014年第3期
用法向量夹角求二面角大小的教学设想
213131
江苏省奔牛高级中学
冯刚张仁端
在苏教版高中数学选修教材2—1(以下同)中,用法向量的夹角来求二面角的大小.教材这样总结方法:
“由于平面的法向量垂直于平面,这样,这两个平面所成的二面角就可以转化为这两个平面的法向量所成的角.考虑到二面角的取值范围是[o 。
,180。
],所以二面角的平面角臼与这两个平面的法向
证法2:利用均值不等式
了}夏+寺‘y+2z)≥亏z ;
同理:i 菩万+告(z+2z)≥詈j ,;
}辜毛+告(z+2y)≥号2,三式相加即证.
评注:涉及到分式出现的题型,解答时,要有把分式转化到整式去的意识,若能抓住这种关系则无疑抓住了问题的突破口.
例6
已知正数&,6,c ,幻c 一1,求证:≯南
+赢b+瓦‰≥导.’63(n+c )l
f 3(a+6)
72’
证:即证:年≥+孟每≥+荔擘≥≥詈.
叻十凹曲十∞凹十∞Z
(蔫+
二‰+耋‰)c 曲+凹+幻+
I 面+凹‘面+葩。
凹+知)…~1~1
6c+凹+&)≥(6c+∞+幻)2,
..『志+志+志]c 面+
一l 以3(6+c)l
63(盘+c)’c3(口+6)l 、~
∞+幻+&+∞+斑)≥(葩+∞+面)2,
..左式≥昙(面+∞+幻)≥丢.3Z 丽一导.
评注:分式出现的题型若出现分子的次数比分母低,尽量创造条件变形让分子的次数比分母高,这样就便于运用柯西不等式把分式转化为整式.
3
无理与有理
例7
已知z+y+z 一19,求证:~/孑可+
、,厕+正骊≥机西.
证法1:设扰一√7了i +/尹了百+、压FF 而,
+..~历F 百析可≥z+2n ,
以F 阿川了孑≥y+3丑,
量的夹角相等或者互补.”
两者到底在什么情况下相等,在什么情况下互补?十分遗憾,教材没有交待,留下了悬念.但是在教材的例题(如本文例1)和习题(如本文例2)中都要求二面角的大小(显然这样的要求不合理).于是教材的例题解答不能令人信服,师生在解答这类问题时没有
~/22+16盘~/1+丑2≥2+4垃,
.。
.~/1+口2“≥19+9n .
当且仅当z 一呈,y 一羔,2:÷,又由z+y+
Q
z
5
1净口一南
19+器
一.‘.税≥_==兰一~/442.
√1+(南)
证法2:‘.’}葛}+}葛}+}葛}≥}葛+葛+葛},
..令者一(z ,2),葛=(y ,3),者一(2,4),
则左式≥~/(z+y+z)2+(2+3+4)2=
√192+92一√442.
评注:有理和无理是一对矛盾的统一体,它们既是对立的,又是统一的,因此在一定的条件下可以相
互转化.一方面,把柯西不等式∑口;∑62≥(∑ai 6,)2两边开根号,可以得到一个无理形式的
柯西不等式,其中右边是整式,利用这个关系就能实现从无理到有理的跨越;另一方面,从结构上来分析,这两个数组其实可看成两个空间向量的坐标,这样就容易联想到距离问题,因此也可以考虑构建几何模型利用三角不等式解决.
柯西不等式虽然只是新课程教材的选修内容,但近几年以柯西不等式为背景的试题,已悄无声息地进入高考试题(不是自选模块试题)中.灵活运用柯西不等式求解一些高考题可以省去许多繁杂的运算,解法优美,事半功倍,对提高学生的解题能力大有裨益.因此让学生熟悉柯西不等式的呈现形式以及掌握相应的解决策略是非常必要的.。