2015-2016学年高二数学上学期期末考试试题 文

合集下载

江苏省徐州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

江苏省徐州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

2015-2016学年某某省某某市高二(上)期末数学试卷(理科)一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是.2.命题“∃x∈R,x2≤0”的否定为.3.底面边长为2,高为3的正三棱锥的体积为.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为.6.已知函数f(x)=xsinx,则f′(π)=.7.双曲线﹣=1的焦点到渐近线的距离为.8.“m<”是“方程+=1表示在y轴上的椭圆”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为.11.已知F为椭圆C: +=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为.13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值X围为.14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值X围为.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,某某数a的值;(2)若弦AB的长为4,某某数a的值;(3)求直线l的方程及实数a的取值X围.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?19.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值X围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.2015-2016学年某某省某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是(3,0).【考点】抛物线的简单性质.【分析】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标.【解答】解:抛物线y2=12x的焦点在x轴上,且p=6,∴=3,∴抛物线y2=12x的焦点坐标为(3,0).故答案为:(3,0).2.命题“∃x∈R,x2≤0”的否定为∀x∈R,x2>0 .【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2≤0”的否定为:∀x∈R,x2>0.故答案为:∀x∈R,x2>0.3.底面边长为2,高为3的正三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】求出正三棱锥的底面面积,然后求解体积.【解答】解:底面边长为2,高为3的正三棱锥的体积为: =.故答案为:.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18 .【考点】椭圆的简单性质.【分析】由题意知a=5,b=3,c=4,从而可得|PF1|+|PF2|=2a=10,|F1F2|=2c=8.【解答】解:由题意作图如右图,∵椭圆的标准方程为+=1,∴a=5,b=3,c=4,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为10+8=18;故答案为:18.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为16π.【考点】球内接多面体;球的体积和表面积.【分析】由已知求出正方体的棱长为4,所以正方体的内切球的半径为2,由球的表面积公式得到所求.【解答】解:因为正方体的体积为64,所以棱长为4,所以正方体的内切球的半径为2,所以该正方体的内切球的表面积为4π•22=16π.故答案为:16π.6.已知函数f(x)=xsinx,则f′(π)= ﹣π.【考点】导数的运算.【分析】直接求出函数的导数即可.【解答】解:函数f(x)=xsinx,则f′(x)=sinx+xcosx,f′(π)=sinπ+πcosπ=﹣π.故答案为:﹣π.7.双曲线﹣=1的焦点到渐近线的距离为 2 .【考点】双曲线的简单性质.【分析】求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可.【解答】解:双曲线﹣=1的一个焦点(,0),一条渐近线方程为:y=,双曲线﹣=1的焦点到渐近线的距离为: =2.故答案为:2.8.“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义,求出m的X围,结合集合的包含关系判断充分必要性即可.【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1<m<,故“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分.9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为﹣1或4 .【考点】圆的切线方程.【分析】把圆的方程化为标准方程后,找出圆心坐标和圆的半径,然后根据直线与圆相切得到圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y+)2=,所以圆心坐标为(1,﹣),半径r=||,由已知直线与圆相切,得到圆心到直线的距离d==r=||,解得a=﹣1或4.故答案为:﹣1或4.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为 e .【考点】变化的快慢与变化率.【分析】根据导数和函数单调性的关系,再分离参数,求出最值即可.【解答】解:f′(x)=e x﹣a∵函数f(x)在区间(1,+∞)上单调递增⇔函数f′(x)=e x﹣a≥0在区间(1,+∞)上恒成立,∴a≤[e x]min在区间(1,+∞)上成立.而e x>e,∴a≤e.故答案为:e.11.已知F为椭圆C: +=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】利用线段垂直平分线的性质可得线段BF的垂直平分线的方程,进而得出.【解答】解:由已知可得:A(﹣a,0),B(0,b),F(c,0),线段BF的中点M,k BF=,可得线段BF的垂直平分线的斜率为.∴线段BF的垂直平分线的方程为:y﹣=,∵BF的垂直平分线恰好过点A,∴0﹣=,化为:2e2+2e﹣1=0,解得e=.故答案为:.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1),(﹣1,﹣1).【考点】利用导数研究曲线上某点切线方程.【分析】利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可.【解答】解:设切点P(m,m3),由y=x3的导数为y′=3x2,可得切线的斜率为k=3m2,由切线与直线y=3x+2平行,可得3m2=3,解得m=±1,可得P(1,1),(﹣1,﹣1).故答案为:(1,1),(﹣1,﹣1).13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值X围为(﹣,﹣)∪(0,2).【考点】圆的标准方程.【分析】由已知得圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,由此能求出实数m的取值X围.【解答】解:圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,∴圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,圆C的圆心C(m+1,2m),半径r1=2,圆O的圆心O(0,0),半径r2=3,圆心距离|OC|==,∴3﹣2<<3+2,解得﹣<m<﹣或0<m<2.∴实数m的取值X围为(﹣,﹣)∪(0,2).故答案为:(﹣,﹣)∪(0,2).14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值X围为a≥.【考点】导数在最大值、最小值问题中的应用;函数与方程的综合运用.【分析】求导数,确定函数的单调性,即可求函数f(x)的值域;g(x)∈(0,e],分类讨论,研究f(x)的单调性,即可求a的取值X围.【解答】解:g′(x)=,令=0,解得x=1,∵e x>0,∴x∈(0,1)时,g′(x)>0;x∈(1,e]时,g′(x)<0,g(x)在(0,1]上单调递增,在(1,e]单调单调递减,根据极大值的定义知:g(x)极大值是g(1)=1,又g(0)=0,g(e)=,所以g(x)的值域是(0,1].函数f(x)=a(x﹣1)2﹣lnx,x>0,f′(x)=2ax﹣2a﹣=,令h(x)=2ax2﹣2ax﹣1,h(x)恒过(0,﹣1),当a=0时,f′(x)<0,f(x)是减函数,不满足题意.h(x)=0,可得2ax2﹣2ax﹣1=0,△=4a2+8a,△>0解得a<﹣2或a>0.当﹣2<a<0时,h(x)的对称轴为:x=,h(x)<0恒成立,f′(x)<0,f(x)是减函数,不满足题意.当a<﹣2时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,x∈,f′(x)<0,f(x)是减函数,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).可知f(x)极大值≥1,f(x)极小值≤0.可得,,∵f(x)=a(x﹣1)2﹣lnx,,不等式不成立.当a>0时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,因为x=1时,f(1)=0,只需f (e)≥1.可得:a(e﹣1)2﹣1≥1,解得a≥.综上:实数a的取值X围为:a≥.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.【考点】直线与平面平行的判定.【分析】(1)连接AC,交BD与点O,连接OM,先证明出MO∥PA,进而根据线面平行的判定定理证明出PA∥平面MDB.(2)先证明出BC⊥平面PCD,进而根据线面垂直的性质证明出BC⊥PD.【解答】证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,某某数a的值;(2)若弦AB的长为4,某某数a的值;(3)求直线l的方程及实数a的取值X围.【考点】直线与圆的位置关系.【分析】(1)利用配方法得到圆的标准方程,根据圆C的半径为,某某数a的值;(2)求出直线l的方程,求出圆心到直线的距离,根据弦AB的长为4,某某数a的值;(3)点与圆的位置关系即可求出a的取值X围.【解答】解:(1)圆的标准方程为(x+1)2+(y﹣2)2=5﹣a,则圆心C(﹣1,2),半径r=,∵圆C的半径为,∴=,∴a=2;(2)∵弦的中点为M(0,1).∴直线CM的斜率k=﹣1,则直线l的斜率k=1,则直线l的方程为y﹣1=x,即x﹣y+1=0.圆心C到直线x﹣y+1=0的距离d==,若弦AB的长为4,则2+4=5﹣a=6,解得a=﹣1;(3)由(2)可得直线l的方程为x﹣y+1=0.∵弦AB的中点为M(0,1).∴点M在圆内部,即<,∴5﹣a>2,即a<3.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.【考点】异面直线及其所成的角;直线与平面所成的角.【分析】(1)以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,利用向量法能求出异面直线BC1与AB1所成角的余弦值.(2)设AC=a,求出平面A1C1B的法向量,由直线AB1与平面A1BC1所成角的正弦值为,利用向量法能求出AC.【解答】解:(1)∵在直三棱柱ABC﹣A1B1C1中,A1C1⊥B1C1,CC1=2BC=2,∴以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,∵AC=2,∴B(0,2,2),C1(0,0,0),A(2,0,2),B1(0,2,0),∴=(0,﹣2,﹣2),=(﹣2,2,0),设异面直线BC1与AB1所成角为θ,则cosθ=|cos<,>|===,∴θ=60°,∴异面直线BC1与AB1所成角的余弦值为60°.(2)设AC=a,则A1(a,0,0),B(0,2,2),C1(0,0,0),B1(0,2,0),A(a,0,2),=(a,0,0),=(0,2,2),=(﹣a,2,﹣2),设平面A1C1B的法向量=(x,y,z),则,取y=1,得=(0,1,﹣1),∵直线AB1与平面A1BC1所成角的正弦值为,∴==,解得a=.∴AC=.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?【考点】基本不等式在最值问题中的应用.【分析】(1)求出纸箱的侧面积S,利用基本不等式,求最大值;(2)求出纸箱的容积V,利用导数,求最大值.【解答】解:(1)S=2x(50﹣2x+80﹣2x)=2x≤•=,当且仅当4x=130﹣4x,即x=cm,纸箱的侧面积S(cm2)最大;(2)V=x(50﹣2x)(80﹣2x)(0<x<12.5),V′=(50﹣2x)(80﹣2x)﹣2x(80﹣2x)﹣2x(50﹣2x)=4(3x﹣100)(x﹣10),∴0<x<10,V′>0,10<x<12.5,V′<0,∴x=10cm时,V最大.19.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率公式及菱形的面积公式求得a和b的值,可求得椭圆的方程;(2)利用椭圆方程及直线AM,AN的方程求得x M、x N、x P及x Q的值根据三角形面积公式求得k的值,求得直线方程.【解答】解:(1)由题意可知:e===,且2ab=4,且a2﹣b2=c2,解得a=2,b=,∴椭圆的标准方程:,(2)由(1)可知,A(0,﹣),则直线AM的方程为y=kx﹣,将直线方程代入椭圆方程得:消去并整理得:(3+4k2)x2﹣8kx=0,解得x M=,直线AN的方程y=﹣﹣,同理可得:x N=﹣,解得x P=k,同理可得x Q=﹣,∴==丨丨==,即3k4﹣10k2+3=0,解得k2=3或k2=,所以=或﹣,故存在直线l:y=x,y=﹣x,满足题意.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值X围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,对x分类讨论即可得出函数f(x)的单调性极值.(2)f(x)≤2x化为:a≥﹣2=g(x),利用导数研究函数g(x)的单调性极值最值即可得出.(3)h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.利用导数研究函数u(m)的单调性即可得出.【解答】(1)解:a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,∴0<x<1时,函数f(x)单调递增;1<x时,函数f(x)单调递减.因此x=1时函数f(x)取得极大值,f(1)=0.(2)解:f(x)≤2x化为:a≥﹣2=g(x),g′(x)=,可知:x∈(0,1)时,g′(x)>0,函数g(x)单调递增;x∈(1,+∞)时,g′(x)<0,函数g(x)单调递减.∴x=1时函数g(x)取得极大值即最大值,g(1)=1﹣2=﹣1.∴a≥﹣1,∴a的取值X围是[﹣1,+∞).(3)证明:h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.u′(m)=1+﹣==>0,因此函数u(m)在m∈(1,+∞)上单调递增,∴u(m)>u(1)=0,∴>恒成立.。

高二上学期期末考试数学(文)试题及答案 (4)

高二上学期期末考试数学(文)试题及答案 (4)

学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。

2015-2016学年度第一学期期末测试(数学)

2015-2016学年度第一学期期末测试(数学)

2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。

广西钦州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

广西钦州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

2015-2016学年某某某某市高二(上)期末数学试卷(理科)一、选择题1.正三棱柱的左视图如图所示,则该正三棱柱的侧面积为()A.4 B.12 C.D.242.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交 B.相切 C.相离 D.无法确定3.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}4.已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i5.若l、a、b表示直线,α、β表示平面,下列命题正确的是()A.l∥α,a⊂α⇒l∥a B.a∥α,a∥b⇒b∥αC.a∥α,b⊥α⇒a⊥b D.a∥α,α∥β⇒a∥β6.过点P(2,3)且在两坐标轴上截距相等的直线方程为()A.3x﹣2y=0 B.x+y﹣5=0C.3x﹣2y=0或x+y﹣5=0 D.2x﹣3y=0或x+y﹣5=07.将球的半径变为原来的两倍,则球的体积变为原来的()A.2倍B.8倍C.4倍D.0.5倍8.若幂函数f(x)=x a在(0,+∞)上是增函数,则()A.a>0 B.a<0 C.a=0 D.不能确定9.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个B.3个C.2个D.1个10.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外11.关于斜二侧画法,下列说法正确的是()A.三角形的直观图可能是一条线段B.平行四边形的直观图一定是平行四边形C.正方形的直观图是正方形D.菱形的直观图是菱形12.多面体的直观图如图所示,则其正视图为()A.B.C.D.二、填空题13.函数f(x8)=log2x,则f(16)的值是.14.设a=sin(sin2008°),b=sin(cos2008°),c=cos(sin2008°),d=cos(cos2008°).则a,b,c,d从小到大的顺序是.15.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.16.已知数列{log2(a n﹣1)},(n∈N*)为等差数列,且a1=3,a3=9(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.17.一物体受到与它运动方向相同的力:的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于.18.空间直角坐标系中两点A(0,0,1),B(0,1,0),则线段AB的长度为.三、解答题19.已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(﹣a,b).(1)若直角坐标平面上的点M、A(0,﹣b),B(a,0)满足=(+),求点M的坐标;(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=﹣,证明:E为CD的中点;(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值X围.20.在数列{a n}中,a1=1,a n+1=(1+)a n+,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.21.在三角形ABC中,,求三角形ABC的面积S.22.对某电子元件进行寿命追踪调查,情况如下:寿命/小时100~200 200~300 300~400 400~500 500~600个数20 30 80 40 30(1)完成频率分布表;分组频数频率100~200200~300300~400400~500500~600合计(2)完成频率分布直方图;(3)估计电子元件寿命在100~400小时以内的概率;(4)估计电子元件寿命在400小时以上的概率.23.求出函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.2015-2016学年某某某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题1.正三棱柱的左视图如图所示,则该正三棱柱的侧面积为()A.4 B.12 C.D.24【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】通过左视图,判断几何体的数据,然后求解侧面积.【解答】解:∵正三棱柱的左视图为:,正三棱柱的底面是正三角形,由图知底面正三角形的高为,∴易求得正三角形的边长为2,∴正三棱柱的侧面积为:2×2×3=12.故选:B.【点评】本题考查三视图侧面积的求法,考查学生的视图能力以及计算能力.2.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【专题】直线与圆.【分析】根据圆心C到直线l的距离正好等于半径,可得直线和圆相切.【解答】解:由于圆心C(0,0)到直线l:x+y﹣4=0的距离为=2,正好等于半径,故直线和圆相切,故选:B.【点评】本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,属于中档题.3.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}【考点】交、并、补集的混合运算.【专题】集合.【分析】分别求出A与B中不等式的解集,确定出A与B,找出A与B补集的交集即可.【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.4.已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i【考点】复数代数形式的乘除运算;复数的基本概念.【专题】计算题.【分析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可得到选项.【解答】解:复数z==所以它的共轭复数为:1﹣i故选A【点评】本题是基础题,考查复数代数形式的乘除运算,复数的基本概念,考查计算能力,常考题型.5.若l、a、b表示直线,α、β表示平面,下列命题正确的是()A.l∥α,a⊂α⇒l∥a B.a∥α,a∥b⇒b∥αC.a∥α,b⊥α⇒a⊥b D.a∥α,α∥β⇒a∥β【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【专题】空间位置关系与距离.【分析】A.根据线面平行的性质定理进行判断.B.根据线面平行的判定定理进行判断.C.根据线面垂直的性质定理进行判断.D.根据线面平行的性质进行判断.【解答】解:A.根据线面平行的性质可知,l∥a不一定成立,有可能是异面直线.B.当b⊄α,结论成立,当b⊂α,则结论不成立.C.根据线面垂直和线面平行的性质可知,若a∥α,b⊥α,则a⊥b成立.D.若a∥α,α∥β,则a∥β或a⊂β,∴结论不成立.故选:C.【点评】本题主要考查空间直线和平面位置关系的判断,要求熟练掌握平行或垂直定理的内容及应用.6.过点P(2,3)且在两坐标轴上截距相等的直线方程为()A.3x﹣2y=0 B.x+y﹣5=0C.3x﹣2y=0或x+y﹣5=0 D.2x﹣3y=0或x+y﹣5=0【考点】直线的截距式方程.【专题】计算题;分类讨论.【分析】分两种情况:当直线在两坐标轴上的截距都为0时,设直线l的方程为y=kx,把P 的坐标代入即可求出k的值,得到直线l的方程;当直线在两坐标轴上的截距不为0时,设直线l的方程为x+y=a,把P的坐标代入即可求出a的值,得到直线l的方程.【解答】解:①当直线在两坐标轴上的截距都为0时,设直线l的方程为:y=kx把点P(2,3)代入方程,得:3=2k,即所以直线l的方程为:3x﹣2y=0;②当直线在两坐标轴上的截距都不为0时,设直线l的方程为:把点P(2,3)代入方程,得:,即a=5所以直线l的方程为:x+y﹣5=0.故选C【点评】本题题考查学生会利用待定系数法求直线的解析式,直线方程的截距式的应用,不要漏掉截距为0的情况的考虑,考查了分类讨论的数学思想,是一道中档题7.将球的半径变为原来的两倍,则球的体积变为原来的()A.2倍B.8倍C.4倍D.0.5倍【考点】球的体积和表面积.【专题】规律型;空间位置关系与距离.【分析】根据“球的体积V=πr3”进行推导,进而得出结论.【解答】解:设球的半径为r,则原来的体积S=πr3,当半径变为原来的2倍时,即半径为2r,则体积V=π(2r)3=πr3×8,即这个球的体积就变为原来的8倍.故选B.【点评】解答此题要明确球的半径扩大n倍,其周长扩大n倍,面积扩大n2倍,体积扩大n3倍.8.若幂函数f(x)=x a在(0,+∞)上是增函数,则()A.a>0 B.a<0 C.a=0 D.不能确定【考点】幂函数的性质.【专题】计算题.【分析】由幂函数的性质可判断α的取值,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求【解答】解:由幂函数的性质可知,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求∵f(x)=x a在(0,+∞)上是增函数∴a>0故选A【点评】本题主要考查了幂函数的单调性的应用,解题中要注意α的符号对函数单调性的影响.属于基础试题9.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个B.3个C.2个D.1个【考点】并集及其运算.【专题】计算题.【分析】根据题意得到集合B是集合A的子集,所以求出集合A子集的个数即为集合B的个数.【解答】解:因为A∪B={1,2}=A,所以B⊆A,而集合A的子集有:∅,{1},{2},{1,2}共4个,所以集合B有4个.故选A【点评】本题重在理解A∪B=A表明B是A的子集,同时要求学生会求一个集合的子集.10.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外【考点】平面的基本性质及推论.【专题】计算题.【分析】由EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,知P在两面的交线上,由AC是两平面的交线,知点P必在直线AC上.【解答】解:∵EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,∴P在两面的交线上,∵AC是两平面的交线,所以点P必在直线AC上.故选A.【点评】本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答.11.关于斜二侧画法,下列说法正确的是()A.三角形的直观图可能是一条线段B.平行四边形的直观图一定是平行四边形C.正方形的直观图是正方形D.菱形的直观图是菱形【考点】平面图形的直观图.【专题】对应思想;定义法;空间位置关系与距离.【分析】根据斜二侧直观图的画法法则,直接判断选项的正确性即可.【解答】解:对于A,三角形的直观图仍然是一个三角形,命题A错误;对于B,平行四边形的直观图还是平行四边形,命题B正确;对于C,正方形的直观图不是正方形,应是平行四边形,命题C错误;对于D,菱形的直观图不是菱形,应是平行四边形,命题D错误.故选:B.【点评】本题考查了斜二侧画直观图的应用问题,注意平行x,y轴的线段,仍然平行坐标轴,不平行坐标轴的线段,只看它们的始点和终点,是基础题.12.多面体的直观图如图所示,则其正视图为()A.B.C.D.【考点】简单空间图形的三视图.【专题】计算题;规律型;空间位置关系与距离.【分析】直接利用三视图的画法,判断选项即可.【解答】解:应用可知几何体的正视图为:.故选:A.【点评】本题考查简单几何体的三视图,是基础题.二、填空题13.函数f(x8)=log2x,则f(16)的值是.【考点】函数的值.【专题】计算题.【分析】令x8=16,利用指数知识求得x=,再代入解析式右端求出即可.【解答】解:令x8=16,x8=24=8,解得x=,所以f(16)=log2=故答案为:【点评】本题考查函数值求解,要对函数的概念及表示方法有准确的理解和掌握.14.设a=sin(sin2008°),b=sin(cos2008°),c=cos(sin2008°),d=cos(cos2008°).则a,b,c,d从小到大的顺序是b<a<d<c.【考点】三角函数的化简求值.【专题】计算题;规律型;转化思想;三角函数的求值.【分析】先应用诱导公式化简sin2008°=﹣sin28°,cos2008°=﹣cos28°=﹣sin62°,从而a=﹣sin(sin28°),b=﹣sin(sin62°),c=cos(sin28°),d=cos(sin62°),再根据正弦、余弦函数的单调性即可判断a,b,c,d的大小.【解答】解:∵2012°=5×360°+208°,∴a=sin(sin2008°)=sin(sin208°)=sin(﹣sin28°)=﹣sin(sin28°)<0,b=sin(cos2008°)=sin(cos208°)=sin(﹣cos28°)=﹣sin(cos28°)<0,c=cos(sin2008°)=cos(sin208°)=cos(﹣sin28°)=cos(sin28°)>0,d=cos(cos2008°)=cos(cos208°)=cos(﹣cos28°)=cos(cos28°)>0,∵cos28°=sin62°,∴<sin32°<<sin62°,∴c>d,﹣b>﹣a,∴b<a<d<c故答案为:b<a<d<c.【点评】本题考查正弦函数、余弦函数的单调性及应用,注意单调区间,同时考查诱导公式的应用,是一道中档题.15.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.【考点】不等关系与不等式.【专题】计算题.【分析】根据“甜度”的定义,先表示出“甜度”为的b千克糖水中加入m(m>0)千克糖时的“甜度”:是,再由“糖水会更甜”,可知此时糖水的“甜度”大于原来糖水的“甜度”,即.【解答】解:∵b千克糖水中含a千克糖(0<a<b)时,糖水的“甜度”为,∴若在该糖水中加入m(c>0)千克糖,则此时的“甜度”是,又∵糖水会更甜,∴故答案为:【点评】本题考查生活常识中出现的不等式及运用不等式求解,易错点是得到加糖后糖的质量和糖水的质量.16.已知数列{log2(a n﹣1)},(n∈N*)为等差数列,且a1=3,a3=9(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】等差数列的前n项和.【专题】转化思想;综合法;等差数列与等比数列.【分析】(1)利用等差数列的通项公式及其对数的运算性质即可得出;(2)利用等比数列的前n项和公式即可得出.【解答】解:(1)设等差数列 {log2(a n﹣1)},(n∈N*)的公差为d.由且a1=3,a3=9,可得:log2(9﹣1)=log2(3﹣1)+2d,∴3=1+2d,解得d=1.∴log2(a n﹣1)=1+(n﹣1)=n,∴a n=2n+1.(2)由a n=2n+1.∴数列{a n}的前n项和S n=+n=2n+1﹣2+n.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.17.一物体受到与它运动方向相同的力:的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于.【考点】定积分在求面积中的应用.【专题】计算题;规律型;转化思想.【分析】本题是一个求变力做功的问题,可以利用积分求解,由题意,其积分区间是[0,1],被积函数是力的函数表达式,由积分公式进行计算即可得到答案【解答】解:由题意,的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于又===综上知,从x=0运动到x=1时F(x)所做的功等于故答案为【点评】本题考查定积分的应用,物理中的变力所做的功用定积分求解是定积分在物理中的重要应用,正确解答本题的关键是理解功与定积分的对应,用代数方法求解物理问题是一个学科之间结合的问题,在近几个的高考改革中,此类问题渐成热点18.空间直角坐标系中两点A(0,0,1),B(0,1,0),则线段AB的长度为.【考点】空间两点间的距离公式.【专题】计算题;空间位置关系与距离.【分析】根据空间两点之间的距离公式,将A、B两点坐标直接代入,可得本题答案.【解答】解:∵点A(0,0,1),点B(0,1,0),∴根据空间两点之间的距离公式,可得线段AB长|AB|==故答案为:【点评】本题给出空间两个定点,求它们之间的距离,着重考查了空间两点之间距离求法的知识,属于基础题.三、解答题19.已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(﹣a,b).(1)若直角坐标平面上的点M、A(0,﹣b),B(a,0)满足=(+),求点M的坐标;(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=﹣,证明:E为CD的中点;(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值X围.【考点】直线与圆锥曲线的综合问题.【专题】计算题;证明题;压轴题.【分析】(1)设M(x,y)根据=(+)分别用三点的坐标表示出三个向量,进而解得x和y,则M点坐标可得.(2)直线l1与椭圆方程联立消去y,根据判别式求得,a2k12+b2﹣p2>0,设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),利用韦达定理可求得x1+x2的表达式,进而求得x0,代入直线方程求得y0,两直线方程联立根据直线l2的斜率求得x=x0,y=y0进而判断出E为CD的中点;(3)先求出PQ的中点的坐标,进而求出直线OE的斜率,再由+=,知E为CD的中点,根据(2)可得CD的斜率,直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.欲使P1、P2存在,必须点E在椭圆内,进而求得q的取值X围.【解答】解:(1)设M(x,y)∵=(+),∴2(x+a,y﹣b)=(a,﹣2b)+(2a,﹣b)∴,解得x=y=﹣M点坐标为(,﹣)(2)由方程组,消y得方程(a2k′1+b2)x2+2a2k1px+a2(p2﹣b2)=0,因为直线l1:y=k1x+p交椭圆于C、D两点,所以△>0,即a2k12+b2﹣p2>0,设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),则x0==﹣,y0=k1x0+p=,由方程组,消y得方程(k2﹣k1)x=p,又因为k2=﹣,所以x==x0,y=k2x=y0故E为CD的中点;(3)求作点P1、P2的步骤:1°求出PQ的中点E(﹣,),2°求出直线OE的斜率k2==,3°由+=,知E为CD的中点,根据(2)可得CD的斜率k1=,4°从而得直线P1P2的方程:y﹣=(x+),5°将直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.欲使P1、P2存在,必须点E在椭圆内,所以+<1,化简得sinθ﹣cosθ<,∴sin(θ﹣)<,又0<q<p,所以﹣<θ﹣<arcsin,故q的取值X围是(0,+arcsin)【点评】本题主要考查了直线与圆锥曲线的综合问题.解题的前提是要求学生对基础知识有相当熟练的把握.20.在数列{a n}中,a1=1,a n+1=(1+)a n+,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.【考点】数列递推式.【专题】计算题;函数思想;数学模型法;等差数列与等比数列.【分析】(Ⅰ)把已知数列递推式变形,得到,然后利用累加法求数列的通项公式;(Ⅱ)分组后利用等差数列的前n项和及错位相减法求数列{a n}的前n项和S n.【解答】解(Ⅰ)由a n+1=(1+)a n+,得,∴,,,…,累加得:=.∴;(Ⅱ)=,令,则,=,∴,则.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,训练了累加法求数列的通项公式,是中档题.21.在三角形ABC中,,求三角形ABC的面积S.【考点】正弦定理的应用.【专题】计算题.【分析】先根据cosB求出sinB的值,再由两角和与差的正弦公式求出sinA的值,由余弦定理求出c的值,最后根据三角形的面积公式求得最后答案.【解答】解:由题意,得为锐角,,,由正弦定理得,∴.【点评】本题主要考查两角和与差的正弦公式和三角形面积公式的应用,属基础题.寿命/小时100~200 200~300 300~400 400~500 500~600个数20 30 80 40 30分组频数频率100~200200~300300~400400~500500~600合计(2)完成频率分布直方图;(3)估计电子元件寿命在100~400小时以内的概率;(4)估计电子元件寿命在400小时以上的概率.【考点】互斥事件的概率加法公式;频率分布直方图.【专题】计算题;作图题.【分析】(1)由题意知,本题已经对所给的数据进行分组,并且给出了每段的频数,根据频数和样本容量做出频率,填出频率分布表(2)结合前面所给的频率分布表,画出坐标系,选出合适的单位,画出频率分步直方图.(3)由累积频率分布图可以看出,寿命在100~400h内的电子元件出现的频率为0.65,我们估计电子元件寿命在100~400h内的概率为0.65.(4)由频率分布表可知,寿命在400h以上的电子元件出现的频率,我们估计电子元件寿命在400h以上的概率为0.35.【解答】解:(1)完成频率分布表如下:分组频数频率100~200 20 0.10200~300 30 0.15300~400 80 0.40400~500 40 0.20500~600 30 0.15合计200 1(2)完成频率分布直方图如下:(3)由频率分布表可知,寿命在100~400小时的电子元件出现的频率为0.10+0.15+0.40=0.65,所以估计电子元件寿命在100~400小时的概率为0.65(4)由频率分布表可知,寿命在400小时以上的电子元件出现的频率为0.20+0.15=0.35,所以估计电子元件寿命在400小时以上的概率为0.35【点评】本题在有些省份会作为高考答题出现,画频率分布条形图、直方图时要注意纵、横坐标轴的意义.通过本题可掌握总体分布估计的各种方法和步骤.23.求出函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.【考点】正弦函数的单调性.【专题】转化思想;转化法;三角函数的图像与性质.【分析】y=sin(﹣x)=﹣sin(x﹣),利用复合三角函数的单调性转化为求y=sin (x﹣),x∈[﹣2π,2π]的单调递减区间.【解答】解:y=sin(﹣x)=﹣sin(x﹣),要求函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.即求y=sin(x﹣),x∈[﹣2π,2π]的单调递减区间.∴由2kπ+≤x﹣≤+2kπ(k∈Z)得:4kπ+≤x≤+4kπ(k∈Z),∴y=sin(﹣x)的递增区间为[4kπ+,+4kπ](k∈Z),又x∈[﹣2π,2π],∴y=sin(﹣x)在x∈[﹣2π,2π]上的递增区间为[﹣2π,﹣]和[,2π].【点评】本题考查复合三角函数的单调性,由2kπ+≤x﹣≤+2kπ(k∈Z)求得y=sin(﹣x)的递增区间是关键,也是易错点,属于中档题.。

东城区高二数学(理)期末试卷答案

东城区高二数学(理)期末试卷答案

北京市东城区2015-2016学年上学期高二年级期末考试数学试卷(理科)答案一、选择题 1.A 2.D 3.C 4.B 5.C6.B解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个对角线长为2的正方形,,∴3=, 四棱锥底面的面积是12222=××∴四棱锥的体积是12323=××因此,本题正确答案是.2 7.A 8.A 9.D解:由题意知直线l 的斜率一定存在,故设方程为(1y k x +=,由圆心到直线的距离小于等于半径得:1,解得0k ≤,故直线l 的倾斜角的取值范围是π03⎡⎤⎢⎥⎣⎦,. 10.D二、填空题11.x y 43±= 1213.1714.6215.43 解:据题意,212F P F F =,1230F PF ∠=︒,∴12120F F P ∠=︒. ∴2PF x ∠ = 60°,∴2FP =23322a c a c ⎛⎫-=- ⎪⎝⎭∵122F F c =,∴322a c c -=, ∴34a c =,34c a = 即椭圆的离心率为34.16.⎣⎦ 解:分别取111,BB B C 的中点M N ,连接11,A M A N MN ,,显然NM ∥面AEF ,又1AA EN 为平行四边形,所以1A N AE ∥,所以面1A MN ∥面AEF ,所以P 在MN 上,当P 为MN 中点O 时,取得最小值,当P 在M 或N 时,取得最大值1A M =,1AO . 三、解答题17.解:⑴ 因为底面ABCD 是菱形,所以CD AB ∥.2分 又因为CD ⊄平面PAB ,4分且AB ⊂平面PAB , 所以CD ∥平面PAB .5分PEDCBA⑵ 因为PA PB =,点E 是AB 的中点,所以PE AB ⊥.6分因为平面PAB ⊥平面ABCD , 平面PAB 平面ABCD AB =, PE ⊂平面PAB ,8分 所以PE ⊥平面ABCD .9分因为AD ⊂平面ABCD , 所以PE AD ⊥.10分18.解:⑴ 设圆C 的圆心坐标为()a a ,,=即226921a a a a -+=++,解得1a =, 2分 所以222(11)(31)4r =-+-=,4分 所以圆C 的方程为22(1)(1)4x y -+-=.5分⑵ 依题意,圆C 的圆心到直线l 的距离为1,所以直线2x =符合题意.6分设直线l 方程为2(2)y k x +=-,即220kx y k ---=,1=,解得43k =-,所以直线l 的方程为42(2)3y x +=--,即4320x y +-=.9分 综上,直线l 的方程为20x -=或4320x y +-=.10分19.解:联立两条直线的方程,得到方程组10340.x y x y +-=⎧⎨-+=⎩,解此方程组,得347.4x y ⎧=-⎪⎪⎨⎪=⎪⎩,如图,平行四边形ABCD 的一个顶点是3744A ⎛⎫- ⎪⎝⎭,.2分设00()C x y ,,由题意,点()33M ,是线段AC 的中点, 所以03432x -=,07432y +=, 4分 解得0274x =,0174y =.5分由已知,直线AD 的斜率3AD k =, 因为直线BC AD ∥, 所以,直线BC 的方程为1727344y x ⎛⎫-=- ⎪⎝⎭, 即3160x y --=.7分由已知,直线AB 的斜率为1AB k =-. 因为直线CD AB ∥, 所以,直线CD 的方程为172744y x ⎛⎫-=-- ⎪⎝⎭, 即110x y +-=.9分因此,其他两边所在直线的方程是3160x y --=,110x y +-=. 10分20.解:⑴ 因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥, 因为BC AB ⊥,PAAB A =,所以BC ⊥平面PAB , 又AM ⊂平面PAB , 所以AM BC ⊥,因为PA AB =,M 为PB 的中点, 所以AM PB ⊥, 又PBBC B =,所以AM ⊥平面PBC .3分⑵ 如图,在平面ABC 内,作AZ BC ∥,则AP ,AB ,AZ 两两互相垂直, 建立空间直角坐标系A xyz -,则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =设平面APC 的法向量为()n x y z =,,,则 00n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,,即020.x y z =⎧⎨+=⎩,令1y =,则2z =-, 所以(0,1,2)n =-.5分由⑴可知(1,1,0)AM =为平面BPC 的法向量, 设n AM ,的夹角为α,则cos α, 因为二面角A PC B --为锐角, 所以二面角A PC B --. 7分⑶ 设()D u v w ,,是线段PC 上一点,且(01)PD PC λλ=≤≤,即(2)(221)u v w λ-=-,,,,, 所以22u λ=-,2v λ=,w λ=, 所以(2222)BD λλλ=--,,, 由0BD AC ⋅=,得45λ=. 9分因为4[01]5∈,,所以在线段PC 上存在点D ,使得BD AC ⊥,此时,45PD PC λ==. 11分21.解:⑴ 由已知,椭圆方程可设为22221(0)x y a b a b +=>>.1分因为两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2, 所以1b c ==,a =所求椭圆方程为2212x y +=.3分⑵ 因为直线l 过椭圆右焦点(10)F ,,且斜率为1, 所以直线l 的方程为1y x =-.4分设11()P x y ,,22()Q x y ,.由22221x y y x ⎧+=⎨=-⎩,,得23210y y +-=,解得12113y y =-=,,所以1212112||||||223POQ S OF y y y y =⋅-=-=△. 6分⑶ 假设在线段OF 上存在点(0)(01)M m m <<,,使得以MP ,MQ 为邻边的平行四边形是菱形.因为直线l 与x 轴不垂直,所以设直线l 的方程为(1)(0)y k x k =-≠.由2222(1)x y y k x ⎧+=⎨=-⎩,,可得2222(12)4220k x k x k +-+-=, 因为4222164(12)(22)8(1)0k k k k ∆=-+-=+>,所以22121222422,1212k k x x x x k k -+==++.8分设11()P x y ,,22()Q x y ,,PQ 的中点为00()N x y ,所以202212k x k =+,0212ky k -=+, 因为以MP ,MQ 为邻边的平行四边形是菱形, 所以MN PQ ⊥,1MN k k ⋅=-,所以222121212MNkk k k k kmk -+⋅=⋅=--+,整理得222221212k k m k k -=-+++,2222221212k k k m k k -+==++.所以22(0)12k m k k =≠+, 10分 所以102m <<.11分。

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。

甘肃省嘉峪关市高二上学期期末考试文科数学试题 有答案

甘肃省嘉峪关市高二上学期期末考试文科数学试题 有答案

嘉峪关市酒钢三中2015~2016学年第一学期期末考试高二数学(文科)试卷一、选择(在每小题给出的四个选项中,只有一项是符合题目要求的,共12×5=60分)1.已知1F (-3,0),2F (3,0),动点M 满足12+5MF MF =,则点M 的轨迹是( )A .双曲线 B. 椭圆 C. 线段 D.不存在2.中心在原点的双曲线,一个焦点为(0F 1,则双曲线的方程是( ) A .2212x y -= B .2212y x -= C .221x = D .221y -= 3.命题“若090C ∠=,则ABC ∆是直角三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是( )A .4B .2C . 0D . 14.过抛物线28y x =的焦点作倾斜角为45的直线l ,直线l 交抛物线于B A 、两点,则弦AB 的长是( )A. 8 B . 16 C .32 D . 645.已知两条曲线21y x =-与31y x =-在点0x 处的切线平行,则0x 的值为( ) A. 0 B.23- C.0 或 23- D. 0 或 1 6.下列命题中是真命题的是( )①“若220x y +≠,则x y 、不全为零”的否命题;②“正多边形都相似”的逆命题;③“若0m >,则20x x m +-=有实根”的逆否命题;④“2,+20x R x x ∃∈+≤”的否定.A. ①③④B.①②③④C.②③④D.①④ 7.已知椭圆()2222+10x y a b a b=>>,A 为左顶点,B 为短轴端点,F 为右焦点,且AB BF ⊥,则椭圆的离心率为( )A C.8.设点P 是双曲线2214x y -=上的点,12F F ,是其焦点,且1290F PF ∠=,则12F PF ∆的面积是( )A .4 B. 5 C. 1 D. 29.已知直线y kx =与曲线ln y x =相切,则k 的值为( )A.e B .e - C .1e -D .1e 10.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A.1(,1)4 B.1(,1)4- C.(1,2) D.(1,2)- 11.过原点的直线l 与双曲线22193x y -=-有两个交点,则直线l 的斜率的取值范围是( )A .⎛ ⎝⎭ B. ,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C. 33⎡-⎢⎣⎦ D. ,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭12.设抛物线24y x =的焦点为F ,过点()2,0M 的直线与抛物线相交于,A B 两点,与抛物线的准线相交于点C ,32BF =,则=BC AC( ) A. 1: 4 B. 1: 5 C. 1: 7 D. 1: 6二、填空(共4×5=20分)13.抛物线28y x =-的焦点坐标为______________.14.曲线22x y e x =+在点()0,2处的切线方程为_____________. 15.直线:1l y kx =+与双曲线22:1C x y -=仅有一个公共点,则k =_____________. 16.方程22+=141x y k k --表示的曲线为C ,给出下列四个命题: ①曲线C 不可能是圆;②若14k <<,则曲线C 为椭圆;③若曲线C 为双曲线,则1k <或4k >;④若曲线C 表示焦点在x 轴上的椭圆,则512k <<. 其中正确的是__________.三、解答题(6小题共70分,请在指定位置写出必要的文字说明、证明过程或演算步骤)17.(本题10分)已知命题:46p x -≤,命题22:210(0).q x x a a -+-≥> 若p ⌝是q 的充分不必要条件,求a 的取值范围.18.(本题12分)已知椭圆的中心在原点,它在x 轴上的一个焦点与短轴两端点连线互相垂直,且此焦点与x 轴上的较近端点间的距离为1),求椭圆方程.19.(本题12分)已知函数.93)(23a x x x x f +++-=(1)求)(x f 的单调区间;(2)若)(x f 在区间[]2,2-上的最大值为20,求a 的值.20.(本题12分)过定点()1,2P 的直线l 交双曲线()222210,0x y C a b a b-=>>:于,A B 两点,线段AB 的中点坐标为()2,4,. 求曲线C 的方程.21.(本题12分)已知椭圆C 上任意一点到椭圆两个焦点的距离之和为6.(1)求椭圆C 的方程;(2)设直线l 2:-=kx y 与椭圆C 交于B A ,两点,点()0,1P ,求直线l 的方程.22.(本题12分)已知函数x eax x f 1)(-=. (1)当1=a 时,求函数)(x f 的单调区间; (2)若对任意的1[2]2x ∈,,x x f >)(恒成立,求实数a 的取值范围.高二数学答案(文科)一.选择题DABBC ABCDA BD二.填空题 13.1032⎛⎫ ⎪⎝⎭,- 14.22y x =+15.1±±, ③④ 三.解答题17.:210p x -≤≤;:2p x ⌝<-或10x >;q :1x a ≤-或1x a ≥+p ⌝为q 的充分不必要条件12110a a -≥-⎧∴⎨+<⎩或12110a a ->-⎧⎨+≤⎩ 得: 3.a ≤18. 设椭圆方程为:()2222+=10x y a b a b>>,则由2221)b c a c a b c =⎧⎪-=⎨⎪-=⎩得4a b c ⎧=⎪⎨==⎪⎩. 故椭圆方程为:22+=13216x y . 19. (1))(x f 的单调递增区间为:()1,3-;单调递减区间为:(),1-∞-和()3+∞,.(2)由()'23690f x x x =-++=得1x =-.(1)5f a -=-,(2)+2f a -=,(2)22f a =+max (x)2220f a ∴=+=得2a =-20.设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩相减得:()()2121221212x x b y y x x y y a+-=-+ 即2242=8b a,得224.b a =又1a c +=且222a b c +=221,4a b ∴==故双曲线的方程为:2214y x -=. 21.(1)由已知62=a ,解得3=a , 所以3222=-=c a b ,所以椭圆C……4分 (2)得0312)31(22=+-+kx x k , 直线与椭圆有两个不同的交点,所以0)31(1214422>+-=∆k k 解得 设A (1x ,1y ),B (2x ,2y )……7分 PE ⊥AB ,1-=⋅AB PE k k ,解得1±=k , 经检验,符合题意,所以直线l 的方程为02=--y x 或02=++y x 。

高二数学期末考试题

高二数学期末考试题

高二数学期末考试题高二数学期末考试题2016孩子成功教育从好习惯培养开始,下面是店铺整理的高二数学期末考试题2016,大家一起来看看吧。

一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.命题“a=0,则ab=0”的逆否命题是( )A.若ab=0,则a=0B.若a≠0,则ab≠0C.若ab=0,则a≠0D.若ab≠0,则a≠02.椭圆 + =1的长轴长是( )A.2B.3C.4D.63.已知函数f(x)=x2+sinx,则f′(0)=()A.0B.﹣1C.1D.34.“a>1”是“a2<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.双曲线 =1的渐近线方程是( )A.y=±2xB.y=±4xC.y=± xD.y=± x6.已知y=f(x)的导函数f′(x)的图象如图所示,则下列结论正确的是( )A.f(x)在(﹣3,﹣1)上先增后减B.x=﹣2是函数f(x)极小值点C.f(x)在(﹣1,1)上是增函数D.x=1是函数f(x)的极大值点7.已知双曲线的离心率e= ,点(0,5)为其一个焦点,则该双曲线的标准方程为( )A. ﹣ =1B. ﹣ =1C. ﹣ =1D. ﹣ =18.函数f(x)=xlnx的单调递减区间为( )A.(﹣∞, )B.(0, )C.(﹣∞,e)D.(e,+∞)9.若方程+ =1表示焦点在y轴上的椭圆,则实数m的取值范围为( )A.(﹣∞,1)B.(1,2)C.(2,3)D.(3,+∞)10.已知命题p:∀x∈(0,+∞),2x>3x,命题q:∃x0∈(0,+∞),x >x ,则下列命题中的真命题是( )A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q11.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是( )A.(﹣∞,﹣3)∪(0,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞)D.(﹣3,0)∪(0,3)12.过点M(2,﹣1)作斜率为的直线与椭圆+ =1(a>b>0)相交于A,B两个不同点,若M是AB的中点,则该椭圆的离心率e=( )A. B. C. D.二、填空题:本大题共4个小题,每小题4分.、共16分.13.抛物线x2=4y的焦点坐标为.14.已知命题p:∃x0∈R,3 =5,则¬p为.15.已知曲线f(x)=xex在点P(x0,f(x0))处的切线与直线y=x+1平行,则点P的坐标为.16.已知f(x)=ax3+3x2﹣1存在唯一的零点x0,且x0<0,则实数a的取值范围是.三、解答题:本大题共7小题,共48分,解答应写出文字说明、证明过程或演算步骤.17.已知命题p:函数y=kx是增函数,q:方程+y2=1表示焦点在x轴上的椭圆,若p∧(¬q)为真命题,求实数k的取值范围.18.已知函数f(x)=2x3﹣6x2+m在[﹣2,2]上的最大值为3,求f(x)在[﹣2,2]上的最小值.19.已知点P(1,﹣2)在抛物线C:y2=2px(p>0)上.(1)求抛物线C的方程及其准线方程;(2)若过抛物线C焦点F的直线l与抛物线C相交于A,B两个不同点,求|AB|的最小值.20.已知函数f(x)=x﹣﹣2alnx(a∈R).(1)若函数f(x)在x= 处取得极值,求实数a的值;(2)求证:当a≤1时,不等式f(x)≥0在[1,+∞)恒成立.21.已知函数f(x)=x﹣﹣2alnx(a∈R).(1)若函数f(x)在x= 处取得极值,求实数a的值;(2)若不等式f(x)≥0在[1,+∞)恒成立,求实数a的取值范围.22.已知椭圆C:+ =1(a>b>0)的离心率e= ,点P(﹣,1)在该椭圆上.(1)求椭圆C的方程;(2)若点A,B是椭圆C上关于直线y=kx+1对称的两点,求实数k的取值范围.23.已知椭圆C: + =1(a>b>0)的离心率e= ,原点到直线 + =1的距离为 .(1)求椭圆C的方程;(2)若点A,B是椭圆C上关于直线y=kx+1对称的两点,求实数k的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.命题“a=0,则ab=0”的逆否命题是( )A.若ab=0,则a=0B.若a≠0,则ab≠0C.若ab=0,则a≠0D.若ab≠0,则a≠0【考点】四种命题间的逆否关系.【分析】根据互为逆否的两命题是条件和结论先逆后否来解答.【解答】解:因为原命题是“a=0,则ab=0”,所以其逆否命题为“若ab≠0,则a≠0”,故选D.2.椭圆 + =1的长轴长是( )A.2B.3C.4D.6【考点】椭圆的简单性质.【分析】直接利用椭圆的标准方程求解实轴长即可.【解答】解:椭圆 + =1的实轴长是:2a=6.故选:D.3.已知函数f(x)=x2+sinx,则f′(0)=()A.0B.﹣1C.1D.3【考点】导数的运算.【分析】求函数的导数,利用代入法进行求解即可.【解答】解:函数的导数f′(x)=2x+cosx,则f′(0)=cos0=1,故选:C.4.“a>1”是“a2<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由a2<1解得﹣1【解答】解:由a2<1解得﹣1∴“a>1”是“a2<1”的既不充分也不必要条件.故选:D.5.双曲线 =1的渐近线方程是( )A.y=±2xB.y=±4xC.y=± xD.y=± x【考点】双曲线的标准方程.【分析】利用双曲线的简单性质直接求解.【解答】解:双曲线 =1的渐近线方为,整理,得y= .故选:C.6.已知y=f(x)的导函数f′(x)的图象如图所示,则下列结论正确的是( )A.f(x)在(﹣3,﹣1)上先增后减B.x=﹣2是函数f(x)极小值点C.f(x)在(﹣1,1)上是增函数D.x=1是函数f(x)的极大值点【考点】利用导数研究函数的单调性.【分析】本小题考查导数的运用;根据导数值与0的关系判断各个选项即可.【解答】解:由图象得:﹣30,﹣2∴f(x)在(﹣3,﹣2)递增,在(﹣2,﹣1)递减,故选:A.7.已知双曲线的离心率e= ,点(0,5)为其一个焦点,则该双曲线的标准方程为( )A. ﹣ =1B. ﹣ =1C. ﹣ =1D. ﹣ =1【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣ =1(a,b>0),运用离心率公式和a,b,c的关系,解方程可得a=3,b=4,进而得到所求双曲线的方程.【解答】解:设双曲线的方程为﹣ =1(a,b>0),由题意可得e= = ,c=5,可得a=3,b= =4,即有双曲线的标准方程为﹣ =1.故选:D.8.函数f(x)=xlnx的单调递减区间为( )A.(﹣∞, )B.(0, )C.(﹣∞,e)D.(e,+∞)【考点】利用导数研究函数的单调性.【分析】求出函数的定义域,求出函数的导函数,令导函数小于等于0求出x的范围,写出区间形式即得到函数y=xlnx的单调递减区间.【解答】解:函数的定义域为x>0∵y′=lnx+1令lnx+1<0得0∴函数y=xlnx的单调递减区间是( 0, ),故选:B.9.若方程+ =1表示焦点在y轴上的椭圆,则实数m的取值范围为( )A.(﹣∞,1)B.(1,2)C.(2,3)D.(3,+∞)【考点】椭圆的简单性质.【分析】由题意可得m﹣1>3﹣m>0,解不等式即可得到所求范围.【解答】解:方程 + =1表示焦点在y轴上的椭圆,可得m﹣1>3﹣m>0,解得2故选:C.10.已知命题p:∀x∈(0,+∞),2x>3x,命题q:∃x0∈(0,+∞),x >x ,则下列命题中的真命题是( )A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q【考点】复合命题的真假.【分析】根据∀x∈(0,+∞),2x<3x,是真命题,再根据复合命题之间的判定方法即可判断出真假.【解答】解:命题p:∀x∈(0,+∞),2x>3x,是假命题,例如取x=2不成立;命题q:∵∀x∈(0,+∞),2x<3x,因此命题q是假命题,∴只有(¬p)∧(¬q)是真命题.故选:C.11.f(x),g(x)分别是定义在R上的.奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是( )A.(﹣∞,﹣3)∪(0,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞)D.(﹣3,0)∪(0,3)【考点】利用导数研究函数的单调性;函数奇偶性的性质.【分析】构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.【解答】解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h(3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故选:A12.过点M(2,﹣1)作斜率为的直线与椭圆+ =1(a>b>0)相交于A,B两个不同点,若M是AB的中点,则该椭圆的离心率e=( )A. B. C. D.【考点】椭圆的简单性质.【分析】利用点差法,结合M是线段AB的中点,斜率为 = = ,即可求出椭圆的离心率.【解答】解:设A(x1,y1),B(x2,y2),则x1+x2=4,y1+y2=﹣2,A,B两个不同点代入椭圆方程,可得 + =1, + =1,作差整理可得 + =0,∵斜率为 = = ,∴a=2b,∴c= = b,∴e= = .故选:C.下载文档。

四川省成都七中2015-2016学年高二上学期期末数学模拟试卷(理科)(一) 含解析

四川省成都七中2015-2016学年高二上学期期末数学模拟试卷(理科)(一) 含解析

2015-2016学年四川省成都七中高二(上)期末数学模拟试卷(理科)(一)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53 C.47,45,56D.45,47,532.执行如图的框图,第3次和最后一次输出的A的值是()A.7,9 B.5,11 C.7,11 D.5,93.对于线性回归方程,下列说法中不正确的是()A.直线必经过点B.x增加一个单位时,y平均增加个单位C.样本数据中x=0时,可能有D.样本数据中x=0时,一定有4.如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D﹣ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的是()A.①②B.②③C.③④D.①④5.若A、B两点的坐标分别是A(3cosa,3sina,1),B (2cosb,2sinb,1),则||的取值范围是( )A.B.C.(1,5) D.6.平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于( )A.6 B.5 C.4 D.37.已知直线l的倾斜角为α,且60°<α≤135°,则直线l斜率的取值范围是( )A.B.C.D.8.已知:,求z=x2+y2最小值为()A.13 B.C.1 D.9.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1 B.(x﹣2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x﹣2)2+(y﹣2)2=110.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.﹣2 B.﹣4 C.﹣6 D.﹣8 11.两个圆C1:x2+y2+2x+2y﹣2=0与C2:x2+y2﹣4x﹣2y+1=0的公切线有且仅有()A.1条B.2条C.3条D.4条12.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.2二、填空题:本大题共4小题,每小题4分,共16分。

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案龙岗区2015-2016学年第一学期期末质量监测试题高二(理科)数学本试卷共分为选择题和非选择题两部分,共22小题,满分150分,考试用时120分钟。

注意事项如下:1.答卷前,请检查答题卡是否整洁无缺损。

考生必须使用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上,并将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

2.选择题请使用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

不按以上要求作答的答案无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,请先划掉原来的答案,然后再写上新的答案。

不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.请保持答题卡的整洁,不折叠、不破损。

考试结束后,请将试卷和答题卡一并交回。

第Ⅰ卷选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题p:x R,sinx1,则下列哪个命题是对p的否定?A.p:x R,sinx-1B.p:x R,sinx≥-1C.p:x R,sinx≤-1D.p:x R,sin(x2y2)+x≠12.1<k<4是方程4-kk-1的充分不必要条件。

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知三角形ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为A.3B.2C.2/3D.4/34.在空间直角坐标系中,给定点M(2,-1,3),若点A与点M关于xOy平面对称,点B与点M关于x轴对称,则AB=?A.2B.4C.25D.375.当a<-1时,不等式(x-a)/(x+1)(x-3)≤0的解集是A.(-∞,-1)∪[a,3]B.(-∞,a)∪[-1,3]C.(-∞,a)∪(-1,3)D.(-∞,a]∪(-1,3)6.若椭圆(a>b>0)的方程为x^2/a^2+y^2/b^2=1,离心率为e,则双曲线x^2/a^2-y^2/b^2=1的离心率为?A.2√5/5B.√3/2C.√5/2D.√3/5以下省略)7.已知等比数列{a_n}中,a_3=7,前3项之和S_3=21,则公比q的值为1或-1.8.若不等式组{x+3y≥4,XXX表示平面区域被直线y=kx分为面积相等的两部分,则k的值是3/4.9.如图所示的5×5正方形表格中共有20个空格,若在每一个空格中填入一个正整数,使得每一行和每一列都成等差数列,则字母a所代表的正整数是18.10.不等式f(x)=ax^2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象大致是关于y轴对称的。

人教版高二(理科)第一学期期末考试数学试题-含答案

人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。

2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案

2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案

2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。

湖北省武汉市华中师大一附中高二数学上学期期末试卷 文(含解析)-人教版高二全册数学试题

湖北省武汉市华中师大一附中高二数学上学期期末试卷 文(含解析)-人教版高二全册数学试题

2015-2016学年某某省某某市华中师大一附中高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的1.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.2.若方程x2+y2+x﹣y+m2=0表示圆,则实数m的取值X围是()A.B.C.D.3.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样4.从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为奇数的概率是()A.B.C.D.5.直线(t为参数)被圆x2+y2=4截得的弦长等于()A.B.C.D.6.如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是()A.B.C.D.7.下列正确的个数是()(1)在频率分布直方图中,中位数左边和右边的直方图的面积相等.(2)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.(3)一个样本的方差是S2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据等总和等于60.(4)数据a1,a2,a3,…,a n的方差为σ2,则数据2a1,2a2,2a3,…,2a n的方差为4σ2.A.4 B.3 C.2 D.18.计算机是将信息转化为二进制数处理的,二进制即“逢二进一”如1101(2)表示二进制数,将它转化为十进制数为1×23+1×22+0×21+1×20=13,那么二进制数转化为十进制数为()A.22017﹣1 B.22016﹣1 C.22015﹣1 D.22014﹣19.直线与曲线x2﹣y|y|=1的交点个数为()A.0 B.1 C.2 D.310.记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y﹣4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为()A.B.C.D.11.正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为()A.B.C.D.12.双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是()A.1+2B.3+2C.4﹣2D.5﹣2二、填空题:本大题共4小题,每小题5分,共20分x 1 2 3 4y 1 3 5 7则y与x的线性回归方程为必过点.14.抛掷两颗质量均匀的骰子各一次,其中恰有一个点数为2的概率为.15.在极坐标系中,定点A(2,0),点B在直线ρcosθ+ρsinθ=0上运动,当线段AB最短时,点B的极坐标为.16.如图是计算++…+的值的程序框图,其中在判断框中应填入的条件是:i <.三、解答题:本大题共6小题,共70分,其中第17题10分,18至22题每题12分.解答应写出文字说明、证明过程或演算步骤17.已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心C在直线x+3y﹣15=0上.(1)求圆C的方程;(2)设点P在圆C上,求Rt△PAB的面积.18.某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高(保留四位小数).19.随着机动车数量的迅速增加,停车难已是很多小区共同面临的问题.某小区甲、乙两车共用一停车位,并且都要在该泊位停靠8小时,假定它们在一昼夜的时间段中随机到达,试求两车中有一车在停泊位时,另一车必须等待的概率.20.某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.男女性别科目文科 2 5理科10 3(1)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;(2)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2=(其中n=a+b+c+d))21.三棱锥A﹣BCD中,△BCD、△ACD均为边长为2的正三角形,侧棱,现对其四个顶点随机贴上写有数字1至8的8个标签中的4个,并记对应的标号为f(η)(η取值为A、B、C、D),E为侧棱AB上一点(1)求事件“f(C)+f(D)为偶数”的概率p1;(2)若|BE|:|EA|=f(B):f(A),求二面角E﹣CD﹣A的平面角θ大于的概率p2.22.在平面直角坐标系xOy中,已知点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0)(1)求动点E的轨迹方程,若动点E的轨迹和点A、B合并构成曲线C,讨论曲线C的形状;(2)当λ=﹣时,记曲线C的右焦点为F2,过点F2的直线l1,l2分别交曲线C于点P,Q和点M,N(点P、M、Q、N按逆时针顺序排列),且l1⊥l2,求四边形PMQN面积的最值.2015-2016学年某某省某某市华中师大一附中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的1.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.【考点】确定直线位置的几何要素.【专题】数形结合.【分析】本题是一个选择题,按照选择题的解法来做题,由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax 递减,则y=x+a与y轴的交点在y轴的负半轴上,得到结果.【解答】解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选C.【点评】本题考查确定直线为主的几何要素,考查斜率和截距对于一条直线的影响,是一个基础题,这种题目也可以出现在直线与圆锥曲线之间的图形的确定.2.若方程x2+y2+x﹣y+m2=0表示圆,则实数m的取值X围是()A.B.C.D.【考点】圆的一般方程.【专题】计算题;规律型;方程思想;直线与圆.【分析】由二元二次方程表示圆的条件得到m的不等式,解不等式即可得到结果.【解答】解:方程x2+y2+x﹣y+m2=0表示一个圆,则1+1﹣4m2>0,∴.故选:B.【点评】本题考查二元二次方程表示圆的条件,属基础知识的考查,本题解题的关键是看清楚所表示的二元二次方程的各个系数之间的关系.3.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样【考点】简单随机抽样;系统抽样方法.【分析】根据抽样的不同方式,选择合适的名称,第一种是简单随机抽样,第二种编号,选择学号最后一位为3的同学,这种抽样是系统抽样.【解答】解:学生会的同学随机对24名同学进行调查,是简单随机抽样,对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,是系统抽样,故选D【点评】抽样包括简单随机抽样、分层抽样、系统抽样,根据条件选择合适的抽样方法,抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,4.从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为奇数的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】计算题;对应思想;综合法;概率与统计.【分析】分别求出所有的基本事件个数和符合条件的基本事件个数,使用古典概型的概率计算公式求出概率.【解答】解:从5个数字中随机抽取2个不同的数字共有=10种不同的抽取方法,而两数字和为偶数则必然一奇一偶,共有×=6种不同的抽取方法,∴两个数的和为奇数的概率P==.故选C.【点评】本题考查了古典概型的概率公式,通常使用列举法来计算,有时也可用排列组合公式来解决.5.直线(t为参数)被圆x2+y2=4截得的弦长等于()A.B.C.D.【考点】直线与圆相交的性质.【专题】计算题;方程思想;综合法;直线与圆.【分析】直线化为普通方程,求出圆心到直线的距离,利用勾股定理求出弦长.【解答】解:直线(t为参数)的普通方程为x﹣2y+3=0,圆心到直线的距离d=,∴直线(t为参数)被圆x2+y2=4截得的弦长等于2=.故选:A.【点评】本题考查直线的参数方程,考查直线与圆的位置关系,考查学生的计算能力,比较基础.6.如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是()A.B.C.D.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义,可求出|F2A|=2,|F1F2|=4,进而有|F1A|+|F2A|=6,由此可求C2的离心率.【解答】解:由题意知,|F1F2|=|F1A|=4,∵|F1A|﹣|F2A|=2,∴|F2A|=2,∴|F1A|+|F2A|=6,∵|F1F2|=4,∴C2的离心率是=.故选B.【点评】本题考查椭圆、双曲线的几何性质,考查学生的计算能力,正确运用椭圆、双曲线的几何性质是关键.7.下列正确的个数是()(1)在频率分布直方图中,中位数左边和右边的直方图的面积相等.(2)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.(3)一个样本的方差是S2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据等总和等于60.(4)数据a1,a2,a3,…,a n的方差为σ2,则数据2a1,2a2,2a3,…,2a n的方差为4σ2.A.4 B.3 C.2 D.1【考点】众数、中位数、平均数;极差、方差与标准差.【专题】计算题.【分析】根据频率分步直方图中中位数的求法知(1)正确,根据平均数和方差的特点知(2)正确.根据方差的公式知(3)正确,根据方差的性质知(4)正确.【解答】解:在频率分布直方图中,中位数左边和右边的直方图的面积相等,故(1)正确,如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变,故(2)正确,一个样本的方差是S2=[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2],则这组数据等总和等于20×3=60,故(3)正确,数据a1,a2,a3,…,a n的方差为σ2,则数据2a1,2a2,2a3,…,2a n的方差为4σ2.故(4)正确.综上可知4个命题都正确,故选A.【点评】本题考查众数,中位数,平均数和方差,本题解题的关键是理解这几个特征数的特点与求法,本题是一个基础题.8.计算机是将信息转化为二进制数处理的,二进制即“逢二进一”如1101(2)表示二进制数,将它转化为十进制数为1×23+1×22+0×21+1×20=13,那么二进制数转化为十进制数为()A.22017﹣1 B.22016﹣1 C.22015﹣1 D.22014﹣1【考点】进位制.【专题】转化思想;转化法;等差数列与等比数列;算法和程序框图.【分析】根据二进制与十进制的换算关系,把二进制数转化为十进制数,再用等比数列求和得出结果.【解答】解:根据题意,二进制数转化为十进制数为1×22015+1×22014+…+1×22+1×21+1×20=22015+22014+…+22+2+1==22016﹣1.故选:B.【点评】本题主要考查了二进制、等比数列的前n项和公式的应用问题,二进制转换为十进制方法:按权重相加法,即将二进制每位上的数乘以权(即该数位上的1表示2的多少次方),然后相加之和即是十进制数.9.直线与曲线x2﹣y|y|=1的交点个数为()A.0 B.1 C.2 D.3【考点】直线与圆锥曲线的关系.【专题】计算题;规律型;数形结合;转化思想;圆锥曲线的定义、性质与方程.【分析】作出曲线x2﹣y|y|=1的图形,画出y=x+的图形,即可得出结论.【解答】解:当y≥0时,曲线方程为x2﹣y2=1,图形为双曲线在x轴的上侧部分;当y<0时,曲线方程为y2+x2=1,图形为圆在x轴的下方部分;如图所示,∵y=x+与y2+x2=1相交,渐近线方程为y=±x∴直线y=x+与曲线x2﹣y2=1的交点个数为0.故选:B.【点评】本题考查直线与圆锥曲线的关系,题目中所给的曲线是部分双曲线的椭圆组成的图形,只要注意分类讨论就可以得出结论,本题是一个基础题.10.记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y﹣4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为()A.B.C.D.【考点】几何概型.【专题】概率与统计.【分析】由题意,根据几何概型的公式,只要求出平面区域Ω1,Ω2的面积,利用面积比求值.【解答】解:由题意,两个区域对应的图形如图,其中,,由几何概型的公式可得点P落在区域Ω2中的概率为;故选B.【点评】本题考查了几何概型的概率求法,解答本题的关键是分别求出平面区域Ω1,Ω2的面积,利用几何概型公式求值.11.正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】转化思想;综合法;概率与统计.【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数字分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可.【解答】解:抛两个正四面体,共有4×4=16个基本事件,向下数字为1与2的基本事件共有2个,分别是(1,2)和(2,1),∴向下数字为1与2的概率P==.故选C.【点评】本题考查了古典概型的概率计算,将所求问题转化为向下数字为1和2是解题关键.12.双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是()A.1+2B.3+2C.4﹣2D.5﹣2【考点】双曲线的简单性质.【专题】计算题;压轴题.【分析】设|AF1|=|AB|=m,计算出|AF2|=(1﹣)m,再利用勾股定理,即可建立a,c的关系,从而求出e2的值.【解答】解:设|AF1|=|AB|=m,则|BF1|=m,|AF2|=m﹣2a,|BF2|=m﹣2a,∵|AB|=|AF2|+|BF2|=m,∴m﹣2a+m﹣2a=m,∴4a=m,∴|AF2|=(1﹣)m,∵△AF1F2为Rt三角形,∴|F1F2|2=|AF1|2+|AF2|2∴4c2=(﹣)m2,∵4a=m∴4c2=(﹣)×8a2,∴e2=5﹣2故选D.【点评】本题考查双曲线的标准方程与性质,考查双曲线的定义,解题的关键是确定|AF2|,从而利用勾股定理求解.二、填空题:本大题共4小题,每小题5分,共20分13.已知x与y之间的一组数据:x 1 2 3 4y 1 3 5 7则y与x的线性回归方程为必过点(2.5,2).【考点】线性回归方程.【专题】计算题;规律型;概率与统计.【分析】求出样本中心即可得到结果.【解答】解:由题意可知:==2.5.=2.y与x的线性回归方程为必过点(2.5,2).故答案为:(2.5,2).【点评】本题考查回归直线方程的应用,样本中心的求法,考查计算能力.14.抛掷两颗质量均匀的骰子各一次,其中恰有一个点数为2的概率为.【考点】古典概型及其概率计算公式.【专题】计算题;对应思想;综合法;概率与统计.【分析】求出所有的基本事件个数和符合要求的事件个数,代入古典概型的概率公式即可.【解答】解:抛掷两颗质量均匀的骰子各一次共有6×6=36个基本事件,其中恰有一个点数为2的事件共有10个,分别是(2,1),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2),∴恰有一个点数为2的概率P==.故答案为.【点评】本题考查了古典概型的概率计算,属于基础题.15.在极坐标系中,定点A(2,0),点B在直线ρcosθ+ρsinθ=0上运动,当线段AB最短时,点B的极坐标为(1,).【考点】简单曲线的极坐标方程.【专题】计算题;转化思想;综合法;坐标系和参数方程.【分析】求出动点B在直线x+y=0上运动,当线段AB最短时,直线AB垂直于直线x+y=0,由此能求出点B的极坐标.【解答】解:∵x=ρcosθ,y=ρsinθ,代入直线ρcosθ+ρsinθ=0,可得x+y=0…①,∵在极坐标系中,定点A(2,0),∴在直角坐标系中,定点A(2,0),∵动点B在直线x+y=0上运动,∴当线段AB最短时,直线AB垂直于直线x+y=0,∴k AB=,设直线AB为:y=(x﹣2),即x﹣﹣2=0,…②,联立方程①②求得交点B(),∴ρ==1,tan==﹣,∴θ=.∴点B的极坐标为(1,).故答案为:(1,).【点评】本题考查点的极坐标的求法,是基础题,解题时要认真审题,注意极坐标和直角坐标互化公式的合理运用.16.如图是计算++…+的值的程序框图,其中在判断框中应填入的条件是:i<10.【考点】程序框图.【专题】算法和程序框图.【分析】模拟程序框图的运行过程,得出该题是当型循环结构,应先判断是否满足条件,再执行循环体,共执行了9次循环运算,从而得出结论.【解答】解:模拟程序框图的运行过程,知赋值i=1,m=0,n=0.判断满足条件,执行i=1+1=2,m=0+1=1,n=0+;判断满足条件,执行i=2+1=3,m=1+1=2,n=+;判断满足条件,执行i=3+1=4,m=2+1=3,n=++;判断满足条件,执行i=4+1=5,m=3+1=4,n=+++;…判断满足条件,执行i=9+1=10,m=8+1=9,n=+++…+;判断不满足条件,输出n=+++…+,算法结束.由此看出i=10时不满足10<10.所以判断框中的条件应是i<10.故答案为:i<10.【点评】本题考查了程序框图的应用问题,解题时应根据题意,模拟程序框图的运行过程,以便得出正确的结果,是基础题三、解答题:本大题共6小题,共70分,其中第17题10分,18至22题每题12分.解答应写出文字说明、证明过程或演算步骤17.已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心C在直线x+3y﹣15=0上.(1)求圆C的方程;(2)设点P在圆C上,求Rt△PAB的面积.【考点】圆的标准方程.【专题】计算题;方程思想;数形结合法;直线与圆.【分析】(1)圆心C为AB的垂直平分线和直线x+3y﹣15的交点,解之可得C(﹣3,6),由距离公式可得半径,进而可得所求圆C的方程;(2)求出|AB|,由题意可得角A或角B为直角,可知Rt△PAB的斜边长为圆的直径,由勾股定理求得另一直角边长,则Rt△PAB的面积可求.【解答】解:(1)依题意所求圆的圆心C为AB的垂直平分线和直线x+3y﹣15=0的交点,∵AB的中点为(1,2),斜率为=1,∴AB的垂直平分线的方程为y﹣2=﹣(x﹣1),即y=﹣x+3,联立,解得,即圆心C(﹣3,6).∴半径r=.∴所求圆C的方程为(x+3)2+(y﹣6)2=40;(2)如图,|AB|=,PA或PB为圆的直径,等于,∴Rt△PAB的另一条直角边为,∴Rt△PAB的面积为×4×8=32.【点评】本题考查圆的标准方程的求法,考查了直线与圆的性质,训练了数形结合的解题思想方法,属中档题.18.某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高(保留四位小数).【考点】茎叶图;频率分布直方图.【专题】数形结合;数学模型法;概率与统计.【分析】(1)利用茎叶图和频率分布直方图确定分数在[50,60)的面积,然后求出对应的频率和人数.(2)利用茎叶图计算出分数在[80,90)之间的人数,以及对应的频率,然后计算出对应矩形的高【解答】解:(1)由茎叶图可知分数在[50,60)的人数为3人,分数在[50,60)的矩形的面积为0.0125×10=0.125,即分数在[50,60)的频率为0.125;设全班人数为n人,则=0.125,解得n=24(人);(2)则分数在[80,90)之间的人数为24﹣(3+7+10+2)=2人.则对应的频率为=,所以=≈0.0083,即频率分布直方图中[80,90)间的矩形的高为0.0083.【点评】本题考查了茎叶图和频率分布直方图的识别和应用问题,是基础题目.19.随着机动车数量的迅速增加,停车难已是很多小区共同面临的问题.某小区甲、乙两车共用一停车位,并且都要在该泊位停靠8小时,假定它们在一昼夜的时间段中随机到达,试求两车中有一车在停泊位时,另一车必须等待的概率.【考点】几何概型.【专题】数形结合;数学模型法;概率与统计.【分析】先确定概率类型是几何概型中的面积类型,再设甲到x点,乙到y点,建立甲先到,乙先到满足的条件,再画出并求解0<x<24,0<y<24可行域面积,再求出满足条件的可行域面积,由此求出概率.【解答】解:设甲、乙两车达泊位的时刻分别为x,y.则作出如图所示的区域:区域D的面积S1=242,区域d的面积S2=242﹣162.∴P===.即两车中有一车在停泊位时另一车必须等待的概率为.【点评】本题主要考查了建模与解模能力,解答时应利用线性规划作出事件对应的平面区域,再利用几何概型概率公式求出对应事件的概率.20.某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.男女性别科目文科 2 5理科10 3(1)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;(2)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2=(其中n=a+b+c+d))【考点】独立性检验.【专题】计算题;概率与统计.【分析】(1)由题意知本题是一个古典概型,求出事件发生所包含的事件和符合条件的事件数,得到概率.(2)根据所给的表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,得到有95%以上的把握认为学生选报文理科与性别有关.【解答】解:(1)从报考文科的2名男生,报考理科的3名女生中任取3人,有=10种,其中全是女生的情况只有1种,∴求3人中既有男生也有女生的概率为1﹣=;(2)χ2== 4.43>3.841,可知有95%以上的把握认为学生选报文理科与性别有关.【点评】本题是一个概率与统计的综合题目,是一个考查的比较全面的解答题,这种题目可以出现在大型考试中,解决本题是要注意列举做到不重不漏.21.三棱锥A﹣BCD中,△BCD、△ACD均为边长为2的正三角形,侧棱,现对其四个顶点随机贴上写有数字1至8的8个标签中的4个,并记对应的标号为f(η)(η取值为A、B、C、D),E为侧棱AB上一点(1)求事件“f(C)+f(D)为偶数”的概率p1;(2)若|BE|:|EA|=f(B):f(A),求二面角E﹣CD﹣A的平面角θ大于的概率p2.【考点】几何概型.【专题】分类讨论;数形结合法;概率与统计.【分析】(1)用M1表示“f(C)和f(D)均为奇数”,M2表示“f(C)和f(D)均为偶数”,计算P(M1)与P(M2)的值,再求“f(C)+f(D)为偶数”的概率P1=P(M1)+P(M2);(2)画出图形,结合图形,找出二面角E﹣CD﹣A的平面角θ,计算θ=时的值,θ>时的值,讨论f(B)=1、2或大于等于3时,f(A)的可能取值,从而求出P2的值.【解答】解:(1)用M1表示“f(C)+f(D)为奇数”,M2表示“f(C)+f(D)为偶数”,由题意知,P(M1)==,P(M2)==;记“f(C)+f(D)为偶数”为事件Q,则Q=M1+M2,所以P1=P(M1)+P(M2)=;…4分(2)如图,取CD中点F,连结BF、AF、EF,因为△BCD、△ACD均为边长为2的正三角形,所以AF⊥CD,BF⊥CD,因此CD⊥平面ABF,所以∠AFE为二面角E﹣CD﹣A的平面角θ;…6分又AF=BF==AB,所以∠AFB=;若θ=,则∠EFB=﹣=,此时====+1,所以θ>即>+1;…8分当f(B)=1时,f(A)≥3,所以f(A)可取3,4,5,6,7,8共6个值;当f(B)=2时,f(A)≥6,所以f(A)可取6,7,8共3个值;当f(B)≥3时,f(A)≥9,所以f(A)不存在;所以P2==.…12分【点评】本题考查了概率的计算与应用问题,考查了数形结合法与分类讨论思想的应用问题,是全国高中数学竞赛题目,属于难题.22.在平面直角坐标系xOy中,已知点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0)(1)求动点E的轨迹方程,若动点E的轨迹和点A、B合并构成曲线C,讨论曲线C的形状;(2)当λ=﹣时,记曲线C的右焦点为F2,过点F2的直线l1,l2分别交曲线C于点P,Q和点M,N(点P、M、Q、N按逆时针顺序排列),且l1⊥l2,求四边形PMQN面积的最值.【考点】轨迹方程.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)设动点E的坐标为(x,y),由点点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0),知•=λ(λ≠0),由此能求出动点E的轨迹C的方程.(2)分斜率存在与存在分别讨论,利用直线与椭圆联立,根据韦达定理及弦长公式,确定面积的表达式,即可求得结论.【解答】解:(1)设动点E的坐标为(x,y),∵点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0),∴•=λ(λ≠0),整理,得x2﹣=2,x≠±,∴动点E的轨迹C的方程为﹣=1.λ=﹣1,曲线C表示圆;λ<﹣1,焦点在y轴上的椭圆;﹣1<λ<0,焦点在x轴上的椭圆;λ>0,焦点在x轴上的双曲线;(2)当λ=﹣时,记曲线C:+y2=1的右焦点为F2(1,0)(ⅰ)若l1与l2中一条斜率不存在,另一条斜率为0,则S==2…(ⅱ)若l1与l2得斜率均存在,设l1:y=k(x﹣1)与椭圆方程联立,消去y可得(1+2k2)x2﹣4k2x+2k2﹣2=0,设P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=∴|PQ|=|x1﹣x2|=同理可得|MN|=…S=|PQ||MN|==由≥2,得…由(ⅰ)(ⅱ)知,S min=,S max=2 (12)【点评】本题考查动点的轨迹方程的求法,考查直线与椭圆的位置关系,考查韦达定理的运用,正确表示四边形PMQN的面积是关键.。

北京市昌平区高二数学上学期期末试卷 理(含解析)

北京市昌平区高二数学上学期期末试卷 理(含解析)

2015-2016学年北京市昌平区高二(上)期末数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.抛物线y2=10x的焦点到准线的距离是()A.B.5 C.D.102.过点(2,﹣1)且倾斜角为60°的直线方程为()A.﹣1=0 B.﹣3=0 C. +1=0 D.3.若命题p是真命题,命题q是假命题,则下列命题一定是真命题的是()A.p∧q B.(¬p)∨q C.(¬p)∧q D.(¬p)∨(¬q)4.已知平面α和直线a,b,若a∥α,则“b⊥a”是“b⊥α”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.如图,在正方体ABCD﹣A1B1C1D1中,点M,N分别是面对角线A1B与B1D1的中点,若=, =, =,则=()A.(+﹣)B.(+﹣)C.(﹣)D.(﹣)6.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x7.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+2B.2+C.4+2D.4+8.从点P(2,﹣1)向圆x2+y2﹣2mx﹣2y+m2=0作切线,当切线长最短时m的值为()A.﹣1 B.0 C.1 D.29.已知点F1,F2是椭圆C: =1的焦点,点M在椭圆C上且满足|+|=2,则△MF1F2的面积为()A.B.C.1 D.210.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点M是左侧面ADD1A1上的一个动点,满足•=1,则与的夹角的最大值为()A.30° B.45° C.60° D.75°二、填空题(本大题共6小题,每小题5分,共30分)11.若命题P:∃x∈R,x2+2x+2>0,则¬p:.12.已知=(1,﹣3,1),=(﹣1,1,﹣3),则|﹣|= .13.若直线(1+a)x+y+1=0与直线2x+ay+2=0平行,则a的值为.14.如图,在长方体ABCD﹣A1B1C1D1中,设 AD=AA1=1,AB=2,P是C1D1的中点,则所成角的大小为, = .15.已知P是抛物线y2=8x上的一点,过点P向其准线作垂线交于点E,定点A(2,5),则|PA|+|PE|的最小值为;此时点P的坐标为.16.已知直线l:kx﹣y+1=0(k∈R).若存在实数k,使直线l与曲线C交于A,B两点,且|AB|=|k|,则称曲线C具有性质P.给定下列三条曲线方程:①y=﹣|x|;②x2+y2﹣2y=0;③y=(x+1)2.其中,具有性质P的曲线的序号是.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知圆C:x2+y2﹣2x﹣4y+1=0.(Ⅰ)求过点M(3,1)的圆C的切线方程;(Ⅱ)若直线l:ax﹣y+4=0与圆C相交于A,B两点,且弦AB的长为,求a的值.18.在直平行六面体ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.(Ⅰ)求证:OC1∥平面AB1D1(Ⅱ)求证:平面AB1D1⊥平面ACC1A1(Ⅲ)求三棱锥A1﹣AB1D1的体积.19.已知椭圆C: =1(a>b>0)的离心率为,且经过点A(0,﹣1).(Ⅰ)求椭圆C的标准方程;(Ⅱ)如果过点的直线与椭圆交于M,N两点(M,N点与A点不重合),求证:△AMN为直角三角形.20.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.(Ⅰ)求证:MN∥BC;(Ⅱ)若M,N分别为PB,PC的中点,①求证:PB⊥DN;②求二面角P﹣DN﹣A的余弦值.21.抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.(Ⅰ)求p的值;(Ⅱ)线段AB的垂直平分线l与x轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(Ⅲ)求直线l的斜率的取值范围.2015-2016学年北京市昌平区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.抛物线y2=10x的焦点到准线的距离是()A.B.5 C.D.10【考点】抛物线的简单性质.【分析】根据抛物线的标准方程,可求得p,再根据抛物线焦点到准线的距离是p,进而得到答案.【解答】解:2p=10,p=5,而焦点到准线的距离是p.故抛物线y2=10x的焦点到准线的距离是5故选B2.过点(2,﹣1)且倾斜角为60°的直线方程为()A.﹣1=0 B.﹣3=0 C. +1=0 D.【考点】直线的点斜式方程.【分析】由直线的倾斜角求出直线的斜率,代入直线方程的点斜式,整理为一般式得答案.【解答】解:∵直线的倾斜角为60°,∴斜率k=tan60°=,又直线过点(2,﹣1),由直线方程的点斜式得:y+1=,化为一般式:.故选:A.3.若命题p是真命题,命题q是假命题,则下列命题一定是真命题的是()A.p∧q B.(¬p)∨q C.(¬p)∧q D.(¬p)∨(¬q)【考点】复合命题的真假.【分析】根据命题q是假命题,命题p是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案.【解答】解:∵命题q是假命题,命题p是真命题,∴“p∧q”是假命题,即A错误;“¬p∨q”是假命题,即B错误;“¬p∧q”是假命题,即C错误;“¬p∨¬q”是真命题,故D正确;故选:D.4.已知平面α和直线a,b,若a∥α,则“b⊥a”是“b⊥α”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由a∥α,b⊥α,可得b⊥a,反之不成立,可能b与α相交或平行.即可得出.【解答】解:由a∥α,b⊥α,可得b⊥a,反之不成立,可能b与α相交或平行.∴“b⊥a”是“b⊥α”的必要不充分条件.故选:B.5.如图,在正方体ABCD﹣A1B1C1D1中,点M,N分别是面对角线A1B与B1D1的中点,若=, =, =,则=()A.(+﹣)B.(+﹣)C.(﹣)D.(﹣)【考点】空间向量的加减法.【分析】由空间向量运算法则得=,由此能求出结果.【解答】解:在正方体ABCD﹣A1B1C1D1中,∵点M,N分别是面对角线A1B与B1D1的中点, =, =, =,∴==++=(+)++()=(﹣+)++(﹣﹣)=﹣+=().故选:D.6.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质.【分析】运用离心率公式,再由双曲线的a,b,c的关系,可得a,b的关系,再由渐近线方程即可得到.【解答】解:由双曲线的离心率为,则e==,即c=a,b===a,由双曲线的渐近线方程为y=x,即有y=x.故选D.7.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+2B.2+C.4+2D.4+【考点】由三视图求面积、体积.【分析】根据三视图作出棱锥直观图,根据棱锥的结构特征计算每个侧面的面积.【解答】解:根据三视图作出三棱锥P﹣ABC的直观图,P在底面ABC中的射影为AB的中点D,AB⊥AC,PD=1,AB=2,AC=.∴S△PAB===1.S△ABC===.由PD⊥平面ABC得PD⊥AC,故而AC⊥平面PAD.∴AC⊥PA.∵PA==,∴S△PAC===1.由勾股定理得PB==,PC==2,BC==,∴PB2+PC2=BC2,∴PB⊥PC.∴S△PBC===.∴三棱锥额表面积S=1++1+=2+2.故选A.8.从点P(2,﹣1)向圆x2+y2﹣2mx﹣2y+m2=0作切线,当切线长最短时m的值为()A.﹣1 B.0 C.1 D.2【考点】圆的切线方程.【分析】确定圆心与半径,利用切线长最短时,CP最小,可得结论.【解答】解:圆x2+y2﹣2mx﹣2y+m2=0,可化为圆(x﹣m)2+(y﹣1)2=1,圆心C(m,1),半径为1,切线长最短时,CP最小,|CP|=,∴m=2时,CP最小,切线长最短.故选:D.9.已知点F1,F2是椭圆C: =1的焦点,点M在椭圆C上且满足|+|=2,则△MF1F2的面积为()A.B.C.1 D.2【考点】椭圆的简单性质.【分析】由椭圆性质和余弦定理推导出cos∠F1MF2=90°,由此利用椭圆定义和定弦定理能求出△MF1F2的面积.【解答】解:∵点F1,F2是椭圆C: =1的焦点,点M在椭圆C上且满足|+|=2,∴+2||•||cos∠F1MF2=12,①由余弦定理得﹣2=12,②联立①②,得:cos∠F1MF2=90°,∵|MF1|+|MF2|=2a=4,∴=16,∴|MF1|•|MF2|=(16﹣12)=2,∴△MF1F2的面积S=|MF1|•|MF2|=×2=1.故选:C.10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点M是左侧面ADD1A1上的一个动点,满足•=1,则与的夹角的最大值为()A.30° B.45° C.60° D.75°【考点】平面向量数量积的运算.【分析】先建立空间坐标系,再根据向量的坐标运算和向量的夹角公式计算即可.【解答】解:以D为坐标原点,以DA为x轴,DC为y轴,DD1为z轴,建立空间坐标系,如图所示,∵M是左侧面ADD1A1上的一个动点,设点M(x,0,z),其中(0≤x≤1,0≤z≤1),∴B(1,1,0),=(0,1,1),∴=(﹣1,0,1),=(x﹣1,﹣1,z),∴•=1﹣x+z=1,即x=z,||=,||==,设与的夹角为θ,∴cosθ==•,设f(x)=x2﹣x+1,∴f(x)在[0,]上单调递减,在[,1]上单调递增,∴f(0)=1,f()=,∴≤f(x)≤1,∴≤cosθ≤,∴θ=60°,故选:C.二、填空题(本大题共6小题,每小题5分,共30分)11.若命题P:∃x∈R,x2+2x+2>0,则¬p:∀x∈R,x2+2x+2≤0.【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行求解.【解答】解:命题是特称命题,则命题的否定是:∀x∈R,x2+2x+2≤0,故答案为:∀x∈R,x2+2x+2≤012.已知=(1,﹣3,1),=(﹣1,1,﹣3),则|﹣|= 6 .【考点】空间向量运算的坐标表示.【分析】根据空间向量的坐标运算,求出﹣,再求它的模长.【解答】解:∵=(1,﹣3,1),=(﹣1,1,﹣3),∴﹣=(2,﹣4,4),∴|﹣|==6.故答案为:6.13.若直线(1+a)x+y+1=0与直线2x+ay+2=0平行,则a的值为1或﹣2 .【考点】直线的一般式方程与直线的平行关系.【分析】根据两直线平行时方程的系数关系,列出方程求出a的值【解答】解:∵直线(a+1)x+y+1=0与直线2x+ay+2=0互相平行,∴a(a+1)﹣2=0,即a2+a﹣2=0;解得a=1或a=﹣2;当a=1时,2x+y+1=0,2x+y+2=0,平行,符合题意,a=﹣2时,x﹣y﹣1=0,x﹣y+1=0,平行,符合题意,所以实数a的值等于1或﹣2,故答案为:1或﹣2.14.如图,在长方体ABCD﹣A1B1C1D1中,设 AD=AA1=1,AB=2,P是C1D1的中点,则所成角的大小为60°, = 1 .【考点】平面向量数量积的运算.【分析】先建立空间坐标系,再根据向量的坐标运算和向量的夹角公式计算即可.【解答】解:以D为坐标原点,以DA为x轴,DC为y轴,DD1为z轴,建立空间坐标系,如图所示,∵AD=AA1=1,AB=2,P是C1D1的中点,∴B1(1,2,1),C=(0,2,0),A1(1,0,1),P(0,1,1),∴=(﹣1,0,﹣1),=(﹣1,1,0),∴=1+0+0=1,||=,||=设所成角为θ,∴cosθ==,∴θ=60°,故答案为:60°,115.已知P是抛物线y2=8x上的一点,过点P向其准线作垂线交于点E,定点A(2,5),则|PA|+|PE|的最小值为 5 ;此时点P的坐标为(2,4).【考点】抛物线的简单性质.【分析】抛物线y2=8x的焦点坐标为(2,0),定点A(2,5)在抛物线的外部,由抛物线的定义,|PA|+|PE|=|PA|+|PF|,则当P,A,F三点共线时,|PA|+|PE|最小,答案可得.【解答】解:抛物线y2=8x的焦点坐标为(2,0),定点A(2,5)在抛物线的外部,由抛物线的定义,|PA|+|PE|=|PA|+|PF|,则当P,A,F三点共线时,|PA|+|PE|最小,|PA|+|PE|的最小值为5,;此时点P的坐标为(2,4).故答案为:5;(2,4).16.已知直线l:kx﹣y+1=0(k∈R).若存在实数k,使直线l与曲线C交于A,B两点,且|AB|=|k|,则称曲线C具有性质P.给定下列三条曲线方程:①y=﹣|x|;②x2+y2﹣2y=0;③y=(x+1)2.其中,具有性质P的曲线的序号是②③.【考点】曲线与方程.【分析】确定直线l:kx﹣y+1=0(k∈R)过定点(0,1),曲线过定点(0,1),即可得出结论.【解答】解:①y=﹣|x|与直线l:kx﹣y+1=0(k∈R)至多一个交点,不具有性质P;②x2+y2﹣2y=0圆心为(0,1),直线l:kx﹣y+1=0(k∈R)过定点(0,1),故存在k=±2,使直线l与曲线C交于A,B两点,且|AB|=|k|,具有性质P;③y=(x+1)2,过点(0,1),直线l:kx﹣y+1=0(k∈R)过定点(0,1),故存在k,使直线l与曲线C交于A,B两点,且|AB|=|k|,具有性质P.故答案为:②③.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知圆C:x2+y2﹣2x﹣4y+1=0.(Ⅰ)求过点M(3,1)的圆C的切线方程;(Ⅱ)若直线l:ax﹣y+4=0与圆C相交于A,B两点,且弦AB的长为,求a的值.【考点】直线与圆的位置关系.【分析】(Ⅰ)分类讨论,利用圆心到直线的距离等于半径,即可求过点M(3,1)的圆C 的切线方程;(Ⅱ)因为弦AB的长为2,所以点C到直线l的距离为1,即可求a的值.【解答】解:(I)圆C的方程可化为(x﹣1)2+(y﹣2)2=4,圆心C(1,2),半径是2.…①当切线斜率存在时,设切线方程为y﹣1=k(x﹣3),即kx﹣y﹣3k+1=0.…因为,所以.…②当切线斜率不存在时,直线方程为x=3,与圆C相切.…所以过点M(3,1)的圆C的切线方程为x=3或3x﹣4y﹣5=0.…(II)因为弦AB的长为2,所以点C到直线l的距离为.…因为.…所以.…18.在直平行六面体ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.(Ⅰ)求证:OC1∥平面AB1D1(Ⅱ)求证:平面AB1D1⊥平面ACC1A1(Ⅲ)求三棱锥A1﹣AB1D1的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【分析】(I)由直平行六面体的结构特征可知AO1OC1,于是OC1∥平面AB1D1;(II)由线面垂直的性质得AA1⊥B1D1,由菱形的性质得A1C1⊥B1D1,故而B1D1⊥平面ACC1A1,于是平面AB1D1⊥平面ACC1A1;(III)以△A1B1D1为棱锥的底面,AA1为棱锥的高,代入棱锥的体积公式计算即可.【解答】证明:( I)设A1C1∩B1D1=O1,连接AO1.因为AA1∥CC1且AA1=CC1,所以四边形AA1C1C是平行四边形.所以A1C1∥AC且A1C1=AC.因为底面ABCD是菱形,所以O1C1∥AO且O1C1=AO.所以四边形AOC1O1是平行四边形.所以AO1∥OC1.因为AO1⊂平面AB1D1,OC1⊄平面AB1D1所以OC1∥平面AB1D1.( II)因为AA1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,所以B1D1⊥AA1.因为底面ABCD是菱形,所以B1D1⊥A1C1,又因为AA1∩A1C1=A1,所以B1D1⊥平面ACC1A1.因为B1D1⊂平面AB1D1,所以平面AB1D1⊥平面ACC1A1.( III)由题意可知,AA1⊥平面A1B1C1D1,所以AA1为三棱锥A﹣A1B1D1的高.因为.所以三棱锥A1﹣AB1D1的体积为.19.已知椭圆C: =1(a>b>0)的离心率为,且经过点A(0,﹣1).(Ⅰ)求椭圆C的标准方程;(Ⅱ)如果过点的直线与椭圆交于M,N两点(M,N点与A点不重合),求证:△AMN为直角三角形.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆C: =1(a>b>0)经过点A(0,﹣1),求出b,由离心率为,求出a,由此能求出椭圆C的标准方程.(Ⅱ)设MN的方程为,与椭圆联立,得,由此利用韦达定理、根的判别式、向量的数量积,结合已知条件能证明△AMN为直角三角形.【解答】(本小题满分14分)解:(Ⅰ)∵椭圆C: =1(a>b>0)的离心率为,且经过点A(0,﹣1),∴b=1.…,解得a=2.…∴椭圆C的标准方程为.…证明:(Ⅱ)若过点的直线MN的斜率不存在,此时M,N两点中有一个点与A点重合,不满足题目条件.…若过点的直线MN的斜率存在,设其斜率为k,则MN的方程为,由,得.…设M(x1,y1),N(x2,y2),则,…∴,.…∵A(0,﹣1),∴=∴AM⊥AN,∴△AMN为直角三角形.…20.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.(Ⅰ)求证:MN∥BC;(Ⅱ)若M,N分别为PB,PC的中点,①求证:PB⊥DN;②求二面角P﹣DN﹣A的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(I)推导出BC∥AD,从而BC∥平面ADNM,由此能证明MN∥BC.(II)①推导出PB⊥MA,DA⊥AB,从而DA⊥PA.再由PB⊥DA,得PB⊥平面ADNM,由此能证明PB⊥DN.②以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系A﹣xyz利用向量法能求出二面角P﹣DN﹣A的余弦值.【解答】(本小题满分14分)证明:(I)因为底面ABCD为直角梯形,所以BC∥AD.因为BC⊄平面ADNM,AD⊂平面ADNM,所以BC∥平面ADNM.…因为BC⊂平面PBC,平面PBC∩平面ADNM=MN,所以MN∥BC.…(II)①因为M,N分别为PB,PC的中点,PA=AB,所以PB⊥MA.…因为∠BAD=90°,所以DA⊥AB.因为PA⊥底面ABCD,所以DA⊥PA.因为PA∩AB=A,所以DA⊥平面PAB.所以PB⊥DA.…因为AM∩DA=A,所以PB⊥平面ADNM,因为DN⊂平面ADNM,所以PB⊥DN.…解:②如图,以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系A ﹣xyz.…则A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2).…由(II)知,PB⊥平面ADNM,所以平面ADNM的法向量为=(﹣2,0,2).…设平面PDN的法向量为=(x,y,z),因为,,所以.令z=2,则y=2,x=1.所以=(1,2,2),所以cos<>===.所以二面角P﹣DN﹣A的余弦值为.…21.抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.(Ⅰ)求p的值;(Ⅱ)线段AB的垂直平分线l与x轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(Ⅲ)求直线l的斜率的取值范围.【考点】抛物线的简单性质.【分析】(Ⅰ)联立切线和抛物线方程,由判别式等于0求解p的值;(Ⅱ)由|AF|+|BF|=8,利用抛物线的定义转化为x1+x2+2=8,从而求出A,B两点横坐标的和,设出C的坐标,利用C在AB的垂直平分线上得|AC|=|BC|,代入两点间的距离公式后移向整理,代入两横坐标的和后可求m的值;(Ⅲ)设出AB中点的坐标,写出直线l的方程,把AB中点坐标代入l的方程后得到AB中点坐标与直线l的斜率k的关系,由AB中点在抛物线内部列式求得k的取值范围.【解答】解:(I)因为抛物线y2=2px(p>0)与直线y=x+1相切,所以由得:y2﹣2py+2p=0(p>0)有两个相等实根.…即△=4p2﹣8p=4p(p﹣2)=0得:p=2为所求.…(II)抛物线y2=4x的准线x=1.且|AF|+|BF|=8,所以由定义得x1+x2+2=8,则x1+x2=6.…设直线AB的垂直平分线l与x轴的交点C(m,0).由C在AB的垂直平分线上,从而|AC|=|BC|…即.所以.即(x1+x2﹣2m)(x1﹣x2)=4x2﹣4x1=﹣4(x1﹣x2)…因为x1≠x2,所以x1+x2﹣2m=﹣4.又因为x1+x2=6,所以m=5,所以点C的坐标为(5,0).即直线AB的垂直平分线l与x轴的交点为定点(5,0).…(III)设直线l的斜率为k1,由(II)可设直线l方程为y=k1(x﹣5).设AB的中点M(x0,y0),由.可得M(3,y0).因为直线l过点M(3,y0),所以y0=﹣2k1.…又因为点M(3,y0)在抛物线y2=4x的内部,所以.…即,则.因为x1≠x2,则k1≠0.…所以k1的取值范围为.…。

高二数学(理)上学期期末试卷及答案

高二数学(理)上学期期末试卷及答案

上学期期末考试 高二数学(理科)试卷考试时间:120分钟 试题分数:150分卷Ⅰ一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 对于常数m 、n ,“0mn <”是“方程221mx ny +=的曲线是双曲线”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2. 命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数3. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为7,则P 到另一焦点距离为 A .2 B .3 C .5 D .74 . 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨5. 若双曲线22221x y a b-=3A .2± B. 12± C. 2 D.22±6. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为2212 D. 12-7. 已知椭圆)0(1222222>>=+b a b y a x 的焦点与双曲线12222=-bx a y 的焦点恰好是一个正方形的四个顶点,则抛物线2bx ay =的焦点坐标为 A. )0,43(B. )0,123(C. )123,0( D.)43,0( 8.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123,,P P P ,① ② ③若屋顶斜面与水平面所成的角都是α,则A. 123P P P ==B. 123P P P =<C. 123P P P <=D. 123P P P <<9. 马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件10. 设0>a ,c bx ax x f ++=2)(,曲线)(x f y =在点P ()(,00x f x )处切线的倾斜角的取值范围是]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为A. ]1,0[aB. ]21,0[aC. ]2,0[a bD. ]21,0[a b - 11. 已知点O 在二面角AB αβ--的棱上,点P 在α内,且60POB ∠=︒.若对于β内异于O 的任意一点Q ,都有60POQ ∠≥︒,则二面角AB αβ--的大小是A. 30︒B.45︒C. 60︒D.90︒12. 已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为 A . 1312522=-y x B .1351222=-y x C .1512322=-y x D .1125322=-y x 卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13. 正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面正方形ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角为 . 14. 函数2()ln '(1)54f x x f x x =-+-,则(1)f =________.15.已知b a,是夹角为60的两单位向量,向量b c a c⊥⊥,,且||1c =,c b a y c b a x -+-=+-=3,2,则><y x,cos = .16. 过抛物线22(0)x py p =>的焦点F 作倾斜角为45的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= . 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)过点(1,1)-作函数3()f x x x =-的切线,求切线方程.18.(本小题满分12分)已知集合{}|(1)(2)0A x ax ax =-+≤,集合{}|24.B x x =-≤≤ 若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥底面ABCD ,且2PA AD AB BC ===,,M N 分别为,PC PB 的中点.(Ⅰ)求证:PB DM ⊥;(Ⅱ)求CD 与平面ADMN 所成的角的正弦值.20. (本小题满分12分)已知三棱柱'''C B A ABC -如图所示,四边形''B BCC 为菱形,o BCC 60'=∠,ABC ∆为等边FE C 'B'AA'CB三角形,面⊥ABC 面''B BCC ,F E 、分别为棱'CC AB 、的中点. (Ⅰ)求证://EF 面''BC A ;(Ⅱ)求二面角B AA C --'的大小.21. (本小题满分12分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且椭圆上点到左焦点距离的最小值为1.(Ⅰ)求1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.22. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>过点,直线(1y k x =-)(0)k ≠与椭圆C 交于不同的两点M N 、,MN 中点为P ,O 为坐标原点,直线OP 斜率为12k-. (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 的右顶点为A ,当AMN ∆k 的值.xyz参考答案一.选择题CDBAC CDABB DB 二.填空题2π1- 5216- 322-三.解答题17.解:设切点为3(,)m m m -,则切线方程为32(31)()y m m m x m -+=--,┅┅┅┅┅┅2分将点(1,1)-带入,解得0m =或32, ┅┅┅┅┅┅┅ 8分 所以切线方程为y x =-或234270x y --= ┅┅┅┅┅┅┅10分 18.解:(1)0a >时,21[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以212,4a a-≥-≤, 104a <≤,检验14a =符合题意;┅┅┅┅┅┅┅4分(2)0a =时,A R =,符合题意;┅┅┅┅┅┅┅8分(3)0a <时,12[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以122,4a a-≥≤-,102a -≤<,检验12a =-不符合题意.综上11(,]24a ∈-.┅┅┅┅┅┅┅12分19. 解如图,以A 为坐标原点建立空间直角坐标系A xyz -,设1BC =,则 1(0,0,0),(0,0,2),(2,0,0),(2,1,0),(1,,1),(0,2,0)2A P B C M D .(I ) 因为3(2,0,2)(1,,1)2PB DM ⋅=-⋅-0=,所以.PB DM ⊥(II ) 因为(2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥, 又因为PB DM ⊥,所以PB ⊥平面.ADMN因此,PB DC <>的余角即是CD 与平面ADMN 所成的角. 因为cos ,||||PB DC PB DC PB DC ⋅<>=⋅105=,所以CD 与平面ADMN 所成的角的正弦为510 20. (Ⅰ)证明(方法一)取B A '中点D ,连接DC ED ,,因为D E ,分别为B A AB ',中点,所以'//,'21AA ED AA ED =,┅┅┅┅┅┅┅3分 所以CF ED CF ED //,=,所以四边形EFCD 为平行四边形,所以CD EF //,又因为BC A CD BC A EF ''面,面⊂⊄,所以//EF 面BC A ';┅┅┅┅┅┅┅6分(方法二)取'AA 中点G ,连接FG EG ,, 因为G E ,分别为',AA AB 中点,所以B A EG '//又因为G F ,分别为','AA CC 中点,所以''//C A FG ┅┅┅┅┅┅┅3分且G GF EG EFG GF EFG EG =⊂⊂ ,,面面,'''',''',''''A B A C A BC A B A BC A C A =⊂⊂ 面面所以面//EFG 面''BC A ,又⊂EF 面EFG ,所以//EF 面BC A '┅┅┅┅┅┅6分 (方法三)取BC 中点O ,连接',OC AO ,由题可得BC AO ⊥,又因为面⊥ABC 面''B BCC ,所以⊥AO 面''B BCC ,又因为菱形''B BCC 中oBCC 60'=∠,所以BC O C ⊥'. 可以建立如图所示的空间直角坐标系 ┅┅┅┅┅┅┅7分 不妨设2=BC ,可得)0,0,1(C ,)0,3,0('C)3,0,0(A ,)0,0,1(-B ,)3,3,1('-A ,)0,3,2('-B ,所以)0,23,21(),23,0,21(F E -所以)3,3,0('),0,3,1('),23,23,1(==-=BA BC EF ,┅┅┅┅┅┅┅9分 设面BC A '的一个法向量为),,(c b a n =,则⎩⎨⎧=+=+03303c b b a ,不妨取3=a ,则)1,1,3(),,(-=c b a ,所以0=⋅n,又因为⊄EF 面BC A ',所以//EF 面BC A '.┅┅┅┅┅┅┅12分 (Ⅱ)(方法一)过F 点作'AA 的垂线FM 交'AA 于M ,连接BF BM ,.因为'//','AA CC CC BF ⊥,所以'AA BF ⊥,所以⊥'AA 面MBF , 所以BMF ∠为二面角B AA C --'的平面角. ┅┅┅┅┅┅┅8分因为面⊥ABC 面''B BCC ,所以A 点在面''B BCC 上的射影落在BC 上,所以41cos 'cos 'cos =∠∠=∠ACB BCC ACC , 所以AC MF ACC ==∠415'sin ,不妨设2=BC ,所以215=MF ,同理可得215=BM .┅┅┅┅┅┅┅10分 所以532153415415cos =-+=∠BMF ,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分(方法二)接(Ⅰ)方法三可得)0,3,1('),3,0,1(-=--=AA AB ,设面B AA '的一个法向量为),,(1111z y x n =,则⎩⎨⎧=+-=--03031111y x z x ,不妨取31=x ,则)1,1,3(),,(111-=z y x .┅┅┅┅┅┅┅8分又)0,3,1('),3,0,1(-=-=AA AC ,设面C AA '的一个法向量为),,(2222z y x n =,则⎩⎨⎧=+-=-03032222y x z x ,不妨取32=x ,则)1,1,3(),,(222=z y x .┅┅┅┅┅┅┅10分 所以53||||,cos 212121=⋅⋅>=<n n n n n n ,因为二面角B AA C --'为锐角,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为)0,(),0,(21c F c F -,椭圆上点P 满足,2||||2,2||||2121c PF PF c a PF PF ≤-≤-=+所以,||1c a PF c a +≤≤-P 在左顶点时||1PF 取到最小值12-=-c a ,又21=a c ,解得1,1,2===b c a ,所以1C 的方程为 1222=+y x .(或者利用设),(y x P 解出x aca PF +=||1得出||1PF 取到最小值12-=-c a ,对于直接说明P 在左顶点时||1PF 取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线l 存在斜率,所以设其方程为m kx y +=,┅┅┅┅┅┅┅5分联立其与1222=+y x ,得到 0224)21(222=-+++m kmx x k ,0=∆,化简得01222=--k m ┅┅┅┅┅┅┅8分联立其与22:4C y x =,得到042=+-m y y k ,0=∆,化简得01=-km ,┅┅┅┅┅┅┅10分 解得2,22==m k 或2,22-=-=m k所以直线l 的方程为222+=x y 或222--=x y ┅┅┅┅┅┅┅12分 22. 解:(Ⅰ)由题可得直线过点(1,0),在椭圆内,所以与椭圆一定相交,交点设为),(),,(2211y x N y x M ,则2121x x y y k --=,OP 斜率为2121x x y y ++,所以2122212221-=--x x y y ,┅┅┅┅┅┅┅3分又1221221=+b y a x ,1222222=+b y a x ,所以02222122221=-+-by y a x x ,所以222b a =,又 11222=+ba ,解得2,422==b a ,所以椭圆C 的方程为12422=+y x ;┅┅┅┅┅┅┅6分 (Ⅱ)(1y k x =-)与椭圆C 联立得:0424)21(2222=-+-+k x k x k ,┅┅┅┅┅┅┅8分AMN ∆面积为31021)32(82||||2||||21222121=++=-=-kk k x x k y y , 解得1±=k .┅┅┅┅┅┅┅12分。

内蒙古集宁一中(东校区)高二数学上学期期末考试试题文

内蒙古集宁一中(东校区)高二数学上学期期末考试试题文

集宁一中2015-2016学年第一学期期末考试高二年级文科数学试题本试卷满分为150分,考试时间为120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(在下列各题的四个选项中,只有一项是最符合题意的。

每小题5分,共60分) 1、 某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( ) A .简单随机抽样 B .系统抽样C .分层抽样D .先从老年人中剔除一人,然后分层抽样 2. 已知p :2x -3<1,q :x (x -3)<0,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 3. 以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4. 双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎪⎫22,0 B.⎝ ⎛⎭⎪⎫52,0 C.⎝ ⎛⎭⎪⎫62,0 D .(3,0) 5.一个容量为20的样本数据,数据的分组与各组内频数如下:(](](](](](]10,20,2;20,30,3;30,40,4;40,50,5;50,60,4;60,70,2。

则样本在(]10,50上的频率为( )A .90% B.70% C.50% D.25%6. 直线y x b =+与抛物线22x y =交于A 、B 两点,O 为坐标原点,且OA OB ⊥,则b =( ).2A .2B - .1C .1D -7. 若f (x )=x 2-2x -4ln x ,则0)(>'x f 的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0) 8. 曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12B.12 C .-22D.229.下图是计算201614121++++ 的值的一个程序框图,其中判断框内应填入的条件是( )A 、9<i B 、9≤i C 、10<i D 、10≤i10. 函数f (x )=x 3+ax 2+3x -9,已知f (x )有两个极值点x 1,x 2,则x 1·x 2等于( )A .9B .-9C .1D .-111. 某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ).A .63.6万元B .65.5万元C .67.7万元D .72.0万元 12. 对∀x ∈R ,kx 2-kx -1<0是真命题,则k 的取值范围是( )A .04≤<-kB .04<≤-kC .04≤≤-kD .04<<-k第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13. 在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为 .14. 某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的概率为0.2,向该中学抽取了一个容量为n 的样本,则n =____________________.15. 命题“∀x >0,都有02≤-x x ”的否定是 . 16. 若双曲线的渐近线方程为x y 31±=,它的一个焦点是(10,0),则双曲线的标准方程是_____________.三、解答题 (本大题共6小题,共70分) 17.(本题满分10分)已知抛物线x y 42=截直线m x y +=2所得弦长AB =53,求m 的值; 18.(本题满分12分)设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R .已知f (x )在x =3处取得极值. (1)求f (x )的解析式;(2)求f (x )在点A (1,16)处的切线方程.19. (本题满分12分)22221(0)x y a b a b +=>>3设椭圆C :过点(0,4),离心率为5C (1)求C 的方程4(2)求过点(3,0)且斜率为的直线被所截线段的中点坐标.520.(本题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次实验,得到数据如下:(1)作出散点图;(2)求出y 关于x 的线性回归方程y =bx+a; (3)预测加工10个零件需要多少小时?注:121()()()ni i i ni i x x y y b x x ∧==∑--=∑-,a y b x ∧∧=-21.(本题满分12分)如右图,一矩形铁皮的长为8cm ,宽为5cm ,在四个 角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?22.(本题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率?(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2+<m n 的概率?高二年级文科数学参考答案一、 选择题二、 填空题13、13 14、由n 400+320+280=0.2,得n =200.15、∃x 0>0,使得x 2-x 0>0 16、x 29-y 2=1三、简答题17、由⎩⎪⎨⎪⎧y 2=4x ,y =2x +m ,得4x 2+4(m -1)x +m 2=0,由根与系数的关系,得x 1+x 2=1-m ,x 1·x 2=m 24,|AB |=1+k 2(x 1+x 2)2-4x 1x 2=1+22(1-m )2-4·m 24=5(1-2m ).由|AB |=35,即5(1-2m )=35⇒m =-4. 18、(1)f ′(x )=6x 2-6(a +1)x +6a . ∵f (x )在x =3处取得极值,∴f ′(3)=6×9-6(a +1)×3+6a =0,解得a =3. ∴f (x )=2x 3-12x 2+18x +8. (2)A 点在f (x )上,由(1)可知f ′(x )=6x 2-24x +18,f ′(1)=6-24+18=0,∴切线方程为y =16.19、解:(Ⅰ)将(0,4)代入C 的方程得2161b = ∴b=4又35c e a == 得222925a b a -=即2169125a -=, ∴5a = ∴C 的方程为2212516x y += ( Ⅱ)过点()3,0且斜率为45的直线方程为()435y x =-, 设直线与C的交点为A()11,x y ,B()22,x y ,将直线方程()435y x =-代入C的方程,得()22312525x x -+=,即2380x x --=,解得1x =,2x =, ∴ AB 的中点坐标12322xx x +==, ()1212266255y y y x x +==+-=-,即中点为36,25⎛⎫- ⎪⎝⎭。

高二数学上学期期末考试题精选及答案

高二数学上学期期末考试题精选及答案

!高二数学上学期期末考试题第I 卷(试题) 一、 选择题:(每题5分,共60分)2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )(A )18, (B )6, (C )23, (D )243 3、与不等式xx --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)32--x x≥0, (D)(x-3)(2-x)>06、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( ) (A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π :(C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π437、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )(A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=08、直线y=x+23被曲线y=21x 2截得线段的中点到原点的距离是 ( )(A )29 (B )29 (C )429 (D )22911、双曲线: 的准线方程是191622=-x y ( ) (A)y=±716 (B)x=±516 (C)X=±716 (D)Y=±516/12、抛物线:y=4ax 2的焦点坐标为 ( ) (A )(a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a161,0)二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(–21,31),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程⎩⎨⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .16、已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .¥三、 解答题:(74分)17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)…19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年度上学期(期末)考试高二数学文试题【新课标】试卷说明:1、本试卷满分150分,答题时间120分钟。

2、请将答案直接填涂在答题卡上,考试结束只交答题卡。

第Ⅰ卷(选择题 满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i 是虚数单位,则复数-i1+2i( i 是虚数单位)的实部是( )A .15B .-15C .-15D .-252.已知命题p :∃x 0∈C ,x 20+1<0,则 ( )A .¬p:∀x ∈C ,x 2+1≤0B .¬p:∀x ∈C ,x 2+1<0C .¬p:∀x ∈C ,x 2+1≥0D .¬p:∀x ∈C ,x 2+1>03.某单位有职工75人,其中青年职工35人,中年职工25人,老年职工15人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工人数为7,则样本容量为( )A .7B .15C .25D .35 4.已知一个家庭有两个小孩,则两个孩子都是女孩的概率为( )A .14B .13C .12D .235.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12B . m ≥1 C.m >1 D .m >26.如右图所示的程序框图中,输入x =2,则输出的结果是( )A .1B .2C .3D .4 7.下列命题中,假命题...是( ) A .已知命题p 和q ,若p ∨q 为真,p ∧q 为假,则命题p 与q 必一真一假 B .互为逆否命题的两个命题真假相同C .“事件A 与B 互斥”是“事件A 与B 对立”的必要不充分条件D .若f (x ) =2x ,则f ′(x )=x ·2x -18.用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x 的值,当x =3时,v 3的值为( )A .27B .86C .262D .7899.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:x 216+y 29=1,点A 、B 是它的两个焦点,当静止的小球放在A 点处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的路程可能是( )A .2(4-7)B .2(4+7)C .16D .以上均有可能10.若关于实数x 的不等式x 3-3x 2-9x ≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,5]B .(-∞,-22]C . (-∞,-2]D .[-14,5]11.已知y =13x 3+bx 2+(b +2)x +3是R 上的单调增函数,则b 的取值范围是( )A .-1<b <2B .-1≤b ≤2C .b <-1或b >2D .b ≤-2或b ≥212.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )≤0,对任意正实数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )第Ⅱ卷 (非选择题 满分90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=x (x -c )2在x =2处取极大值,则常数c 的值为________。

14.取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1 m 的概率是_____。

15由表中数据得到的线性回归方程y ^=b ^x +a ^中b ^=1.1,预测当产量为9千件时,成本约为________万元。

16.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (4,1)是一个定点,则|MP |+|MF |的最小值是________。

三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17(本小题满分10分)甲、乙两校各有3名教师报名支教,从报名的6名教师中任选2名,(I) 写出所有可能的结果;(II) 求选出的2名教师来自同一学校的概率。

18(本小题满分12分)某校为了了解学生数学学习情况,随机抽取60位学生期中 考试数学成绩,并作出频率分布直方图如右图所示,其中成 绩分组区间是:[)50,60、[)60,70、[)70,80、[)80,90、[]90,100,(I) 求图中a 的值,并根据频率分布直方图估计该校学生数学成绩的平均分;(II)若这60名学生的数学成绩某些分数段的人数(x )与语文成绩相应分数段的人数(y )之比如下表所示,求语文成绩在[)50,90之外的人数。

19(本小题满分12分)已知函数f (x )=13x 3-ax 2+(a 2-1)x +b (a 、b ∈R ),其图象在点(1,f (1))处的切线方程为x +y-3=0.(Ι)求a 、b 的值;(II)求函数f (x )的单调区间和极值点。

20(本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (2,-4), (I)求抛物线C 的方程,并求其准线l 方程;(II)若点B (1,2),直线l 过点B 且与抛物线C 交于P 、Q 两点,若点B 为PQ 中点,求直线l 的方程。

21(本小题满分12分)平面直角坐标系xOy 中,直线2x +y +2=0经过椭圆M :22221x y a b+=(a>b>0)的左焦点且与椭圆M 交于A ,B 两点,其中点A 是椭圆的一个顶点,(Ι)求椭圆M 的方程;(II)C,D 为M 上的两点,若四边形ACBD 的对角线CD⊥AB,求四边形ACBD 面积S 的最大值。

22(本小题满分12分)已知函数()1,xf x e ax =+-(I)求证:当a >-1且x >0时,()0f x >;(II)2()2x g x e x x k =+-+,若对任意123,,[1,1]x x x ∈-,长分别为123(),(),()g x g x g x 的线段 能构成三角形,求实数k 的取值范围。

参考答案(II) 从报名的6名教师中任选2名的15种情况等可能出现,且选出的2名教师来自同一学校的所有可能的结果为(甲1, 甲2), (甲1, 甲3)、(甲2, 甲3)、(乙3, 乙1)、(乙1, 乙2), (乙2, 乙3),共6种,所以选出的2名教师来自同一学校的概率为62155=. …………10分 18.解:解:(Ⅰ)由()20.020.030.04101a +++⨯=,解得0.005a =.0.05550.4650.3750.2850.059573⨯+⨯+⨯+⨯+⨯=. …………6分(II)这60位学生数学成绩在[]90,100的分别有3人、24人、18人、12人,按照表中所给比例,语文成绩在[)50,60、[)60,70、[)70,80、[)80,90的分别有3人、12人、24人、15人,共54人, 故语文成绩在[)50,90之外的人数有6人。

………12分19.解:(Ι)f ′(x )=x 2-2ax +a 2-1,∵(1,f (1))在直线x +y -3=0上,∴f (1)=2,f ′(1)=-1∴2=13-a +a 2-1+b ,a 2-2a +1=0,解得a =1,b =83. (6)分(II)∵f (x )=1x 3-x 2+8,∴f ′(x )=x 2-2x ,由f ′(x )=0可知x =0或x =2,列表如下:f (x )的极大值点为x =0,极小值点为x =2。

………12分20.解:(I)由题,抛物线C 的方程为y 2=8x ,其准线l 方程为x =-2; (II)显然,直线l 的斜率不存在或直线l 的斜率为0均不符合题意, …………4分故可设直线l 的方程为y -2=k (x -1),2211221122(,),(,),8,8P x y Q x y y x y x ==设由题知.221212121212888,2y y y y x x k x x y y --=-∴===-+所以,直线l 的方程为2x -y =0。

…………12分21.解:(I)由题可知,椭圆M 左焦点为(-1,0),一个顶点A 为(0,- 2),则椭圆M 的方程为22154x y +=; …………4分(II)由题,2233441(0,2),(,),(,),(,),+2A B x y C x y D x y CD y x b -=设直线: 22216100,||5422x y x x AB y x ⎧+=⎪+==⎨⎪=--⎩由得故有22222212020800,320(214)01541||+2x y x bx b b CD y x b⎧++-=∆=-≥+=⎪⎪⎨=≤⎪=⎪⎩得由故有。

相关文档
最新文档