九年级数学二次函数与圆知识点总结_(2)

合集下载

二次函数与圆知识点总结1

二次函数与圆知识点总结1

二次函数与圆知识点总结1二次函数与圆知识点总结1一、二次函数的概念及性质:1. 二次函数的定义:若函数f(x)可以表示为f(x)=ax^2+bx+c(a≠0),其中a、b、c为常数,且a为二次项的系数,b为一次项的系数,c为常数项,那么f(x)就是一个二次函数。

2.二次函数的图像:二次函数的图像是抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a,f(-b/2a)),对称轴方程为x=-b/2a。

3.二次函数的性质:(1)零点和方程:若二次函数f(x)=ax^2+bx+c(a≠0)的零点为x1和x2,则该二次函数与方程ax^2+bx+c=0有x1和x2为根的特征。

(2)最值和顶点:当a>0时,二次函数的最小值为f(-b/2a);当a<0时,二次函数的最大值为f(-b/2a)。

(3)图像的开口方向:二次函数的开口方向由二次项的系数a的正负决定,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

(4)对称轴:二次函数的对称轴方程为x=-b/2a,对称轴与抛物线图像呈现对称关系。

二、圆的概念及性质:1.圆的定义:圆是平面上到一个固定点距离相等的点的集合,这个固定点叫做圆心,到圆心距离相等的距离叫做半径。

2.圆的元素:圆由圆心和半径确定。

圆心用字母O表示,半径用字母r表示。

3.圆的性质:(1)半径的性质:圆心到圆上任一点的距离等于半径的长度。

(2)直径的性质:过圆心的任意直径将圆分成两个等半弧,并且直径的长度是半径的两倍。

(3)弧的性质:圆周上的任意两点所对应的弧长相等,且圆周上所有弧的总长度是360度或2π弧度。

(4)切线的性质:切线与半径的垂直线相交成直角,且切线的斜率等于切点所对应半径的斜率的相反数。

三、二次函数与圆的应用:1.二次函数的应用:(1)抛物线的形状:二次函数可以用来描述抛物线的形状,常用于物理学、几何学等领域的计算和分析。

九年级二次函数全部知识点

九年级二次函数全部知识点

九年级二次函数全部知识点二次函数是数学中的一种重要的函数类型,它在实际生活中有着广泛的应用。

九年级是初中阶段的最后一年,二次函数是九年级数学的重要内容之一。

本文将介绍九年级二次函数的全部知识点,包括定义、图像、性质、解析式等,希望能够帮助同学们更好地掌握这一知识。

一、二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是常数,并且a ≠ 0。

二次函数中的自变量x是实数,函数值f(x)也是实数。

二次函数的定义域是所有实数集合。

二、二次函数的图像二次函数的图像是一个抛物线,对称轴是垂直于x轴的一条直线。

当a > 0时,抛物线开口朝上;当a < 0时,抛物线开口朝下。

三、二次函数的顶点及最值二次函数的顶点是抛物线的最高点或最低点,其坐标为(h,k),其中h是对称轴的横坐标,k是对称轴与抛物线的交点的纵坐标。

当a > 0时,k为函数的最小值;当a < 0时,k为函数的最大值。

四、二次函数的对称性二次函数的图像关于对称轴是对称的,即对称轴两侧的点关于对称轴上的点有对应关系。

这个对称性质使得我们可以通过观察对称轴两侧的点来了解抛物线的整体形态。

五、二次函数的零点二次函数的零点就是使得函数值等于零的横坐标。

要求二次函数的零点,可以使用因式分解、配方法和求根公式等方法。

六、二次函数和一次函数的关系一次函数是二次函数的特例,当a = 0时,二次函数就变成一次函数。

因此,可以说二次函数是一次函数的推广,二次函数的图像也可以视为一次函数图像的变形。

七、二次函数的解析式二次函数的一般形式是f(x) = ax² + bx + c,其中a、b、c是常数。

根据二次函数的性质,可以通过零点、顶点等信息来确定二次函数的解析式。

八、二次函数的平移和压缩二次函数的平移可以通过改变解析式中的常数来实现,例如改变c可以实现平移,改变a和b可以实现压缩或拉伸。

九年级二次函数知识点

九年级二次函数知识点

九年级二次函数知识点一、二次函数的定义和表示方式二次函数是指具有以下形式的函数:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

一般常用的表示方式有标准形式、顶点形式和描点法。

标准形式:y = ax^2 + bx + c,常用于确定二次函数的参数和特征。

顶点形式:y = a(x - h)^2 + k,其中(h,k)为函数的顶点坐标。

描点法:通过确定函数的一些特定点求得二次函数的表达式。

二、二次函数的图像特征1. 开口方向:- 当a>0时,二次函数开口向上;- 当a<0时,二次函数开口向下。

2. 对称轴:对称轴是二次函数图像的镜像轴,其方程为x = -b/(2a)。

3. 零点:零点是指使二次函数取值为0的x的值,即方程ax^2 + bx + c = 0的解。

4. 最值:- 当a>0时,二次函数有最小值,最小值为函数的顶点值;- 当a<0时,二次函数有最大值,最大值为函数的顶点值。

三、二次函数的性质1. 函数增减性:- 当a>0时,二次函数在对称轴两侧递增;- 当a<0时,二次函数在对称轴两侧递减。

2. 函数的最值:- 当a>0时,函数的最小值为顶点值;- 当a<0时,函数的最大值为顶点值。

3. 零点与因式分解:二次函数的零点可以通过因式分解或求根公式求得,形式为(x - x1)(x - x2) = 0。

4. 判别式:判别式Δ = b^2 - 4ac可用于判断二次函数的零点个数和开口方向。

- 当Δ > 0时,有两个不相等的实根,函数图像与x轴相交于两点;- 当Δ = 0时,有两个相等的实根,函数图像与x轴相切于一个点;- 当Δ < 0时,无实根,函数图像与x轴无交点。

四、二次函数的应用1. 抛物线运动:二次函数可以用来描述抛物线运动的轨迹,如抛体自由落体运动的轨迹等。

2. 最值问题:对于一些实际问题,二次函数可以用来求解最值问题,例如求解最大面积、最小花费等。

九年级二次函数知识点总结

九年级二次函数知识点总结

九年级二次函数知识点总结一、二次函数的基本形式二次函数一般写为y=ax^2+bx+c(a≠0),其中a、b、c为常数,x为自变量,y为因变量。

其中a决定了抛物线开口的方向,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

b决定了抛物线的位置,c决定了抛物线与y轴的交点。

二、二次函数的图像1. 抛物线的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 抛物线的顶点:抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

3. 抛物线的对称轴:抛物线的对称轴方程为x=-b/2a。

4. 抛物线的焦点:抛物线没有焦点。

5. 抛物线的焦距:抛物线没有焦距。

三、二次函数的性质1. 零点:二次函数的零点即为其实根,求零点的方法可以通过求解二次方程ax^2+bx+c=0来得到。

2. 正负性:当a>0时,抛物线上方为正区间,下方为负区间;当a<0时,抛物线上方为负区间,下方为正区间。

3. 单调性:当a>0时,函数单调递增;当a<0时,函数单调递减。

4. 极值:当a>0时,抛物线的最小值为f(-b/2a);当a<0时,抛物线的最大值为f(-b/2a)。

四、二次函数的相关应用1. 最值问题:通过求解二次函数的极值来解决相关的最值问题,如求解最大值、最小值等。

2. 零点问题:通过求解二次函数的零点来解决相关的方程问题,如求解方程ax^2+bx+c=0的解。

3. 切线问题:通过求解二次函数的导数来得到其切线的斜率,从而解决相关的切线问题。

4. 抛物线运动问题:通过二次函数的图像特点,解决相关的抛物线运动问题,如抛体的运动轨迹、最大高度、飞行时间等。

五、二次函数的解题方法1. 求解零点:通过求解二次方程ax^2+bx+c=0来得到函数的零点。

2. 求解极值:通过求解函数的导数来得到函数的极值点,并求解其极值。

九年级数学二次函数与圆知识点

九年级数学二次函数与圆知识点

九年级数学二次函数与圆知识点九年级数学:探索二次函数与圆数学是一门抽象而又精确的学科,而在九年级数学中,学生将开始探索一些更加复杂的数学概念和知识点,例如二次函数和圆。

这些知识点不仅有助于学生提高数学思维能力,还可以为他们将来的学习打下坚实的基础。

本文将深入介绍九年级数学中关于二次函数与圆的知识点。

一、二次函数1. 基本概念二次函数是指形如y = ax^2 + bx + c的函数, 其中a、b和c为实数,且a不等于零。

在一般形式中,a代表抛物线的开口方向(正负),b代表抛物线的位置(平移),c则是抛物线的顶点或者是与x轴交点的y轴坐标。

2. 抛物线的性质在讨论二次函数时,我们也必须了解抛物线的性质。

对于标准形式的二次函数,当a大于零时,抛物线开口朝上,并且a的绝对值越大,抛物线越窄。

当a小于零时,抛物线开口朝下,并且同样的原则适用于抛物线的宽度。

另外,抛物线的顶点是一个非常重要的概念,它代表着抛物线的最高或者最低点。

3. 二次函数的图像和方程在研究二次函数时,图像和方程是两个关键的方面。

通过观察图像我们可以更好地理解函数的特点,而通过方程我们可以解决很多数学问题。

对于二次函数,我们可以通过方程的解,求得抛物线与x轴的交点,这是解决实际问题中一个常见的应用。

二、圆的知识1. 基本定义圆是平面上所有到一个点(圆心)的距离都相等的点的集合。

其中,半径是连接圆心和圆上任意一点的线段,而直径则是通过圆心的两个点的线段的长度之二倍。

另外,圆的周长是圆上所有点到圆心的距离之和,而面积则是圆内所有点的集合。

2. 弧长和扇形面积将圆上的一部分切割下来,我们可以得到一个弧。

弧长是弧所代表的一段圆的长度。

通过圆心和弧上两个点的连线,可以绘制出一个扇形,而扇形的面积则是圆面积的一部分。

3. 圆与直线的关系通过点和线的关系,我们可以了解到圆与直线之间的一些关系。

首先,在平面上,如果一条直线与圆相交于两个点,则这条直线被称为切线。

圆与二次函数知识点

圆与二次函数知识点

圆和二次函数知识点 《圆》一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;A四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:图4图5①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

数学九年级下册圆的知识点

数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。

在九年级的数学学习中,我们将更加深入地学习圆的相关知识。

本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。

一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。

其中,距离固定点最远的点称为圆的半径,固定点称为圆心。

圆心与圆上任意一点之间的线段称为半径。

二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。

2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。

3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。

等弦对应的弦长相等,而不等弦对应的弦长不相等。

4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。

三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。

2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。

四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。

2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。

3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。

4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。

总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。

掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。

通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。

九年级二次函数知识点汇总

九年级二次函数知识点汇总

九年级二次函数知识点汇总二次函数是初中数学中的一种重要的函数形式,它的形式为f(x)=ax^2+bx+c。

在九年级,学生需要掌握二次函数的基本概念、图像、性质以及与实际问题的应用。

下面将对九年级二次函数的知识点进行汇总和总结。

1. 二次函数的基本概念二次函数是一个以x为自变量、以ax^2+bx+c为因变量的函数。

其中,a、b、c是常数,且a不等于0。

a决定了二次函数的开口方向和图像的形态。

当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2. 二次函数的图像二次函数的图像一般为抛物线,其形状和位置与a、b、c的取值有关。

当a>0时,图像在y轴上方有一个最低点,称为顶点;当a<0时,图像在y轴下方有一个最高点,也称为顶点。

顶点的坐标为(-b/2a,f(-b/2a))。

3. 二次函数的性质(1) 零点:二次函数与x轴相交的点称为零点。

根据二次函数的图像性质,当抛物线与x轴相切时,有且只有一个零点;当抛物线与x轴有两个交点时,有两个零点;当抛物线与x轴没有交点时,没有零点。

(2) 对称轴:二次函数的对称轴是通过顶点且垂直于x轴的直线。

对称轴的方程为x=-b/2a。

(3) 最值:对于开口向上的二次函数,最小值等于顶点的纵坐标;对于开口向下的二次函数,最大值等于顶点的纵坐标。

(4) 单调性:由于二次函数的图像呈现抛物线的形状,所以二次函数在对称轴两侧的增减性是不同的。

即在对称轴的左侧,二次函数单调递减;在对称轴的右侧,二次函数单调递增。

4. 二次函数的变形九年级数学中,我们还学习了二次函数的变形,包括平移、伸缩和翻折等操作。

这些操作可以通过对a、b、c的取值进行调整来实现。

(1) 平移:当二次函数的形式为f(x)=a(x-h)^2+k时,其中(h,k)为平移的向量,分别表示横坐标和纵坐标的平移量。

平移后的二次函数的图像相对于原图像在平面上左右或上下移动了h个单位和k个单位。

二次函数与圆知识点总结

二次函数与圆知识点总结

初三数学二次函数和圆的知识点总结1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向 对称轴顶点坐标2ax y =当0>a 时 开口向上 当0<a 时开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -=h x =(h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2ab x 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=4442221221221211.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理, 即“垂径定理”“中径定理” “弧径定理”“中垂定理”.几何表达式举例: ∵ CD 过圆心∵CD ⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) ∵∠AOB=∠COD∴ AB = CD(2) ∵ AB = CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1) (2)(3) (4)几何表达式举例: (1) ∵∠ACB=21∠AOB ∴ …………… (2) ∵ AB 是直径∴ ∠ACB=90° (3) ∵ ∠ACB=90°∴ AB 是直径 (4) ∵ CD=AD=BD∴ ΔABC 是Rt Δ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角. 几何表达式举例: ∵ ABCD 是圆内接四边形 ∴ ∠CDE =∠ABC∠C+∠A =180° 6.切线的判定与性质定理:如图:有三个元素,“知二可推一”; 需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点; ※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例: (1) ∵OC 是半径∵OC ⊥AB ∴AB 是切线 (2) ∵OC 是半径∵AB 是切线 ∴OC ⊥AB (3) ……………ABCD OABCDE O 平分优弧过圆心垂直于弦平分弦平分劣弧∴ AC BC AD BD==AE=BEABC DEFOABCOABCDEA B COABCD∵ ∴ ∥=AB CD ACBDA BCO是半径垂直是切线7.切线长定理:从圆外一点引圆的两条切线, 它们的切线长相等;圆心和这一 点的连线平分两条切线的夹角.几何表达式举例:∵ PA 、PB 是切线 ∴ PA=PB∵PO 过圆心 ∴∠APO =∠BPO 8.弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等; (3)弦切角的度数等于它所夹的弧的度数的一半.(如图) 几何表达式举例: (1)∵BD 是切线,BC 是弦∴∠CBD =∠CAB (2)∵ ED ,BC 是切线∴ ∠CBA =∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等; (2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.几何表达式举例:(1) ∵PA ·PB=PC ·PD∴……… (2) ∵AB 是直径∵PC ⊥AB∴PC 2=PA ·PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例: (1) ∵PC 是切线,PB 是割线 ∴PC 2=PA ·PB (2) ∵PB 、PD 是割线∴PA·PB=PC ·PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦; (2)如果两圆相切,那么切点一定在连心线上.(1) (2)几何表达式举例: (1) ∵O 1,O 2是圆心∴O 1O 2垂直平分AB (2) ∵⊙1 、⊙2相切∴O 1 、A 、O 2三点一线 12.正多边形的有关计算:(1)中心角αn ,半径R N , 边心距r n ,边长a n ,内角βn , 边数n ;(2)有关计算在Rt ΔAOC 中进行. 公式举例:(1) αn =n 360︒; (2) n1802n ︒=αABCDABCDEF PABOABCPABCDPAB O1O2AO1O2αnβnABCDEOa r n nnR ABCDP ABCPO ∵ EF AB=ABO几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:OCAB已知弦构造弦心距.OA BC已知弦构造Rt Δ.OABC已知直径构造直角.OAB已知切线连半径,出垂直.O BC AD P圆外角转化为圆周角.OACD BP圆内角转化为圆周角.ODC PAB构造垂径定理.OACDPB构造相似形.M01ANO2两圆内切,构造外公切线与垂直.01CN O2DEABM两圆内切,构造外公切线与平行.NAM02O1 两圆外切,构造内公切线与垂直.CBMNADEO 102两圆外切,构造内公切线与平行.CE A DB O两圆同心,作弦心距,可证得AC=DB.A CBO102两圆相交构造公共弦,连结圆心构造中垂线. BAC OPPA 、PB 是切线,构造双垂图形和全等.OABCDE相交弦出相似.OP ABC一切一割出相似, 并且构造弦切角.OBCEADP两割出相似,并且构造圆周角.OABCP双垂出相似,并且构造直角.B ACD EF规则图形折叠出一对全等,一对相似.FEDBAC OGH圆的外切四边形对边和相等.ABOCD若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.EACBOD等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.EFCDBAORtΔABC的内切圆半径:r=2cba-+.O补全半圆.ABCo1o2AB=2221)rR(OO--.CABo1o2AB=2221)rR(OO+-.AC D PO BPC过圆心,PA是切线,构造双垂、RtΔ.BCDOAPO是圆心,等弧出平行和相似.D EMAB CFNG作AN⊥BC,可证出:ANAMBCGF=.。

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结圆是九年级数学中的一个重要内容,它具有独特的性质和广泛的应用。

下面我们来对九年级圆的知识点进行一个全面的总结。

一、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

圆的标准方程为$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$为圆心坐标,$r$为半径。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧:圆上任意两点间的部分叫做弧。

弧分为优弧(大于半圆的弧)、劣弧(小于半圆的弧)。

4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

5、等圆:能够重合的两个圆叫做等圆。

6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论:同弧或等弧所对的圆周角相等。

半圆(或直径)所对的圆周角是直角,$90^{\circ}$的圆周角所对的弦是直径。

四、圆的位置关系1、点与圆的位置关系设点$P$到圆心的距离为$d$,圆的半径为$r$,则有:点$P$在圆外$\Leftrightarrow$ $d > r$点$P$在圆上$\Leftrightarrow$ $d = r$点$P$在圆内$\Leftrightarrow$ $d < r$2、直线与圆的位置关系设圆心到直线的距离为$d$,圆的半径为$r$,则有:直线与圆相离$\Leftrightarrow$ $d > r$,此时直线与圆没有公共点。

华东师范大学出版社九年级下册数学知识点总结

华东师范大学出版社九年级下册数学知识点总结

华师大版九年级下册数学知识点总结第二十六章二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零。

二次函数的定义域是全体实数。

2、二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2。

⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项。

二、二次函数的基本形式1. 二次函数基本形式:2=的性质:a 的绝对值越大,抛物线的开口越小。

y ax2. 2=+的性质:y ax c Array3. ()2=-的性质:y a x h4. ()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。

概括成八个字“左加右减,上加下减”。

方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y ax bx c =++的比较从解析式上看,()2y a x h k=-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,。

九年级上册数学知识点总结

九年级上册数学知识点总结

九年级上册数学知识点总结归纳1 第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步22222222x第二十一章一元二次方程知识点 1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为 0 ,这样的方程叫一元二次方程. 一般形式: ax + bx+c=0(a ≠ 0)。

注意: 判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

知识点 2:一元二次方程的解法1. 直接开平方法:对形如 (x+a ) 2=b ( b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=bx 1 =-a+ bx 2 =-a-b2. 配方法:用配方法解一元二次方程:ax 2+ bx+c=0(k ≠ 0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为 (x+a ) =b 的形式;⑤如果 b ≥0 就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3. 公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式b b2是 2a4ac(b - 4ac ≥0) 。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出 b - 4ac 的值,当 b - 4ac ≥ 0 时代入求根公式。

4. 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则 a=0 或 b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解. 因式分解的方法:提公因式、公式法、十字相乘法。

5. 一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠ 0.因当 a=0 时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若 b - 4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x + 4) 2 =3 ( x + 4)中,不能随便约去 x + 4。

二次函数背景下的与圆有关的问题(解析版)

二次函数背景下的与圆有关的问题(解析版)

备战2020年中考数学压轴题之二次函数专题10 二次函数背景下的与圆有关的问题【方法综述】圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。

而二次函数与圆的结合则常常是高难度的压轴题。

以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内容。

解答要点是结合相关知识,对于已知条件进行数形结合。

【典例示范】类型一 圆的基本性质应用例1:如图,抛物线y =ax 2﹣2ax +m 的图象经过点P (4,5),与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,且S △P AB =10.(1)求抛物线的解析式;(2)在抛物线上是否存在点Q 使得△P AQ 和△PBQ 的面积相等?若存在,求出Q 点的坐标,若不存在,请说明理由;(3)过A 、P 、C 三点的圆与抛物线交于另一点D ,求出D 点坐标及四边形P ACD 的周长.【答案】(1)y =x 2﹣2x ﹣3;(2)点Q 的坐标为:(﹣2,5)或(﹣13,﹣209);(3). 【思路引导】(1)因为抛物线y =ax 2﹣2ax +m ,函数的对称轴为:x =1,S △P AB =10=12×AB ×y P =12AB ×5,解得AB=4,即可求解;(2)分A 、B 在点Q (Q′)的同侧;点A 、B 在点Q 的两侧两种情况,分别求解即可;(3)过点P 作PO′⊥x 轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A 、P 、C 三点的圆,即可求解.【详解】解:(1)y=ax2﹣2ax+m,函数的对称轴为:x=1,S△P AB=10=12×AB×y P=12AB×5,解得:AB=4,故点A、B的坐标分别为:(﹣1,0)、(3,0),抛物线的表达式为:y=a(x+1)(x﹣3),将点P的坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)①当A、B在点Q(Q′)的同侧时,如图1,△P AQ′和△PBQ′的面积相等,则点P、Q′关于对称轴对称,故点Q′(﹣2,5);②当A、B在点Q的两侧时,如图1,设PQ交x轴于点E,分别过点A、B作PQ的垂线交于点M、N,△P AQ和△PBQ的面积相等,则AM=BN,而∠BEN=∠AEM,∠AME=∠BNE=90°,∴△AME≌△BNE(AAS),∴AE=BE,即点E是AB的中点,则点E(1,0),将点P、E的坐标代入一次函数表达式并解得:直线PQ的表达式为:y=53x﹣53…②,联立①②并解得:x=﹣13或4(舍去4),故点Q(﹣13,﹣209),综上,点Q的坐标为:(﹣2,5)或(﹣13,﹣209);(3)过点P作PO′⊥x轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A、P、C三点的圆,设点D(m,m2﹣2m﹣3),点O′(4,0),则DO′=5,即(m﹣4)2+(m2﹣2m﹣3)2=25,化简得:m(m+1)(m﹣1)(m﹣4)=0,解得:m=0或﹣1或1或4(舍去0,﹣1,4),故:m=1,故点D(1,﹣4);四边形P ACD的周长=P A+AC+CD+PD=【方法总结】本题考查了二次函数与三角形面积、三点共圆、四边形的周长、长度公式,综合性较强,灵活运用二次函数的知识是解题的关键.针对训练1.如图,一次函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,点P在以C(-2,0)为圆心,1为半径的圆上,Q是AP的中点(1)若k的值;(2)若OQ长的最大值为32,求k的值;(3)若过点C的二次函数y=ax2+bx+c同时满足以下两个条件:①a+b+c=0;②当a≤x≤a+1时,函数y的最大值为4a,求二次项系数a的值.【答案】(1)2;(2)3225;(3)a的值为-3或2或-4或1.【解析】(1)设A(m,n),∵∴m2+n2=5,∵一次函数y=2x的图象经过A点,∴n=2m,∴m2+(2m)2=5,解得m=±1,∵A在第一象限,∴m=1,∴A(1,2),∵点A在反比例函数y=kx(k>0)的图象上,∴k=1×2=2;(2)如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=12 BP,∵OQ长的最大值为32,∴BP长的最大值为32×2=3,如图2,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t-(-2)=t+2,BD=-2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(-2t)2,t=0(舍)或-45,∴B(-45,-85),∵点B在反比例函数y=kx(k>0)的图象上,∴k=-45×(-85)=3225;(3)∵抛物线经过点C(-2,0),∴4a-2b+c=0,又∵a+b+c=0,∴b=a,c=-2a,∴y=ax2+ax-2a=a(x+12)2-94a,∵-12<a≤x≤a+1或a≤x≤a+1<-12,当x=a时,取得最大值4a,则a•a2+a•a-2a=4a,解得a=-3或2,当x=a+1时,取得最大值4a,则a(a+1)2+a(a+1)-2a=4a,解得a=-4或1,综上所述所求a的值为-3或2或-4或1.2.对于平面直角坐标系xOy中的点P,Q和图形G,给出如下定义:点P,Q都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点P,Q是图形G的一对“关联点”.例如,点P(1,2)和点Q(2,1)是直线y=﹣x+3的一对关联点.(1)请写出反比例函数y=6的图象上的一对关联点的坐标:;x(2)抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).点A,B是抛物线y=x2+bx+c 的一对关联点,直线AB与x轴交于点D(1,0).求A,B两点坐标.(3)⊙T的半径为3,点M,N是⊙T的一对关联点,且点M的坐标为(1,m)(m>1),请直接写出m的取值范围.【答案】(1)(2,3),(3,2).(2)A,B两点坐标为(﹣1,2)和(2,﹣1).(3)1<m≤1+3√2.【解析】解:(1)∵2×3=3×2=6,∴点(2,3),(3,2)是反比例函数y=6的图象上的一对关联点.x故答案为:(2,3),(3,2).(2)∵抛物线y=x2+bx+c的对称轴为直线x=1,=1,∴﹣b2解得:b=﹣2.∵抛物线y=x2+bx+c与y轴交于点C(0,﹣1),∴c=﹣1,∴抛物线的解析式为y=x2﹣2x﹣1.由关联点定义,可知:点A,B关于直线y=x对称.又∵直线AB与x轴交于点D(1,0),∴直线AB 的解析式为y =﹣x +1.联立直线AB 及抛物线解析式成方程组,得:{y =﹣x +1y =x 2﹣2x ﹣1, 解得:{x 1=−1y 1=2 ,{x 2=−1y 2=2, ∴A ,B 两点坐标为(﹣1,2)和(2,﹣1).(3)由关联点定义,可知:点M ,N 关于直线y =x 对称,∴⊙T 的圆心在直线y =x 上.∵⊙T 的半径为3,∴M 1M 2=√22×2×3=3√2,∴m 的取值范围为1<m≤1+3√2. .3.已知:直线y=-x -4分别交x 、y 轴于A 、C 两点,点B 为线段AC 的中点,抛物线y=ax 2+bx 经过A 、B 两点,(1)求该抛物线的函数关系式;(2)以点B 关于x 轴的对称点D 为圆心,以OD 为半径作⊙D ,连结AD 、CD ,问在抛物线上是否存在点P ,使S △ACP =2S △ACD ?若存在,请求出所有满足条件的点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若E 为⊙D 上一动点(不与A 、O 重合),连结AE 、OE ,问在x 轴上是否存在点Q ,使∠ACQ :∠AEO=2:3?若存在,请求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+2x;(2)P坐标为(-3)或(-3+,7);(3)Q坐标为8,0)、(--8,0)、(4,0).【解析】解:(1)∵直线y=-x-4中,y=0时,x=-4;x=0时,y=-4,∴A(-4,0),C(0,-4),∵点B为AC中点,∴B(-2,-2),∵抛物线y=ax2+bx经过A、B两点,∴1640 422a ba b-=⎧⎨-=-⎩,解得:122ab⎧=⎪⎨⎪=⎩,∴抛物线的函数关系式为y=12x2+2x.(2)在抛物线上存在点P使S△ACP=2S△ACD.如图1,连接AD并延长交y轴于点F,∵y=12x2+2x=12(x-2)2-2,∴点B为抛物线的顶点,∵点D为点B关于x轴的对称点,∴D(-2,2)在抛物线的对称轴上,∴DA=DO,∠DAO=∠DOA=45°,∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∴∠DAC=∠DAO+∠OAC=90°,∴S △ACD =12AC•AD , ∵∠AOF=90°,∴AF 为⊙D 直径,即点F 在⊙D 上,∴AF=2AD ,OF=OA=4即F(0,4),∵S △ACP =2S △ACD =2•12AC•AD=12AC•2AD=12AC•AF , ∴点P 在过点F 且平行于直线y=-x -4的直线上,∴直线PF 解析式为y=-x+4, ∵24122y x y x x =-+⎧⎪⎨=+⎪⎩,解得:1137x y ⎧=--⎪⎨=+⎪⎩;2237x y ⎧=-+⎪⎨=-⎪⎩∴点P 坐标为(-3)或(-7;(3)在x 轴上存在点Q 使∠ACQ :∠AEO=2:3. ∵∠OAD=∠ODA=45°,∴∠ADO=90°,∵点E 在⊙D 上且不与A 、O 重合,∠ACQ :∠AEO=2:3. ①如图2,当点E 在优弧AO 上时,∠AEO=12∠ADO=45°, ∴∠ACQ=23∠AEO=30°,过点Q作QG垂直直线AC于点G,设QG=t,∴Rt△CQG中,CQ=2QG=2t,.∴∠GAQ=∠OAC=45°,∴Rt△AGQ中,AG=QG=t,t.i)若点Q在线段AO上时,如图2:则,解得:-,∴(4=,∴x Q=-8;ii)若点Q在线段OA延长上时,如图3:则AC=CG-t-t=4,解得:t=,∴(4=,∴x Q=-4--8,②当点E在劣弧AO上时,∠AEO=12(360°-∠ADO)=135°,∴∠ACQ=23∠AEO=90°.∵∠CAO=45°,△ACO是等腰直角三角形,∴Q点与A点对称,A (-4,0)∴x Q=4.综上所述:满足条件的点Q有三个,坐标分别为8,0)、(--8,0)、(4,0)4.已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=−m的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P2的值.的半径记为r,求lr【答案】(1)证明见解析;(2)①定点F的坐标为(0,1);②10+6√5.5【解析】(1)令y=0,则x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴△>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,则x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,则y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB=OBOC =m+22(m+2)=12,在Rt△AOF中,tan∠OAF=OFOA =OF2=12,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1).∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED =∠OCB ,∴tan ∠BED =12, 设BD =n ,在Rt △BDE 中,tan ∠BED =BD BE =n BE =12, ∴BE =2n ,根据勾股定理得:DE =√BD 2+BE 2=√5n ,∴l =BD+BE+DE =(3+√5)n ,r =12DE =√52n , ∴l r =√5)√52n =10+6√55. 5..如图①,已知抛物线2139424y x x =-+的顶点为点P ,与y 轴交于点B .点A 坐标为(3,2).点M 为抛物线上一动点,以点M 为圆心,MA 为半径的圆交x 轴于C ,D 两点(点C 在点D 的左侧).(1)如图②,当点M 与点B 重合时,求CD 的长;(2)当点M 在抛物线上运动时,CD 的长度是否发生变化?若变化,求出CD 关于点M 横坐标x 的函数关系式;若不发生变化,求出CD 的长;(3)当△ACP 与△ADP 相似时,求出点C 的坐标.【答案】(1) CD=4;(2)不发生变化,CD=4;(3)点C 坐标为:(1,0),()1-,()1+ 【解析】(1)如图:连结BC ,BD ,由题意得:904B ⎛⎫ ⎪⎝⎭,,(3,2),∴AB =∴2OC ==,∴CD=2OC=4;(2)如图:作MH ⊥x 轴,连结MA ,MC ,设()M x y ,,则半径AM =∴CH ====2=, ∵MH ⊥CD ,∴CD=2CH=4,(3)①当△APC ∽△APD ,即全等时,∴PC=PD ,P 与M 重合,∵P (3,0),CD=4,∴C (1,0)②如图,点M 在点P 的左侧,△APC ∽△DPA ,2PA PD PC =⨯,设PC=x ,x (x -4)=4,解得2x =±,∴()1C -, ③如图,点M 在点P 的右侧△APC ∽△DPA ,2PA PD PC =⨯,设PC=x ,x (x+4)=4,解得2x =-±,∴()C ,综上所述,点C 坐标为:C (1,0);()1C -;()C ; 6.已知抛物线 C 1:y =ax 2 过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC 的三个顶点都在抛物线C 1 上,且边 AC 所在的直线解析式为y =x +b ,若 AC 边上的中线 BD 平行于 y 轴,求AC 2BD 的值;(3)如图,点 P 的坐标为(0,2),点 Q 为抛物线上C 1 上一动点,以 PQ 为直径作⊙M ,直线 y =t 与⊙M 相交于 H 、K 两点是否存在实数 t ,使得 HK 的长度为定值?若存在,求出 HK 的长度;若不存在,请说明理由.【答案】(1)y=12x 2 ;(2)16;(3)见解析.【解析】(1)把点(2,2)坐标代入y =ax2,解得:a =12,∴抛物线的解析式为y =x2;(2)把y =x+b 和y =12x2得:x2﹣2x ﹣2b =0,设A 、C 两点的坐标为(x1,y1)、(x2,y2),则:x1+x2=2,x1•x2=﹣2b ,点D 坐标为(x 1+x 22,y 1+y 22),即D (1,﹣b ),B 坐标为(1,12), AC2=[√2(x2﹣x1)]2=16b+8,BD =12+b , ∴AC 2BD =16;(3)设点Q 坐标为(a ,12a2),点P 的坐标为(0,2),由 P 、Q 坐标得点M 的坐标为(a 2,14a2+1), 设圆的半径为 r ,由P (0,2)、M 两点坐标可得r2=a 24+(14a2﹣1)2=116a4﹣14a2+1,设点M 到直线y =t 的距离为d ,则d2=(a2+1﹣t )=116a4+12a2+1+t2﹣2t ﹣12a2t ,则 HK =2√r 2−d 2=2√(12t −34)a 2+2t −t 2,当12t −34=0 时,HK 为常数,t =32, HK =√3.7.(浙江省湖州市南浔区2017-2018学年九年级上学期期末)已知在平面直角坐标系xOy 中,O 是坐标原点,如图1,直角三角板△MON 中,OM=ON=√3,OQ=1,直线l 过点N 和点N ,抛物线y=ax 2+2√33x+c 过点Q 和点N .(1)求出该抛物线的解析式;(2)已知点P 是抛物线y=ax 2+2√33x+c 上的一个动点.①初步尝试若点P 在y 轴右侧的该抛物线上,如图2,过点P 作PA ⊥y 轴于点A ,问:是否存在点P ,使得以N 、P 、A 为顶点的三角形与△ONQ 相似.若存在,求出点P 的坐标,若不存在,请说明理由;②深入探究若点P 在第一象限的该抛物线上,如图3,连结PQ ,与直线MN 交于点G ,以QG 为直径的圆交QN 于点H ,交x 轴于点R ,连结HR ,求线段HR 的最小值.【答案】(1)y=﹣√33x2+2√33x+√3(2)①(1,4√33)、(3,0)、(5,﹣4√3)②3√2+64【解析】 (1)由题意可知,Q (﹣1,0),N (0,√3),∴c=√3,即y=ax2+2√33x+√3, 将Q (﹣1,0)代入解析式得0=a ﹣2√33+√3,解得a=﹣√33, ∴抛物线解析式是y=﹣√33x2+2√33x+√3; (2)①分三种情况,如图2,情况一:点P 在第一象限时,△APN ∽△ONQ ,设AN=m ,则AP=√3m ,则P 的坐标(√3m ,m+√3),而点P 在抛物线上,代入可得m+√3=﹣√33(√3m )2++2√33(√3m )+√3, 解得m=√33,∴P1(1,4√33); 情况二:点P 恰好在x 轴上,P2(3,0),情况三:P 在第四象限内,同情况一方法可解得P3(5,﹣4√3),②连结CH 和CR ,如图3,∵∠NQ0=60°,∴∠HCR=120°,∵CH=CR ,∴HR=√3CH ,∴HR 最小时,只需要半径最小,即直径最小即可,∴过Q作NM的垂线,垂直时,QG最小,∴用面积法求出,QG=√6+√22,HR最小值=3√2+64.8.如图,在平面直角坐标系中,O为原点,A点坐标为(−8, 0),B点坐标为(2, 0),以AB为直径的圆P与y轴的负半轴交于点C.(1)求图象经过A,B,C三点的抛物线的解析式;(2)设M点为所求抛物线的顶点,试判断直线MC与⊙P的关系,并说明理由.【答案】(1)14x2+32x−4;(2)直线MC与⊙P相切,理由见解析【解析】解:(1)连接AC、BC;∵AB是⊙P的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵∠BCO+∠CBO=90°,∴∠CBO=∠ACO,∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴AOOC =OC OB,∴OC2=OA·OB=16,∴OC=4,故C(0,﹣4),设抛物线的解析式为:y=a(x+8)(x ﹣2),代入C 点坐标得:a(0+8)(0﹣2)=﹣4,a=14,故抛物线的解析式为:y=14(x+8)(x ﹣2)=14x 2+32x ﹣4;(2)由(1)知:y=14x 2+32x ﹣4=14(x +3)2﹣254;则M(﹣3,﹣254), 又∵C(0, ﹣4),P(﹣3, 0),∴MP=254,PC=5,MC=154,∴MP 2=MC 2+PC 2,即△MPC 是直角三角形,且∠PCM=90°,故直线MC 与⊙P 相切.9.已知抛物线y=ax 2+bx 过点A (1,4)、B (﹣3,0),过点A 作直线AC ∥x 轴,交抛物线于另一点C ,在x 轴上有一点D (4,0),连接CD .(1)求抛物线的表达式;(2)若在抛物线上存在点Q ,使得CD 平分∠ACQ ,请求出点Q 的坐标;(3)在直线CD 的下方的抛物线上取一点N ,过点N 作NG ∥y 轴交CD 于点G ,以NG 为直径画圆在直线CD 上截得弦GH ,问弦GH 的最大值是多少?(4)一动点P 从C 点出发,以每秒1个单位长度的速度沿C ﹣A ﹣D 运动,在线段CD 上还有一动点M ,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t 的值;若不存在,请说明理由.【答案】(1)直线CE 的表达式为y=﹣43x ﹣43;(2)点Q 的坐标为(﹣13,﹣89);(3)弦GH 的最大值81√580;(4)存在,t 的值为3或7【解析】解:(1)∵抛物线y=a x 2+bx 过点A (1,4)、B (﹣3,0),∴{a +b =49a −3b =0,解得:a=1,b=3, ∴抛物线的表达式为y=x 2+3x .(2)当y=4时,有x 2+3x=4,解得:x 1=﹣4,x 2=1,∴点C 的坐标为(﹣4,4),∴AC=1﹣(﹣4)=5.∵A (1,4),D (4,0),∴AD=5.取点E (﹣1,0),连接CE 交抛物线于点Q ,如图1所示.∵AC=5,DE=4﹣(﹣1)=5,AC ∥DE ,∴四边形ACED 为平行四边形,∵AC=AD ,∴四边形ACED 为菱形,∴CD 平分∠ACQ .设直线CE 的表达式为y=mx+n (m≠0),将C (﹣4,4)、E (﹣1,0)代入y=mx+n ,得:{−4m +n =4−m +n =0 ,解得:{m =−43n =−43, ∴直线CE 的表达式为y=﹣43x ﹣43.联立直线CE 与抛物线表达式成方程组,得:{y =−43x −43y =x 2+3x, 解得:{x 1=−4y 1=4 ,{x 2=−13y 2=−89 , ∴点Q 的坐标为(﹣13,﹣89).(3)设直线CD 的表达式为y=kx+c (k≠0),将C (﹣4,4)、D (4,0)代入y=kx+c ,得:{−4k +c =44k +c =0 ,解得:{k =−12c =2 , ∴直线CD 的表达式为y=﹣12x+2.设点N 的坐标为(x ,x2+3x ),则点G 的坐标为(x ,﹣12x+2),∴NG=﹣12x+2﹣(x2+3x )=﹣x2﹣72x+2=﹣(x+74)2+8116,∵﹣1<0,∴当x=﹣74时,NG 取最大值,最大值为8116. 以NG 为直径画⊙O′,取GH 的中点F ,连接O′F ,则O′F ⊥BC ,如图2所示.∵直线CD 的表达式为y=﹣12x+2,NG ∥y 轴,O′F ⊥BC , ∴tan ∠GO′F=GF O′F =12, ∴GF O′G =√12+22=√55, ∴GH=2GF=2√55 O′G=√55NG ,∴弦GH 的最大值为√55×8116=81√580.(4)取点E(﹣1,0),连接CE、AE,过点E作EP1⊥AC于点P1,交CD于点M1,过点E作EP2⊥AD 于点P2,交CD于点M2,如图3所示.∵四边形ACED为菱形,∴点A、E关于CD对称,∴AM=EM.∵AC∥x轴,点A的坐标为(1,4),∴EP1=4.由菱形的对称性可知EP2=4.∵点E的坐标为(﹣1,0),∴点P1的坐标为(﹣1,4),∴CP1=DP2=﹣1﹣(﹣4)=3,又∵AC=AD=5,∴t的值为3或7.10.如图,在平面直角坐标系中,点A(10, 0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB 并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=________°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?【答案】(1)90;(2)y=−18x2+54x;(3) 以P、O、A、E为顶点的四边形面积S等于16时,相应的点P有且只有3个.【解析】解:(1)90;(2)连接OC,如图1所示,∵由(1)知OB⊥AC,又AB=BC,∴OB是AC的垂直平分线,∴OC=OA=10,在Rt△OCD中,OC=10,CD=8,∴OD=6,∴C(6, 8),B(8, 4)∴OB所在直线的函数关系为y=12x,又∵E点的横坐标为6,∴E点纵坐标为3,即E(6, 3),抛物线过O(0, 0),E(6, 3),A(10, 0),∴设此抛物线的函数关系式为y=ax(x−10),把E点坐标代入得:3=6a(6−10),解得a=−18.∴此抛物线的函数关系式为y=−18x(x−10),即y=−18x2+54x;(3)设点P(p, −18p2+54p),①若点P在CD的左侧,延长OP交CD于Q,如右图2,OP 所在直线函数关系式为:y =(−18p +54)x∴当x =6时,y =−34p +152,即Q 点纵坐标为−34p +152, ∴QE =−34p +152−3=−34p +92,S 四边形POAE =S △OAE +S △OPE =S △OAE +S △OQE −S △PQE =12⋅OA ⋅DE +12QE ⋅OD −12⋅QE ⋅P x •=12×10×3+12×(−34p +92)×6−12•(−34p +92)⋅(6−p ), =−38p 2+94p +15, ②若点P 在CD 的右侧,延长AP 交CD 于Q ,如右图3,P(p, −18p 2+54p),A(10, 0) ∴设AP 所在直线方程为:y =kx +b ,把P 和A 坐标代入得,{10k +b =0pk +b =−18p 2+54p, 解得{k =−18p b =54p. ∴AP 所在直线方程为:y =−18px +54p ,∴当x =6时,y =−18p ⋅6+54p =12P ,即Q 点纵坐标为12P ,∴QE =12P −3,∴S 四边形POAE=S △OAE +S △APE =S △OAE +S △AQE −S △PQE =12⋅OA ⋅DE +12⋅QE ⋅DA −12⋅QE •(P x −6)=12×10×3+12⋅QE •(DA −P x +6)=15+12•(12p −3)⋅(10−p) =−14p 2+4p =−14(p −8)2+16,∴当P 在CD 右侧时,四边形POAE 的面积最大值为16,此时点P 的位置就一个,令−38p 2+94p +15=16,解得,p =3±√573, ∴当P 在CD 左侧时,四边形POAE 的面积等于16的对应P 的位置有两个,综上所知,以P 、O 、A 、E 为顶点的四边形面积S 等于16时,相应的点P 有且只有3个.类型二 与圆有关的位置关系例2.如图1,二次函数y =ax 2﹣2ax ﹣3a (a <0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴的正半轴交于点C ,顶点为D .(1)求顶点D 的坐标(用含a 的代数式表示);(2)若以AD 为直径的圆经过点C .①求抛物线的函数关系式;②如图2,点E 是y 轴负半轴上一点,连接BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1:2,求点M 、N 的坐标;③点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相切,如图3,求点Q 的坐标.【答案】(1)(1,﹣4a );(2)①y=﹣x 2+2x+3;②M (52,74)、N (32,154);③点Q 的坐标为(1,﹣)或(1,﹣4﹣).【思路引导】 (1)将二次函数的解析式进行配方即可得到顶点D 的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD 的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.【解析】(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=5 2 .∴M(52,74)、N(32,154).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C (0,3)、D (1,4),∴CH =DH =1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2;设Q (1,b ),则QD =4﹣b ,QG 2=QB 2=b 2+4;得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b =﹣;即点Q 的坐标为(1,4-+)或(1,4--.【方法总结】此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD 和⊙Q 半径间的数量关系是解题题目的关键.针对训练1.抛物线y =﹣23x 2+73x ﹣1与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y =t (t <2524)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象.(1)点A ,B ,D 的坐标分别为 , , ;(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围;(3)如图②,当t =0时,若Q 是“M ”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)A (12,0);B (3,0);D (74,2524);(2)1548≤t≤2548;(3)存在以CQ 为直径的圆与x 轴相切于点P ,点P的坐标为(75-0)、(311,0)、(1,0)或(75+,0). 【解析】解:(1)当y=0时,﹣23x 2+73x ﹣1=0, 解得x 1=12,x 2=3, ∴点A 的坐标为(12,0),点B 的坐标为(3,0), ∵y=﹣23x 2+73x ﹣1=﹣23(x -74)2+2524, ∴点D 的坐标为(74,2524); (2)∵点E 、点D 关于直线y=t 对称,∴点E 的坐标为(74,2t ﹣2524). 当x=0时,y=﹣23x 2+73x ﹣1=﹣1, ∴点C 的坐标为(0,﹣1).设线段BC 所在直线的解析式为y=kx+b ,将B (3,0)、C (0,﹣1)代入y=kx+b ,301k b b +=⎧⎨=-⎩,解得:131k b ⎧=⎪⎨⎪=-⎩, ∴线段BC 所在直线的解析式为y=13x ﹣1. ∵点E 在△ABC 内(含边界),∴2520242517212434tt⎧-≤⎪⎪⎨⎪-≥⨯-⎪⎩,解得:1548≤t≤2548.(3)当x<12或x>3时,y=﹣23x2+73x﹣1;当12≤x≤3时,y=﹣23x2+73x﹣1.假设存在,设点P的坐标为(12m,0),则点Q的横坐标为m.①当m<12或m>3时,点Q的坐标为(m,﹣23x2+73x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣23m2+73m)2=14m2+1+14m2+(﹣23m2+73m﹣1)2,整理,得:m1,m2,∴点P 0,0); ②当12≤m≤3时,点Q 的坐标为(m,23x 2-73x +1)(如图2), ∵以CQ 为直径的圆与x 轴相切于点P , ∴CP ⊥PQ ,∴CQ 2=CP 2+PQ 2,即m 2+(23m 2﹣73m+2)2=14m 2+1+14m 2+(23m 2﹣73m+1)2, 整理,得:11m 2﹣28m+12=0,解得:m 3=611,m 4=2, ∴点P 的坐标为(311,0)或(1,0).综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 0)、(311,0)、(1,0)或(75+,0). 2.如图1,抛物线y =ax 2+bx+c 的顶点(0,5),且过点(﹣3,114),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB =d (定值),将其弯折成互相垂直的两段AC 、CB 后,设A 、B 两点的距离为x ,由A 、B 、C 三点组成图形面积为S ,且S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上):(1)填空:线段AB 的长度d = ;弯折后A 、B 两点的距离x 的取值范围是 ;若S =3,则是否存在点C ,将AB 分成两段(填“能”或“不能”) ;若面积S =1.5时,点C 将线段AB 分成两段的长分别是 ;(2)填空:在如图1中,以原点O 为圆心,A 、B 两点的距离x 为半径的⊙O ;画出点C 分AB 所得两段AC 与CB 的函数图象(线段);设圆心O 到该函数图象的距离为h ,则h = ,该函数图象与⊙O 的位置关系是 .(提升)问题2,一个直角三角形斜边长为c (定值),设其面积为S ,周长为x ,证明S 是x 的二次函数,求该函数关系式,并求x 的取值范围和相应S 的取值范围.【答案】抛物线的解析式为:y =﹣14x 2+5;(1)<x <;(2,相离或相切或相交;(3)相应S 的取值范围为S >14c 2.【解析】解:∵抛物线y =ax 2+bx+c 的顶点(0,5), ∴y =ax 2+5, 将点(﹣3,114)代入, 得114=a×(﹣3)2+5, ∴a =14﹣ , ∴抛物线的解析式为:y =2154x +﹣ ;(1)∵S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上),在y =2154x +﹣,当y =0时,x 1=x 2=﹣∴M (0),即当x =S =0,∴d 的值为∴弯折后A 、B 两点的距离x 的取值范围是0<x <当S =3 时,设AC =a ,则BC =a ,∴12a (a )=3,整理,得a 2﹣=0, ∵△=b 2﹣4ac =﹣4<0, ∴方程无实数根;当S =1.5时,设AC =a ,则BC =a ,∴12a (a )=1.5,整理,得a 2﹣=0,解得1a 2a∴当a +a当a a +∴若面积S =1.5时,点C 将线段AB +故答案为:0<x <+(2)设AC =y ,CB =x ,则y =﹣1所示的线段PM ,则P (0,,M (0), ∴△OPM 为等腰直角三角形,∴PM OP =, 过点O 作OH ⊥PM 于点H ,则OH =12PM ,∴当0<x 时,AC 与CB 的函数图象(线段PM )与⊙O 相离;当x 时,AC 与CB 的函数图象(线段PM )与⊙O 相切;<x <AC 与CB 的函数图象(线段PM )与⊙O 相交;,相离或相切或相交; (3)设直角三角形的两直角边长分别为a ,b , 则222-a b c a b x c ++=,= , ∵(a+b )2=a 2+b 2+2ab , ∴(x ﹣c )2=c 2+2ab ,∴2111242ab x cx =-, 即S =()22211114244x cx x c c -=-+,∴x 的取值范围为:x >c , 则相应S 的取值范围为S >214c .3.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-. (1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值; (3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩,则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴,QHN OCA ∠∠∴=,1tan QHN2∠∴=,则sin QHN ∠=,将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.4.如图1,对于平面内的点P 和两条曲线L 1、L 2给出如下定义:若从点P 任意引出一条射线分别与L 1、L 2交于Q 1、Q 2,总有PQ 1PQ 2是定值,我们称曲线L 1与L 2“曲似”,定值PQ1PQ 2为“曲似比”,点P 为“曲心”.例如:如图2,以点O ′为圆心,半径分别为r 1、r 2(都是常数)的两个同心圆C 1、C 2,从点O ′任意引出一条射线分别与两圆交于点M 、N ,因为总有O ′MO ′N =r 1r 是定值,所以同心圆C 1与C 2曲似,曲似比为r1r 2,“曲心”为O ′.(1)在平面直角坐标系xOy中,直线y=kx与抛物线y=x2、y=12x2分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使⊙O 与直线BC相切?若存在,求出k的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“y=12x2”改为“y=1mx2”,其他条件不变,当存在⊙O与直线BC相切时,直接写出m的取值范围及k与m之间的关系式.【答案】(1)两抛物线曲似,理由详见解析;(2)存在k值,使⊙O与直线BC相切,k=±√3;(3)m>1,k2=m2−1.【解析】(1)是,过点A、B作x轴的垂线,垂足分别为D、C,依题意可得A(k,k2)、B(2k,2k2),因此D(k,0)、C(2k,0),∵AD ⊥x 轴、BC ⊥x 轴, ∴AD//BC , ∴OA OB=OD OC=k 2k=12,∴两抛物线曲似,曲似比为12;(2)假设存在k 值,使⊙O 与直线BC 相切, 则OA =OC =2k ,又∵OD =k 、AD =k 2,并且OD 2+AD 2=OA 2, ∴k 2+(k 2)2=(2k)2, 解得:k =√3(负值舍去), 由对称性可取k =−√3, 综上,k =±√3;(3)根据题意得A(k,k 2)、B(mk,mk 2), 因此D(k,0)、C(mk,0), ∵⊙O 与直线BC 相切, ∴OA =OC =mk , 由OA >OD 可得mk >k , 则m >1,由OD =k 、AD =k 2,并且OD 2+AD 2=OA 2, ∴k 2+(k 2)2=(mk)2, 整理,得:k 2=m 2−1.5.已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线l 过()01-,点.(1)求一次函数与二次函数的解析式;(2)判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明;(3)把二次函数的图象向右平移 2 个单位,再向下平移 t 个单位(t >0),二次函数的图象与x 轴交于 M ,N 两点,一次函数图象交y 轴于 F 点.当 t 为何值时,过 F ,M ,N 三点的圆的面积最小?最小面积是多少?【答案】(1)一次函数的解析式为314y x =-+;二次函数解析式为214y x =. (2)相切,证明见解析(3)当3t =时,过F M N ,,三点的圆面积最小,最小面积为4π. 【解析】()1把()4,4A -代入1y kx =+得34k =-∴一次函数的解析式为314y x =-+ ∴二次函数图象的顶点在原点,对称轴为y 轴,∴二次函数的解析式为2y ax =,将()4,4A -代入解析式得14a =-∴二次函数的解析式为214y x =-()2由231414y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得44x y =-⎧⎨=⎩或114x y =⎧⎪⎨=⎪⎩,11,4B ⎛⎫∴ ⎪⎝⎭,取,A B 的中点317,28P ⎛⎫- ⎪⎝⎭, 过P 作直线l 的垂线,垂足为N ,则3,12N ⎛⎫-- ⎪⎝⎭1725188PN ∴=+=,而直径254AB ∴==12PN AB ∴=,即圓心到直线l 的距离等于半径, 以AB 为直径的圆与直线l 相切.()3平移后二次函数的解析式为()2124y x t =--,令0,y =得()212120,224x t x x --==-=过,,F M N 三点的國的圆心C 一定在平移后抛物线的对称轴.上,要使圓面积最小,圆半径应等于点F 到直线2x =2的距离,点C 坐标为()2,1. 此时,半径为2,面积为4π设圆心为,C MN 的中点为E ,连接,CE CM ,则1CE =,在三角形CEM 中,ME =MN ∴=2134MN x x t =-=∴= ∴当3t 4=时,过,,F M N 三点的圓面积最小,最小面积为4π. 6.如图,在平面角坐标系中,抛物线C 1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),抛物线C 2:y=2x 2+x+1,动直线x=t 与抛物线C 1交于点N ,与抛物线C 2交于点M . (1)求抛物线C 1的表达式;(2)直接用含t 的代数式表示线段MN 的长;(3)当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值;(4)在(3)的条件下,设抛物线C 1与y 轴交于点P ,点M 在y 轴右侧的抛物线C 2上,连接AM 交y 轴于点k ,连接KN ,在平面内有一点Q ,连接KQ 和QN ,当KQ=1且∠KNQ=∠BNP 时,请直接写出点Q 的坐标.【答案】(1)抛物线C1:解析式为y=x 2+x ﹣1;(2)MN=t 2+2;(3)t 的值为1或0;(4)满足条件的Q 点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125)【解析】(1)∵抛物线C1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),∴{1=4a −2b −1−1=a −b −1,解得:{a =1b =1 , ∴抛物线C1:解析式为y=x 2+x ﹣1;(2)∵动直线x=t 与抛物线C1交于点N ,与抛物线C2交于点M ,∴点N 的纵坐标为t 2+t ﹣1,点M 的纵坐标为2t 2+t+1,∴MN=(2t 2+t+1)﹣(t 2+t ﹣1)=t 2+2;(3)共分两种情况①当∠ANM=90°,AN=MN 时,由已知N (t ,t 2+t ﹣1),A (﹣2,1),∴AN=t ﹣(﹣2)=t+2,∵MN=t 2+2,∴t 2+2=t+2,∴t1=0(舍去),t2=1,∴t=1;②当∠AMN=90°,AN=MN 时,由已知M (t ,2t 2+t+1),A (﹣2,1),∴AM=t ﹣(﹣2)=t+2,∵MN=t 2+2,∴t 2+2=t+2,∴t 1=0,t 2=1(舍去),∴t=0,故t 的值为1或0;(4)由(3)可知t=1时M 位于y 轴右侧,根据题意画出示意图如图:易得K (0,3),B 、O 、N 三点共线,∵A (﹣2,1),N (1,1),P (0,﹣1),∴点K 、P 关于直线AN 对称,设⊙K 与y 轴下方交点为Q2,则其坐标为(0,2),∴Q2与点O 关于直线AN 对称,∴Q2是满足条件∠KNQ=∠BNP ,则NQ2延长线与⊙K 交点Q1,Q1、Q2关于KN 的对称点Q3、Q4也满足∠KNQ=∠BNP ,由图形易得Q1(﹣1,3),设点Q3坐标为(a ,b ),由对称性可知Q3N=NQ1=BN=2√2,由∵⊙K 半径为1,∴{(a −1)2+(b −1)2=(2√2)2a 2+(b −3)2=12,解得:{a 1=35b 1=195 ,{a 2=−1b 2=3 , 同理,设点Q4坐标为(a ,b ),由对称性可知Q4N=NQ2=NO=√2,∴{(a −1)2+(b −1)2=(√2)2a 2+(b −3)2=12 ,解得:{a 3=45b 3=125 ,{a 4=0b 4=2 , ∴满足条件的Q 点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125).7.如图,直线2y x =+与抛物线222y x mx m m =-++交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,抛物线的对称轴与直线AB 交于点M .(1)当四边形CODM 是菱形时,求点D 的坐标;(2)若点P 为直线OD 上一动点,求APB ∆的面积;(3)作点B 关于直线MD 的对称点B ',以点M 为圆心,MD 为半径作M ,点Q 是M上一动点,求2QB '+的最小值. 【答案】(1);(2)3;(3【解析】(1) (,)D m m,OD =, 菱形CODM2OD OC ∴===m ∴= (2)①2y x =+与抛物线222y x mx m m =-++交于,A B 两点,∴联立,222y x mx m m =-++,2y x =+解得1111x m y m =-⎧⎨=+⎩,2224x m y m =+⎧⎨=+⎩ ∵点A 在点B 的左侧(1,1)A m m ∴-+,(2,4)B m m ++AB ∴==∴直线OD 的解析式为y x =,直线AB 的解析式为2y x =+//AB OD ∴,两直线,AB OD 之间距离22h =⨯=11322APBS AB h ∴=⋅=⨯=(3) (1,1)A m m -+,(2,4)B m m ++1AM ∴==2BM ==由M 点坐标(,2)m m +,D 点坐标(,)m m 可知以MD 为半径的圆的半径为(2)2m m +-=取MB 的中点N ,连接,,QB QN QB ',则12MN BM ==⨯=MN QMMN QM QM BM ==QMN BMQ ∠=∠, ~MNQ MQB ∴,2QN MN OB OM ∴==,QN ∴=由三角形三边关系,当,,Q N B '三点共线时QB '+最小, ∵直线AB 的解析式为2y x =+,∴直线AB 与对称轴夹角为45°,∵点,B B '关于对称轴对称, 90BMB '︒∴∠=,由勾股定理得,2QB '+最小值===.8.如图,已知以E(3,0)为圆心,5为半径的☉E 与x 轴交于A ,B 两点,与y 轴交于C 点,抛物线y=ax 2+bx+c(a≠0)经过A ,B ,C 三点,顶点为F.(1)求A ,B ,C 三点的坐标;(2)求抛物线的解析式及顶点F 的坐标;(3)已知M 为抛物线上的一动点(不与C 点重合),试探究:①若以A ,B ,M 为顶点的三角形面积与△ABC 的面积相等,求所有符合条件的点M 的坐标;②若探究①中的M 点位于第四象限,连接M 点与抛物线顶点F ,试判断直线MF 与☉E 的位置关系,并说明理由.【答案】(1)A(-2,0),B(8,0),C(0,-4);(2)抛物线的解析式为y=14x 2-32x -4,F (3,−254);(3)①所点M 的坐标为(6,-4),(√41+3,4),(-√41+3,4);②若M 点位于第四象限,则M 点即为M1点,此时直线MF 和☉E 相切,理由见解析.【解析】(1)由题图可得点A 的横坐标为3-5=-2,点B 的横坐标为3+5=8,连接CE ,则CE=5,又OE=3,。

九年级上册数学一元二次函数与圆的知识点

九年级上册数学一元二次函数与圆的知识点

一、概述1.1 说明文章将要讨论的内容1.2 引入数学在生活中的重要性二、一元二次函数的基本概念2.1 一元二次函数的定义2.2 一元二次函数的一般形式2.3 一元二次函数的图像特征三、一元二次方程的求解3.1 一元二次方程的定义3.2 一元二次方程的求解方法3.3 一元二次方程根的性质四、一元二次函数的应用4.1 一元二次函数在生活中的应用举例 4.2 如何利用一元二次函数解决实际问题 4.3 一元二次函数与最值的关系五、圆的基本概念5.1 圆的定义5.2 圆的性质5.3 圆的相关公式六、圆与直线的位置关系6.1 圆与直线的位置关系的基本概念6.2 圆与直线位置关系的判定方法6.3 圆与直线位置关系的相关定理七、圆的应用7.1 圆在生活中的应用举例7.2 如何利用圆解决实际问题7.3 圆与几何问题的关系八、总结8.1 总结一元二次函数和圆的核心知识点8.2 对数学学习的启示8.3 鼓励读者对数学学科的深入探究九、参考文献9.1 一元二次函数的教材9.2 圆的几何教材9.3 数学应用案例参考文献文章内容:随着九年级上册数学教学的进行,学生们接触到了一元二次函数和圆的知识。

这些数学知识点不仅在学校教学中扮演重要角色,更是在生活中具有广泛的应用。

本文将对一元二次函数和圆的基本概念、求解方法、应用以及相关定理进行介绍和讨论,以帮助读者更好地理解和掌握这些知识。

本文结合相关教材和案例引用了大量权威参考文献,以确保所述内容的准确性和权威性。

一、概述1.1 一元二次函数和圆的重要性1.2 数学在现实生活中的应用二、一元二次函数的基本概念2.1 一元二次函数的定义及其图像2.2 一元二次函数的一般形式2.3 一元二次函数的图像特征分析三、一元二次方程的求解3.1 一元二次方程的定义和性质3.2 一元二次方程的求解方法3.3 一元二次方程根的性质及应用案例分析四、一元二次函数的应用4.1 一元二次函数在生活中的应用举例4.2 一元二次函数解决实际问题的方法4.3 一元二次函数与最值的关系及相关案例分析五、圆的基本概念5.1 圆的定义及公式5.2 圆的性质及相关定理5.3 圆的几何图形性质分析六、圆与直线的位置关系6.1 圆与直线位置关系的基本概念6.2 圆与直线位置关系的判定方法6.3 圆与直线位置关系的相关定理及案例分析七、圆的应用7.1 圆在生活中的应用举例7.2 圆解决实际问题的方法7.3 圆与几何问题的关系分析八、总结8、总结一元二次函数和圆的核心知识点8.2 对数学学习的启示8.3 鼓励读者对数学学科的深入探究九、参考文献9.1 一元二次函数的教材9.2 圆的几何教材9.3 数学应用案例参考文献在本文中,我们将从基本概念、求解方法、应用以及相关定理等方面对一元二次函数和圆进行了深入的介绍和探讨。

圆与二次函数知识点

圆与二次函数知识点

圆与二次函数知识点 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】圆和二次函数知识点《圆》一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;A2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图4图5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学知识点总结
1. 一元二次方程的一般形式: a ≠0时,ax 2
+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.
2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.
3. 一元二次方程根的判别式: 当ax 2
+bx+c=0 (a ≠0)时,Δ=b 2
-4ac 叫一元二次方程根的判别式.请注意以下等价命题: Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等). 4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .a
c
x x a
b
x x )2(a 2ac 4b b x )
1(212122
,1=
-=+-±-=,
; ※ 5.当ax 2
+bx+c=0 (a ≠0) 时,有以下等价命题:
(以下等价关系要求会用公式 a
c x x a b x x 2121=-=+,;Δ=b 2
-4ac 分析,不要求背记)
(1)两根互为相反数 ⇔ a b
-= 0且Δ≥0 ⇔ b = 0且Δ≥0;
(2)两根互为倒数 ⇔ a c
=1且Δ≥0 ⇔ a = c 且Δ≥0;
(3)只有一个零根 ⇔ a
c = 0且a b
-≠0 ⇔ c = 0且b ≠0;
(4)有两个零根 ⇔ a
c = 0且a b
-= 0 ⇔ c = 0且b=0;
(5)至少有一个零根 ⇔ a
c
=0 ⇔ c=0;
(6)两根异号 ⇔ a
c
<0 ⇔ a 、c 异号;
(7)两根异号,正根绝对值大于负根绝对值⇔ a
c <0且a b
->0⇔ a 、c 异号且a 、b 异号;
(8)两根异号,负根绝对值大于正根绝对值⇔ a
c <0且a b
-<0⇔ a 、c 异号且a 、b 同号;
(9)有两个正根 ⇔ a
c >0,a b
->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;
(10)有两个负根 ⇔ a
c >0,a b
-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.
6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.
ax 2
+bx+c=a(x-x 1)(x-x 2) 或 ax 2
+bx+c=⎪⎪⎭
⎫ ⎝⎛
----⎪⎪⎭⎫ ⎝
⎛-+--a 2ac 4b b x a 2ac 4b b x a 22.
7.求一元二次方程的公式:
x 2
-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数.
8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2
.
(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法: .
0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母
两边同乘最简
去分母法
.0.
2≠分母,值验增根代入原方程每个换元凑元,设元,
换元法
)(
10. 二元二次方程组的解法:
.0)3(0
)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0
)2)(1()3(;
02;1⎩

⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩

⎧===------分组为应注意:的方程)()
(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(
※11.几个常见转化:


或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+
-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1
x (x
1
x 2)x 1x (x
1
x x x 4)x x ()x x (x x 2)x x (x x )1(212
12
21221212
122122121222
2
2
2
21221221212212221
⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22
x x 2x x .12x x )
2(2
21212121)两边平方为(和分类为 ; ⎪⎩

⎨⎧
-==⇒==.
,)2(34x x 34x x )1()916x x (3
4
x x )
3(21212221
21因为增加次数两边平方一般不用和分类为或 ;
.
0x ,0x :.
1x x B sin A cos ,1A cos A sin ,90B A B sin x ,
A sin x )4(21222
12221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如.
0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长
.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某
比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直
.
,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个
《圆》。

相关文档
最新文档