2020年中考数学考点专题精讲:反比例函数

合集下载

知识清单11 反比例函数- 2020年中考数学知识清单大全25讲(附例释)

知识清单11 反比例函数- 2020年中考数学知识清单大全25讲(附例释)

知识清单11:反比例函数1. 反比例函数的概念2. 反比例函数的图像与性质3. 确定反比例函数表达式4. k 值的几何意义5. 反比例函数与一次函数交点问题6. 反比例函数的实际应用1.反比例函数的概念(1)定义:形如y =kx (k ≠0)的函数称为反比例函数,k 叫做比例系数, 自变量的取值范围是非零的一切实数. (2)形式:反比例函数有以下三种基本形式: ①y =kx ;②y=kx -1; ③xy=k.(其中k 为常数,且k ≠0)2.反比例函数的图象和性质3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x 轴和y 轴,但都不会与x 轴和y 轴相交; (3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条 对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例 函数系数k 即可.名师点睛:(1)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.(2)判断点是否在反比例函数图象上的方法: ①把点的横、纵坐标代入看是否满足其解析式; ②把点的横、纵坐标相乘,判断其乘积是否等于k(3)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.(4)例:若(a ,b)在反比例函数ky x=的图象上,则(-a ,-b)在该函数图象上.(5)例:已知反比例函数图象过点(-3,-1),则反比例函数解析式的k=(-3)·(-1)=3,它的解析式是3y x=.(1)意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂 线,垂线与坐标轴所围成的矩形面积为|k |,以该点、一个垂足和原点为顶点的三角形的面积为2k.(2)反比例函数的|k |越大,则图像越远离原点.6.反比例函数与一次函数的综合(1)确定交点坐标:①已知一个交点坐标为(a ,b ),则根据中心对 称性,可得另一个交点坐标为(-a ,-b );②联立两个函数解析式,利 用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代 入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数 的关系,可采用假设法,分k >0和k <0两种情况讨论,看哪个选项 符合要求即可,也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图 象在下方的值小,结合交点坐标,确定出解集的范围. (5)两函数交点个数问题:①若两函数有两个交点,则联立后的一元二次方程△>0; ②若两函数有唯一交点,则联立后的一元二次方程△=0; ③若两函数有没有交点,则联立后的一元二次方程△<0;7.实际应用的一般步骤(1)题意找出自变量与因变量之间的乘积关系; (2)设出函数表达式; (3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.名师点睛:(6)已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x =或3y x=-.(7)涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k 的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S △AOC =S △BOD <S △OPE .(8)k 值几何意义:(9)例:若一次函数6y x =-+向右平移m 个单位后与反比例函数2y x=有唯一交点,则m 的值为_____. 解:令()26x m x-++=,化简得:()2620xm x +-+=因为两函数有唯一交点,则△=0, 即()2680m --=,解得226m =±+.函数的平移规律:上加下减,左加右减,上、下平移直接在解析式后加减,左、右平移在自变量x的地方加减.例题:函数723yx=-+并非y关于x的反比例函数,但可以看成是由y关于x的反比例函数7yx=向左平3个单位和向下平移2个单位得到,图像在平移的过程中,“临界线”也跟着发生了相应的平移,如图所示:临界线:x轴和y轴7yx =。

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解 专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x=或3y x =-专项训练 一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA 的面积是()A.2 B.1 C.1-D.122.如图,在平面直角坐标系中,A,B是反比例函数kyx=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB的面积为54,则k的值为()A.23B.1C.2D.1543.若图中反比例函数的表达式均为4yx=,则阴影面积为4的有()A.1个B.2个C.3个D.4个4.如图,点A是反比例函数4yx=-图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为()A .-4B .2C .4D .85.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为()A .60B .48C .36D .206.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11k y x=(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A.﹣3 B.3 C.D7.如图,A、B是双曲线y=kx图象上的两点,过A点作AC⊥x轴于点C,交OB于点D,BD=2OD,且ADO的面积为8,则DCO的面积为()A.12B.1 C.32D.28.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若△PMN的面积为2,则k的值为()A.2 B.3 C.4 D.59.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x(x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A .3B .6C .9D .9210.如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =k x相交于点C ,且BC ∶OC =1∶2,则k 的值为()A .﹣3B .﹣94C .3D .92二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0k y k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∠CAB=2,则k的值为_____13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 与点B 分别在函数11(0)k y k x =>与220)k y k x=<(的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为3,则12k k -的值是___.三、解答题16.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS=.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数a y x=的图象上,点B 、D 在反比例函数b y x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ①请求出a 、b 的值; ②试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.18.如图,点C 在反比例函数y 1=x的图象上,CA ∥y 轴,交反比例函数y 3=x的图象于点A ,CB ∥x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则△ABO 的面积为__.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动点,PA⊥X轴于点A,交函数2yx=图象于点C,PB⊥Y轴于点B,交函数2yx=图象于点D,点D的横坐标为a.(1)用字母a表示点P的坐标;(2)求四边形ODPC的面积;(3)连接DC交X轴于点E,连接DA、PE,求证:四边形DAEP是平行四边形.20.如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=kx(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是(只填序号). 21.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB =22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ⊥x 轴,垂足为点H ,交反比例函数y =k x(x >0)的图象于点D ,连接OD ,△ODH 的面积为6(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若△BDE 的面积是△OCD 面积的2倍,求点E 的坐标.11 / 11 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x =≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.。

【精选】2020年中考数学《反比例函数》专题 复习试题(word版有答案)

【精选】2020年中考数学《反比例函数》专题 复习试题(word版有答案)

中考数学《反比例函数》专题 复习试题命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧a b (b >0),-ab (b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx(x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x.(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C.(3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t (t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx(x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧mx(x >0),-mx(x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx(x >0)的图象上,S 矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx(x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx(x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2),∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx(x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3).则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x ,得b =4;将C(4,b +1)代入y =4x ,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx(x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx(x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2.∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2).∵M ,N 在反比例函数y =kx(k >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2.∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx(x >0)的图象上.若AB =1,则k的值为(A)A .1B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx(k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x(x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x(k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值。

中考数学考点专题复习课件反比例函数的图象和性质

中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.

中考数学专题复习7反比例函数及其运用(解析版)

中考数学专题复习7反比例函数及其运用(解析版)

反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。

3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。

一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

【中考数学考点复习】第三节反比例函数的图象与性质课件

【中考数学考点复习】第三节反比例函数的图象与性质课件

∴点C的坐标为(m,12m),
∴PC=|m8 -12m|,
∴S△POC=12PC·xP,
第9题图
即3=12×|m8 -12m|·m,(7分) 整理为|8-12m2|=6, 解得m=±2或±2 7, ∵点P在第一象限, ∴m>0, ∴P(2,4)或(2 7,477).(10分)
第9题图
10. 在平面直角坐标系 xOy 中,反比例函数 y=mx (x>0)的图象经过点 A(3, 4),过点 A 的直线 y=kx+b 与 x 轴、y 轴分别交于 B,C 两点.
(5)【思维教练】通过作辅助线将△PAB分为两个三角形,利用分割法 及三角形面积公式求解;
解:如解图②,过点 P 作 PQ 垂直于 x 轴,交直线 AB 于点 Q, 则点 Q(52,32),
∴S △PAB(xB-xQ)·PQ+12(xQ-xA)·PQ
Q

=12(xB-xA)·PQ=12×2×32 =3;
y=-8,
联立
x y=1x+5-m
整理得 ,
12x
2+(5-m)x
+8=0,
2
Δ=(5-m)2-16=0,解得 m=1 或 m=9.(9 分) ∴m 的值为 1 或 9.(10 分)
第8题图
9.图,在平面直角坐标系 xOy 中,已知正比例函数 y=1x 的图象与反比 2
例函数 y=k的图象交于 A(a,-2),B 两点. x
∴不等式kx<-x+4 的解集为 x<0 或 1<x<3;
(3)连接 OA,OB,求△AOB 的面积;
第 7 题图②
(3)【思维教练】先求得直线与x轴的交点坐标,再利用和差法及三角形 面积公式求解;
解:如解图①,设直线 AB 与 x 轴交于点 C,

2024年中考数学一轮复习考点精讲课件—反比例函数的图象、性质及应用

2024年中考数学一轮复习考点精讲课件—反比例函数的图象、性质及应用

其中,两个变量之间的函数关系可以用如图所示的图象表示的是( )
A.①②
B.①③
C.②③
D.①②③
【详解】解:由函数图象可知,这两个变量之间成反比例函数关系,

①矩形的面积= ⋅ ,因此矩形的面积一定时,一边长y与它的邻边x可以用形如 = ≠ 0 的式子表
示,即满足所给的函数图象;
②耕地面积= ⋅ ,因此耕地面积一定时,该村人均耕地面积S与全村总人口n可以用形如 =
这个函数图象上的点是(
)A. 1,6
1
B. − 2 , 12 ,
C. −2, −3
2
D.
3
,4
2
6
【对点训练1】(2019·吉林长春·中考模拟)如图,函数y=(x>0)、y=(x>0)的图象将第一象限分成了A、
B、C三个部分.下列各点中,在B部分的是( )
即:反比例函数的图象关于直线y=±x成轴对称,关于原点成中心对称.
反比例 待定系数法求反比例函数解析式的一般步骤:
函数解
析式的
确定方

k
1)设反比例函数的解析式为y = (k为常数,k≠0);
x
2)把已知的一对x,y的值带入解析式,得到一个关于待定系数k的方程;
3)解方程求出待定系数k;
4)将所求的k值代入所设解析式中.
【例3】(2022上·山东枣庄·九年级校考期末)已知函数 = ( + 1)

【详解】∵函数 = ( + 1)

2 −5
2 −5
是关于的反比例函数,则的值
是关于的反比例函数,
∴ + 1 ≠ 0,2 − 5 = −1,
∴ = ±2,

考点11 反比例函数(精讲)(原卷版)

考点11 反比例函数(精讲)(原卷版)

考点11.反比例函数(精讲)【命题趋势】反比例函数也是非常重要的函数,年年都会考,总分值为12分左右,预计2024年各地中考一定还会考,反比例函数与一次函数结合出现在解答题中是各地中考必考的一个解答题,反比例函数的图象与性质和平面几何的知识结合、反比例函数中|k|的几何意义等也会是小题考查的重点。

【知识清单】1:反比例函数的概念(☆☆)反比例函数的概念:一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.自变量x和函数值y的取值范围都是不等于0的任意实数.2:反比例函数的图象和性质(☆☆☆)1)反比例函数的图象和性质表达式kyx=(k是常数,k≠0)k k>0k<0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大对称性轴对称图形(对称轴为直线y=x和y=-x),中心对称图形(对称中心为原点)2)待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.3:反比例函数中|k|的几何意义(☆☆☆)1)反比例函数图象中有关图形的面积2)涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.4:反比例函数与一次函数的综合(☆☆☆)1)涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标。

专题 反比例函数-2023年中考数学第一轮总复习课件(全国通用)全

专题 反比例函数-2023年中考数学第一轮总复习课件(全国通用)全
解,然后在作答中说明.
典例精讲
反比例函数与几何图形的综合
知识点四
【例4】(2020·T18)如图,Rt△ABC中,∠ACB=90º,顶点A,B都在反比例函
k
数 y = ( x > 0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB
x
OA = 2 2.
于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45º,
(0,1),顶点C在第一象限,若函数y=k/x(x>0)的图象经过点C,则k=___.
6
13.如图,已知矩形OABC的面积为100/3,它的对角线OB与双曲线y=k/x相交
12
于点D,且OB∶OD=5∶3,则k=____.
14.如图,已知A,B两点分别在反比例函数y=9/x和y=k/x第一象限的图象上.
O
心:__)
典例精讲
反比例函数的图象与性质
知识点一
2
【例1-1】已知点P(a,m),Q(b,n)都在反比例函数 y 的图象上,且a<0<
x
b,则下列结论一定正确的是( D )
A.m+n<0
B.m+n>0
C.m<n
D.m>n
【变式】若点A(a,m)和B(b,n)在反比例函数y=7/x的图象上,且a<b,则( D )
-3
查漏补缺
当堂训练
反比例函数
查漏补缺
7.如图,点M为x轴上一点,过点M的直线l∥y轴分别与双曲
-20
线y=8/x和y=k/x的图象交于P,Q两点,若S△POQ=14,则k=____.
8.在平面直角坐标系中,若一条平行于x轴的直线l分别交
双曲线y=-8/x和y=2/x于A,B两点,P是x轴上的任意一点,则

2020年中考数学高频重点《反比例函数与一次函数的综合》专题突破精练精解(含答案)

2020年中考数学高频重点《反比例函数与一次函数的综合》专题突破精练精解(含答案)

【中考数学】专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如 (k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数.变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k的集合意义在反比例函数kyx=(k为常数,0k≠)的图象上任取一点,过这个点分别作x轴、y轴的平行线,两平行线与坐标轴围成的矩形的面积的于知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxxy2-=3.如图,一次函数y=-x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.4.如图,已知反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=kx上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.5.已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A ,与x 轴交于点B (5,0),若OB =AB ,且S △OAB =152. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,△ABP 是等腰三角形,求点P 的坐标.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点. (1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段. 请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?10.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =mx 的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式; (2)若AF -AE =2,求反比例函数的解析式.12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.13.如图,已知点A在反比例函数(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b 的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.14.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.15.一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数的图象相交于点C(x1,y1),D(x2,y2),与轴交于点E,且CD=CE,求m的值.16.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如ky x=(k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数. 变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k 的集合意义 在反比例函数ky x=(k 为常数,0k ≠)的图象上任取一点,过这个点分别作x 轴、y 轴的平行线,两平行线与坐标轴围成的矩形的面积的于k || .知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.【答案】C【解析】∵函数y=﹣x+k与y=(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=经过第二、四象限,故选项C正确,选项A、B错误,故选C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxkxk xkx xy2-=【答案】C【解析】∵反比例函数2y x=-上两个不同的点关于y 轴对称的点,在一次函数y =–x +m 图象上,∴反比例函数2y x=-与一次函数y =–x +m 有两个不同的交点,联立两个函数解方程22220y x m x mx x x y x m⎧=⎪⇒=-+⇒-+=⎨⎪=-+⎩,∵有两个不同的交点,∴有两个不等的根,∴Δ=m 2–8>0,∴m或m <–,故选C .3.如图,一次函数y =-x +3的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A (1,a )和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△APC 的面积为5,求点P 的坐标.【解析】(1)把点A (1,a )代入y =-x +3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =kx,∴k =1×2=2; ∴反比例函数的表达式为y =2x; (2)∵一次函数y =-x +3的图象与x 轴交于点C ,∴C (3,0), 设P (x ,0),∴PC =|3-x |,∴S △APC =12|3-x |×2=5,∴x =-2或x =8, 022=+-mxx∴P 的坐标为(-2,0)或(8,0).【点评】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.4.如图,已知反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =kx上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.【解析】(1)∵反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点,∴3=1k,3=﹣1+b ,∴k =3,b =4, ∴反比例函数和一次函数的表达式分别为y =3x,y =﹣x +4; (2)由图象可得:当1<a <3时,PM >PN .【点评】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.5.已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=152.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.【解析】(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=152,∴12×5×AD=152,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=mx中得,m=9×3=27,∴反比例函数的解析式为y=27x,将点A(9,3),B(5,0)代入直线y=kx+b中,9350k bk b+=⎧⎨+=⎩,∴3434kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为y=34x﹣34;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB =AP 时,设P (a ,0), ∵A (9,3),B (5,0),∴AP 2=(9﹣a )2+9,BP 2=(5﹣a )2, ∴(9﹣a )2+9=(5﹣a )2,∴a =658, ∴P (658,0), 即:满足条件的点P 的坐标为(0,0)或(10,0)或(13,0)或(658,0). 【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)P (23,73). 【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B ,∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52, ∴S △COP =52–32=1,∴12×3x P =1,∴x P =23, ∵点P 在线段AB 上,∴y =–23+3=73,∴P (23,73).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)∵直线y=–x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,–1),∵B(2,–1),∴BD∥x轴,∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x 上的两点,且x 1<x 2<0,s ∴y 1<y 2. 【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =m x(x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)【解析】:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形,∴AD =BC =2,BC ⊥x 轴.∴AD ⊥x 轴.又∵A(1,0),∴D(1,2).∵D 在反比例函数y =m x的图象上, ∴m =1×2=2.∴反比例函数的解析式为y =2x. (2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C.(3)设点P 的横坐标为a ,则23<a <3. 归纳:反比例函数中,y 随x 的大小变化的情况,应分x >0与x <0两种情况讨论,而不能笼统地说成“k <0时,y 随x 的增大而增大”.双曲线上的点在每个象限内,y 随x 的变化是一致的.运用反比例函数的性质时,要注意在每一个象限内的要求.9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【点拨】 (1)用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y =10即可.【解答】 解:(1)设线段AB 解析式为y =k 1x +b(k ≠0),∵线段AB 过点(0,10),(2,14),代入,得⎩⎪⎨⎪⎧b =10,2k 1+b =14,解得⎩⎪⎨⎪⎧k 1=2,b =10. ∴AB 解析式为y =2x +10(0≤x <5).∵B 在线段AB 上,当x =5时,y =20.∴B 坐标为(5,20).∴线段BC 的解析式为y =20(5≤x <10). 设双曲线CD 的解析式为y =k 2x(k 2≠0). ∵C(10,20),∴k 2=200.∴双曲线CD 解析式为y =200x(10≤x ≤24). ∴y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧2x +10(0≤x<5),20(5≤x<10),200x (10≤x ≤24).(2)由(1)可知,恒温系统设定恒定温度为20 ℃.(3)把y =10代入y =200x中,解得x =20. ∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.归纳:反比例函数实际应用题是近年中考常见的题型,解题时首先要仔细审读题目(或图象)中给予的信息,挖掘题目(或图象)中隐含的条件,提取有用信息,综合运用所学知识解决问题. 10.如图,已知点D 在反比例函数y=的图象上,过点D 作DB ⊥y 轴,垂足为B (0,3),直线y=kx+b 经过点A (5,0),与y 轴交于点C ,且BD=OC ,OC :OA=2:5.(1)求反比例函数y=和一次函数y=kx+b 的表达式;(2)直接写出关于x 的不等式>kx+b 的解集.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)将一次函数表达式代入反比例函数表达式中,利用根的判别式△<0可得出两函数图象无交点,再观察图形,利用两函数图象的上下位置关系即可找出不等式>kx+b的解集.解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数y=的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为y=﹣.将A(5,0)、B(0,﹣2)代入y=kx+b,,解得:,∴一次函数的表达式为y=x﹣2.(2)将y=x ﹣2代入y=﹣,整理得: x 2﹣2x+6=0, ∵△=(﹣2)2﹣4××6=﹣<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x <0时,反比例函数图象在一次函数图象上方,∴不等式>kx+b 的解集为x <0.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =m x的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式;(2)若AF -AE =2,求反比例函数的解析式.【解析】:(1)点B 坐标为(-6,0),AD =3,AB =8,E 为CD 的中点,∴点A(-6,8),E(-3,4).∵函数图象经过点E ,∴m =-3×4=-12.设AE 的解析式为y =kx +b ,将点A ,E 坐标代入,得⎩⎪⎨⎪⎧-6k +b =8,-3k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =0.∴一次函数的解析式为y =-43x. (2)AD =3,DE =4,∴AE =AD 2+DE 2=5.∵AF -AE =2,∴AF =7,BF =1.设点E 坐标为(a ,4),则点F 坐标为(a -3,1),∵E ,F 两点在函数y =m x图象上, ∴4a =a -3,解得a =-1.∴E(-1,4).∴m =-1×4=-4.∴反比例函数的解析式为y =-4x. 12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C . (1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.【答案】见解析。

中考数学专题复习第十三讲 反比例函数

中考数学专题复习第十三讲  反比例函数

中考数学专题复习第十三讲反比例函数【基础知识回顾】一、反比例函数的概念:一般地:互数y (k是常数,k≠0)叫做反比例函数【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠02、反比例函数的另一种表达式为y= (k是常数,k≠0)3、反比例函数解析式可写成xy= k(k≠0)它表明反比例函数中自变量x与其对应函数值y之积,总等于】二、反比例函数的同象和性质:1、反比例函数y=kx(k≠0)的同象是它有两个分支,关于对称2、反比例函数y=kx(k≠0)当k>0时它的同象位于象限,在每一个象限内y随x的增大而当k<0时,它的同象位于象限,在每一个象限内,y随x的增大而【名师提醒:1、在反比例函数y=kx中,因为x≠0,y≠0所以双曲线与坐标轴无限接近,但永不与x轴y轴2、在反比例函数y随x的变化情况中一定注明在每一个象限内】3、反比例函数中比例系数k的几何意义:反曲线y=kx(k≠0)上任意一点向两坐标轴作垂线→两线与坐标轴围成的形面积,即如图:AOBP=S△AOP=【名师提醒:k的几何意义往常与前边提示中所谈到的xy=k联系起来理解和应用】三、反比例函数解析式的确定因为反比例函数y=kx(k≠0)中只有一个被定系数所以求反比例函数关系式只需知道一组对应的x、y值或一个点的坐标即可,步骤同一次函数解析式的求法一、反比例函数的应用二、解反比例函数的实际问题时,先确定函数解析式,再利用同象找出解决问题的方案,这里要特别注意自变量的【重点考点例析】考点一:反比例函数的同象和性质例1 (2012•张家界)当a≠0时,函数y=ax+1与函数ayx=在同一坐标系中的图象可能是()A.B.C.D.思路分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解:当a>0时,y=ax+1过一、二、三象限,y=ayx=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=ayx=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.例2 (2012•佳木斯)在平面直角坐标系中,反比例函数22a ayx-+ =图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限思路分析:把a2-a+2配方并根据非负数的性质判断出是恒大于0的代数式,再根据反比例函数的性质解答.解:a2-a+2,=a2-a+14-14+2,=(a-12)2+7 4 ,∵(a-12)2≥0,∴(a-12)2+7 4 >0, ∴反比例函数图象的两个分支分别位于第一、三象限. 故选A .点评:本题考查了反比例函数图象的性质,先判断出a 2-a+2的正负情况是解题的关键,对于反比例函数ky x=(k ≠0):(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.例3 (2012•台州)点(-1,y 1),(2,y 2),(3,y 3)均在函数6y x=的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 2<y 3<y 1C .y 1<y 2<y 3D .y 1<y 3<y 2 思路分析:先根据反比例函数的解析式判断出此函数图象所在的象限,再根据各点的坐标判断出各点所在的象限,根据函数图象在各象限内点的坐标特点解答. 解:∵函数6y x=中k=6>0, ∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小, ∵-1<0,∴点(-1,y 1)在第三象限, ∴y 1<0, ∵0<2<3, ∴(2,y 2),(3,y 3)在第一象限, ∴y 2>y 3>0, ∴y 2>y 3>y 1. 故选D . 点评:本题考查的是反比例函数图象上点的坐标特点,根据题意判断出函数图象所在象限是解答此题的关键.对应训练1.(2012•毕节地区)一次函数y=x+m (m ≠0)与反比例函数my x=的图象在同一平面直角坐标系中是( )A .B .C .D .1.C2.(2012•内江)函数1y x=的图象在( ) A .第一象限 B .第一、三象限 C .第二象限 D .第二、四象限 2.A2x≥0,1x中x≠0,故x>0,此时y>0,则函数在第一象限.故选A.3.(2012•佛山)若A(x1,y1)和B(x2,y2)在反比例函数2yx=的图象上,且0<x1<x2,则y1与y2的大小关系是y1 y2.3.>考点二:反比例函数解析式的确定例4 (2012•哈尔滨)如果反比例函数1kyx-=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.3思路分析:根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.解答:解:根据题意,得-2=11k--,即2=k-1,解得k=3.故选D.点评:此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.对应训练4.(2012•广元)已知关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,且反比例函数1b yx+ =的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为()A.3yx=-B.1yx=C.2yx=D.2yx=-4.D4.分析:关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,则判别式等于0,据此即可求得b的值,然后根据反比例函数1byx+=的图象在每个象限内y随x的增大而增大,则比例系数1+b<0,则b的值可以确定,从而确定函数的解析式.解:关于x的方程(x+1)2+(x-b)2=2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1.∵反比例函数1byx+=的图象在每个象限内y随x的增大而增大,∴1+b<0 ∴b<-1,∴b=-3.则反比例函数的解析式是:y=13y x -=,即2y x=-. 故选D .考点三:反比例函数k 的几何意义例5 (2012•铁岭)如图,点A 在双曲线4y x=上, 点B 在双曲线ky x=(k ≠0)上,AB ∥x 轴, 分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是8,则k 的值为( ) A .12 B .10 C .8 D .6思路分析:先根据反比例函数的图象在第一象限判断出k 的符号,再延长线段BA ,交y 轴于点E ,由于AB ∥x 轴,所以AE ⊥y 轴,故四边形AEOD 是矩形,由于点A 在双曲线4y x=上,所以S 矩形AEOD=4,同理可得S矩形OCBE=k ,由S矩形ABCD=S矩形OCBE-S矩形AEOD即可得出k的值.解:∵双曲线ky x=(k ≠0)上在第一象限, ∴k >0,延长线段BA ,交y 轴于点E , ∵AB ∥x 轴, ∴AE ⊥y 轴,∴四边形AEOD 是矩形, ∵点A 在双曲线4y x=上, ∴S 矩形AEOD =4, 同理S 矩形OCBE =k ,∵S 矩形ABCD =S 矩形OCBE -S 矩形AEOD =k-4=8, ∴k=12. 故选A .点评:本题考查的是反比例函数系数k 的几何意义,即反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.对应训练5.(2012•株洲)如图,直线x=t(t>0)与反比例函数21,y yx x-==的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为()A.3 B.3 2 tC.32D.不能确定5.C5.解:把x=t分别代入21,y yx x-==,得21,y yt t==-,所以B(t,2t)、C(t,1t-),所以BC=2t-(1t-)=3t.∵A为y轴上的任意一点,∴点A到直线BC的距离为t,∴△ABC的面积=133 22tt⨯⨯=.故选C.考点四:反比例函数与一次函数的综合运用例6 (2012•岳阳)如图,一次函数y1=x+1的图象与反比例函数22yx=的图象交于A、B 两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1、y2都随x的增大而增大思路分析:求出两函数式组成的方程组的解,即可得出A、B的坐标,即可判断A;根据图象的特点即可判断B;根据A、B的坐标和三角形的面积公式求出另三角形的面积,即可判断C;根据图形的特点即可判断D.解:A、12y xyx=+⎧⎪⎨=⎪⎩①②,∵把①代入②得:x+1=2x,解得:x1=-2,x2=1,代入①得:y1=-1,y2=2,∴B(-2,-1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当-2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=12×1×2=1,S△BOD=12×|-2|×|-1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;故选C.点评:本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生观察图象的能力,能把图象的特点和语言有机结合起来是解此题的关键,题目比较典型,是一道具有一定代表性的题目.对应训练6.(2012•达州)一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0),在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1 B.x<-2或0<x<1C.x>1 D.-2<x<16.A6.解:由函数图象可知一次函数y1=kx+b与反比例函数y2=mx(m≠0)的交点坐标为(1,4),(-2,-2),由函数图象可知,当-2<x<0或x>1时,y1在y2的上方,∴当y1>y2时x的取值范围是-2<x<0或x>1.故选A.【聚焦山东中考】1.(2012•青岛)点A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数3yx-=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3C.y3<y2<y1D.y2<y1<y31.A1.解:∵反比例函数y=-3 x 中,k=-3<0,∴此函数图象在二四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y3<0,y3<0<y1<y2,∴y3<y1<y2.故选A.2.(2012•菏泽)反比例函数2yx=的两个点(x1,y1)、(x2,y2),且x1>x2,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定2.D3.(2012•滨州)下列函数:①y=2x-1;②y=5x-;③y=x2+8x-2;④y=22x;⑤y=12x;⑥y=ax中,y是x的反比例函数的有(填序号)。

中考重点初二下数学反比例函数的图像和性质考点梳理

中考重点初二下数学反比例函数的图像和性质考点梳理
反比例函数的单调性和最值问题,要 求学生掌握反比例函数在不同区间上 的单调性,以及如何利用导数求解最 值。
2020年中考数学真题
反比例函数的图像变换和性质应用, 考查了学生对反比例函数图像的平移 、伸缩等变换的掌握程度,以及在实 际问题中的应用能力。
备考策略及技巧分享
深入理解反比例函数的定义和性质
模拟试题训练与答案解析
模拟试题一
已知反比例函数$y = frac{k}{x}$($k neq 0$)的图像经 过点$A(1,2)$和$B(2,m)$,求$k$和$m$的值。
模拟试题二
已知反比例函数$y = frac{3}{x}$的图像上有两点 $P_1(x_1,y_1)$和$P_2(x_2,y_2)$,且$x_1 < x_2 < 0$ ,则$y_1$____$y_2$(填“>”、“<”或“=”)。
轴。
02
当反比例函数的比例系数 0<k<1时,图像在第一、三 象限内,且随着k的减小而靠
近坐标轴。
03
当反比例函数的比例系数k<0 时,图像在第二、四象限内 ,且随着|k|的增大而远离坐
标轴。
03
反比例函数与直线交点问 题
与坐标轴交点求解方法
令$x=0$求$y$
通过代入$x=0$到反比例函数中,求 解对应的$y$值,得到与$y$轴的交 点。
内是减函数。
反比例函数的图像关于原点对称,即如 果点 $(x, y)$ 在图像上,则点 $(-x, -y)$ 也在图像上。
反比例函数在其定义域内是连续的,但 在 $x = 0$ 处没有定义。
02
反比例函数图像变换规律
平移变换规律
01
02
反比例函数图像沿x轴向左或向右平移,函数表达式中x的达式中y的系数不变, 常数项发生变化。

2020年九年级数学中考复习课件:12 反比例函数的图像与性质 (共58张PPT)

2020年九年级数学中考复习课件:12  反比例函数的图像与性质 (共58张PPT)

2.如图 1.12-13,已知动点 A 在反比例函数 y =6x(x>0)的图像上,直线 PQ 与 x 轴、y 轴分别交于 P,Q 两点,过点 A 作 CD∥x 轴,交 y 轴于点 C, 交直线 PQ 于点 D,过点 A 作 EB∥y 轴交 x 轴于点 B,交直线 PQ 于点 E,若 CE∥BD 且 CA∶AE=1∶ 2,QE∶DP=1∶9,则阴影部分的面积为__1__0____.
∴OC=33-aa,同理可得 OD=33-bb, ∴S△COD=12·OC·DO=12·(3-a)9a(b 3-b)= 12·9-3a9-ab3b+ab=12·-129aabb+ab=9.
(3)△AOB 的面积是否存在最大值?若存在,求 出最大面积;若不存在,请说明理由.
解:设 OA=a,OB=b,则 AM=AH=3-a, BN=BH=3-b,
D.5
图 1.12-11
跟踪训练
1.如图 1.12-12,函数 y=1x(x>0)和 y=3x (x>
0)的图像分别是 l1 和 l2.设点 P 在 l2 上,PA∥y 轴交
l1 于点 A,PB∥x 轴,交 l1 于点 B,△PAB 的面积为
(B )
A.12
B.23
C.13
D.34
图 1.12-12
D.-2<x<0 或 x>4
图1.122
重难点3 反比例函数与几何的综合
【例 3】 (2019·重庆 A)如图 1.12-3,在平面直
角坐标系中,矩形 ABCD 的顶点 A,D 分别在 x 轴、
y 轴上,对角线 BD∥x 轴,反比例函数 y=kx(k>0,
x>0)的图像经过矩形对角线的交点 E.若点 A(2,0),
B.不变
C.减小

2020届中考数学冲刺复习专题:反比例函数(含答案)

2020届中考数学冲刺复习专题:反比例函数(含答案)

2020届中考数学冲刺复习专题:反比例函数1.如图,已知反比例函数y 1=的图象与一次函数y 2=k 2x +b 的图象在第一象限交于A (1,3),B (3,m )两点,一次函数的图象与x 轴交于点C . (1)求反比例函数和一次函数的表达式; (2)当x 为何值时,y 2>0?(3)已知点P (0,a )(a >0),过点P 作x 轴的平行线,在第一象限内交一次函数y 2=k 2x +b 的图象于点M ,交反比例函数y 1=的图象于点N .结合函数图象直接写出当PM >PN 时a 的取值范围.2.如图,过原点的直线y 1=mx (m ≠0)与反比例函数y 2=(k <0)的图象交于A 、B 两点,点A 在第二象限,且点A 的横坐标为﹣1,点D 在x 轴负半轴上,连接AD 交反比例函数图象于另一点E ,AC 为∠BAD 的平分线,过点B 作AC 的垂线,垂足为C ,连接CE ,若AD =2DE ,△AEC 的面积为.(1)根据图象回答:当x 取何值时,y 1<y 2; (2)求△AOD 的面积;(3)若点P 的坐标为(m ,k ),在y 轴的轴上是否存在一点M ,使得△OMP 是直角三角形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.3.定义:若实数x ,y ,x ',y '满足x =kx '+2,y =ky '+2(k 为常数,k ≠0),则在平面直角坐标系xOy中,称点(x,y)为点(x',y')的“k值关联点”.例如,点(3,0)是点(1,﹣2)的“1值关联点”.(1)在A(2,3),B(1,3)两点中,点是P(1,﹣1)的“k值关联点”;(2)若点C(8,5)是双曲线y=(t≠0)上点D的“3值关联点”,求t的值和点D的坐标;(3)设两个不相等的非零实数m,n满足点E(m2+mn,2n2)是点F(m,n)的“k值关联点”,求点F到原点O的距离的最小值.4.如图,直线y=ax+2与x轴、y轴分别相交于A,B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=4,点A的坐标为(﹣4,0).(1)求双曲线的解析式;(2)若点Q为双曲线上点P右侧的一点,过点Q作QH⊥x轴于点H,当以点Q,C,H为顶点的三角形与△AOB相似时,求点Q的坐标.5.如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图(2),当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.6.如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,4).反比例函数y=(x>0)的图象经过点D,点P是一次函数y=kx+4﹣4k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+4﹣4k(k≠0),当随x的增大而增大时,确定点P横坐标的取值范围(不必写过程).7.如图①,M,N为矩形ABCD一组邻边AD,CD上两点,若==m,则称M,N为邻边AD,CD上的一对共轭点,m为这两点的共轭系数.如图②,在平面直角坐标系中,反比例函数y=(x>0)的图象与矩形OABC的一组邻边分别交于点M,N.(1)求证:M,N为BC,BA上的一对共轭点;=8.求M,N的共轭系数;(2)若M(1,4),S四边形ONBM(3)若B(8,6),把△BMN沿MN翻折得△B′MN,当B′在ON上时,求M,N的共轭系数.8.如图,点A,B分别在x轴,y轴上,过A,B作AB垂线,交反比例函数y=(k>0,x >0)的图象于D,C,四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,CF=a,BF=b,OA=x,OB=y.(1)求证:AE=a.(2)请写出两个不同的关于a,b,x,y的关系式.(3)求证:∠OAB=45°.9.正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=(x>0).(1)如图1,双曲线经过点D时求反比例函数y=(x>0)的关系式;(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=(x>0)的图象分别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,①求△A'EF的面积;②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.10.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象相交于A(2,4),B(n,﹣2)两点.(1)求一次函数和反比例函数的表达式;(2)点C是第一象限内反比例函数图象上的一点,且点C在A的右侧,过点C作CD平行于y轴交直线AB于点D,若以C为圆心,CD长为半径的⊙C恰好与y轴相切,求点C 的坐标.11.如图,如图,一次函数y=﹣x+b与反比例函数的图象交于点A(m,1)和B(1,﹣3).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是x轴正半轴上一点,连接AP,BP.当△ABP是直角三角形时,求出点P的坐标.12.在平面直角坐标系中,我们定义:横坐标与纵坐标均为整数的点为整点.如图,已知双曲线y=(x>0)经过点A(2,2),记双曲线与两坐标轴之间的部分为G(不含双曲线与坐标轴).(1)求k的值;(2)求G内整点的个数;(3)设点B(m,n)(m>3)在直线y=2x﹣4上,过点B分别作平行于x轴y轴的直线,交双曲线y=(x>0)于点C、D,记线段BC、BD、双曲线所围成的区域为W,若W内部(不包括边界)不超过8个整点,求m的取值范围.13.如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数y=kx+b和y=的表达式;(2)在x轴上是否存在一点C,使得△ABC是以AB为腰的等腰三角形,若存在,求出点C的坐标;若不存在,请说明理由.(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是(直接写出答案).14.如图,已知直线y=2x+2与x轴交于点A,与y轴交于点C,矩形ACBE的顶点B在第一象限的反比例函数y=图象上,过点B作BF⊥OC,垂足为F,设OF=t.(1)求∠ACO的正切值;(2)求点B的坐标(用含t的式子表示);(3)已知直线y=2x+2与反比例函数y=图象都经过第一象限的点D,联结DE,如果DE⊥x轴,求m的值.15.如图1,平面直角坐标系xOy中,A(﹣4,3),反比例函数y=(k<0)的图象分别交矩形ABOC的两边AC,BC于E,F(E,F不与A重合),沿着EF将矩形ABOC折叠使A,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长; ②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.16.如图是反比例函数的图象,点A (a ,b ),C (c ,d )分别在图象的两支上,以AC为对角线作矩形ABCD 且AB ∥x 轴.(1)当线段AC 过原点时,分别写出a 与c ,b 与d 的一个等量关系式; (2)当A 、C 两点在直线y =x +2上时,求矩形ABCD 的周长; (3)当AB =BC 时,探究a 与c 的数量关系.17.如图,一次函数y 1=k 1x +4与反比例函数y 2=的图象交于点A (2,m )和B (﹣6,﹣2),与y 轴交于点C .(1)k 1= ,k 2= ; (2)根据函数图象知,①当y 1>y 2时,x 的取值范围是 ; ②当x 为 时,y 2>﹣2x .(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =4:1时,求点P 的坐标.(4)点M 是y 轴上的一个动点,当△MBC 为直角三角形时,直接写出点M 的坐标.18.如图1,在平面直角坐标系中,放置有一个Rt △ABC ,顶点A 与原点O 重合,边AC 与x 轴重合,∠ACB =90°,AC =BC =4,反比例函数y =的图象分别与AB 和BC 交于点D 、E ,且此时点D 恰为AB 的中点.(1)求反比例函数的表达式及点E 的坐标;(2)连接DE ,在x 轴上存在一点P ,可使得△DEP 成为以DE 为腰的等腰三角形,试求出所有符合条件的点P 的坐标;(3)如图2,保持反比例函数图象不变,将△ABC 沿x 轴向左平移,使得点E 成为BC 的中点,求此时点D 的坐标.19.如图,反比例函数y =(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),交y 轴于点E ,过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k的值与B点的坐标;(2)将直线EC向右平移,当点E正好落在反比例函数图象上的点E'时,直线交x轴于点F.请判断点B是否在直线EF上并说明理由;(3)在平面内有点M,使得以A、B、F、M四点为顶点的四边形为平行四边形,请直接写出符合条件的所有M点的坐标.20.已知直线y=2x+b与反比例函数y=的(k>0)图象交于点A,过点A作AB⊥x轴于点B,点D为线段AC的中点,BD交y轴于点E,(1)若k=8,且点A的横坐标为1,求b的值;(2)已知△BEC的面积为4,则k的值为多少?(3)若将直线旋转,k=8,点E为△ABC的重心且OE=2,求直线AC的解析式.参考答案1.解:(1)∵反比例函数的图象过点A(1,3),∴,∴k1=3,∴反比例函数表达式为:;∵点B(3,m)在函数的图象上,∴,∴B(3,1).∵一次函数y2=k2x+b的图象过点A(1,3),B(3,1),∴,解得,∴一次函数的表达式为:y2=﹣x+4;∴反比例函数和一次函数的表达式分别为,y2=﹣x+4.(2)∵当y2=0时,﹣x+4=0,x=4,∴C(4,0),由图象可知,当x<4时,y2>0.(3)如图,由图象可得,当1<a<3时,PM>PN.2.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO =S△ACE=,∵AD=2DE,∴AE=DE,∴S△AOD =2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF =S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH =S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).3.解:(1)若点A(2,3)是P(1,﹣1)的“k值关联点”,∴k=≠,不合题意,若点B(1,3)是P(1,﹣1)的“k值关联点”,∴k===﹣1,符合题意,故答案为:B;(2)设点D坐标为(x,y),∵点C(8,5)是点D的“3值关联点”,∴∴∴点D坐标为(2,1),∵点D是双曲线y=(t≠0)上点,∴t=2×1=2;(3)∵点E(m2+mn,2n2)是点F(m,n)的“k值关联点”,∴,∴m2n+mn2﹣2n=2n2m﹣2m,∴(m﹣n)(mn+2)=0,∵m≠n,∴mn=﹣2,∴m=,∵(m﹣n)2≥0,∴m2+n2﹣2mn≥0,∴m2+n2≥2mn,∴m2+n2=+n2≥2×n×=4,∴点F到原点O的距离==,∴点F到原点O的距离的最小值为2.4.解:(1)把A(﹣4,0)代入y=ax+2,得,﹣4a +2=0,解得a =, 故直线AB 的解析式为y =x +2, 把y =4代入y =x +2,得,x +2=4, 解得x =4, ∴点P (4,4).把P (4,4)代入y =,得k =16, 故双曲线的解析式为y =;(2)把x =0代入y =x +2,得y =2, ∴点B 的坐标为(0,2), ∴OB =2, ∵A (﹣4,0), ∴OA =4, 设Q (m ,),则CH =m ﹣4,QH =,由题意可知∠AOB =∠QHC =90°, 当△AOB ∼△QHC 时,,即,解得:m 1=2+2,m 2=2﹣2(不合题意,舍去), ∴点Q 的坐标为(2+2,4﹣4),当△BOA ∼△QHC 时,,即,解得m 1=8,m 2=﹣4(不合题意,舍去), ∴点Q 的坐标为(8,2). 综上可知,点Q 的坐标为(2+2,4﹣4)或(8,2).5.解:(1)如图,过点A 作AE ⊥y 轴于点E ,则∠AED =90°.∵四边形ABCD为正方形,∴AD=DC,∠ADC=90°,∴∠ODC+∠EDA=90°.∵∠ODC+∠OCD=90°,∴∠EDA=∠OCD,在△AED和△DOC中,∴△AED≌△DOC(AAS),∴OD=EA=5,∴点D的纵坐标为5;(2)作A′M⊥y轴于M,B′N⊥x轴于点N,设OD′=a,OC′=b,同理可得△B′C′N≌△C′D′O≌△A′D′E,∴C′N=OD′=A′M=a,B′N=C′O=D′M=b,∴A′(a,a+b),B′(a+b,b),∵点A′、B′在反比例函数y=的图象上,∴a(a+b)=8,b(a+b)=8,∴解得a=b=2或a=b=﹣2(舍去),∴A′、B′两点的坐标分别为(2,4),(4,2);(3)设直线A′B′的解析式为y=mx+n,把A′(2,4),B′(4,2)代入得,解得,∴直线A′B′解析式为y=﹣x+6,同样可求得直线C′D′解析式为y=﹣x+2,由(2)可知△OCD是等腰直角三角形,设点A的坐标为(m,2m),点D坐标为(0,m),当A点在直线C′D′上时,则2m=﹣m+2,解得m=,此时点A的坐标为(,),∴k=×=;当点D在直线A′B′上时,有m=6,此时点A的坐标为(6,12),∴k=6×12=72;综上可知:当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,k的取值范围为≤x≤72.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(4,1),C(4,4),∴BC⊥x轴,AD=BC=3,而A点坐标为(1,0),∴点D的坐标为(1,3).∵反比例函数y=(x>0)的函数图象经过点D(1,3),∴3=,∴m=3,∴反比例函数的解析式为y=;(2)当x=4时,y=kx+4﹣4k=4k+4﹣4k=4,∴一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+4﹣4k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于4,横坐标大于4,当纵坐标小于4时,∵y=,∴<3,解得:a>1,则a的范围为a>1或a<4.7.解:(1)∵点M,N是反比例函数y=图象上的点,∴BC•AN=CM•AB,∴,∴,∴M,N为BC,BA上的一对共轭点;(2)如图,连接OM,ON,∵M(1,4),∴k=1×4=4,OC=4,∴反比例函数解析式为:y =, ∴S △CMO =S △OAN =2,∴S 矩形ABCO =S △CMO +S △OAN +S 四边形ONBM =12, ∵CO =4, ∴BC =3, ∴BM =BC ﹣CM =2, ∴m =;(3)如图,延长BC 至D ,使得MD =BM ,过点D 作DF ⊥x 轴于F ,交NO 的延长线于点E ,∵点B (8,6)∴AB =CO =6,BC =AO =8, ∵AN •AO =CM •CO , ∴,∴AN =CM , ∴=,设BN =3x ,BM =4x ,则DM =4x , ∵把△BMN 沿MN 翻折得△B ′MN , ∴BM =B 'M ,∠B =∠MB 'N =90°,在Rt △DME 和Rt △B 'ME 中,DM =B 'M =BM ,EM =EM , ∴Rt △DME ≌Rt △B 'ME (HL ), ∴∠DME =∠EMB ', ∴∠EMN =90°,∴∠DME +∠BMN =90°,且∠BMN +∠BNM =90°, ∴∠DME =∠MNB ,且∠B =∠D =90°,∴△DME∽△BNM,∴∴DE=x,∵∠EOF=∠AON,∠NAO=∠EFO=90°,∴△EFO∽△NAO,∴,∴∴x=0(舍去),x=,∴BN=,AN=6﹣BN=,∴m==.8.(1)证明:∵四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,∴∠BFC=∠ABC=∠BAD=∠AED=90°,BC=AD,∴∠CBF+∠ABO=∠ABO+∠OAB=90°,∴∠CBF=∠OAB,∵∠BAO+∠DAE=∠DAE+∠ADE=90°,∴∠BAO=∠ADE,∴∠CBF=∠ADE,∴△BCF≌△DAE(AAS),∴AE=CF=a;(2)解:由(1)知,BF=DE=b,∵OA=x,OB=y,∴C(a,b+y),D(a+x,b),∵点D,C在反比例函数y=(k>0,x>0)的图象上,∴a(b+y)=b(a+x)=k,即ay=bx①;∵∠BFC=∠AOB=90°,∠CBF=∠BAO,∴△CBF∽△BAO,∴,∴=②;(3)解:由(2)中的①÷②得,x2=y2,∵x>0,y>0,∴x=y,∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°.9.解:(1)∵点A(1,1),点C(3,3),∴点D(1,3),将点D的坐标代入反比例函数表达式得:k=3,故反比例函数表达式为:y=;(2)平移后点A′、B′、C′、D′的坐标分别为:(1,0)、(3,0),(3,2)、(1,2),则平移后点E纵坐标为3,则点E(3,1),同理点F(,2),△A'EF的面积=S正方形A′B′C′D′﹣S△A′B′E﹣S△A′D′F﹣S△EFC′=2×2×2×﹣2×1﹣××1=;(3)点E、F的坐标分别为:(3,1)、(,2),设点P(m,0),则EF2=(3﹣)2+(2﹣1)2=,EP2=(m﹣3)2+1,PF2=(m﹣)2+4,当EF=EP时,即=(m﹣3)2+1,解得:m=或;当EF=PF时,同理可得:m=;当EP=PF时,同理可得:m=,故点P的坐标为(,0)或(,0)或(,0)或(,0)或(,0).10.解:(1)∵A(2,4),B(n,﹣2)在反比例函数y=(m≠0)的图象上,∴m=2×4=8,﹣2=,∴n=﹣4,∴反比例函数的解析式为:y=;∵一次函数y=kx+b过A(2,4),B(n,﹣2),∴,∴,∴一次函数解析式为:y=x+2;(2)设点C(a,),则点D(a,a+2),∴CD=a+2﹣,∵以C为圆心,CD长为半径的⊙C恰好与y轴相切,∴a=a+2﹣∴a=4,∴点C(4,2).11.解:(1)∵点A(m,1)和B(1,﹣3)在反比例函数的图象上,∴k=1×(﹣3)=﹣3,k=m×1,∴m=﹣3,∴点A(﹣3,1),∴反比例函数解析式为:y=;∵一次函数y=﹣x+b过点B(1,﹣3),∴﹣3=﹣1+b,∴b=﹣2,∴一次函数解析式为:y=﹣x﹣2;故答案为:y=﹣x﹣2,;(2)如图1,当∠ABP=90°时,过点P作CD⊥x轴,过点A作AC⊥DC于C,过点B作BD⊥CD于D,设点P的坐标为(x,0),∴AC=x+3,CP=1,PD=3,BD=x﹣1,∵∠APB=90°,∴∠APC+∠BPD=90°,又∵∠APC+∠CAP=90°,∴∠CAP=∠BPD,又∵∠C=∠BDP=90°,∴△ACP∽△PBD,∴,∴,∴x1=﹣1,x2=﹣1﹣(舍去),∴点P(﹣1+,0);当∠ABP=90°时,∵直线y=﹣x﹣2与x轴交于点C,与y轴交于点D,∴点C(﹣2,0),点D(0,﹣2),∴OC=2,OD=2,CD=2,BC=3,∵tan∠OCD=,∴,∴CP=6,∵点C(﹣2,0),∴点P(4,0),综上所述:点P的坐标为(,0)或(4,0).12.解:(1)∵双曲线y=经过点A(2,2),∴2=解得,k=4;(2)对于双曲线y=,当x=1时,y=4,∴在直线x=1上,当0<y<4时,有整点(1,1),(1,2),(1,3)当x=2时,y=2,∴在直线x=2上,当0<y<2时,有整点(2,1);当x=3时,,∴在直线x=3上,当0<y<时,有整点(3,1);当x=4时,y=1,∴在直线x=4上,当0<y<1时,没有整点.∴G内整点的个数为5个;(3)当m=4时,点B(4,4),点C(1,4),点D(4,1),此时在区域W内(不包含边界)有(2,3)、(3,2)、(3,3)共3个整点,线段BD 上有4个整点,线段BC上有4个整点,∵点(4,4)重合,点(4,1)、(1,4)在边界上,∴当m>4时,区域W内至少有3+4+4﹣3=8个整点.当m=4.5时,点B(4.5,5),点C(,5),线段BC上有4个整点,此时区域W内整点个数为8个.当m>4.5时,区域W内部整点个数增加.∴若W内部(不包括边界)不超过8个整点,3<m≤4.5.13.解:(1)∵点A(4,3)在反比例函数y=的图象上,∴a=4×3=12,∴反比例函数的解析式为y=,由勾股定理得,OA==5,∴OB=OA=5,∴点B的坐标为(0,﹣5),把A(4,3)、B(0,﹣5),∴,解得,,∴一次函数为y=2x﹣5;(2)存在,设点C的坐标为(m,0),由勾股定理得,AB==4,AC=,BC=,当AB=AC=4时,=4,解得,m1=﹣﹣4,m2=﹣+4,∴点C的坐标为(﹣﹣4,0)或(﹣+4,0),当BC=AB=4时,=4,解得,m=,∴点C的坐标为(﹣,0)或(,0),综上所述,△ABC是以AB为腰的等腰三角形时,点C的坐标为(﹣﹣4,0)或(﹣+4,0)或(﹣,0)或(,0);(3)当x=1时,y=12,当x=4时,y=3,如图2,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积=平行四边形EFNM的面积=3×(12﹣3)=27,故答案为:27.14.解:(1)∵直线y=2x+2与x轴交于点A,与y轴交于点C,∴点A(﹣1,0),点C(0,2)∴OA=1,OC=2,∴tan∠ACO==;(2)∵四边形ACBE是矩形,∴∠ACB=90°,∴∠ACO+∠BCF=90°,且∠BCF+∠CBF=90°,∴∠ACO=∠CBF,∵OF=t,∴CF=2﹣t,∵tan∠CBF=tan∠ACO=,∴BF=4﹣2t,∴点B(4﹣2t,t);(3)如图,连接DE,交x轴于H点,∵DE⊥x轴,∴∠AHE=90°,∴∠HAE+∠AEH=90°,且∠CAO+∠HAE=90°,∠CAO+∠ACO=90°,∠ACO+∠BCF=90°,∴∠AEH=∠BCF,且∠CFB=∠AHE,AE=BC,∴△BCF≌△AEH(AAS)∴AH=BF=4﹣2t,CF=HE,∵点A(﹣1,0),∴点H(3﹣2t,0),∴当x=3﹣2t时,y=2(3﹣2t)+2=8﹣4t,∴点D坐标为(3﹣2t,8﹣4t),∵点D,点B都在反比例函数y=上,∴(3﹣2t)(8﹣4t)=t(4﹣2t)∴t1=2(不合题意舍去),t2=;∴点B(,)∴m=×=.15.解:(1)①如图2中,连接AD交EF于H.∵四边形ABOC是矩形,A(﹣4,3),∴∠A=90°,OB=AC=4,AB=OC=3,∵E,F在y=时,∴可以假设E(,3),F(﹣4,),∴AE=4+,AF=3+,∴AE:AF=4:3,∵AC:BC=4:3,∴=,∵∠EAF=∠CAB,∴△EAF∽△CAB,∴∠AEF=∠ACB,∴EF∥BC,∵A,D关于EF对称,点D落在BC上,∴EF垂直平分线段AD,∴AH=DH,∵EF∥BC,∴=,∴AE=EC=2.②如图3中,当点D落在OB上时,连接AD交EF于H.∵∠EAF=∠ABD=90°,∠AEF=∠BAD,∴△AEF∽△BAD,∴=,则==,∴BD=AB÷=,设AF=x,则FB=3﹣x,FD=AF=x在Rt△BDF中,∵FB2+BD2=DF2,∴(3﹣x)2+()2=x2,解得x=,∴AF=,∴AE=AF=,∴EC=4﹣AE=4﹣=,∴<CE<4时,折叠后点D落在矩形ABOC内(不包括边界),线段CE长度的取值范围为:<CE<4.(2)∵△ABD是等腰三角形,F与B不重合,∴AB≠BD.①如图4中,当AD=BD时,∠BAD=∠ABD,由(1)可知∠BAD=∠AEF,∴∠ABD=∠AEF.作DM∥OB交AB于M,交OC于N.则DM⊥AB,MN=AC=4,∴∠BMD=∠EAF=90°,BM=AB=,∴△AEF∽△ABD,∴=,则==,∴MD=BM÷=,∴DN=MN﹣MD=4﹣=,∴D(﹣,).②如图5中,当AD=AB时,作DM∥OB交AB于M,交OC于N.则DM⊥AB,MN=AC=4,∴∠AMD=∠EAF=90°,由(1)可得∠BAD=∠AEF,∴△AEF∽△MAD,∴=,则==,设AM=4a,则MD=3a,在Rt△MAD中,∵AM2+DM2=AD2,∴(4a )2+(3a )2=32, ∴a =, ∴AM =,MD =,∴BM =AB =AM =3﹣=,DN =MN ﹣MD =4﹣=,∴D (﹣,).综上所述,满足条件的点D 的坐标为(﹣,)或(﹣,).16.解:(1)当线段AC 过原点时,点A 、C 中点为:(0,0), 故(a +c )=0,(b +d )=0, 即:a +c =0,b +d =0;(2)由题意得:,解之得,.∴A (1,3),C (﹣3,﹣1).∴AB =1﹣(﹣3)=4,BC =3﹣(﹣1)=4,4×4=16. 答:矩形ABCD 的周长为16.(3)∵点A (a ,b )、C (c ,d )均在的图象上,∴,.∵AB =BC , ∴. ∴ac =﹣3.答:a 与c 的数量关系是ac =﹣3.17.解:(1)将点B (﹣6,﹣2)代入y 1=k 1x +4, ﹣2=﹣6k 1+4,解得:k 1=1; 将点B (﹣6,﹣2)代入y 2=①,﹣2=,解得:k 2=12.故答案为:1;12.(2)①观察函数图象可知:当﹣6<x <0或x >2时,一次函数图象在反比例函数图象上方,∴当y 1>y 2时,x 的取值范围是﹣6<x <0或x >2. 故答案为:﹣6<x <0或x >2.②过点O 作直线l :y =﹣2x ,如图1所示.观察图形可知:x >0时,反比例函数图象在直线l 上方, 故答案为:x >0.(3)依照题意,画出图形,如图2所示.当x =2时,m =x +4=6, ∴点A 的坐标为(2,6); 当x =0时,y 1=x +4=4, ∴点C 的坐标为(0,4).∵S 四边形ODAC =(OC +AD )•OD =×(4+6)×2=10,S 四边形ODAC :S △ODE =4:1, ∴S △ODE =OD •DE =×2DE =10×, ∴DE =2.5,即点E 的坐标为(2,2.5). 设直线OP 的解析式为y =kx , 将点E (2,2.5)代入y =kx ,得 2.5=2k ,解得:k =, ∴直线OP 的解析式为y =x ②.联立①②并解得:,,∵点P 在第一象限, ∴点P 的坐标为(,).(4)依照题意画出图形,如图3所示.当∠CMB =90°时,BM ∥x 轴, ∴点M 的坐标为(0,﹣2); 当∠CBM =90°时,∵直线AC 的解析式为y =x +4, ∴∠BCM =45°,∴△BCM 为等腰直角三角形,∴CM=﹣2x B=12,∴点M的坐标为(0,﹣8).综上所述:当△MBC为直角三角形时,点M的坐标为(0,﹣2)或(0,﹣8).18.解:(1)∵∠ACB=90°,AC=BC=4,∴点B、C的坐标分别为:(4,4)、(4,0),∵D为AB的中点,故点D(2,2),将点D的坐标代入反比例函数表达式得:2=,解得:k=4,故反比例函数表达式为:y=①,设点E(4,m),将点E的坐标代入上式并解得:m=1,故点E(4,1);(2)设点P(m,0),而点D、E的坐标分别为:(2,2)、(4,1),DE2=(4﹣2)2+(2﹣1)2=5,PD2=(m﹣2)2+4;PE2=(m﹣4)2+1,当DE=PD时,则5=(m﹣2)2+4,解得:m=1或3;当DE=PE时,同理可得:m=2或6(舍去6);故点P的坐标为:(1,0)或(2,0)或(3,0);(3)设三角形ABC向左平移了m个单位,则点C、B的坐标分别为:(4﹣m,0)、(4﹣m,4),∵点E为BC的中点,∴点E(4﹣m,2),将点E的坐标代入反比例函数表达式得:2=,解得:m=2,故点C、B的坐标分别为:(2,0)、(2,4),点A(﹣2,0),设直线AB的表达式为:y=sx+t,则,解得:,故直线AB的表达式为:y=x+2②,联立①②并解得:或(舍去);故点D的坐标为:(﹣1,+1).19.解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得:y==2,∴B(6,2).综上所述,k的值是12,B点的坐标是(6,2);(2)设直线A、C的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x+8,令x=0,则y=8,故点E(0,8),设直线EC向右平移m个单位,则平移后直线的表达式为:y=﹣(x﹣m)+8,则点E′(m,8),∵点E′在反比例函数上,∴将点E′坐标代入反比例函数表达式得:8m=12,解得:m=,则平移后直线的表达式为:y=﹣(x﹣)+8=﹣x+10,令y=0,则x=,故点F(,0);当x=6时,y=﹣x+10=2,故点B在直线EF上;(3)设点M的坐标为(s,t),而点A、B、F的坐标分别为:(3,4)、(6,2)、(,0);①当AB是边时,点A向右平移3个单位向下平移2个单位得到B,同样点M(N)向右平移3个单位向下平移2个单位得到N(M),故或,解得:或,故点M的坐标为:(,﹣2)或(,2);②当AB是对角线时,由中点公式得:,解得:,故点M的坐标为(,6);综上,点M的坐标为:(,﹣2)或(,2)或(,6).20.解:(1)由题意,A(1,8),把A(1,8)代入y=2x+b得到b=6.(2)设A(m,),则B(m,0),把A(m,)代入y=2x+b得到b=﹣2m,∴直线AC的解析式为y=2x+﹣2m,令y=0,得到x=m﹣,∴C(m﹣,0),∵AD=DC,∴D(m﹣,),设直线BD的解析式为y=k′x+b′,则有,解得,∴直线BD的解析式为y=﹣2x+2m,∴E(0,2m),∴OE=2m,BC=OC+OB==4,∵S△ECB∴•BC•EO=4,∴××2m=4,∴k=8.(3)连接AE,延长AE交BC于J.由(2)可知,E(0,2m),∵OE=2,∴2m=2,∴m=1,∴C((1﹣,0),B(1,0),A(1,k),∴直线AE的解析式为:y=(k﹣2)x+2,令y=0,得到x=,∴J(,0),∵E是△ABC的重心,∴CJ=JB,∴=(1+1﹣),解得k=6或0(舍弃),∴直线AC的解析式为y=2x+4.。

中考数学点对点-反比例函数问题(解析版)

中考数学点对点-反比例函数问题(解析版)

反比例函数专题知识点概述 1.反比例函数:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。

其他形式xy=k 、 1-=kx y 。

2.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y=-x 。

对称中心是:原点。

它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3.性质:(1)当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小; (2)当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

5.反比例函数解析式的确定由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

例题解析与对点练习【例题1】(2020•德州)函数y =kx 和y =﹣kx +2(k ≠0)在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .【答案】D【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.【解析】在函数y =kx 和y =﹣kx +2(k ≠0)中,当k >0时,函数y =kx 的图象在第一、三象限,函数y =﹣kx +2的图象在第一、二、四象限,故选项A 、B错误,选项D 正确,当k <0时,函数y =kx 的图象在第二、四象限,函数y =﹣kx +2的图象在第一、二、三象限,故选项C 错误, 【对点练习】(2019广西贺州)已知0ab <,一次函数y ax b =-与反比例函数ay x=在同一直角坐标系中的图象可能( )【答案】A【解析】若反比例函数ay x=经过第一、三象限,则0a >.所以0b <.则一次函数y ax b =-的图象应该经过第一、二、三象限; 若反比例函数ay x=经过第二、四象限,则0a <.所以0b >.则一次函数y ax b =-的图象应该经过第二、三、四象限.故选项A 正确。

2020年中考数学二轮复习压轴专题:反比例函数(解析版)

2020年中考数学二轮复习压轴专题:反比例函数(解析版)

2020年中考数学二轮复习压轴专题:《反比例函数》1.如图,在平面直角坐标系中,矩形ABCO的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(4,2),AC的垂直平分线分别交BC,OA于点D,E,过点D的反比例函数的图象交AB于点F.(1)求反比例函数的表示式;(2)判断DF与AC的位置关系,并说明理由;(3)连接OD,在反比例函数图象上存在点G,使∠ODG=90°,直接写出点G的坐标.解:(1)连接AD,∵DE垂直平分AC,∴AD=CD,∵B(4,2),∴AB=2,BC=4.设AD=CD=x,则BD=4﹣x,∵四边形OABC矩形,∴BC∥OA,∠B=90°.在Rt△ABD中,AD2=BD2+AB2.即x2=(4﹣x)2+22.解得.∴点.将点的坐标代入中,解得:.∴所求反比例函数表达式为;(2)DF∥AC.将x=4代入得,,∴点.∵B(4,2),A(4,0),C(0,2),,∴AB=2,,BC=4,.∴,.∴.∵∠B=∠B,∴△BDF∽△BCA,∴∠BDF=∠BCA.∴DF∥AC;(3)存在,∵,∴OC=2,CD=,如图,∵G点在反比例函数图象上,∴设G(m,),过G作GH⊥BC于H,∴GH=﹣2,DH=﹣m,∵∠ODG=90°,∴∠GDH+∠CDO=90°,∵∠CDO+∠COD=90°,∴∠GDH=∠COD,∴△DHG∽△OCD,∴=,∴=,解得:m=,m=(不合题意舍去),∴.2.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6, b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;3.如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x 轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P 的坐标.解:(1)∵点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,∴点A,点E纵坐标为1,点C,点F的横坐标为2,∵点E,点F在反比例函数y=(x>0)的图象上,∴点E(1,1),点F(2,),设直线EF的解析式的解析式为:y=kx+b,∴∴∴直线EF的解析式的解析式为:y=﹣x+;(2)∵四边形BEOF的面积=S四边形ABCO﹣S△AOE﹣S△OCF,∴四边形BEOF的面积=2﹣﹣=1;(3)∵点E(1,1),∴OE=,若OE=OP=,则点P(0,)或(0,﹣),若OE=EP,且AE⊥AO,∴OA=AP=1,∴点P(0,2)若OP=PE,∴点P在OE的垂直平分线上,即点P(0,1),综上所述:当点P(0,)或(0,﹣)或(0,2)或(0,1)时,△POE是等腰三角形.4.如图,A、D、B、C分别为反比例函数y=与y=(x>0,0<n <x)图象上的点,且AC∥x轴,BD∥y轴,AC与BD相交于点P,连接AD、BC.(1)若点A坐标A(1,2),点B坐标B(2,5),请直接写出点C、点D、点P的坐标;(2)连接AB、CD,若四边形ABCD是菱形,且点P的坐标为(3,2),请直接写出m、n之间的数量关系式;(3)若A、B为动点,△APD与△CPB是否相似?为什么?解:(1)∵点A坐标A(1,2)反比例函数y=上的点,点B坐标B(2,5)反比例函数y=上的点,∴m=1×2=2,n=2×5=10,∵AC∥x轴,BD∥y轴,∴点C的纵坐标为2,点D的横坐标为2,点P坐标(2,2)∴点C(5,2),点D(2,1);(2)∵点P的坐标为(3,2),∴点A,点C纵坐标为2,点B,点D的横坐标为3,∵四边形ABCD是菱形,∴AP=PC,BP=PD,设点A(x,2),则点C(6﹣x,2),∴m=2x,点D(,3),n=12﹣2x,点B(,3),∵BP=PD,∴2﹣=﹣2,∴m+n=12;(3)△APD∽△CPB,理由如下:设点P的坐标为(a,b),则点A的坐标为(,b)、点D的坐标为(a,),点B的坐标为(a,)、点C的坐标为(,b),∴PA=a﹣=,PC=,PD=b﹣=,PB=,∴,,即,且∠APD=∠CPB,∴△APD∽△CPB.5.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n的值和k的值以及点B的坐标;(2)观察反比例函数y=的图象,当y≥﹣3时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(4)在y轴上是否存在点P,使PA+PB的值最小?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),(2)当y=﹣3时,﹣3=,解得x=﹣4.故当y≥﹣3时,自变量x的取值范围是x≤﹣4或x>0.(2)如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=B C=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(AAS),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(4)存在,如图2,作点B(2,0)关于y轴的对称点Q的坐标为(﹣2,0),∴直线AQ的关系式为y=x+1,∴直线AQ与y轴的交点为P(0,1).6.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN 是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数y=(x>0)图象上的一个动点,过点C 的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OM sinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴=∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).7.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,平等四边形ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)a=﹣1 ,b=﹣2 ;(2)求D点的坐标;(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:.故答案是:﹣1;﹣2;(2)∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2).∴t=2t﹣4.∴t=4.∴D(1,4);(3)∵D(1,4)在双曲线y=上,∴k=xy=1×4=4.∴反比例函数的解析式为y=,∵点P在双曲线y=上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示:若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示:当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);综上所述,Q1(0,6);Q2(0,﹣6);Q3(0,2);(4)如图4,连接NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN(SAS),∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TN H=360°﹣180°﹣90°=90°.∴MN=HT,∴=.即的定值为.8.已知:一次函数y=mx+10(m<0)的图象与反比例函数y=(k >0)的图象相交于A、B两点(A在B的右侧).(1)当A(8,2)时,求这个一次函数和反比例函数的解析式,以及B点的坐标;(2)在(1)的条件下,平面内存在点P,使得以A、B、O、P为顶点的四边形为平行四边形,请直接写出所有符合条件的点P的坐标;(3)当m=﹣2时,设A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.解:(1)把A(8,2)代入y=,得k=8×2=16.∴反比例函数的解析式为y=,把A(8,2)代入y=mx+10,得到m=﹣1,∴一次函数的解析式为y=﹣x+10,解方程组,得或,∴点B的坐标为(2,8)(2)如图1,设P的坐标为(x,y),∵四边形AP1BO是平行四边形,∴AB、OP1互相平分,∵A(8,2),B(2,8),O(0,0),∴=,=,∴x=10,y=10,∴P1(10,10),同理求得,P2(﹣6,6),P3(6,﹣6);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴=,∵=,∴==,∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣10),CT=a,BS=b,∴=,即b=a.∵A(a,﹣2a+10),B(b,﹣2b+10)都在反比例函数y=的图象上,∴a(﹣2a+10)=b(﹣2b+10),∴a(﹣2a+10)=a(﹣2×a+10).∵a≠0,∴﹣2a+10=(﹣2×a+10),解得:a=3.∴A(3,4),B(2,6),C(﹣3,﹣4).设直线BC的解析式为y=px+q,则有,解得:,∴直线BC的解析式为y=2x+2.当x=0时,y=2,则点D(0,2),OD=2,∴S△COB=S△ODC+S△ODB=OD•CT+OD•BS=×2×3+×2×2=5.∵OA=OC,∴S△AOB=S△COB,∴S△ABC=2S△COB=10.9.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点,点A与点B不重合,直线AB与x轴交于点P(x0,0),与y轴交于点C(1)若A、B两点坐标分别为(1,4),(4,y2),求点P的坐标;(2)若b=y1+1,x0=6,且y1=2y2,求A,B两点的坐标;(3)若将(1)中的点A,B绕原点O顺时针旋转90°,A点对应的点为A′,B点的对应点为B′点,连接AB′,A′B′,动点M 从A点出发沿线段AB′以每秒1个单位长度的速度向终点B′运动;动点N同时从B′点出发沿线段B′A′以每秒1个单位长度的速度向终点A′运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB′为等腰直角三角形的t值,若存在,求出t的值;若不存在,说明理由.解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,4)∴k=1×4=4,∴y=,∵B(4,y2)在反比例函数的图象上,∴y2==1,∴B(4,1),∵直线y=ax+b经过A、B两点,∴,解得,∴直线为y=﹣x+5,令y=0,则x=5,∴P(5,0);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y 轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,y1=2y2,∴=,==,∴B(, y1),∵A,B两点都是反比例函数图象上的点,∴x1•y1=•y1,解得x1=2,代入=,解得y1=2,∴A(2,2),B(4,1);(3)存在,如图2,∵A、B两点坐标分别为(1,4),(4,1),将B绕原点O顺时针旋转90°,∴B′(1,﹣4),∴AB′=8,由题意得:AM=BN=t,∴B′M=8﹣t,∵△MNB′为等腰直角三角形,∴①当∠B′N1M1=90°,即B′M1=B′N1,∴8﹣t=t,解得:t=8﹣8;②当∠B′M2N2=90°,即B′N2=B′M2,∴t=(8﹣t),解得:t=16﹣8;综上所述,t的值为8﹣8或16﹣8.10.平面直角坐标系中,A(,0)、B(,3).(1)如图1,C点在y轴上,AC⊥AB,请直接写出C点的坐标.(2)如图2,以AB为边作矩形ABDE,D、E在第一象限内,且D、E两点均在双曲线的图象上,求k的值.(3)将(2)中求得的线段DE在(2)中的双曲线(x>0)的图象上滑动(D点始终在E点左边),作DM⊥y轴于M,EN⊥x轴于N.若MN=,请直接写出DM•EN的值.解:(1)过B作BD⊥x轴于D,∵A(,0)、B(,3),∴BD=3,AD=2,OA=,∵AC⊥AB,∴∠ADB=∠BAC=∠AOC=90°,∴∠BAD+∠ABD=∠BAD+∠CAO=90°,∴∠ABD=∠CAO,∴△ABD∽△CAO,∴,∴,∴OC=,∴C(0,);(2)∵四边形ABDE是矩形,∵A(,0)、B(,3),设E(m,n),则D(m﹣2,n+3),∵D、E均在双曲线上∴mn=(m﹣2)(n+3),过点B作BF⊥x轴于F,过点E作EG⊥x轴于G,由(1)证得△ABF∽△EAG,∴,∴,得2m+1=3n,联立,解得,∴k=mn=12;(3)∵DE=AB=,∵MN=,∴延长MD,NE交于G,则四边形MONG是矩形,设M(0,m)、N(n,0)∴D(,m)、E(n,)、G(n,m),∴直线MN的解析式为y=﹣x+m;直线DE的解析式为:y=﹣x+m+,∴MN∥DE,∴,∴,得mn=4∴DM•EN=.11.综合与探究:如图所示,在平面直角坐标系中,直线y=x+2与反比例函数y=(k>0)的图象交于A(a,3),B(﹣3,b)两点,过点A作AC ⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的函数表达式;(2)若点P在线段AB上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)小颖在探索中发现:在x轴正半轴上存在点M,使得△MAB是以∠A为顶角的等腰三角形.请你直接写出点M的坐标.解:(1)∵直线y=x+2与反比例函数y=(k>0)的图象交于A (a,3),B(﹣3,b)两点,∴a+2=3,﹣3+2=b,∴a=1,b=﹣1.∴A(1,3),B(﹣3,﹣1),∵点A(1,3)在反比例函数y=上,∴k=1×3=3,∴反比例函数的函数表达式为y=,(2)设点P(x P,y P),∵A(1,3),∴C(1,0).∴AC=3.∵B(﹣3,﹣1),∴D(﹣3,0),∴BD=1,∴AC(1﹣x P)=DB(x P+3),解得:x P=0,∴y P=2,∴点P的坐标为(0,2);(3)∵△MAB是以∠A为顶角的等腰三角形,∴AB=AM,∵AB==4,∵AC⊥x轴,∴CM===,∴OM=1+,∴M(1+,0).12.如图1,在矩形中,OA=4,OC=3,分别以OC,OA所在的直线为x轴、y轴,建立如图所示的平面直角坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=ax+b经过点E和点F.(1)连接OE、OF,求△OEF的面积;(2)如图2,将线段OB绕点O顺时针旋转﹣定角度,使得点B的对应点H好落在x轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求的最小值.解:(1)在矩形ABCO中,∵OA=BC=4,OC=AB=3,∴B(3,4),∵OD=DB,∴D(,2),∵y=经过D(,2),∴k=3,∴反比例函数的解析式为y=,∴y=4时,x=,∴E(,4),当x=3时,y=1,∴F(3,1),∴S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB=3×4﹣×4×﹣×3×1﹣×(3﹣)(4﹣1)=12﹣﹣﹣=;(2)作NJ⊥BO于J,HK⊥BO于K,如图2所示:OB===5,由旋转的性质得:OB=OH=5,∴CH=OH﹣OC=5﹣3=2,∴BH═==2,∴sin∠CBH═==,∵OM⊥BH,∴∠OMH=∠BCH=90°,∵∠MOH+∠OHM=90°,∠CBH+∠CHB=90°,∴∠MOH=∠CBH,∵OB=OH,OM⊥BH,∴∠MOB=∠MOH=∠CBH,∴sin∠NOJ=,∴NJ=ON•sin∠NOJ=ON,∴NH+ON=NH+NJ,根据垂线段最短可知,当J,N,H三点共线,且与HK重合时,HN+ON 的值最小,最小值为HK的长,∵OB=OH, BC•OH=HK•OB,∴HK=BC=4,∴HN+ON是最小值为4.13.已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.解:(1)当k=1,则一次函数解析式为:y=x﹣3,反比例函数解析式为:y=﹣,∵点P在线段AB上∴设点P(a,a﹣3),a>0,a﹣3<0,∴PN=a,PM=3﹣a,∵矩形OMPN的面积为2,∴a×(3﹣a)=2,∴a=1或2,∴点P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3与x轴和y轴分别交于A、B两点,∴点A(3,0),点B(0,﹣3)∴OA=3=OB,∴∠OAB=∠OBA=45°,AB=3,∵x﹣3=﹣∴x=1或2,∴点C(1,﹣2),点D(2,﹣1)∴BC==,设点E(x,0),∵以A、B、E为顶点的三角形与△BOC相似,且∠CBO=∠BAE=45°,∴,或,∴,或=,∴x=1,或x=﹣6,∴点E(1,0)或(﹣6,0)(3)∵﹣=kx﹣(2k+1),∴x=1,x=,∴两个函数图象的交点横坐标分别为1,,∵某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,∴1=,或5=∴k=14.如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,∴反比例函数为y=;把A(1,4)和B(4,1)代入y=kx+b得,解得:,∴一次函数为y=﹣x+5.(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;(3)设P(m,),由一次函数y=﹣x+5可知C(5,0),∴S△CAO==10,∵S△CPQ=S△CAO,∴S△CPQ=5,∴|5﹣m|•=5,解得m=或m=﹣(舍去),∴P(,).15.综合与探究如图1,平面直角坐标系中,直线l:y=2x+4分别与x轴、y轴交于点A,B.双曲线y=(x>0)与直线l交于点E(n,6).(1)求k的值;(2)在图1中以线段AB为边作矩形ABCD,使顶点C在第一象限、顶点D在y轴负半轴上.线段CD交x轴于点G.直接写出点A,D,G的坐标;(3)如图2,在(2)题的条件下,已知点P是双曲线y=(x>0)上的一个动点,过点P作x轴的平行线分别交线段AB,CD于点M,N.请从下列A,B两组题中任选一组题作答.我选择①组题.A.①当四边形AGNM的面积为5时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.B.①当四边形AGNM成为菱形时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.解:(1)由已知可得A(﹣2,0),B(0,4),E(1,6),∴k=6;(2)∵AB⊥BC,∴BC的解析式为y=﹣x+4,联立,∴C(2,3),∵CD=AB=2,∴D(0,﹣1),∴CD的解析式为y=2x﹣1,∴G(,0);(3)A①设P(m,),∵MN∥x轴,∴M(﹣2,),N(+,),∴MN=,∵四边形AGNM的面积为5,∴×=5,∴m=3,∴P(3,2);②Q(3,1)、Q(﹣3,1)、Q(﹣3,2)时B,D,Q为顶点的三角形与△PBD全等.B①∵四边形AGNM成为菱形,MN=AM,∴=∴m=,∴P(,);②Q(﹣,)、Q(,3﹣)、Q(﹣,3﹣)时B,D,Q为顶点的三角形与△PBD全等.。

2020中考数学精选例题解析:正比例函数与反比例函数

2020中考数学精选例题解析:正比例函数与反比例函数
点,则请写出点 C 的坐标;若不存在,请说明理由。
参考答案
一、选择题:CCCAC 二、填空题:
1、-2;2、(1,1)或(-1,-1);3、 k 2 , 2 5 ;4、( 1 , 2 ) 2
5、(-1,2) 三、解答题:
1、 y 2 2 2 ;2、(1) y 1 x 2 5 ;(2) 5 9 2 ;
(4)当点 P 在曲线 y 1 上移动时,△OEF 随之变动,指出在△OEF 的三个内角 2x
中,大小始终保持不变的那个角的大小,并证明你的结论。
解析:(1)点 E( a ,1 a ),点 F(1 b , b )
(2) S EOF S矩形MONP S EMO S FNO S EPF
= ab 1 a(1 a) 1 b(1 b) 1 (a b 1)2
根,则 k =
,点 A 到原点的距离是

5
4、已知直线 y (m 2n)x 与双曲线 y 3n m 相交于点( 1 ,2),那么它们的另一
x
2
个交点为

5、如图,Rt△AOB 的顶点 A 是一次函数 y x m 3的图像与反比例函数 y m x
的图像在第二象限的交点,且 SABO 1,则 A 点坐标是
的解析式是

2、已知点 P(1, a )在反比例函数 y k ( k ≠0)的图像上,其中 a m2 2m 3 x
( m 为实数),则这个函数的图像在第
象限。
3、如图,正比例函数 y kx ( k >0)与反比例函数 y 3 的图像交于 A、C 两点,AB x
⊥ x 轴于 B,CD⊥ x 轴于 D,则 S四边形ABCD =
④如果
P1(
x1

y1

中考数学考点12反比例函数的图像与性质及实际应用总复习(解析版)

中考数学考点12反比例函数的图像与性质及实际应用总复习(解析版)

反比例函数的图像与性质及实际应用【命题趋势】在中考中.反比例函数的图像与性质常以选择题和填空形式考查;反比例函数解析式主要在反比例函数综合题中与一次函数、几何图形结合考查。

【中考考查重点】一、结合具体情境体会反比例函数的意义.能根据已知条件确定反比例函数的表达式;二、能画出反比例函数的图像.根据图像和表达式探索并理解k>0和k<0时.图像的变化情况;三、结合具体情境体会反比例函数的意义四、能用反比例函数解决简单实际问题考点一:反比例函数的概念一般地.形如.叫做反比例函数.自变量x的取值概念范围是≠0的一切实数【提分要点】反比例函数图像上的点的横纵坐标之积是定值k1.(2021秋•南召县期末)下列函数是y关于x的反比例函数的是()A.y=B.y=C.y=﹣D.y=﹣【答案】C【解答】解:A、不是y关于x的反比例函数.故此选项不合题意;B、不是y关于x的反比例函数.故此选项不合题意;C、是y关于x的反比例函数.故此选项符合题意;D、不是y关于x的反比例函数.是正比例函数.故此选项不合题意;故选C2.(2021•门头沟区一模)在物理实验室实验中.为了研究杠杆的平衡条件.设计了如下实验.如图.铁架台左侧钩码的个数与位置都不变.在保证杠杆水平平衡的条件下.右侧采取变动钩码数量即改变力F.或调整钩码位置即改变力臂L.确保杠杆水平平衡.则力F与力臂L满足的函数关系是()A .正比例函数关系B .反比例函数关系C .一次函数关系D .二次函数关系【答案】B【解答】解:∵确保杠杆水平平衡.∴力F 与力臂L 满足的函数关系是反比例函数关系. 故选:B .3.(2021秋•越秀区校级期末)函数y =(m ﹣1)x |m |﹣2是反比例函数.则m的值为 .【答案】-1【解答】解:由题意得:|m |﹣2=﹣1且.m ﹣1≠0;解得m =±1.又m ≠1; ∴m =﹣1. 故填m =﹣1. 考点二:反比例函数的图像与性质概念kk >0k <0图像所在象限一、三二、四增减性 在每个象限内.y 随x 的增大而减少在每个象限内.y 随x 的增大而增大图像特征图像无限接近于坐标轴.但不与坐标轴相交;关于直线y=±x 成轴对称;关于原点成中心对称4.(2021秋•南开区期末)若反比例函数y=的图象在其所在的每一象限内.y随x 的增大而减小.则k的取值范围是()A.k<﹣2B.k>﹣2C.k<2D.k>2【答案】B【解答】解:∵反比例比例函数y=的图象在其每一象限内.y随x的增大而减小.∴k+2>0.解得k>﹣2.故选:B.5.(2021秋•揭阳期末)点(x1.y1)、(x2.y2)、(x3.y3)在反比例函数y=﹣的图象上.且x1<0<x2<x3.则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1【答案】B【解答】解:∵k<0.∴函数图象在二.四象限.由x1<0<x2<x3可知.横坐标为x1的点在第二象限.横坐标为x2.x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标.∴y1最大.在第二象限内.y随x的增大而增大.∴y2<y3<y1.故选:B.6.(2020秋•浦东新区校级期末)已知函数y=kx.y随x的增大而减小.另有函数.两个函数在同一平面直角坐标系内的大致图象可能是()A.B.C.D.【答案】B【解答】解:∵函数y=kx中y随x的增大而减小.∴k<0.且函数的图象经过第二、四象限.∴函数的反比例系数大于零.∴反比例函数图象经过第一、三象限.故选:B.7.(2020秋•孝义市期末)近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系.若要配制一副度数小于400度的近视眼镜.则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米【答案】B【解答】解:根据题意.近视眼镜的度数y(度)与镜片焦距x(米)成反比例.设y=.∵点(0.5.200)在此函数的图象上.∴k=0.5×200=100.∴y=(x>0).∵y<400.∴<400.∵x>0.∴400x>100.∴x>0.25.即镜片焦距x的取值范围是x>0.25米.故选:B.考点三:反比例函数系数k的几何意义8.(2021秋•铁西区期末)如图.A是反比例函数y=的图象上一点.过点A作AB⊥y 轴于点B.点C在x轴上.且S△ABC=2.则k的值为()A.4B.﹣4C.﹣2D.2【答案】B【解答】解:设点A的坐标为(x.y).∵点A在第二象限.∴x<0.y>0.∴S△ABC=AB•OB=|x|•|y|=﹣xy=2.K的几何意义在反比例函数上任取一点P(x.y),过这个点分别作x轴.y轴的垂线PM、PN.于坐标轴围成的矩形PMON的面积S=PM·PN===k基本图形面积基本图形面积∴xy=﹣4.∵A是反比例函数y=的图象上一点.∴k=xy=﹣4.故选:B.9.(2021•铜仁市)如图.矩形ABOC的顶点A在反比例函数y=的图象上.矩形ABOC 的面积为3.则k=.【答案】3【解答】解:∵矩形ABOC的面积为3.∴|k|=3.又∵k>0.∴k=3.故答案为:3.考点四:反比例函数解析式的确定待定系数法1.设所求反比例函数解析式为:2.找出反比例函数图像上一点P(a,b).并将其代入解析式得k=ab;3.确定反比例函数解析式利用k得几何意义题中已知面积时.考虑利用k得几何意义.由面积得.再综合图像所在象限判段k得正负.从而得出k的值.代入解析式即可10.(2021秋•房山区期末)若反比例函数的图象经过点(3.﹣2).则该反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣【答案】B【解答】解:设反比例函数的解析式为y=(k≠0).函数的图象经过点(3.﹣2).∴﹣2=.得k=﹣6.∴反比例函数解析式为y=﹣.故选:B.11.(2021秋•泰山区期中)如果等腰三角形的面积为6.底边长为x.底边上的高为y.则y与x的函数关系式为()A.y=B.y=C.y=D.y=【答案】A【解答】解:∵等腰三角形的面积为6.底边长为x.底边上的高为y.∴xy=6.∴y与x的函数关系式为:y=.故选:A.12.(2021•江西模拟)小明学习了物理中的杠杆平衡原理发现:阻力×阻力臂=动力×动力臂.现已知某一杠杆的阻力和阻力臂分别为2400N和1m.则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.【答案】A【解答】】解:∵阻力×阻力臂=动力×动力臂.已知阻力和阻力臂分别是2400N和1m.∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:2400×1=Fl.则F=.是反比例函数.A选项符合.故选:A.1.(2021秋•隆回县期中)下面的函数是反比例函数的是()A.y=B.y=C.y=D.y=【答案】C【解答】解:A.y不是关于x的反比例函数.故本选项不符合题意;B.y是x的是正比例函数.不是反比例函数.故本选项不符合题意;C.y是关于x的反比例函数.故本选项符合题意;D.y不是关于x的反比例函数.故本选项不符合题意;故选:C.2.(2021秋•大东区期末)如果反比例函数的图象经过点P(﹣3.﹣1).那么这个反比例函数的表达式为()A.y=B.y=﹣C.y=x D.y=﹣x【答案】A【解答】解:设反比例函数解析式为y=(k≠0).∵函数经过点P(﹣3.﹣1).∴﹣1=.解得k=3.∴反比例函数解析式为y=.故选:A.3.(2021春•海淀区校级月考)某物体对地面的压力为定值.物体对地面的压强p(Pa)与受力面积S(m2)之间的函数关系如图所示.这一函数表达式为()A.B.C.D.【答案】B【解答】解:观察图象易知p与S之间的是反比例函数关系.设p=.由于A(20.10)在此函数的图象上.∴k=20×10=200.∴p=.故选:B.4.(2020秋•瓜州县期末)如图.在某温度不变的条件下.通过一次又一次地对气缸顶部的活塞加压.测出每一次加压后气缸内气体的体积V(mL)与气体对气缸壁产生的压强p(kPa)的关系可以用如图所示的反比例函数图象进行表示.下列说法错误的是()A.气压p与体积V表达式为p=.则k>0B.当气压p=70时.体积V的取值范围为70<V<80C.当体积V变为原来的时.对应的气压p变为原来的D.当60≤V≤100时.气压p随着体积V的增大而减小【答案】B【解答】解:当V=60时.p=100.则pV=6000.A.气压p与体积V表达式为p=.则k>0.故不符合题意;B.当p=70时.V=>80.故符合题意;C.当体积V变为原来的时.对应的气压p变为原来的.不符合题意;D.当60≤V≤100时.气压p随着体积V的增大而减小.不符合题意;故选:B.5.(2020秋•东莞市校级期末)已知点(3.y1).(﹣2.y2).(2.y3)都在反比例函数的图象上.那么y1.y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2【答案】A【解答】解:∵k=﹣6<0.∴图象位于第二、四象限.在每一象限内.y随x的增大而增大.∴y2>0.y3<y1<0.∴y3<y1<y2.故选:A.6.(2021秋•西湖区期中)已知y1和y2均是以x为自变量的函数.当x=m时.函数值分别是M1和M2.若存在实数m.使得M1+M2=1.则称函数y1和y2具有性质P.以下函数y1和y2不具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+1【答案】D【解答】解:A.令y1+y2=1.则x2+2x﹣x﹣1=1.整理得.x2+x﹣2=0.解得x=﹣2或x =1.即函数y1和y2具有性质P.不符合题意;B.令y1+y2=1.则x2+2x﹣x+1=1.整理得.x2+x=0.解得x=0或x=﹣1.即函数y1和y2具有性质P.不符合题意;C.令y1+y2=1.则﹣﹣x﹣1=1.整理得.x2+2x+1=0.解得x1=x2=﹣1.即函数y1和y2具有性质P.不符合题意;D.令y1+y2=1.则﹣﹣x+1=1.整理得.x2+1=0.方程无解.即函数y1和y2不具有性质P.符合题意;故选:D.7.(2021秋•会宁县期末)如图.A.B是反比例函数的图象上关于原点对称的两点.BC ∥x轴.AC∥y轴.若△ABC的面积为6.则k的值是.【答案】3【解答】解:∵反比例函数的图象在一、三象限.∴k>0.∵BC∥x轴.AC∥y轴.∴S△AOD=S△BOE=k.∵反比例函数及正比例函数的图象关于原点对称.∴A、B两点关于原点对称.∴S矩形OECD=2S△AOD=k.∴S△ABC=S△AOD+S△BOE+S矩形OECD=2k=6.解得k=3.故答案为:3.8.(2021春•沙坪坝区校级期末)已知函数y=(m﹣1)是反比例函数.则m的值为.【答案】-1【解答】解:根据题意m2﹣2=﹣1.∴m=±1.又m﹣1≠0.m≠1.所以m=﹣1.故答案为:﹣1.1.(2018•柳州)已知反比例函数的解析式为y=.则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【答案】C【解答】解:根据反比例函数解析式中k是常数.不能等于0.由题意可得:|a|﹣2≠0.解得:a≠±2.故选:C.2.(2020•上海)已知反比例函数的图象经过点(2.﹣4).那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【答案】D【解答】解:设反比例函数解析式为y=.将(2.﹣4)代入.得:﹣4=.解得k=﹣8.所以这个反比例函数解析式为y=﹣.故选:D.3.(2021•黔西南州)对于反比例函数y=.下列说法错误的是()A.图象经过点(1.﹣5)B.图象位于第二、第四象限C.当x<0时.y随x的增大而减小D.当x>0时.y随x的增大而增大【答案】C【解答】解:∵反比例函数y=.∴当x=1时.y=﹣=﹣5.故选项A不符合题意;k=﹣5.故该函数图象位于第二、四象限.故选项B不符合题意;当x<0.y随x的增大而增大.故选项C符合题意;当x>0时.y随x的增大而增大.故选项D不符合题意;故选:C.4.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限.则一次函数y=kx﹣k的图象大致是()A.B.C.D.【答案】D【解答】解:∵反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限.∴k>0.∴﹣k<0.∴一次函数y=kx﹣k的图象图象经过第一、三、四象限.故选:D.5.(2021•宜昌)某气球内充满了一定质量m的气体.当温度不变时.气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=.能够反映两个变量p和V函数关系的图象是()A.B.C.D.【答案】B【解答】解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=(V.p都大于零).∴能够反映两个变量p和V函数关系的图象是:.故选:B.6.(2021•沈阳)如图.平面直角坐标系中.O是坐标原点.点A是反比例函数y=(k≠0)图象上的一点.过点A分别作AM⊥x轴于点M.AN⊥y轴于点N.若四边形AMON 的面积为12.则k的值是.【答案】-12【解答】解:∵四边形AMON的面积为12.∴|k|=12.∵反比例函数图象在二四象限.∴k<0.∴k=﹣12.故答案为:﹣12.7.(2021•阜新)已知点A(x1.y1).B(x2.y2)都在反比例函数y=﹣的图象上.且x1<0<x2.则y1.y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0D.y1﹣y2=0【答案】A【解答】解:∵反比例函数y=﹣中k=﹣1<0.∴函数图象的两个分支分别位于二、四象限.且在每一象限内.y随x的增大而增大.∵x1<0<x2.∴A在第二象限.B在第四象限.∴y1>0.y2<0.∴y1>y2.故选:A.8.(2020•大庆)已知正比例函数y=k1x和反比例函数y=.在同一平面直角坐标系下的图象如图所示.其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解答】解:①中k1>0.k2>0.故k1•k2>0.故①符合题意;②中k1<0.k2>0.故k1•k2<0.故②不符合题意;③中k1>0.k2<0.故k1•k2<0.故③不符合题意;④中k1<0.k2<0.故k1•k2>0.故④符合题意;故选:B.9.(2021•自贡)已知蓄电池的电压为定值.使用蓄电池时.电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系.它的图象如图所示.下列说法正确的是()A.函数解析式为I=B.蓄电池的电压是18VC.当I≤10A时.R≥3.6ΩD.当R=6Ω时.I=4A【答案】C【解答】解:设I=.∵图象过(4.9).∴k=36.∴I=.∴蓄电池的电压是36V.∴A.B均错误;当I=10时.R=3.6.由图象知:当I≤10A时.R≥3.6Ω.∴C正确.符合题意;当R=6时.I=6.∴D错误.故选:C.10.(2020•河北)如图是8个台阶的示意图.每个台阶的高和宽分别是1和2.每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1.则k=;(2)若L过点T4.则它必定还过另一点T m.则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧.每侧各4个点.则k的整数值有个.【答案】(1)-16 (2)5 (3)7【解答】解:(1)∵每个台阶的高和宽分别是1和2.∴T1(﹣16.1).T2(﹣14.2).T3(﹣12.3).T4(﹣10.4).T5(﹣8.5).T6(﹣6.6).T7(﹣4.7).T8(﹣2.8).∵L过点T1.∴k=﹣16×1=﹣16.故答案为:﹣16;(2)∵L过点T4.∴k=﹣10×4=﹣40.∴反比例函数解析式为:y=﹣.当x=﹣8时.y=5.∴T5在反比例函数图象上.∴m=5.故答案为:5;(3)若曲线L过点T1(﹣16.1).T8(﹣2.8)时.k=﹣16.若曲线L过点T2(﹣14.2).T7(﹣4.7)时.k=﹣14×2=﹣28.若曲线L过点T3(﹣12.3).T6(﹣6.6)时.k=﹣12×3=﹣36.若曲线L过点T4(﹣10.4).T5(﹣8.5)时.k=﹣40.∵曲线L使得T1~T8这些点分布在它的两侧.每侧各4个点.∴﹣36<k<﹣28.∴整数k=﹣35.﹣34.﹣33.﹣32.﹣31.﹣30.﹣29共7个.故答案为:7.1.(2021•抚顺模拟)下列函数中.y是x的反比例函数的是()A.B.C.D.【答案】B【解答】解:A、是正比例函数.不是反比例函数.故此选项不合题意;B、是反比例函数.故此选项符合题意;C、不是反比例函数.故此选项不合题意;D、不是反比例函数.故此选项不合题意;故选:B.2.(2021•卧龙区二模)已知反比例函数.在下列结论中.不正确的是()A.图象必经过点(﹣1.﹣2)B.图象在第一、三象限C.若x<﹣1.则y<﹣2D.点A(x1.y1).B(x2.y2)图象上的两点.且x1<0<x2.则y1<y2【答案】C【解答】解:A.反比例函数.图象必经过点(﹣1.﹣2).原说法正确.故此选项不合题意;B.反比例函数.图象在第一、三象限.原说法正确.故此选项不合题意;C.若x<﹣1.则y>﹣2.原说法错误.故此选项符合题意;D.点A(x1.y1).B(x2.y2)图象上的两点.且x1<0<x2.则y1<y2.原说法正确.故此选项不合题意;故选:C.3.(2021•富阳区二模)已知反比例函数y=.当﹣2<x<﹣1.则下列结论正确的是()A.﹣3<y<0B.﹣2<y<﹣1C.﹣10<y<﹣5D.y>﹣10【答案】C【解答】解:∵k=10.且﹣2<x<﹣1.∴在第三象限内.y随x的增大而减小.当x=﹣2时.y=﹣5.当x=﹣1时.y=﹣10.∴﹣10<y<﹣5.故选:C.4.(2021•武陟县模拟)某气球内充满了一定质量的气体.当温度不变时.气球内气体的气压P(kpa)是气体体积V(m3)的反比例函数其图象如图所示.当气体体积为1m3时.气压为()kPa.A.150B.120C.96D.84【答案】C【解答】解:设P=.由题意知120=.所以k=96.故P=.当V=1m3时.P==96(kPa);故选:C.5.(2021•云岩区模拟)阿基米德说:“给我一个支点.我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识﹣﹣杠杆原理.即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m.则这一杠杆的动力F和动力臂l之间的函数图象大致是()A.B.C.D.【答案】A【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头.已知阻力和阻力臂分别是1200N和0.5m.∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl.则F=.是反比例函数.A选项符合.故选:A.6.(2021•昆明模拟)如图.点P在双曲线第一象限的图象上.P A⊥x轴于点A.则△OP A的面积为()A.2B.3C.4D.6【答案】B【解答】解:∵P A⊥x轴于点A.∴S△AOP=|k|==3.故选:B.7.(2021•乐陵市一模)为预防新冠病毒.某学校每周末用药熏消毒法对教室进行消毒.已知药物释放过程中.教室内每立方米空气中含药量y(mg)与时间t(h)成正比例;药物释放完毕后.y与t成反比例.如图所示.根据图象信息.下列选项错误的是()A.药物释放过程需要小时B.药物释放过程中.y与t的函数表达式是y=tC.空气中含药量大于等于0.5mg/m3的时间为hD.若当空气中含药量降低到0.25mg/m3以下时对身体无害.那么从消毒开始.至少需要经过4.5小时学生才能进入教室【答案】D【解答】解:设正比例函数解析式是y=kt.反比例函数解析式是y=.把点(3.)代入反比例函数的解析式.得:=.解得:m=.当y=1时.代入上式得t=.把t=时.y=1代入正比例函数的解析式是y=kt.得:k=.∴正比例函数解析式是y=t.A.由图象知.y=1时.t=.即药物释放过程需要小时.故A不符合题意;B.药物释放过程中.y与t成正比例.函数表达式是y=t.故B不符合题意;C.把y=0.5mg/m3分别代入y=t和y=得.0.5=t1和0.5=.解得:t1=和t2=3.∴t2﹣t1=.∴空气中含药量大于等于0.5mg/m3的时间为h;故C不符合题意;<0.25.解得t>6.所以至少需要经过6小时后.学生才能进入教室.故D符合题意.故选:D.8.(2021•山西模拟)已知.A(﹣3.n).C(3n﹣6.2)是反比例函数y=(x<0)图象上的两点.则反比例函数的解析式为.【答案】y=﹣【解答】解:∵A(﹣3.n).C(3n﹣6.2)是反比例函数y=(x<0)图象上的两点.∴n=.2=.即m=﹣3n.m=2(3n﹣6).消去m得:﹣3n=2(3n﹣6).解得:n=.把n=代入得:m=﹣4.故答案为:y=﹣.9.(2021•雁塔区校级模拟)已知同一象限内的两点A(3.n).B(n﹣4.n+3)均在反比例函数y=的图象上.则该反比例函数关系式为.【答案】y=【解答】解:∵同一象限内的两点A(3.n).B(n﹣4.n+3)均在反比例函数y=的图象上.∴k=3n=(n﹣4)(n+3).解得n=6或n=﹣2.∵n=﹣2时.A(3.﹣2).B(﹣6.1).∴A、B不在同一象限.故n=﹣2舍去.∵k=3n=18.∴y=.故答案为y=.10.(2021•昭通模拟)若函数y=是关于x的反比例函数.则a满足的条件是.【答案】a≠﹣3【解答】解:由题可得.a+3≠0.解得a≠﹣3.故答案为:a≠﹣3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.1
B.
C.
D.2
【答案】A 【解析】根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.
更多最新中考学习资料及政策学校交流,请加入南京 2020 中考家长交流群:258252703
∵等腰直角三角形 ABC 的顶点 A.B 分别在 x 轴、y 轴的正半轴上,∠ABC=90°,CA⊥x 轴,AB=1, ∴∠BAC=∠BAO=45°, ∴OA=OB= ,AC= ,
4
4
【答案】A
【解析】反比例函数的图象及性质
将点(﹣1,4)代入 y= k , x
∴k=﹣4,∴y= 4 , x
更多最新中考学习资料及政策学校交流,请加入南京 2020 中考家长交流群:258252703
∴点(4,﹣1)在函数图象上。 4. (2019 湖北十堰)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数 y 的图象分别与线段 AB,BC 交于点 D,E,连接 DE.若点 B 关于 DE 的对称点恰好在 OA 上,则 k=( )
更多最新中考学习资料及政策学校交流,请加入南京 2020 中考家长交流群:258252703


ቤተ መጻሕፍቲ ባይዱ
∴AF

在 Rt△ADF 中,由勾股定理:AD2+AF2=DF2
即:(− )2+22=(4 )2
解得:k=﹣12
5.(2019 湖北仙桃)反比例函数 y − ,下列说法不正确的是( )
A.图象经过点(1,﹣3) C.图象关于直线 y=x 对称 【答案】D
∴S△DOE=4.
更多最新中考学习资料及政策学校交流,请加入南京 2020 中考家长交流群:258252703
∵DE⊥x 轴,且点 D 在双曲线 y= m 上, x
∴ 1 m =4. 2
∵m>0,
∴m=8.
(2)如答图,连接 PD,
∵点 A(2,n)在双曲线 y= 8 上, x
∴2n=8,n=4,A(2,4).
∴点 C 的坐标为( , ),
∵点 C 在函数 y= (x>0)的图象上,
∴k=
=1
故选:A.
【例题 2】(2019 湖南郴州)如图,点 A,C 分别是正比例函数 y=x 的图象与反比例函数 y 的图象的交
点,过 A 点作 AD⊥x 轴于点 D,过 C 点作 CB⊥x 轴于点 B,则四边形 ABCD 的面积为
A.﹣20
B.﹣16
C.﹣12
D.﹣8
【答案】
【解析】根据点的坐标可得矩形的长和宽,易知点 D 的横坐标,E 的纵坐标,由反比例函数的关系式,可
用含有 k 的代数式表示另外一个坐标,由三角形相似和对称,可求出 AF 的长,然后把问题转化到三角形
ADF 中,由勾股定理建立方程求出 k 的值.
解:过点 E 作 EG⊥OA,垂足为 G,设点 B 关于 DE 的对称点为 F,连接 DF、EF、BF,如图所示:
图象都经过 A(﹣1,2),B(2,﹣1),结合图象,则不等式 kx+b> 的解集是( )
A.x<﹣1 C.x<﹣1 或 0<x<2 【答案】C.
B.﹣1<x<0 D.﹣1<x<0 或 x>2
【解析】根据一次函数图象在反比例函数图象上方的 x 的取值范围便是不等式 kx+b> 的解集.
由函数图象可知,当一次函数 y1=kx+b(k≠0)的图象在反比例函数 y2= (m 为常数且 m≠0)的图象上
A.
B.1
C.2
D.3
【答案】D. 【解析】根据对称性求出 C 点坐标,进而得 OA 与 AB 的长度,再根据已知三角形的面积列出 n 的方程求得 n,进而用待定系数法求得 k. ∵点 C 关于直线 y=x 的对称点 C'的坐标为(1,n)(n≠1), ∴C(n,1), ∴OA=n,AC=1, ∴AB=2AC=2, ∵△OAB 的面积为 3,
限接近坐标轴,但永远达不到坐标轴。
3.性质:(1)当 k>0 时双曲线的两支分别位于第一、第三象限,在每个象限内 y 值随 x 值的增大而减小;
(2)当 k<0 时双曲线的两支分别位于第二、第四象限,在每个象限内 y 值随 x 值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
y
y
1x 2 8
x
3
解得
x1
y1
8 1

x2
y2
2 4
.从而锁定
D
点的坐标.
(1)∵一次函数 y=kx+3(k≠0)的图像经过点 A,与 y 轴交于点 B, ∴B(0,3),OB=3. ∵点 A(2,n),
∴ yA =2.
1
∴S△AOB=
2
•OB•
yA
=1 2
×3×2=3.
∵S△OAB﹕S△ODE=3﹕4,
更多最新中考学习资料及政策学校交流,请加入南京 2020 中考家长交流群:258252703
方时,x 的取值范围是:x<﹣1 或 0<x<2, ∴不等式 kx+b> 的解集是 x<﹣1 或 0<x<2 9.(2019▪湖北黄石)如图,在平面直角坐标系中,点 B 在第一象限,BA⊥x 轴于点 A,反比例函数 y= (x >0)的图象与线段 AB 相交于点 C,且 C 是线段 AB 的中点,点 C 关于直线 y=x 的对称点 C'的坐标为(1, n)(n≠1),若△OAB 的面积为 3,则 k 的值为( )
反比例函数专题精讲
k
1.反比例函数:形如 y= (k 为常数,k≠0)的函数称为反比例函数。其他形式 xy=k、
y kx1 。
x
2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对
称轴:直线 y=x 和 y=-x。对称中心是:原点。它的图像与 x 轴、y 轴都没有交点,即双曲线的两个分支无
【答案】见解析。
【解析】本题考查了反比例函数的性质,反比例函数的比例系数的几何意义以及相似三角形的性质等,解
题的关键是利用反比例函数的比例系数的几何意义以及相似三角形的性质.先求出 B 点纵坐标和 A 点的横
坐标,利用利用三角形面积公式可得△OBA 的面积,再根据面积的比较关系求出△ODE 的面积,最后根据
2
2
1
∴t=-3,直线 PD 的解析式为 y= x-3.
2

y
y
1x 2 8
x
3
解得
x1
y1
8 1

x2
y2
2 4

∵点 D 在第一象限, ∴D(8,1).
更多最新中考学习资料及政策学校交流,请加入南京 2020 中考家长交流群:258252703
一、选择题 1. (2019 贵州省毕节市)若点 A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数 y=﹣ 1 的图象上,
得到 k 的值. 点 A(1,﹣3)关于 x 轴的对称点 A'的坐标为(1,3), 把 A′(1,3)代入 y= 得 k=1×3=3.
故选:A.
3.(2019 黑龙江哈尔滨)点(-1,4)在反比例函数 y= k 的图象上,则下列各点在此函数图象上的是( )。 x
A.(4,-1) B.(- 1 ,1) C.(-4,-1) D.( 1 ,2)

【答案】8 【解析】∵A、C 是两函数图象的交点, ∴A、C 关于原点对称, ∵CD⊥x 轴,AB⊥x 轴, ∴OA=OC,OB=OD, ∴S△AOB=S△BOC=S△DOC=S△AOD, 又∵反比例函数 y 的图象上,
∴S△AOB=S△BOC=S△DOC=S△AOD
4=2,
∴S 四边形 ABCD=4S△AOB=4×2=8, 故答案为:8.
∵一次函数 y=kx+3(k≠0)的图像经过点 A,与 y 轴交于点 B,
∴4=2k+3.
∴k= 1 ,直线 AB 的解析式为 y= 1 x+3.
2
2
∵∠PDE=∠CBO,∠PED=∠COB=90°,
∴∠DPE=∠BCO.
∴PD∥AB.
∴令直线 PD 的解析式为 y= 1 x+t,则 0= 1 ×6+t.
反比例函数的比例系数的几何意义求出 m 的值;先由点 A 在双曲线上,求出 A 点坐标;再先求出直线 AB
的解析式;连接 DP,通过条件∠PDE=∠CBO,∠PED=∠COB=90°,得 PD∥AB,于是可令直线 PD
的解析式为 y= 1 x+t,则 0= 1 ×6+t,求出 PD 的解析式;
2
2
最后由
【例题 3】(2019 江苏镇江)如图,点 A(2,n)和点 D 是反比例函数 y= m (m>0,x>0)图像上的两点, x
更多最新中考学习资料及政策学校交流,请加入南京 2020 中考家长交流群:258252703
一次函数 y=kx+3(k≠0)的图像经过点 A,与 y 轴交于点 B,与 x 轴交于点 C,过点 D 作 DE⊥x 轴,垂 足为 E,连接 OA、OD.已知△OAB 与△ODE 的面积满足 S△OAB﹕S△ODE=3﹕4. (1)S△OAB=________,m=________; (2)已知点 P(6,0)在线段 OE 上,当∠PDE=∠CBO 时,求点 D 的坐标.
x 则 y1、y2、y3 的大小关系是( )
A.y1>y2>y3
B.y3>y2>y1
C.y2>y1>y3
D.y1>y3>y2
【答案】C.
【解析】根据反比例函数图象上点的坐标特征求出 y1、y2、y3 的值,比较后即可得出结论.
∵点 A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数 y=﹣ 1 的图象上, x
相关文档
最新文档