粉末冶金原理知识要点
粉末冶金原理
粉末冶金原理1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。
2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量g/cm3。
4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。
5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线,分布曲线对应50%处称为中位径弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象6.合批:将成分相同而粒度不同的粉末进行混合,称为合批7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。
8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。
9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结体的密度和其它性能得到提高的方法。
10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。
11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。
12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。
13.混合:将两种或两种以上不同成分的粉末混合均匀。
分为机械法和化学法。
14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成拱桥孔洞的现象。
15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。
16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。
粉末冶金热处理
粉末冶金热处理一、前言粉末冶金热处理是一种重要的金属材料加工方法,它能够通过高温处理改善材料的性能,提高其机械性能、耐腐蚀性和耐磨损性等。
本文将从粉末冶金的基础知识开始,详细介绍粉末冶金热处理的原理、方法和应用。
二、粉末冶金基础知识1. 粉末冶金定义粉末冶金是一种制造零件的技术,它通过将金属或非金属材料制成微小颗粒,再利用压缩、烧结等工艺将这些颗粒化为块体或形成复合材料。
2. 粉末制备方法常用的粉末制备方法有机械法、化学法和物理法等。
其中机械法是最常用的方法之一,包括球磨法、振荡球磨法和高能球磨法等。
3. 粉末冶金加工工艺主要包括压制、烧结和后处理等过程。
其中压制是将粉末填充到模具中进行压缩成形;烧结则是将压制好的坯体进行高温处理,使其颗粒结合成为固体材料;后处理则是对烧结好的材料进行加工和表面处理。
三、粉末冶金热处理原理1. 热处理定义热处理是指通过加热和冷却等方式改变材料的组织结构和性能,以达到提高其机械性能、耐腐蚀性和耐磨损性等目的的过程。
2. 粉末冶金热处理原理粉末冶金材料在制备过程中由于颗粒之间存在空隙,因此其密度较低。
而经过高温热处理后,这些空隙会被填充,颗粒之间的结合力也会增强,从而提高了材料的密度和强度。
此外,热处理还可以改善材料的晶体结构和组织状态,增强其机械性能、耐腐蚀性和耐磨损性等。
四、粉末冶金热处理方法1. 真空烧结法真空烧结法是一种在真空环境下进行高温加工的方法。
由于真空环境下不存在氧化反应,因此可以避免材料表面被氧化和污染。
此外,真空烧结法还可以控制材料的晶体结构和组织状态,从而提高其机械性能和耐腐蚀性能。
2. 气氛烧结法气氛烧结法是一种在特定气氛下进行高温加工的方法。
常用的气氛有惰性气体、还原性气体和氧化性气体等。
这种方法可以控制材料的晶体结构和组织状态,从而改善其性能。
3. 热等静压法热等静压法是一种将粉末填充到模具中后,在高温高压下进行加工的方法。
这种方法可以使材料颗粒之间更加紧密地结合,从而提高其密度和强度。
粉末冶金原理概述
粉末冶金原理概述简介粉末冶金是一种通过将金属粉末压制成型,然后通过烧结或热处理使其结合成型而获得金属制品的工艺。
粉末冶金具有许多优点,包括高材料利用率、能够制造高复杂度的零件、制造成本低等。
本文将对粉末冶金的原理进行概述。
原理概述粉末冶金是通过粉末的压制和烧结过程来制造金属制品。
其基本流程包括粉末制备、粉末的成型和烧结过程。
粉末制备粉末制备是粉末冶金的第一步。
金属粉末可以通过多种方法来制备,包括机械研磨、凝固法、气相法等。
选择合适的粉末制备方法可以控制粉末的粒度、形状和组成,以适应所需的材料特性和制品要求。
粉末成型粉末成型是将金属粉末转化为所需形状的过程。
常见的成型方法包括压制、注塑、挤压等。
其中,压制是最常用的成型方法之一。
通过将金属粉末放入模具中,然后施加高压使其成型。
成型过程中,通过给予粉末适当的压力和温度,使粉末颗粒之间发生塑性变形和结合。
烧结过程烧结是粉末冶金的关键步骤之一。
在烧结过程中,经过成型后的粉末通过加热使其进行结合。
在加热的同时,粉末颗粒之间发生扩散,并形成跨粒界结合。
烧结温度和时间的选择对最终材料的性能和结构有重要影响。
后续热处理在烧结后,通常还需要对金属制品进行后续的热处理。
热处理可以有选择地改变材料的性能和结构,如提高强度、改善耐腐蚀性等。
常见的热处理方法包括固溶处理、时效处理、淬火等。
粉末冶金的优点粉末冶金具有以下优点:1.高材料利用率:由于粉末冶金可以直接利用金属粉末进行成型,因此避免了传统加工中的材料浪费,相比传统冶金方法,粉末冶金材料利用率更高。
2.制造高复杂度零件:粉末冶金可以制造复杂度高的零件,如多孔件、中空件等。
这是传统加工方法无法实现的。
3.制造成本低:粉末冶金不需要进行复杂的加工步骤,相比传统加工方法,制造成本更低。
4.可以利用废料:粉末冶金可以利用废料或回收材料进行制造,提高了资源的利用率。
应用领域粉末冶金广泛应用于各个领域,包括汽车制造、航空航天、船舶制造、化工、电子等。
粉末冶金的原理
粉末冶金的原理粉末冶金是一种利用金属及其合金的可塑性和高活性的特点,通过粉末的制备、成型和烧结等工艺,制造出具有特定形状和性能的金属制品的方法。
粉末冶金的基本原理是将金属原料熔化后急速凝固形成细小的颗粒,再经过后续的粉末处理工艺,最终使颗粒状金属粉末具有特定的物理、化学和结构性能。
具体的工艺流程包括原料的选择和处理、粉末的制备、成型和烧结。
原料的选择和处理是粉末冶金的关键步骤之一。
适当选择合适的金属粉末原料是保证成品性能的关键。
通常,金属原料的选择要考虑其物理性质、化学性质及可塑性等因素。
为提高冶金反应的活性和金属粉末的可塑性,常常需要对原料进行预处理,如氧化还原处理、合金化处理等。
粉末的制备是将金属原料加工成颗粒状金属粉末的过程。
目前常用的粉末制备方法主要有气雾化法、溶剂法、机械研磨法等。
其中,气雾化法是一种常见的制备方法,它通过高压气流将金属熔化后迅速喷雾成粉末。
这样可以得到细小均匀的金属颗粒。
成型是将金属粉末按照所需形状装入一定模具中,并施加一定压力,使金属粉末紧密结合成形状固定的坯体。
常用的成型方法包括压制成型、注塑成型、挤压成型等。
通过成型,可以得到具有所需形状的零部件或半成品。
最后,经过成型的金属粉末坯体还需要进行烧结,即在一定温度下对金属粉末进行加热处理,使其颗粒之间发生结晶和扩散,相互融合并形成坚固的金属材料。
烧结可以通过自发热烧结、辅助烧结等方法来实现。
烧结过程中,金属粉末之间的氧化物和杂质也会在高温下被还原和挥发。
通过以上的处理工艺,粉末冶金可以制备出具有复杂形状、高强度、良好磨损性能和耐磨性能的金属制品。
由于粉末冶金具有成本低、能耗少、无需后加工等优势,因此在汽车、航空航天、工具等领域得到广泛应用。
粉末冶金知识大全
粉末冶金知识大全简介粉末冶金是一种重要的制备材料的方法,它通过将金属或非金属加工成粉末,再通过压制和烧结等工艺将粉末粒子紧密结合形成所需的材料。
本文将介绍粉末冶金的基本原理、工艺流程和应用领域。
1. 粉末制备粉末冶金的第一步是制备粉末。
常见的粉末制备方法包括:•原子熔化法:通过将金属或合金加热到高温,使其熔化后迅速冷却,冷却过程中形成的微细颗粒即为粉末。
•机械研磨法:将金属块或合金块放入球磨机中与球磨介质一起磨碎,经过一定时间后得到所需的粉末。
•物理气相法:通过高温蒸发和凝聚,使金属或合金从气相转变为粉末。
常见的物理气相制备方法有气体凝聚法、物理溅射法等。
2. 粉末冶金工艺粉末冶金包括压制、烧结和后处理等多个工艺步骤。
2.1 压制压制是将制备好的粉末以一定的压力塑造成所需形状的过程。
常见的压制方法有:•静态压制:即将粉末放置在模具中,施加垂直于模具方向的压力,使粉末颗粒之间发生塑性变形,形成一定形状的绿体。
•动态压制:即通过提供一个快速冲击力,使粉末颗粒互相碰撞并发生变形,形成一定形状的绿体。
2.2 烧结烧结是将压制好的绿体在一定温度下进行加热,使粉末颗粒之间发生扩散和结合,形成致密的材料。
常见的烧结方法有:•常压烧结:将绿体放在电炉或气炉中进行加热,使粉末颗粒熔结或固相扩散结合。
•热等静压烧结:在加热的同时施加一定的压力,用于加强绿体的结合。
2.3 后处理烧结完成后,还需要进行一些后处理步骤以提高材料的性能。
常见的后处理方法有:•热处理:通过控制温度和时间,在一定的条件下改变材料的组织结构,提高其硬度、强度等性能。
•表面处理:在材料表面形成覆盖层、涂层或改变表面形貌,以提高耐磨、耐腐蚀等性能。
3. 应用领域粉末冶金在许多领域都有着广泛的应用。
3.1 金属制品粉末冶金可以制备各种金属制品,如汽车零部件、工具等。
由于独特的结构和物理性能,粉末冶金制品具有优异的耐磨、抗拉伸和耐腐蚀等特点。
3.2 陶瓷制品通过粉末冶金技术可以制备出高纯度、高强度的陶瓷制品,如陶瓷刀具、陶瓷齿轮等。
粉末冶金手册
粉末冶金手册粉末冶金是一种将金属或非金属粉末通过压制、烧结等工艺加工成成型品的制造工艺。
粉末冶金具有高效、低成本、可成型性好、材料利用率高等优势,因此在航空航天、汽车工业、电子行业等领域得到广泛应用。
本手册将介绍粉末冶金的基本原理、工艺流程、材料选择、设备介绍等内容。
一、粉末冶金的基本原理粉末冶金的基本原理是将金属或非金属物质经过粉碎或原料特殊制备得到的粉末,经过压制成型或注射成型,再经过高温烧结得到所需产品。
这种工艺利用了粉末颗粒之间的相互扭曲和扩散,从而实现了物质的成型。
同时,由于粉末冶金是一种非液态冶金工艺,不需要溶解和凝固过程,避免了材料在液态下的气体、夹杂物等问题,因此可以获得更高的材料纯度和均匀性。
二、粉末冶金的工艺流程粉末冶金的一般工艺流程分为原料制备、混合、成型、烧结和后处理等步骤。
1.原料制备:原料制备阶段主要包括选料和粉末制备。
选料是指根据成品的要求选择合适的原料,如金属、合金、陶瓷或复合材料等。
粉末制备可以通过粉碎、化学方法、电化学方法等得到所需粉末。
2.混合:将所选的原料粉末按照一定比例进行混合。
混合的目的是使各种材料的粒子均匀分散,以获得更高的均匀性。
3.成型:将混合好的粉末通过压制成型,可以使用冷压、热压或注射成型等方法。
成型一般可以分为干压成型和液相成型两种方式。
4.烧结:成型件通过高温烧结,使粉末颗粒之间发生结合,形成致密的材料。
烧结温度和时间根据材料种类、成型件形状等因素确定。
5.后处理:烧结后的材料可以进行表面处理、热处理、加工等工艺。
目的是使产品达到所需的性能和尺寸要求。
三、粉末冶金的材料选择粉末冶金可以应用于各种金属和非金属材料的制备,包括纯金属、合金、陶瓷、塑料等。
在选择材料时需要考虑材料的物理性质、化学性质、应用环境等因素。
例如,对于需要高强度和耐磨性的零件可以选择使用金属粉末冶金制备的合金材料;对于需要绝缘性能和耐高温的零件可以选择使用陶瓷粉末冶金制备的材料。
粉末冶金原理知识要点
粉末冶⾦原理知识要点1粉末冶⾦的特点:粉末冶⾦在技术上和经济上具有⼀系列的特点。
从制取材料⽅⾯来看,粉末冶⾦⽅法能⽣产具有特殊性能的结构材料、功能材料和复合材料。
(1)粉末冶⾦⽅法能⽣产普通熔炼法⽆法⽣产的具有特殊性能的材料:1)能控制制品的孔隙度;2)能利⽤⾦属和⾦属、⾦属和⾮⾦属的组合效果,⽣产各种特殊性能的材料;3)能⽣产各种复合材料;(2)粉末冶⾦⽅法⽣产的某些材料,与普通熔炼法相⽐,性能优越:1)⾼合⾦粉末冶⾦材料的性能⽐熔铸法⽣产的好;2)⽣产难熔⾦属材料和制品,⼀般要依靠粉末冶⾦法;从制造机械零件⽅⾯来看,粉末冶⾦法制造的机械零件时⼀种少切削、⽆切削的新⼯艺,可以⼤量减少机加⼯量,节约⾦属材料,提⾼劳动⽣产率。
总之,粉末冶⾦法既是⼀种能⽣产具有特殊性能材料的技术,⼜是⼀种制造廉价优质机械零件的⼯艺。
2粉末冶⾦的⼯艺过程(1)⽣产粉末。
粉末的⽣产过程包括粉末的制取、粉料的混合等步骤。
为改善粉末的成型性和可塑性通常加⼊汽油、橡胶或⽯蜡等增塑剂。
(2)压制成型。
粉末在500~600MPa压⼒下,压成所需形状。
(3)烧结。
在保护⽓氛的⾼温炉或真空炉中进⾏。
烧结不同于⾦属熔化,烧结时⾄少有⼀种元素仍处于固态。
烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等⼀系列的物理化学过程,成为具有⼀定孔隙度的冶⾦产品。
(4)后处理。
⼀般情况下,烧结好的制件可直接使⽤。
但对于某些尺⼨要求精度⾼并且有⾼的硬度、耐磨性的制件还要进⾏烧结后处理。
后处理包括精压、滚压、挤压、淬⽕、表⾯淬⽕、浸油、及熔渗等。
现代粉末冶⾦的主要⼯艺过程⽣产粉末制坯烧结3、粉末冶⾦发展中的三个重要标志:第⼀是克服了难熔⾦属(如钨、钼等)熔铸过程中产⽣的困难第⼆是本世纪30年代⽤粉末冶⾦⽅法制取多孔含油轴承取得成功第三是向更⾼级的新材料新⼯艺发展。
4、怎样理解“粉末冶⾦技术既古⽼⼜年轻”?粉末冶⾦是⼀项新兴技术,但也是⼀项古⽼技术。
粉末冶金知识点总结
粉末冶金知识点总结一、粉末冶金基础知识1. 粉末冶金的概念粉末冶金是一种利用金属或非金属粉末作为原料,通过压实和烧结等方式制备零部件的工艺。
它充分发挥了粉末的特性,即可压性、可成形性、可烧结性和可溶性等,使得粉末冶金工艺具有高效率、低成本、无废料和生产精度高等优点。
2. 粉末材料的选择在粉末冶金过程中,选择合适的粉末材料对于制备高质量的产品至关重要。
一般来说,粉末材料应具有以下特点:细小的颗粒大小、均匀的颗粒分布、高的纯度和良好的流动性。
3. 粉末冶金的工艺粉末冶金工艺通常包括原料的混合、成型、烧结和后处理等步骤。
在这个过程中,需要注意粉末的混合比例、成型方式、烧结温度和时间等参数的控制,以确保制备出符合要求的成品。
4. 粉末冶金的应用粉末冶金技术已广泛应用于汽车、航空航天、医疗器械、电子设备等领域,制备出的产品具有优异的性能和精密的形状,可以满足各种特殊需求。
二、粉末材料的制备方法1. 机械合金化机械合金化是一种通过机械设备将原料混合并形成均匀的粉末混合物的方法。
常见的机械合金化设备包括球磨机、混合机和搅拌机等。
这种方法对原料的颗粒大小和形状要求不高,适用于制备一些普通的粉末材料。
2. 化学还原法化学还原法是一种利用化学反应生成的气体来分解金属或合金化合物,产生金属粉末的方法。
这种方法可以制备出颗粒细小、形状均匀的金属粉末,适用于制备高质量的粉末材料。
3. 气相沉积法气相沉积法是一种通过将金属原子或分子从气体中沉积到基底上形成薄膜或粉末的方法。
这种方法可以制备出极细的金属粉末,适用于制备一些用于电子器件等特殊应用场合的粉末材料。
4. 电化学法电化学法是一种利用电化学反应来制备金属粉末的方法。
这种方法制备的金属粉末质量较高,但工艺复杂,适用于制备一些对粉末质量要求较高的粉末材料。
5. 液态金属雾化法液态金属雾化法是一种通过气流将液态金属喷雾成细小颗粒的方法。
这种方法可以制备出颗粒细小、形状均匀的金属粉末,适用于制备高质量的粉末材料。
粉末冶金原理复习总结
临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度。
离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。
电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每96500库仑应该有一克当量的物质经电解析出。
气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程。
相对密度:粉末或压坯密度与对应材料理论密度的比值百分数。
压坯密度:压坯质量与压坯体积的比值。
相对体积:粉末体的相对密度(d=ρ/ρ理)的倒数称为相对体积,用β=1/d表示。
粉末加工硬化:金属粉末在研磨过程中由于晶格畸变和位错密度增加,导致粉末硬度增加,变形困难的现象称为加工硬化。
快速冷凝:将金属或合金的熔液快速冷却(冷却速度>105℃/s),保持高温相、获得性能奇异性能的粉末和合金(如非晶、准晶、微晶)的技术,是传统雾化技术的重要发展。
假合金:两种或两种以上金属元素因不是根据相图规律、不经形成固溶体或化合物而构成的合金体系,假合金实际是混合物。
保护气氛:为防止粉末或压坯在高温处理过程发生氧化而向体系加入还原性气体或真空条件称为保护气氛。
粉末粒度:一定质量(一定体积)或一定数量的粉末的平均颗粒尺寸成为粉末粒度。
粉末流动性:50克粉末流经标准漏斗所需要的时间称为粉末流性。
孔隙度:粉体或压坯中孔隙体积与粉体表观体积或压坯体积之比。
标准筛:用筛分析法测量粉末粒度时采用的一套按一定模数(根号2)制备的金属网筛。
单轴压制:在模压时,包括单向压制和双向压制,压力存在压制各向异性。
密度等高线:粉末压坯中具有相同密度的空间连线称为等高线,等高线将压坯分成具有不同密度的区域。
雾化介质:雾化制粉时,用来冲击破碎金属流柱的高压液体或高压气体称为雾化介质。
活化能:发生物理或化学反应时,形成中间络合物所需要的能量称为活化能。
粉末冶金重点整理
粉末冶金重点整理名词解释:1,熔解析出:溶解和析出阶段。
如果固相在液相中可以溶解,那么在液相出现后,特别是细小的粉末和粗大的颗粒的凸起及棱角局部会在液相中溶解消失。
由于细小的粉末颗粒在液相中的溶解度要比粗颗粒大,因此在细小颗粒溶解的同时,也会在粗颗粒外表上有析出的颗粒。
2,蒸发凝聚:外表层原子向空间蒸发,借蒸汽压差通过气相向颈部空间扩散,沉积在颈部。
3,密度等高线:密度一样的区域连在一起形成的类似等高线的线分布4,比外表:粉末比外表定义为1g 质量的粉末所具有的总外表积,用m2/g 表示;致密固体的比外表用m2/cm3 为单位,称容积比外表。
粉末比外表是粉末的平均粒度、颗粒形状和颗粒密度的函数。
5,二流雾化:借助高压水流或气流的冲击来破碎液流,称为水雾化或气雾化.也称二流雾化。
6,临界转速:当转速达一定的速度时,球体受离心力的作用,一直紧贴在圆筒壁上,以致不能跌落,物料就不能被粉碎。
这种情况下的转速称为临界转速。
7,松装密度:松装密度是粉末试样自然地充满规定的容器时,单位容积的粉末质量。
8,标准筛:标准筛,采用SUS304〔0Cr18ni9〕不锈钢拉伸抛光而成,壁厚0.6毫米,外表光可鉴人,整体成型巩固耐用,没有磁性,筛网与筛框通过锡焊固定,不会松弛。
9,粒度分布:由于组成粉末的无数颗粒一般粒径不同,故又用具有不同粒径的颗粒占全部粉末的百分含量表示粉末的粒度组成,又称粒度分布.10,二次颗粒:单颗粒如果以某种形式聚集11,真密度:粉末质量与除去开孔和闭孔体积的粉末体积的比值,是材料的理论密度12,相对密度: 压坯密度与真密度的比。
13, 压坯密度:压坯密度是压坯单位体积实际质量的平均值,用g/cm3表示。
14,团粒:由单颗粒或二次颗粒依靠范德华的作用下结合而成的粉末颗粒,易于分散.15,粉末压制性: 压制性是压缩性和成形性的总称。
压缩性就是金属粉末在规定的压制条件下被压紧的能力。
成形性是指粉末压制后,压坯保持既定形状的能力。
粉末冶金知识讲义
粉末冶金知识讲义简介粉末冶金是一种通过将金属或陶瓷的粉末加工成所需的产品的方法。
它在各种工业领域中都有广泛的应用,包括汽车制造、航空航天、电子设备等。
本篇讲义将介绍粉末冶金的基本原理、工艺流程以及应用领域。
希望通过本讲义的学习,读者能够对粉末冶金有更深入的了解。
粉末冶金的基本原理粉末冶金是利用金属或陶瓷的粉末制备材料的一种冶金方法。
它的基本原理是通过将粉末状的金属或陶瓷原料压制成形,在高温下进行烧结或热处理,使其形成致密的材料。
粉末冶金的主要原理包括:1.粉末制备:金属或陶瓷原料首先需要经过研磨和筛分等工艺步骤,制备成具有一定粒径和形状的粉末。
2.粉末成形:粉末通过压制工艺成形,常见的成形方法包括压制成型、注射成型和挤压成型等。
3.烧结或热处理:压制成形的粉末被置于高温下,经过烧结或热处理,使其形成致密的材料。
4.后续加工:经过烧结或热处理后的材料需要进行后续加工,例如机加工、表面处理等,以满足产品的具体要求。
粉末冶金的工艺流程粉末冶金的工艺流程包括粉末制备、成形、烧结或热处理以及后续加工等步骤。
具体工艺流程如下:粉末制备粉末制备是粉末冶金的第一步,它决定了最终材料的粒度和形状。
常见的粉末制备方法包括:•研磨:将金属块或陶瓷块通过研磨设备研磨成粉末状。
•气相沉积:通过将金属或陶瓷元素在高温下蒸发,然后在室温下与气体反应产生粉末。
•溶液法:通过将金属或陶瓷溶解在溶剂中,然后通过蒸发溶剂得到粉末。
成形成形是粉末冶金的第二步,它将粉末状的原料转化为所需的形状。
常见的成形方法包括:•压制成型:将粉末状原料放入模具中,通过压力将其固化成形。
•注射成型:将粉末与粘结剂混合后注射到模具中,通过固化将其成形。
•挤压成型:在高温下将粉末状原料通过挤压工艺转化为所需的形状。
烧结或热处理烧结或热处理是粉末冶金的关键步骤,它将成形后的粉末进行高温处理,使其结合成致密的材料。
常见的烧结或热处理方法包括:•烧结:将成形后的粉末置于高温下,使其颗粒之间发生结合,形成致密的材料。
粉末冶金原理
粉末冶金原理粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过压制和烧结等工艺制造金属零件的方法。
在粉末冶金工艺中,粉末的特性和原理起着至关重要的作用。
粉末冶金原理主要包括粉末的制备、成型、烧结和后处理等几个方面。
首先,粉末的制备是粉末冶金的第一步。
金属粉末的制备可以通过机械研磨、化学方法和物理方法等多种途径。
机械研磨是指将金属块或者金属棒经过研磨机械的加工,得到所需的金属粉末。
化学方法则是通过化学反应得到金属粉末,而物理方法则是通过物理手段如电解、喷雾等得到金属粉末。
在粉末冶金中,粉末的制备质量直接影响着最终制品的质量和性能。
其次,成型是指将金属粉末进行成型工艺,使其成为所需形状的工件。
成型方法包括压制成型、注射成型、挤压成型等多种方式。
压制成型是将金属粉末放入模具中,再经过压制机械的加工,使其成为所需形状的工件。
注射成型则是将金属粉末与粘结剂混合后,通过注射成型机械将其注射成型。
挤压成型是将金属粉末放入容器中,再通过挤压机械的作用,使其成为所需形状的工件。
成型工艺的精密度和成型质量对于最终产品的质量和性能至关重要。
接下来,烧结是粉末冶金中的关键工艺。
烧结是指将成型后的金属粉末在高温下进行加热处理,使其颗粒间发生结合,形成致密的金属材料。
烧结工艺的温度、压力和时间等参数对于最终产品的致密度、硬度和耐磨性等性能有着重要影响。
最后,后处理是指对烧结后的金属制品进行表面处理、热处理和精加工等工艺。
表面处理可以提高金属制品的耐腐蚀性和美观度,热处理可以改善金属制品的硬度和强度,精加工则可以提高金属制品的精度和表面质量。
总之,粉末冶金原理是一个复杂而又精密的工艺体系,涉及到材料科学、机械工程、化学工程等多个领域的知识。
通过对粉末的制备、成型、烧结和后处理等环节的深入研究和探索,可以不断提高粉末冶金工艺的精度和效率,为制造业的发展和进步提供更加可靠的技术支持。
粉末冶金原理(I)知识整理
粉末冶金原理(Ⅰ)第一章导论1粉末冶金技术的发展史History of powder metallurgy粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。
粉末冶金既是一项新型材料加工技术,又是一项古老的技术。
.早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件;.1700年前,印度人采用类似方法制造了重达6.5T的“DELI柱”(含硅Fe合金,耐蚀性好)。
.19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。
.20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。
钨灯丝的生产标志着粉末冶金技术的迅速发展。
.1923年硬质合金的出现导致机加工的革命。
.20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。
随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。
.20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。
.战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。
大大扩大了粉末冶金零部件及其材料的应用领域。
.粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。
2粉末冶金工艺粉末冶金技术的大致工艺过程如下:原料粉末+添加剂(合金元素粉末、润滑剂、成形剂)↓成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等)↓烧结(加压烧结、热压、HIP等)↓粉末冶金材料或粉末冶金零部件—后续处理Fig.1-1 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点.低的生产成本:能耗小,生产率高,材料利用率高,设备投资少。
粉末冶金知识点
1.粉末冶金定义:由粉末制备、粉末成形、高温烧结以及加工热处理等重要过程组成的材料制备和生产的工程技术。
2.工艺过程:粉末的制备、粉末的加工成形、粉末的烧结以及烧结后处理四个工序。
3.特点:能耗低、材料利用率高以及低成本等优点;与普通熔炼方法相比,有如下特点:1)粉末冶金能生产用普通熔炼无法生产的具有特殊性能的材料。
a.能控制制品的孔隙度b.能利用金属和金属、金属和非金属的组合效果,生产具有各种特殊性能的材料c.能生产各种复合材料2)粉末冶金生产的材料,与普通熔炼相比,性能优越。
a.高合金元素含量粉末冶金材料的性能比熔炼法生产的合金材料要好。
b.粉末冶金法还可用来生产难熔金属材料或制品。
c.在制造机械零件方面,粉末冶金法是一种少切削或无切削的新工艺,可以大大减少机加工量,节约金属材料,提高劳动生产率。
缺点:粉末冶金法成本高,制品的大小和形状受到一定的限制,烧结零件的韧性较差。
第二章.粉体制备的原理与技术1.粉体制备是粉末冶金的第一个重要步骤。
2.方法:1)在固态下制备粉末的方法:机械粉碎法和电化学腐蚀法、还原法、还原-化合法、高温反应合成法2)在液态下制备粉末的方法:雾化法、置换法、溶液氢还原法、水溶液电解法、熔盐电解法3)在气态下:蒸汽冷凝法、热离解法、气相氢还原法、化学气相沉积法3.机械粉碎是靠压碎、碰撞、击碎和磨削等作用,将粗颗粒金属或合金机械的粉碎成粉末的过程。
4.球磨的三种情况:1)球磨机转速慢时,球和物料沿筒体上升至坡度角,然后滚下,称为泻落。
此时物料粉碎主要靠球的磨擦作用2)球磨转速较高时,球在离心力作用下,随着筒体上升至比第一种情况更高的高度,然后在重力作用下掉下来,称为抛落。
这时物料不仅靠球与球之间的磨擦作用,主要靠球落下时的冲击作用被粉碎,其效果最好3)继续增加球磨机的转速,当离心力超过球体的重力时,紧靠球磨筒内衬板的球不脱离筒壁而与筒体一起回转,此时物料的粉碎作用停止。
这种转速称为临界转速。
粉末冶金基础知识
粉末冶金基础知识粉末冶金是一种通过加工金属粉末来制造零件和材料的加工技术。
粉末冶金工艺的基本原理是将金属粉末在高温和高压条件下进行压制和烧结,使其在固态下发生扩散和结合,形成具有一定形状和性能的零件和材料。
粉末冶金的基础知识包括粉末的制备、压制和烧结过程以及粉末冶金材料的性能等方面。
一、粉末的制备粉末冶金的第一步是制备金属粉末。
金属粉末可以通过机械球磨、化学方法、电化学方法和气相沉积等多种方法获得。
其中,机械球磨是常用的制备金属粉末的方法。
通过在球磨机中将金属块或粉末与球磨介质一起进行反复磨蚀,使金属表面不断剥落并形成粉末。
二、粉末的压制粉末的压制是将金属粉末在模具中进行压实,使其形成一定形状和尺寸的零件。
压制主要分为冷压和热压两种方式。
冷压是在室温下进行的压制过程,适用于易压制的材料和简单形状的零件。
热压则需要在高温下进行,可以加快扩散和结合过程,得到更密实的零件。
三、粉末的烧结粉末的烧结是将压制成型的粉末在高温下进行加热,使其发生扩散和结合,形成致密的块状材料。
烧结过程中,金属粉末之间的颗粒通过扩散相互结合,并且形成晶粒长大,使材料的性能得到提高。
烧结温度和时间的选择对于材料的性能具有重要影响。
四、粉末冶金材料的性能粉末冶金材料具有许多优异的性能。
首先,粉末冶金可以制得高纯度的材料,因为粉末冶金材料的成分可以通过调整原料粉末的配比来控制。
其次,粉末冶金可以制造具有复杂形状和内部结构的零件,满足不同的工程需求。
此外,粉末冶金材料具有较高的强度、硬度和耐磨性能,适用于高强度和耐磨的工作环境。
粉末冶金还有一些其他的应用领域,如制备陶瓷材料、复合材料和表面涂层等。
陶瓷材料由陶瓷粉末或金属粉末与陶瓷粉末混合烧结而成,具有低密度、高硬度和高耐热性能,被广泛应用于制造刀具、轴承和结构材料等。
复合材料由金属粉末和陶瓷或有机材料混合烧结而成,结合了金属和陶瓷或有机材料的优点,具有较好的力学性能和导热性能。
表面涂层是将金属粉末喷涂到工件表面,形成保护层或改善表面性能。
2024年粉末冶金基础知识(三篇)
2024年粉末冶金基础知识(一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(m)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
粉末冶金重点总结
C. 行星式球磨:增加球撞击次数,自转+公转,纳米非晶粉末 4.氧化还原制粉方法 1) 定义:用还原气体(固体)或活泼金属将氧化物还原制备粉末的过程. 2) 制取铁粉高于或者低于 570 度的情况,反应特点 碳还原法制取铁粉 P38
气体还原法制取铁粉 P40 3) 氢还原法制取钨粉: W 粉及氧化钨的形态: WO3(α相)黄色,WO2.90(β相)兰色,WO2.72 紫色 , WO2 金属 W 粉的基本用途:硬质合金工业、tools、W alloys、电工合金及 defiance 高比重
且有可能制取高纯度的材料而不给材料带来污染。 3. 粉末成本较高,制品的大小形状受一定限制,烧结件韧性较差。 1.粉末制备方法的几点知识: ① 从过程的实质来看,大体上可以归纳为两大类,即物理机械法和物理化学法 ② 从工业规模而言,应用最广泛的是还原法、雾化法和电解法,而气相沉淀法和液相沉淀法在特殊应用时亦很重要。 ③ 从材质范围来看,不仅使用金属粉末、 也使用合金粉末、金属化合物粉末; ④ 从粉末外形来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末; ⑤ 从粉末粒度来看,要求各种粒度的粉末,从粒度为 500~1000um 的粗粉末到粒度小于 0.1um 的超细粉末。 2.制粉方法: ① 固态下制取粉末的方法包括:(1)从固态金属与合金制取金属与合金粉末的 有机械粉碎法和电化腐蚀法(2)从 固态金属氧化物及盐类制取金属与合金粉末的有还原法;从金属和非金属粉末、金属氧化物和非金属粉末制取金属化合物 粉末的有还原-化合法。. ② 在气态制备粉末的方法包括:(1)从金属蒸气冷凝制取金属粉末的蒸气(2)从气态金属羟基物离解制取金属、合 金以及包覆粉末的羟基物热离解法; 冷凝法; ③ 在液态下制备粉末的方法包括:(1)从液态金属与合金制备金属与合金粉末的雾化法;(2)从金属盐溶液置换和 还原金属、合金以及包覆粉末的置换法、溶液氢还原法;(3)从金属盐溶液电解制金属与合金粉末的水溶液电解法;从金 属熔盐电解制金属和金属化合物粉末的熔盐电解法。 3.球磨法制粉:P10 ① 概念:机械研磨是利用机械力将金属或其它材料破碎制取粉末的方法 ② 四种力:冲击、磨耗、剪切、压缩。P9 ③ 球在滚筒中的状态:(1)转速慢,泻落状态,摩擦效果,球体不滚动(2)转速快,抛落状态,球体滚动,摩擦效 果和撞击效果(3)转速快,抛落状态,冲击作用 ④ 应力公式:
粉末冶金原理烧结
很小 sin
AB x sin
Fx F x
垂直作用于ABCD上旳合力
F
2(Fx sin
F
sin
)
2 (
x)
2
2
ABCD旳面积为 xθ×ρθ,作用在上面旳应力为
F
x 2
2 ( x) x 2
(1 1) x
因为烧结颈半径x远不小于曲率半径 x>>
烧结动力是表面张力造成旳一种机械力,它垂直作用于烧结颈曲面上, 使烧结颈向外长大。
多元系烧结根据烧结温度下有无液相出现又提成:
1)多元系固相烧结:烧结温度在其中低熔成份旳熔点温 度下列。根据系统旳组元之间在烧结温度下有无固相溶解 存在又分为:
a)无限固溶系:在相图上有无限固溶区旳系统,如Cu-Ni Fe-Ni、W-Mo等。
b)有限固溶系:在相图上有有限固溶区旳系统,如Fe-C Fe-Cu、W-Ni等。
假如颗粒半径2m x=0.2μ ρ=10-8~10-9m 则σ=107 N/m2
在形成孔隙中气体阻止孔隙收缩和烧结颈长大,有效力: Ps Pv
开孔: Pv=1atm =105 N/m2
闭孔:
Ps
Pv
2
r
r-孔隙半径 孔隙收缩使Pv增大,到达一种平衡值 ∴仅延长烧结时间不能消除孔隙
物质扩散旳角度
孔隙球化
等温烧结三个阶段旳相对长短主要由烧结温度决定:温度 低,可能仅出现第一阶段;在生产条件下,至少确保第二 阶段接近完毕;温度越高,出现第二甚至第三阶段就越早。
在连续烧结时,第一阶段可能在升温过程中就完毕。
1.粉末发生烧结旳主要标志是坯体旳强度增长,导电性能 提升,表面积减小,而不是意味着烧结体产生收缩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1粉末冶金的特点:粉末冶金在技术上和经济上具有一系列的特点。
从制取材料方面来看,粉末冶金方法能生产具有特殊性能的结构材料、功能材料和复合材料。
(1)粉末冶金方法能生产普通熔炼法无法生产的具有特殊性能的材料:1)能控制制品的孔隙度;2)能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料;3)能生产各种复合材料;(2)粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:1)高合金粉末冶金材料的性能比熔铸法生产的好;2)生产难熔金属材料和制品,一般要依靠粉末冶金法;从制造机械零件方面来看,粉末冶金法制造的机械零件时一种少切削、无切削的新工艺,可以大量减少机加工量,节约金属材料,提高劳动生产率。
总之,粉末冶金法既是一种能生产具有特殊性能材料的技术,又是一种制造廉价优质机械零件的工艺。
2粉末冶金的工艺过程(1)生产粉末。
粉末的生产过程包括粉末的制取、粉料的混合等步骤。
为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。
(2)压制成型。
粉末在500~600MPa压力下,压成所需形状。
(3)烧结。
在保护气氛的高温炉或真空炉中进行。
烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。
烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。
(4)后处理。
一般情况下,烧结好的制件可直接使用。
但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。
后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。
现代粉末冶金的主要工艺过程生产粉末制坯烧结3、粉末冶金发展中的三个重要标志:第一是克服了难熔金属(如钨、钼等)熔铸过程中产生的困难第二是本世纪30年代用粉末冶金方法制取多孔含油轴承取得成功第三是向更高级的新材料新工艺发展。
4、怎样理解“粉末冶金技术既古老又年轻”?粉末冶金是一项新兴技术,但也是一项古老技术。
根据考古学资料,远在纪元前3000年左右,埃及人就在一种风箱中用碳还原氧化铁得到海绵铁,经高温锻造制成致密块,再锤打成铁的器件。
3世纪时,印度的铁匠用此种方法制造了“德里柱”,重达6.5t。
19世纪初,相继在俄罗斯和英国出现将铂粉经冷压、烧结,再进行热锻得致密铂,并加工成铂制品的工艺·19世纪50年代出现了铂的熔炼法后,这种粉末冶金工艺便停止应用,但它对现代粉末冶金工艺打下了良好的基础。
直到1909年库利奇(W. D. Coolidge)的电灯钨丝问世后,粉末冶金才得到了迅速的发展。
5、粉末冶金在现代工业中的应用情况高性能结构材料、金属陶瓷、超导材料、非晶态材料、纳米材料、复合材料、多孔材料粉末冶金在解决材料领域问题的范围是很广泛的。
就材料成分而言,有铁基粉末冶金、有色金属粉末冶金、稀有金属粉末冶金等。
就材料性能而言,既有多孔材料,又有致密材料;既有硬质材料,又有很软的材料,既有重合金,也有很轻的泡沫材料;既有磁性材料,也有其他性能材料。
就材料类型而言,既有金属材料,又有复合材料。
复合材料广义地说,包括金属和金属复合材料、金属和非金属复合材料、金属陶瓷复合材料、弥散强化复合材料、纤维强化复合材料等。
粉末冶金由于在技术上和经济上有优越性,在国民经济中起的应用愈来愈广。
可以说,在没有哪一个工业部门不使用粉末冶金材料和制品的。
6、发展现代粉末冶金的战略意义在节能节材、提高性能和提高劳动生产率和环保等方面发挥巨大作用;作为特殊材料和高性能材料的制备技术促进了国防工业和技术产业的发展;可能会引起一系列传统材料工艺过程的革命;将赋于材料科学和冶金科学更丰富、更深刻的内涵。
7、我国粉末冶金行业与发达国家有哪些差距?铁粉和铁基粉末冶金还不能满足国民经济发展的需要;没有形成专门的粉末冶金工艺装备制造业;缺乏全国的统一规划,条块分割严重,投资强度低,科研、开发和工业生产尚未形成一个有机整体;刀具、工具等行业产业结构和技术水平还有待改善和提高。
8、粉末冶金中粉末的特征和特性(第六页)它包括:粉末的几何性能(粒度、比表面、孔径和形状等);粉末的化学性能(化学成分、纯度、氧含量和酸不溶物等);粉体的力学特性(松装密度、流动性、成形性、压缩性、堆积角和剪切角等);粉末的物理性能和表面特性(真密度、光泽、吸波性、表面活性、电位和磁性等)。
粉末性能往往在很大程度上决定了粉末冶金产品的性能。
几何性能最基本的是粉末的粒度和形状。
(1)粒度。
它影响粉末的加工成形、烧结时收缩和产品的最终性能。
某些粉末冶金制品的性能几乎和粒度直接相关。
生产实践中使用的粉末,其粒度范围从几百个纳米到几百个微米。
粒度越小,活性越大,表面就越容易氧化和吸水。
当小到一定程度时量子效应开始起作用,其物理性能会发生巨大变化,如铁磁性粉会变成超顺磁性粉,熔点也随着粒度减小而降低。
(2)粉末的颗粒形状。
它取决于制粉方法,如电解法制得的粉末,颗粒呈树枝状;还原法制得的铁粉颗粒呈海绵片状;气体雾化法制得的基本上是球状粉。
此外,有些粉末呈卵状、盘状、针状、洋葱头状等。
粉末颗粒的形状会影响到粉末的流动性和松装密度,由于颗粒间机械啮合,不规则粉的压坯强度也大,特别是树枝状粉其压制坯强度最大。
但对于多孔材料,采用球状粉最好。
力学特性粉末的力学性能即粉末的工艺性能,它是粉末冶金成形工艺中的重要工艺参数。
粉末的松装密度是压制时用容积法称量的依据;粉末的流动性决定着粉末对压模的充填速度和压机的生产能力;粉末的压缩性决定压制过程的难易和施加压力的高低;而粉末的成形性则决定坯的强度。
化学性能主要取决于原材料的化学纯度及制粉方法。
较高的氧含量会降低压制性能、压坯强度和烧结制品的力学性能,因此粉末冶金大部分技术条件中对此都有一定规定。
例如,粉末的允许氧含量为0.2%~1.5%,这相当于氧化物含量为1%~10%。
⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
为了满足对粉末的各种要求,也就要有各种各样生产粉末的方法,这些方法不外乎使金属、合金或者金属化合物从固态、液态或气态转变成粉末状态。
制取粉末的各种方法以及各种方法制得的粉末的典型实例如表在固态下制备粉末的方法包括1从固态金属与合金制取金属与合金粉末的有机械粉碎法和电化腐蚀法2从固态金属氧化物及盐类制取金属与合金粉末的有还原法,从金属和非金属粉末、金属氧化物和非金属粉末制取金属化合物粉末的有还原化合法。
在液态下制备粉末的方法包括:1从液态金属与合金制金属与合金粉末的雾化法;2从金属盐溶液置换和还原制金属、合金以及包覆粉末的置换法、溶液氢还原法;从金属熔盐中沉淀制金属粉末的熔盐沉淀法;从辅助金属浴中析出制金属化合物粉末的金属浴法;3从金属盐溶液电解制金属与合金粉末的水溶液电解法;从金属熔盐电解制金属和金属化合物粉末的熔盐电解法。
在气态下制备粉末的方法包括:1从金属蒸气冷凝制取金属粉末的蒸气冷凝法;2从气态金属羰基物离解制取金属、合金以及包覆粉末的羰基物热离解法;3从气态金属卤化物气相还原制取金属、合金粉末以及金属、合金涂层的气相氢还原法;从气态金属卤化物沉积制取金属化合物粉末以及涂层的化学气相沉积法。
但是,从过程的实质来看,现有制粉方法大体上可归纳为两大类,即机械法和物理化学法。
机械法是将原材料机械地粉碎,而化学成分基本上不发生变化;物理化学法是借助化学的或物理的作用,改变原材料的化学成分或聚集状态而获得粉末的。
粉末的生产方法很多,从工业规模而言,应用最广泛的是还原法、雾化法和电解法;而气相沉积法和液相沉淀法在特殊应用时亦很重要。
1双流雾化粉末性能:水雾化粉末形状一般很不规则,表面含氧量较高气雾化粉末形状一般近于球形,若用惰性气体雾化,氧含量较低2机械粉碎法一般适用于制备脆性材料的粉末。
颗粒形状不规则,尺寸不均匀3碳还原11、机械粉碎法主要用于粉碎具有脆性的金属和合金,粉碎塑性金属和合金用旋涡研磨、冷气流研磨等方法12、粉末颗粒形状的主要决定因素粉末的颗粒形状。
它取决于制粉方法,如电解法制得的粉末,颗粒呈树枝状;还原法制得的铁粉颗粒呈海绵片状;气体雾化法制得的基本上是球状粉。
此外,有些粉末呈卵状、盘状、针状、洋葱头状等。
13颗粒形状与工艺性能和制品性能的关系粉末颗粒的形状会影响到粉末的流动性和松装密度,由于颗粒间机械啮合,不规则粉的压坯强度也大,特别是树枝状粉其压制坯强度最大。
但对于多孔材料,采用球状粉最好14、粉末成型方法分类:按粉末材料类别分为粉末冶金成型方法和陶瓷成型方法;按坯料特性分为干坯料成型、可塑性坯料成型、浆料成型;按成型连续性分为连续成型、非连续成型;按有无模具分为有模具成型、无模具成型15、粉末坯料的的塑性指标可塑性坯料所含的各种成型剂的量较干坯料要多,但一般不超过20%~30%。
坯料呈半固化状态,具有一定得流变性,具有良好的可塑性,在成型后或成型再冷却后能够保持形状(书上P15)16、成型坯体具有一定强度的原因:由于颗粒的相互咬合和其他因素所产生的保形作用,成型坯体具有一定得强度。
能承受本身的重力和后续工序处理过程中适当大小的作用力,在完成烧结前不致破坏。
17、瘠性陶瓷粉末成型时压制压力不宜过大对于陶瓷粉末这种塑性变形能力极差的瘠性粉末,在压力较高时发生较大的弹性变形,压力撤除后颗粒发生回弹,被压缩的气孔回复,会导致发生脆性断裂。
故压制压力不宜过大。
压制压力越大,弹性后效一般也越大;粉末颗粒越细,颗粒形状越复杂,压坯的弹性后效值越大;压坯的弹性后效值随压坯孔隙率的增加而减少;当粉体中加入表面活性的润滑剂时,粉体颗粒表面由于吸附作用而处于活化状态,颗粒变形容易进行,并由弹性变形转变为塑性变形,从而使弹性应力松弛,可大大降低弹性后效值;而非表面活性润滑剂几乎对弹性后效值没有影响;压模的材质和结构对弹性后效亦有明显的影响。