事件的独立性练习题
§2.3.2事件的独立性(针对训练)
§2.3.2 事件的独立性
班级姓名学号
A级题基础过关训练
1..下面的说法对吗?
(1)如果昨天有飞机失事,那么今天乘飞机要安全一些。
(2)如果掷一枚硬币接连出现5次正面,第六次出现反面的可能性会增大。
2.某种动物活到20岁的概率是0.8,活到25岁的概率是0.4,问现在年龄为20岁的这种动
物活到25岁的概率为多少?
3. 甲, 乙两人同时向敌人炮击,已知甲击中敌机的概率为0.6, 乙击中敌机的概率为0.5, 求敌
机被击中的概率.
B级题能力达成训练
4. 如图所示的正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能
投中),设投中最左侧3个小正方区域的事件记为A,投中最上面3个小正方形区域的事件记为B,试判断A与B是否是独立事件。
5. 口袋中有a 只黑球b 只白球,连摸两次,每次一球. 记A ={第一次摸时得黑球},B ={第
二次摸时得黑球}. 问A 与B 是否独立?就两种情况进行讨论:① 有放回;② 无放回.
C 级题 拓展提高训练
6. 3人独立地翻译密码,每人译出此密码的概率依次为35.0,30.0,25.0,假定随机变量
X 表示译出此密码的人数,试求:
(1)3人同时译出此密码的概率P (X=3)(2)至多有2人译出此密码的概率)2(≤X P
(3)3人都未译出此密码的概率P (X=0)(4)此密码被译出的概率)1(≥X P
7. 一个系统能正常工作的概率称为该系统的可靠性. 现有两系统都由同类电子元件A ,
B ,
C 、
D 所组成.每个元件的可靠性都是p ,试分别求两个系统的可靠性.。
事件的独立性
§ 1.5 事件的独立性一、两个事件的独立性在条件概率中,一般情况下,P(B|A)P(B)P(A|B)P(A)≠≠,但在特殊的条件下,就不同了,请看下例:例1.5.1 袋中有5球,3新2旧,从中任取一球,有返回的取两次, 令A=第一次取新球,B=第二次取新球。
因为是有返回抽取,所以 3P(B|A)P(B)5== 显然也有 3P(A|B)P(A)5== 两个事件独立的直观定义:设A 、B 两个事件,一个事件发生与否对另一个事件的发生及其发生的概率不产生影响,则称A 、B 这两个事件是相互独立的。
这是中文描述性定义。
下面推出数学定义:事件A ,B 互不影响P(B|A)P(B)⇔=,P(A |B)P(A)=P(A)P(B |A)P(AB)P(A)P(B)P(B)P(A |B)⎧⇔==⎨⎩或11A B P(AB)P(A)P(B)A B =定义.5.:设有事件、,若则称事件、相互独立。
由定义可证明,必然事件、不可能事件与任何事件都是独立的。
在现实世界中,随机现象独立的情况是大量存在的,如返回抽样、重复试验、彼此无关的工作…..。
若要证明两个事件独立,必须依据定义证明。
而在实际问题中,判断两个事件独立,大多根据实际情况和经验,看是否相互影响,要注意的是我们不能只停留在感觉上。
定理1.5.1 A B A B A B A B 若,相互独立,则与;与;与都相互独立。
证明:A B 以与为例,P (A B )P (A B)=-P (A A B )=-P (A )P (A B =- P (A )P (A )P (=- P (A )[1P (B )]P (A)P (B )=-= 由定义可知 A B 与相互独立。
二、多个事件的独立性152 A B C P(AB)P(A)P(B)P(AC)P(A)P(C)P(BC)P(C)P(B)P(ABC)P(A)P(B)P(C)A B C ====定义..设有事件,,,若满足则称,,相互独立。
事件的相互独立性试题及答案
事件的互相独立性1.若A 与B 相互独立,则下面不相互独立事件有( )A.A 与AB.A 与BC.A 与B D A 与B2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.423.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( )A.P 1P 2B.P 1(1-P 2)+P 2(1-P 1)C.1-P 1P 2D.1-(1-P 1)(1-P 2) 4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.901 C.54 D. 95 5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________.6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 7.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三人该课程考核都合格的概率(结果保留三位小数).8.外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一球;若第一次取得标有字母B的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.9.如图,用A、B、C、D四类不同的元件连接成两个系统N1、N2.当元件A、B、C、D都正常工作时,系统N1正常工作;当元件A、B至少有一个正常工作,且C、D至少有一个正常工作时,系统N2正常工作.已知元件A、B、C、D正常工作的概率依次为0.80、0.90、0.90、0.70,分别求系统N1、N2正常工作的概率P1、P2.10.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为P ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.11.从甲袋中摸出一个红球的概率是31,从乙袋内摸出1个红球的概率是21,从两袋内各摸出1个球,则32等于( )A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰好有1个红球的概率12.某人有一串8把外形相同的钥匙,其中只有一把能打开家门,一次该人醉酒回家每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则该人第三次打开家门的概率是____________.13.下列各对事件(1)运动员甲射击一次,“射中9环”与“射中8环”;(2)甲、乙二运动员各射击一次,“甲射中10环”与“乙射中9环”;(3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”.(4)甲、乙二运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”. 是互斥事件的有____________;是相互独立事件的有____________.14.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?16.设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.事件的互相独立性1.若A 与B 相互独立,则下面不相互独立事件有( )A.A 与AB.A 与BC.A 与B D A 与B解析:由定义知,易选A. 答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42 解析:P=(1-0.3)(1-0.4)=0.42. 答案:D3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( )A.P 1P 2B.P 1(1-P 2)+P 2(1-P 1)C.1-P 1P 2D.1-(1-P 1)(1-P 2)解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1). 答案:B4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.901 C.54 D. 95 解析:P=901516131=⨯⨯.答案:B.5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________.解析:P=2411413221433121433221=⨯⨯+⨯⨯+⨯⨯. 答案:2411.6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 解析:因为这位司机在第一,二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=(1-31)(1-31)×31=274. 答案:2747.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三人该课程考核都合格的概率(结果保留三位小数).解析:记“甲理论考核合格”为事件A 1;“乙理论考核合格”为事件A 2;“丙理论考核合格”为事件A 3;记i A 为A i 的对立事件,i=1,2,3;记“甲实验考核合格”为事件B 1;“乙实验考核合格”为事件B 2;“丙实验考核合格”为事件B 3.(1)记“理论考核中至少有两人合格”为事件C ,记C 为C 的对立事件 P (C )=P (A 1A 23A +A 12A A 3+1A A 2A 3+A 1A 2A 3) =P(A 1A 23A )+P(A 12A A 3)+P(1A A 2A 3)+P(A 1A 2A 3)=0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7+0.9×0.8×0.7=0.902 (2)记“三人该课程考核都合格”为事件D P (D )=P[(A 1·B 1)·(A 2·B 2)·(A 3·B 3)] =P (A 1·B 1)·P (A 2·B 2)·P (A 3·B 3) =P (A 1)·P (B 1)·P (A 2)·P (B 2)·P (A 3)·P (B 3) =0.9×0.8×0.7×0.8×0.7×0.9 0.254 016≈0.254所以,这三人该课程考核都合格的概率为0.254 8.外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解析:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=54108 .显然,事件A·C 与事件B·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P=P(A·C+B·D)=P(A·C)+P(B·D)=P(A)·P(C)+P(B)·P(D)=10059. ∴本次试验成功的概率为10059. 9.如图,用A 、B 、C 、D 四类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 、D 都正常工作时,系统N 1正常工作;当元件A 、B 至少有一个正常工作,且C 、D 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 、D 正常工作的概率依次为0.80、0.90、0.90、0.70,分别求系统N 1、N 2正常工作的概率P 1、P 2.解析:N 1正常工作等价于A 、B 、C 、D 都正常工作,N 2正常工作等价于A 、B 中至少一个正常工作,且C 、D 中至少有一个正常工作.且A 、B 、C 、D 正常工作的事件相互独立.分别记元件A 、B 、C 、D 正常工作为事件A 、B 、C 、D ,由已知P (A )=0.80,P (B )=0.90,P (C )=0.90,P (D )=0.70. (1)P 1=P(A·B·C·D) =P(A)P(B)P(C)·P(D)=0.80×0.90×0.90×0.70=0.453 6.(2)P 2=P(1-A ·B )·P(1-C ·D ) =[1-P(A )·P(B )][1-P(C )·P(D )]=(1-0.2×0.1)×(1-0.1×0.3)=0.98×0.97=0.950 6. 拓展探究10.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为P ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.解析:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B. 由题意知P (A )=p 3,P(B)=p 3, P(A )=1-p 3,P(B )=1-p 3.(1)恰有一套设备能正常工作的概率为P(A·B +A ·B)=P(A·B )+P(A ·B) =p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为 P(A·B)=P(A)·P(B)=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P(A·B +A ·B)+P(A·B)=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P(A ·B )=P(A )·P(B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P(A ·B )=1-P(A )·P(B )=1-(1-p 3)2=2p 3-p 6. 答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6. 11.从甲袋中摸出一个红球的概率是31,从乙袋内摸出1个红球的概率是21,从两袋内各摸出1个球,则32等于( )A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰好有1个红球的概率 答案:C12.某人有一串8把外形相同的钥匙,其中只有一把能打开家门,一次该人醉酒回家每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则该人第三次打开家门的概率是____________.解析:(87)2×81=51249. 答案:5124913.下列各对事件(1)运动员甲射击一次,“射中9环”与“射中8环”;(2)甲、乙二运动员各射击一次,“甲射中10环”与“乙射中9环”;(3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”.(4)甲、乙二运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”. 是互斥事件的有____________; 是相互独立事件的有____________. 解析:(1)甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件.(2)甲、乙各射击一次,“甲射中10环”发生与否,对“乙射中9环”的概率没有影响,二者是相互独立事件. (3)甲、乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件.(4)甲、乙各射击一次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”可能会同时发生,二者构不成互斥事件,也不可能是相互独立事件. 答案:(1),(3);(2)14.现有四个整流二极管可串联或并联组成一个电路系统,已知每个二极管的可靠度为0.8(即正常工作的概率),请你设计一种四个二极管之间的串并联形式的电路系统,使得其可靠度大于0.85.画出你的设计图并说明理由. 解析:(1)P=1-(1-0.8)4=0.998 4>0.85; (2)P=1-(1-0.82)2=0.870 4>0.85; (3)P=[1-(1-0.8)2]2=0.921 6>0.85; (4)P=1-(1-0.8)(1-0.83)=0.902 4>0.85; (5)P=1-(1-0.8)2(1-0.82)=0.985 6>0.85. 以上五种之一均可.15.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张. (1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解析:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B .于是P (A )=53106 ,P (A )=52; P(B)=104=52,P(B )=53.由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·25652=. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件B A •发生)的概率为 P (B A •)=P (A )·P (B )=2565352=•. ∴两人中至少有1人抽到足球票的概率为 P=1-P(B A •)=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519. 16.(2005全国高考卷3,文18)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率. DBBCA ,CCBCD ,BA18. 解析:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C , 则A 、B 、C 相互独立. 由题意得P(AB)=P(A)·P(B)=0.05 P(AC)=P(A)·P(C)=0.1,P(BC)=P(B)·P(C)= 0.125 解得P(A)=0.2;P(B)=0.25;P(C)=0.5所以,甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5 (Ⅱ)∵A 、B 、C 相互独立,∴A 、B 、C 相互独立∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为 P(A ·B ·C )=P(A )P(B )P(C )=0.8×0.75×0.5=0.3 ∴这个小时内至少有一台需要照顾的概率为p=1-P(A ·B ·C )=1-0.3=0.7。
高中数学必修二 10 2 事件的相互独立性 练习(含答案)
10.2 事件的相互独立性一、选择题1.下列事件A,B是独立事件的是()A.一枚硬币掷两次,A=“第一次为正面向上”,B=“第二次为反面向上”B.袋中有两个白球和两个黑球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“人能活到20岁”,B=“人能活到50岁”【答案】A【解析】对于A选项,,A B两个事件发生,没有关系,故是相互独立事件.对于B选项,A事件发生时,影响到B事件,故不是相互独立事件.对于C选项,由于投的是一个骰子,,A B是对立事件,所以不是相互独立事件.对于D选项,能活到20岁的,可能也能活到50岁,故,A B不是相互独立事件.综上所述,本小题选A.2.在某次考试中,甲、乙通过的概率分别为0.7,0.4,若两人考试相互独立,则甲未通过而乙通过的概率为A.0.28B.0.12C.0.42D.0.16【答案】B【解析】甲未通过的概率为0.3,则甲未通过而乙通过的概率为0.30.40.12⨯=.选B.3.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人的能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为()A.34B.23C.57D.512【答案】D【解析】设甲、乙获一等奖的概率分别是23(),()34P A P B ==,不获一等奖的概率是2131()1,()13344P A P B =-==-=,则这两人中恰有一人获奖的事件的概率为:13215()()()()()()()343412P AB AB P AB P AB P A P B P A P B +=+=+=⨯+⨯=。
4.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A .34B .23C .35D .12【答案】A【解析】甲赢的方式分为两种:第一场赢,或者第一场输且第二场赢.甲第一场赢的概率为12,甲第一场输第二场赢的概率为1111224⎛⎫⨯-= ⎪⎝⎭.故甲赢得冠军的概率为311244+=.故选A. 5.(多选题)下列各对事件中,不是相互独立事件的有( )A .运动员甲射击一次,“射中9环”与“射中8环”B .甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C .甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”D .甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”【答案】ACD【解析】在A 中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B 中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C 中,甲,乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标“不可能同时发生,二者是互斥事件,不独立;在D 中,设“至少有1人射中目标”为事件A ,“甲射中目标但乙未射中目标”为事件B ,则AB B =,因此当()1P A ≠时,()()()P AB P A P B ≠⋅,故A 、B 不独立,6.(多选题)甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以1A ,2A 表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是( )A .23()30PB = B .事件B 与事件1A 相互独立C .事件B 与事件2A 相互独立D .1A ,2A 互斥【答案】AD 【解析】根据题意画出树状图,得到有关事件的样本点数:因此()1183305P A ==,()2122305P A ==,15823()3030P B +==,A 正确; 又115()30P A B =,因此()()11()P A B P A P B ≠,B 错误;同理,C 错误; 1A ,2A 不可能同时发生,故彼此互斥,故D 正确,故选:AD .二、填空题7.甲射手击中靶心的概率为13,乙射手击中靶心的概率为12,甲、乙两人各射击一次,那么甲、乙不全击中靶心的概率为__________. 【答案】56【解析】由于两个人射击是相互独立的,故不全中靶心的概率为1151326-⋅=. 8.甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____.【答案】0.3【解析】甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,则甲队以2:1获胜的概率是:0.60.50.60.40.50.60.3P=⨯⨯+⨯⨯=.9.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于.【答案】【解析】根据题意,记该选手恰好回答了4个问题就晋级下一轮为A,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错;有相互独立事件的概率乘法公式,可得P(A)=1×0.2×0.8×0.8=0.128,故答案为0.128.法二:根据题意,记该选手恰好回答了4个问题就晋级下一轮为A,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错,由此分两类,第一个答错与第一个答对;有相互独立事件的概率乘法公式,可得P(A)=0.8×0.2×0.8×0.8+0.2×0.2×0.8×0.8=0.2×0.8×0.8=0.12810.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率是______.【答案】2 3【解析】设此射手每次射击命中的概率为p ,分析可得,至少命中一次的对立事件为射击四次全都没有命中,由题意可知一射手对同一目标独立地射击四次全都没有命中的概率为80118181-=. 则41(1)81p -=,可解得23p =,故答案为23. 三、解答题 11.假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性.(1)家庭中有两个小孩;(2)家庭中有三个小孩.【答案】(1)A ,B 不相互独立 (2)A 与B 是相互独立【解析】(1)有两个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个样本点 由等可能性可知每个样本点发生的概率均为14这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)} 于是()()()131,,242P A P B P AB === 由此可知()()()P AB P A P B ≠所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)}. 由等可能性可知每个样本点发生的概率均为18, 这时A 中含有6个样本点,B 中含有4个样本点,AB 中含有3个样本点.于是()()()63413,,84828P A P B P AB =====, 显然有()()()P AB P A P B =成立,从而事件A 与B 是相互独立的.12.计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为45,34,23,在实际操作考试中“合格”的概率依次为12,23,56,所有考试是否合格相互之间没有影响. (1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.【答案】(1)丙;(2)1130【解析】(1)设“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C , 则412()525P A =⨯=,321()432P B =⨯=,255()369P C =⨯=. 因为()()()P C P B P A >>,所以丙获得合格证书的可能性最大.(2)设“三人考试后恰有两人获得合格证书”为事件D ,则21421531511()()()()52952952930P D P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯=.。
第十章 概率 10.2事件的相互独立性专题训练
第十章概率 10.2事件的相互独立性学校:___________姓名:___________班级:___________考号:___________ 一、选择题1.位于直角坐标系原点的质点P按以下规则移动:①每次移动一个单位,②向左移动的概率为14,向右移动的概率为34.移动5次后落点在(1,0)-的概率为( )A.32351344C⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭B.23351344C⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭C.32241344C⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭D.23241344C⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭2.在某次人才招聘会上,假定某毕业生赢得甲公司面试机会的概率为23,赢得乙、丙两公司面试机会的概率均为14,且三个公司是否让其面试是相互独立的.则该毕业生只赢得甲、乙两个公司面试机会的概率为()A.116B.18C.14D.123.甲、乙两人比赛,平手的概率为12,乙获胜的概率为13,则下列说法正确的是( )A.甲获胜的概率是16B.甲不输的概率是12C.乙输的概率是23D.乙不输的概率是124.抛掷一枚均匀的骰子两次,在下列事件中,与事件“第一次得到6点”不互相独立的事件是( )A.“两次得到的点数和是12”B.“第二次得到6点”C.“第二次的点数不超过3点”D.“第二次的点数是奇数”5.在如图所示的电路图中,开关,,a b c闭合与断开的概率都是12,且是相互独立的,则灯灭的概率是 ( )A.18 B.38C.58D.786.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36D.0.3127.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军.若两队每局获胜的概率相同,则甲队获得冠军的概率为( ) A. 12 B. 35 C. 23 D. 348.端午节放假,甲、乙、丙回老家过节的概率分別为111,,345.假定三人的行动相互之间没有影响,那么这段时间内至少有1人回老家过节的概率为( )A. 5960B. 35C. 12D. 1609.袋内有3个白球和2个黑球,从中有放回地摸球,如果“第一次摸得白球”记为事件A ,“第二次摸得白球”记为事件B ,那么事件A 与B , A 与B 间的关系是( )A. A 与B , A 与B 均相互独立B. A 与B 相互独立, A 与B 互斥C. A 与B , A 与B 均互斥D. A 与B 互斥,A 与B 相互独立10.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件 B ={抽到二等品},事件C ={抽到三等品},且已知()0.65P A =,()0.2P B =,()0.1P C =,则事件“抽到的产品不是一等品”的概率为( )A. 0.7B. 0.65C. 0.35D. 0.3二、填空题11.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,则其中恰有一人击中目标的概率是________.12.设两个独立事件A 和B 都不发生的概率为19, A 发生B 不发生的概率与B 发生A 不发生的概率相同, 则事件A 发生的概率()P A =__________. 13.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是________.14.如图,系统M 由,,,A B C D 四类不同的元件构成.当元件,3A i 至少有一个正常工作且元件,C D 至少有一个正常工作时,系统M 正常工作.已知元件,,,A B C D 正常工作的概率依次为0.5,0.6,0.7,0.8,元件连接成的系统M 正常工作的概率()P M =__________.15.如图 ,已知电路中有4个开关,每个开关独立工作,且闭合的概率为12,则灯亮的概率为_______.三、解答题16.甲乙两名射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求:1.2人都射中目标的概率;2.2人中恰有1人射中目标的概率;3.2人至少有1人射中目标的概率。
(完整版)事件的独立性练习题
巩固与提高(事件的独立性)A 组、选择题1若A 与B 相互独立,则下面不相互独立的事件是(A )A. A 与 AB.A 与 BC. A 与 BD. A 与 B2、抛掷一颗骰子一次,记A 表示事件:出现偶数点,B 表示事件:出现3点或 6点,则事件A 与B 的关系。
(B )A 、 相互互斥事件B 、 相互独立事件C 、 既相互互斥事件又相互独立事件D 、 既不互斥事件又不独立事件3、在下列命题中为假命题的是(B )A. 概率为0的事件与任何事件都是互相独立的B. 互斥的两个事件一定不是相互独立的,同样互相独立的两个事件也一 定不是互斥的C. 必然事件与不可能事件是相互独立的D. 概率为1的事件与任何事件都是相互独立的1 1 4、甲乙丙射击命中目标的概率分别为 -、-、2 4一次,目标被设计中的概率是(C )3、填空题5、某商场经理根据以往经验知道,有40%的客户在结账时会使用信用卡,则 连续三位顾客都使用信用卡的概率为 __________________ 0.0646、三个同学同时作一电学实验,成功的概率分别为R ,P 2,P 3,则此实验在三人中恰有两个人成功的概率是 ______________________________ P|P 2 1 F 3 PP 3 1 F 2 F 2 F 3 1 P7、甲、乙射击运动员分别对一目标射击一次,甲射中的概率为 0.8,乙射中的 概率为0.9,贝U 2人中至少有一人射中的概率是 _______ 0.98 三、解答题&甲•乙、丙三位同学完成六道数学自测题,他们及格的概率依次为 -、-、5 517),求: (1) 三人中有且只有两人及格的概率; (2) 三人中至少有一人不及格的概率。
解:设甲•乙、丙答题及格分别为事件 A 、B 、C ,则A 、B 、C 相互独立 (1)三人中有且只有2人及格的概率为2,现在三人射击一个目标各A. 丄 96B. 47 96C.21 32 D.P P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C4 37 4 3 7 437 1131 -1 -1 -5 5 10551055 10 250(2).三人中至少有一人不及格的概率为4 3 783 1 P ABC1 P A P B P C15 5 10125B 组.选择题2•假设每一架飞机的引擎在飞行中出现故障率为 1-P ,且各引擎是否有故障 是独立的,如有至少 50%的引擎能正常运行,飞机就可以成功飞行,若 使4引擎飞机比2引擎飞机更安全,则P 的取值范围是(A ) 2 211A .-,1 B. 0,-C.丄,1D 0,丄3334二、 填空题3、 每门高射炮射击飞机的命中率为 0.6,至少要 ______ 门高射炮独立的对飞机 同时进行一次射击就可以使击中的概率超过 0.98. 54、 甲、乙两人同时应聘一个工作岗位,若甲、乙被应聘的概率分别为 0.5和 0.6两人被聘用是相互独立的,则甲、乙两人中最多有一人被聘用的概率 — ________________ 0.7 三、 解答题5、 设A 、B 为两个事件,若 P (A )=0.4, p AUB 0.7,P B x ,试求满足下 列条件的X 的值: (1) A 与B 为互斥事件 (2) A 与B 为独立事件解:(1)因为A 与B 为互斥事件,所以AI B .故P AI B p AUB --P A -- P B =0.7--0.4—X,所以 X=0.3⑵.因为A 与B 为独立事件,所以P AI B = P A P B ,由此可得,p AUB = P A + P B -- P AI B = P A + P B -- P A P B ,即 0.7=0.4+X-0.4X 解得 X=0.51.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同则事件 A 发生的概率P ( A )是(A )A. B. C.18。
2.3.2 事件的独立性(1)
1 P( A B)
1 P( A B)
A、B中至少有一个发生的概率
A、B中至多有一个发生的概率
分层训练:
必做题:P59 练习 2、3 P64 习题 1 选做题: P64 习题 9
作业: P64 习题
4, 7
例2:如图用X,Y,Z三类不同的元件连接 成系统N,当元件X,Y,Z都正常工作时,系 统N正常工作。已知元件X,Y,Z正常工作的 概率依次为0.80,0.90,0.90,求系统N正常 工作的概率P。
X Y Z
思考:若系统连接成下面的系统,则该系统正常工作的 概率为多少?
Y X Z
例3:加工某一零件需要两道工序,若第一, 二道工序的不合格品率分别为3%和5%,假定 各道工序是互不影响的,问:加工出来的零 件是不合格品的概率是多少?
P(A1A2...An)
=P(A1)P(A2)...P(An)
从一副扑克牌(52张)中任抽一张, 设A=“抽得老K”B=“抽的红牌”, C=“抽到J”,判断下列事件是否相 互独立?是否互斥,是否对立? ①A与B ②A与C
例1求证:若事件A与B独立,则事件A与 B 也相互独立。
一拖三
结论:若事件A与B独立则A与B,B与A A与B都独立。
三、条件概率的计算
P(AB) P( A B)= | P (B)
P(AB)=P( A B)P(
在第一次出现正面向上的条件下, 第二次出现正面向上的概率是多少?
在第一次出现正面向上的条件下,对第二 次出现正面向上的概率是否产生影响?
学习目标:
理解两个事件相互独立的概念,并能进行一 些与事件独立有关的概率的计算。
如果A和B是独立事件,那么 1-P(A)P(B)表示什么含义?
独立性测试题及答案
独立性测试题及答案一、选择题1. 在统计学中,独立性指的是两个事件的发生互不影响。
以下哪项描述正确地反映了独立性的概念?A. 事件A的发生增加了事件B发生的概率B. 事件A的发生减少了事件B发生的概率C. 事件A的发生不影响事件B发生的概率D. 事件A和B不能同时发生答案:C2. 假设有两个事件A和B,已知P(A) = 0.3,P(B) = 0.4,要判断A 和B是否独立,需要计算:A. P(A ∩ B)B. P(A) + P(B)C. P(A|B) - P(A)D. P(A ∪ B)答案:A3. 如果事件A和B是独立的,那么P(A ∩ B)等于:A. P(A) * P(B)B. P(A) + P(B)C. |P(A) - P(B)|D. P(A) / P(B)答案:A二、填空题4. 如果P(A) = 0.2,P(B) = 0.5,并且A与B独立,那么P(A ∩ B)等于_________。
答案:0.15. 在一次随机抽样调查中,如果P(事件A发生) = 0.3,P(事件B发生|事件A发生) = 0.4,那么事件A和B独立的概率是_________。
答案:0.4三、简答题6. 解释为什么事件A和B的独立性意味着P(A ∩ B) = P(A) * P(B)。
答案:如果事件A和B是独立的,那么意味着事件A的发生不会影响事件B发生的概率,反之亦然。
因此,我们可以将两个独立事件同时发生的概率看作是它们各自发生概率的乘积,即P(A ∩ B) = P(A) * P(B)。
7. 如果事件A和B不独立,那么P(A ∩ B)与P(A) * P(B)的关系是什么?答案:如果事件A和B不独立,那么它们同时发生的概率P(A ∩ B)不等于它们各自发生概率的乘积P(A) * P(B)。
在这种情况下,P(A ∩ B)可能会大于或小于P(A) * P(B),具体取决于一个事件的发生是否增加了或减少了另一个事件发生的概率。
四、计算题8. 假设在一个班级中,学生通过数学考试的概率是0.7,通过物理考试的概率是0.6。
概率事件独立性的判别式练习题
概率事件独立性的判别式练习题问题一某餐厅中午用餐的男性占比为45%,女性占比为55%。
在该餐厅中选取两名顾客,他们的性别是否独立?问题二某批产品中,有30%的产品存在瑕疵。
从该批产品中随机抽取两个产品,它们是否存在瑕疵是独立事件吗?问题三某班级有60%的学生是喜欢数学的,70%的学生是喜欢英语的。
从该班级中随机选择两名学生,他们是否喜欢数学和英语是独立事件吗?问题四某电视剧在广告投放期间,男性观众占比为40%,女性观众占比为60%。
观众在观看广告期间使用手机的比例为30%。
从观众群体中随机选取一人,他使用手机和性别是否独立?答案1. 性别是否独立的判别式是,如果选取的两名顾客的性别出现概率与整体男女顾客的比例相近,则性别是独立事件。
如果选取的两名顾客的性别出现概率有明显的偏差,则性别不是独立事件。
2. 抽取两个产品存在瑕疵是独立事件的判别式是,如果两个产品的瑕疵与整体产品的瑕疵比例相近,则存在瑕疵是独立事件。
如果两个产品的瑕疵比例有明显的偏差,则存在瑕疵不是独立事件。
3. 喜欢数学和英语是独立事件的判别式是,如果两名学生喜欢数学和英语的概率与整体学生喜欢数学和英语的比例相近,则喜欢数学和英语是独立事件。
如果两名学生喜欢数学和英语的概率有明显的偏差,则喜欢数学和英语不是独立事件。
4. 使用手机和性别是否独立的判别式是,如果观众使用手机的概率与整体观众使用手机的比例相近,则使用手机和性别是独立事件。
如果观众使用手机的概率与性别之间有明显的偏差,则使用手机和性别不是独立事件。
注意:判断独立性时,需要比较选取的样本与整体的比例,如果比例相近,则认为事件独立;如果比例有明显的偏差,则认为事件不独立。
习题事件的相互独立性
事件的相互独立性一、选择题1.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是().(1-p2)+p2(1-p1)(1-p1)(1-p2)答案:B解析:甲解决问题而乙没有解决问题的概率是p1(1-p2),乙解决问题而甲没有解决问题的概率是p2(1-p1).故恰有1人解决问题的概率是p1(1-p2)+p2(1-p1).2.从甲袋中摸出1个红球的概率为,从乙袋中摸出1个红球的概率为,从两袋中各摸出1个球,则等于().个球不都是红球的概率个球都是红球的概率C.至少有1个红球的概率个球中恰有1个红球的概率答案:C解析:从甲、乙两袋中摸出红球分别记为事件A,B,则P(A)=,P(B)=,至少有1个红球的概率P=1-P()=1-.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是().A. B. C. D.答案:C解析:依题意得P(A)=,P(B)=,事件A,B中至少有一件发生的概率为1-P()=1-P()P()=1-=1-.4.同时抛两枚硬币,则一枚朝上一枚朝下的事件发生的概率是()A. B. C. D.答案:A解析:分两种情况:可能第一枚朝上第二枚朝下,也可能第一枚朝下第二枚朝上.朝上时概率为,朝下时概率为1-.故所求概率为P=.5.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是().A. B. C. D.答案:A解析:左边转盘指针落在奇数区域的概率为,右边转盘指针落在奇数区域的概率为,故两个指针同时落在奇数区域的概率为.6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为().A. B. C. D.答案:D解析:由甲、乙两队每局获胜的概率相同,知甲每局获胜的概率为,甲要获得冠军有两种情况:第一种情况是再打一局甲赢,甲获胜概率为;第二种情况是再打两局,第一局甲输,第二局甲赢.则其概率为.故甲获得冠军的概率为.7.甲、乙两人各射击一次,如果两人击中目标的概率都是,则其中恰有1人击中目标的概率是().答案:A解析:设A表示:“甲击中目标”,B表示:“乙击中目标”,则A,B相互独立.从而“两人中恰有1人击中目标”可以表示为AB.因为AB互斥,所以P(AB)=P(A)+P(B)=P(A)P()+P()P(B)=×+×=.二、填空题8.两个实习生每人加工一个零件,加工为一等品的概率分别为,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为.答案:解析:记两个零件中恰有一个一等品的事件为A,则P(A)=.9.有2个人从一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,则这2个人在不同层离开的概率为.答案:解析:因为每个人自第二层开始在每一层离开电梯都是等可能的,所以每个人自第二层开始在每一层离开电梯的概率都是,根据相互独立事件的概率乘法公式可得这2个人在不同层离开的概率为.10.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为,则本次比赛中甲获胜的概率是.答案:解析:“每局比赛中甲获胜”记为事件A,则P(A)=,P()=,“本次比赛中甲获胜”为事件AA+AA+AA,所以“本次比赛中甲获胜”的概率为P=×+×××2=.三、解答题11.某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.(1)求恰有一名同学当选的概率;(2)求至多两人当选的概率.解:设甲、乙、丙当选的事件分别为A,B和C,则有P(A)=,P(B)=,P(C)=.(1)因为事件A,B,C相互独立,恰有一名同学当选的概率为P(A)+P()+P(C)=P(A)·P()P()+P()P(B)P()+P()P()P(C)=.(2)至多有两人当选的概率为1-P(ABC)=1-P(A)P(B)P(C)=1-.12.甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一次,根据以往资料知,甲击中8环、9环、10环的概率分别为,,,乙击中8环、9环、10环的概率分别为,,.设甲、乙的射击相互独立.求在一轮比赛中甲击中的环数多于乙击中的环数的概率.解:记A1,A2分别表示甲击中9环,10环,B1,B2分别表示乙击中8环,9环,A表示在一轮比赛中甲击中的环数多于乙击中的环数,A=A1B1+A2B1+A2B2,P(A)=P(A1B1+A2B1+A2B2)=P(A1B1)+P(A2B1)+P(A2B2)=P(A1)P(B1)+P(A2)P(B1)+P(A2)P(B2)=×+×+×=13.已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果.(1)求能听到立体声效果的概率;(2)求听不到声音的概率.(结果精确到解:(1)因为A与B中都不工作的概率为,所以能听到立体声效果的概率为[1-]×××≈.(2)当A,B都不工作,或C不工作,或D,E都不工作时,就听不到音响设备的声音.其否定是:A,B至少有1个工作,且C工作,且D,E中至少有一个工作.所以,听不到声音的概率为1-[1-]××[1-]≈.。
概率论练习题
(B) ( A B)(A B)
(D) A B
例3 某车间有3台车床,在1小时内不需要工人维护
的概率依次为0.9,0.8,0.85,求1小时内3台车床至少
有一台不需要维护的概率. 解 记 Ai={第 i 台不需要维护} i =1 , 2 , 3
P( A1 A2 A3 ) 1 P( A1 A2 A3 )
所以
B=BA0 +BA1 +BA2 +AB3
P(B)=P(A0)P(B |A0)+ P(A1)P(B|A1) + P(A2)P(B |A2) + P(A3)P(B |A3) P(B |A0)=0, P(B|A1)=0.2, P(B |A2)=0.6, P(B |A3)=0.9, P(A0)=0.8×0.7×0.9=0.504 P(A1)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398 P(A2)=0.2×0.3×0.9+0.2×0.7×0.1+0.8×0.3×0.1=0.092 P(A3)=0.2×0.3×0.1=0.006 P(B)=0×0.054+0.398×0.2+0.092×0.6+0.006×0.9=0.1402
P(B)=0×0.054+0.398×0.2+0.092×0.6+0.006×0.9=0.1402
P( BA1 ) P( B1 ) P( A | B1 ) 3 P(A1|B)= P( B) P( Bk ) P( A|Bk )
k 0
0.398 0.2 796 0.1402 1402
则称事件 A,B,C 相互独立
事件的独立性概率作业练习含答案解析高二数学北京海淀
课时提升作业十事件的独立性一、选择题(每小题5分,共25分)1.设A,B,C为三个随机事件,其中A与B互斥,B与C相互独立,则下列命题一定成立的是( )A.A与B相互独立B.A与C互斥C.B与C互斥D.与相互独立【解析】选D.注意“互斥事件”与“相互独立事件”的区别,前者指的是不可能同时发生的事件,后者指的是在两个事件中,一个事件是否发生对另一个事件没有影响.2.甲、乙二人各进行1次射击,如果两人击中目标的概率都是0.7,两个人射中与否相互之间没有影响,那么其中恰有1人击中目标的概率是( )A.0.49B.0.42C.0.7D.0.91【解析】选B.由题意可知,两人恰有1人击中目标有两种情况:甲击中乙没击中或甲没击中乙击中,设“恰有1人击中目标”为事件A,则P(A)=0.7×(1-0.7)+(1-0.7)×0.7=0.42.【补偿训练】打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是( )A. B. C. D.【解析】选A.记“甲中靶”为事件A;“乙中靶”为事件B;“甲、乙同时中靶”为事件C.则P(C)=P(A·B)=P(A)·P(B)=×=.3.若P(AB)=,P()=,P(B)=,则事件A与B的关系是 ( )A.事件A与B互斥B.事件A与B对立C.事件A与B独立D.事件A与B既互斥又独立【解析】选C.因为P()=,所以P(A)=,又P(B)=,P(AB)=,所以有P(AB)=P(A)P(B),所以事件A与B独立但不一定互斥.4.某校高一新生军训期间,经过两天的打靶训练,甲击中目标的概率为,乙击中目标的概率为(甲、乙两人射击是否击中目标相互不影响),甲、乙两人同时射击一目标且各射击一次,目标被击中的概率为( )A. B. C. D.【解析】选D.目标被击中的对立事件是两人都没击中,其概率为P=×=,所以目标被击中的概率为1-=.5.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )A. B. C. D.【解题指南】“事件A,B中至少有一件发生”的对立事件是“事件A,B一个都不发生”,可据此用正难则反的方法计算所求概率.【解析】选C.根据题意,“事件A,B中至少有一件发生”与“事件A,B一个都不发生”互为对立事件,由古典概型的计算方法,可得P(A)=,P(B)=, 则P()==.则“事件A,B中至少有一件发生”的概率为1-=.【补偿训练】端午节放假,甲回老家过节的概率为,乙、丙回老家过节的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人回老家过节的概率为 ( )A. B. C. D.【解析】选B.因为甲、乙、丙回老家过节的概率分别为,,.所以他们不回老家过节的概率分别为,,.“至少有1人回老家过节”的对立事件是“没有人回老家过节”,所以至少有1人回老家过节的概率为P=1-××= .二、填空题(每小题5分,共15分)6.已知将一枚质地不均匀的硬币抛掷三次,三次正面均向上的概率为,则抛掷这枚硬币三次,恰有两次正面向上的概率为__________.【解析】设抛掷这枚硬币一次,正面向上的概率为P.依题意P3=,所以P=.抛掷这枚硬币三次,恰有两次正面向上,一次正面向下的概率P=3×××=答案:7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是__________.【解析】方法一:甲闹钟没准时响的概率为0.2,乙闹钟没准时响的概率为0.1,两闹钟同时没准时响的概率为0.2×0.1=0.02,故所求概率为1-0.02=0.98.方法二:两个闹钟至少有一个准时响有三种情况:甲准时响而乙没准时响,其概率为0.80×(1-0.90)=0.08;乙准时响而甲没准时响,其概率是(1-0.80)×0.90=0.18;甲、乙都准时响,其概率为0.80×0.90=0.72,故两个闹钟至少有一个准时响的概率为0.08+0.18+0.72=0.98.答案:0.988.已知电路中有4个开关,每个开关独立工作,且闭合的概率为,则灯亮的概率为__________.【解析】因为A,B断开且C,D至少有一个断开时,线路才断开,导致灯不亮,所以灯不亮的概率为P=P()·[1-P(CD)]=P()·P()·[1-P(CD)]=××=.所以灯亮的概率为1-=.答案:【拓展延伸】系统可靠性问题的求解策略由于该类问题常常与物理知识相联系,在考查知识纵向联系的同时,重点考查事件独立性的综合应用.求解时可先从系统的构造出发,分析所给的系统是单纯的串(并)联还是串并联混合体结构.(1)直接法:把所求的事件分成若干个互斥事件之和,根据互斥事件的概率公式求解.(2)间接法:当所涉及的事件较多,而其对立事件所涉及的事件较少时,可根据对立事件的概率公式求解.三、解答题(每小题10分,共20分)9.一个袋子中有4个球,其中2个白球,2个红球,讨论下列A,B事件的相互独立性与互斥性.(1)A:取一个球为红球,B:取出的红球放回后,再从中取一球为白球.(2)从袋中取2个球,A:取出的两球为一白球一红球;B:取出的两球中至少一个白球.【解析】(1)由于取出的红球放回,故事件A与B的发生互不影响,因此A与B相互独立.A,B能同时发生,不是互斥事件.(2)设两个白球为a,b,两个红球为1,2,则从袋中取2个球的所有取法为{a,b},{a,1},{a,2},{b,1},{b,2},{1,2}.则P(A)==,P(B)=,P(AB)=,因为P(AB)≠P(A)P(B),所以事件A,B不是相互独立事件,事件A,B能同时发生,不是互斥事件.10.甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分(不计和棋),比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p(p>0.5),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.若框图为统计这次比赛的局数n和甲、乙的总得分数S,T的程序框图.其中,如果甲获胜则输入a=1,b=0;如果乙获胜,则输入a=0,b=1.(1)在图中,第一、第二两个判断框应分别填写什么条件?(2)求p的值.(3)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列.【解析】(1)程序框图中的第一个条件框应填M=2,第二个应填n=6.(答案不唯一.如:第一个条件框填M>1,第二个条件框填n>5,或者第一、第二条件互换都可以).(2)依题意,当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛停止.所以有p2+(1-p)2=.解得p=或p=.因为p>0.5,所以p=.(3)依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有P(ξ=2)=,P(ξ=4)=×=,P(ξ=6)=·1=.所以随机变量ξ的分布列为:ξ 2 4 6P 592081一、选择题(每小题5分,共10分)1.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合格的概率为.从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响) ( )A. B. C. D.【解析】选D.设体型合格为事件A,身体关节构造合格为事件B,A与B为独立事件,且P(A)=,P(B)=,所以两项中至少一项合格的概率为P=1-P()=1-P()·P()=1-×=.2.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图,假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是( )A. B. C. D.【解题指南】根据条件先求出顺时针和逆时针跳的概率,然后根据跳3次回到A,则应满足3次逆时针或者3次顺时针,根据相互独立事件的概率公式即可得到结论.【解析】选A.设按照顺时针方向跳的概率为P,则逆时针方向跳的概率是2P,则P+2P=1,解得P=,所以按照顺时针方向跳的概率为,逆时针方向跳的概率是.若青蛙在A叶上,跳3次后停在A叶上,则满足3次逆时针或者3次顺时针,①若先按逆时针开始从A→B→C→A,则对应的概率为××=,②若先按顺时针开始从A→C→B→A,则对应的概率为××=,则概率为+==.二、填空题(每小题5分,共10分)3.已知A,B,C相互独立,如果P(AB)=,P(C)=,P(AB)=,则P(B)=__________.【解析】依题意得解得P(A)=,P(B)=.所以P(B)=×= .答案:4.(2018·沈阳高二检测)在某道路A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这个道路上匀速行驶,则三处都不停车的概率为__________.【解析】由题意可知,每个交通灯开放绿灯的概率分别为,,.在这个道路上匀速行驶,则三处都不停车的概率为××=.答案:【补偿训练】有一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,2人试图独立地在半小时内解决它,则两人都未解决的概率为__________,问题得到解决的概率为__________.【解析】都未解决的概率为=×=.问题得到解决就是至少有1人能解决问题,所以P=1-=.答案:三、解答题(每小题10分,共20分)5.某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者记分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任一题减2分;②每回答一题,记分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A,B,C,D顺序作答,直到答题结束.假设甲同学对问题A,B,C,D回答正确的概率依次为,,,,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率.(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列.【解析】(1)设事件A为:甲同学进入下一轮.事件B i为:甲同学答对了第i题,为:甲同学答错了第i题,则P(A)=P(B1B2B3)+P(B1B2B4)+P(B1B3B4)+P(B2B4)+P(B2B3B4)=.(2)ξ的所有可能取值为:2,3,4P(ξ=2)=P()=,P(ξ=3)=P(B1B2B3)+P(B1)=.P(ξ=4)=1--=.ξ的分布列为:ξ 2 3 4P 1838126.(2018·牡丹江高二检测)某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁)[15,25) [25,35)[35,45)[45,55)[55,65)[65,75]频数 5 10 15 10 5 5 赞成人数 4 6 9 6 3 4(1)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值.(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列.(3)若在这50名被调查者中随机发出20份的调查问卷,记η为所发到的20人中赞成“车辆限行”的人数,求使概率P(η=k)取得最大值的整数k.【解析】(1)该市公众对“车辆限行”的赞成率约为:×100%=64%.被调查者年龄的平均约为:=43.(2)依题意得:ξ=0,1,2,3.P(ξ=0)=×=×==15,P(ξ=1)=×+×=×+×=, P(ξ=2)=×+×=×+×=, P(ξ=3)=×=×=,所以ξ的分布列是:ξ0 1 2 3P 1534752275475(3)因为P(η=k)=,其中k=2,3,4, (20)所以==,当≥1,即k≤12+时,P(η=k+1)≥P(η=k); 当<1,即k>12+时,P(η=k+1)<P(η=k).即P(η=2)<P(η=3)<P(η=4)<…<P(η=13);P(η=13)>P(η=14)>P(η=15)>…>P(η=20).故有:P(η=k)取得最大值时k=13.。
条件概率与事件的独立性【题集】-讲义(教师版)
条件概率与事件的独立性【题集】1. 条件概率A.B.C.D.1.根据历年气象统计资料,某地四月份吹东风的概率,下雨的概率为,既吹东风又下雨的概率为,则在吹东风的条件下下雨的概率为( ).【答案】D【解析】事件:四月份下雨,事件:四月份吹东风,,,,条件概率公式有,故选.【标注】【知识点】条件概率A.B.C.D.2.某小区有名歌手,其中名男歌手,名女歌手.从中选出人参加区组织的社区演出.在男歌手甲被选中的情况下,女歌手乙也被选中的概率为( ).【答案】D【解析】若从中选出人参加区组织的社区演出,在男歌手甲被选中的情况下,又因为小区有名歌手,其中名男歌手,名女歌手,此时若女歌手乙被选择,则被选中的概率为.故选.【标注】【知识点】条件概率A.B.C.D.3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数小于”为事件,“两颗骰子的点数之和等于”为事件,则( ).【答案】D【解析】由题意,为抛掷两颗骰子,红骰子的点数小于时两骰子的点数之和等于的概率,∵抛掷两颗骰子,红骰子的点数小于,基本事件有个,红骰子的点数小于时两骰子的点数之和等于,基本事件有个,分别为,,,∴.故选:.【标注】【知识点】条件概率;古典概型A. B. C. D.4.从装有个红球个白球的袋子中先后取个球,取后不放回,在第一次取到红球的条件下,第二次取到红球的概率为().【答案】C【解析】因为共有个红球个白球,所以先后取个球,取后不放回,第一次取到红球的取法数为:,第一、二次都取到红球的取法数为:,故所求的概率.故选:.【标注】【知识点】条件概率A. B. C. D.5.小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设表示事件“个人去的景点各不相同”,表示事件“小赵独自去一个景点”,则().【答案】A【解析】小赵独自去一个景点,则有个景点可选,其余人只能在小赵剩下的个景点中选择,可能性为种,所以小赵独自去一个景点的可能性为种.因为个人去的景点不相同的可能性为种,所以.故选.【标注】【知识点】条件概率(1)(2)6.某中学为了迎接即将在武汉市召开的世界中学生运动会,学生篮球队准备假期集训,集训前共有个篮球队,其中个是新球(即没有用过的球),个是旧球(即至少用过次的球).每次训练,都从中任意取出个球,用完后放回.设第次训练时至少取到个新球,第次训练时也取到个新球的概率.在第次训练时至少取到个新球的条件下,求第次训练时恰好取到个新球的概率.【答案】(1)(2)..【解析】(1)设“第次训练时取到个新球”为事件,则,.设“从个球中任意取出个球,恰好取到个新球”为事件,则“第次训练时恰好取到个新球”就是事件,而事件,互斥,于是.由条件概率公式,得,又因为,所以,第次训练时恰好取到个新球的概率为(2).设在第次训练时至少取到个新球,第次训练时恰好取到个新球,则在第次训练时至少取到个新球的条件下,第次训练时恰好取到个新球的概率为.因为,又,所以.【标注】【知识点】条件概率2. 乘法公式7.已知,,.【答案】【解析】∵,∴.【标注】【知识点】条件概率;相互独立事件的概率乘法公式A. B. C. D.8.已知号箱中有个白球和个红球,号箱中有个白球和个红球,现随机地从号箱中取出个球放入号箱中,然后从号箱中随机地取出个球,则两次都取到红球的概率是().【答案】C【解析】设从号箱取到红球为事件,从号箱取到红球为事件.由题意,可得,,所以.所以两次都取到红球的概率是.故选.【标注】【知识点】古典概型的概率计算(不涉及计数原理);条件概率【素养】数学运算;数据分析3. 事件的独立性A.B.C.D.9.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为,乙中靶的概率为.甲、乙各射击一次,则两人都中靶的概率为( ).【答案】B【解析】设甲中靶为事件,乙中靶为事件,,为相互独立事件,根据相互独立事件的乘法公式可得:.故选.【标注】【知识点】相互独立事件的概率乘法公式A.B.C.D.10.已知盒中装有个红球、个白球、个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率( ).【答案】B【解析】设“第一次拿到白球”为事件,“第二次拿到红球”为事件B∴,,则所求概率为,故选:.【标注】【知识点】条件概率11.A.B.C.D.袋中有红黑个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为().【答案】B【解析】设”第一次摸到红球”为事件,”第二次摸到红球”为事件.∴,∴.故选.【标注】【知识点】条件概率4. 互斥事件与独立事件A.事件和互斥B.事件和互相对立C.事件和相互独立D.事件和相等12.抛掷两枚硬币,设事件“第一枚正面朝上”,“第二枚反面朝上”,则( ).【答案】C【解析】A 选项:B 选项:C 选项:D 选项:由于事件,能同时发生,则事件,不为互斥事件,故错误;由于事件,能同时发生,则事件,不为对立事件,故错误;第一枚正面朝上和第二枚反面朝上是相互独立事件,故正确;由于事件,中有不同的样本点,则事件,不相等,故错误;故选 C .【标注】【知识点】相互独立事件13.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球.先从甲罐中随机取出一个球放入乙罐,分别以,,表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中的是( ).不.正.确.A.B.C.D.事件与事件不相互独立,,是两两互斥的事件【答案】D【解析】由题意、、是两两互斥事件,,,,,,,,所以不正确.故选.【标注】【知识点】条件概率14.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中胜的概率为;且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了局的概率为.【答案】【解析】由题意,甲获得冠军的概率为,其中比赛进行了局的概率为,∴所求概率为.故答案为:.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.15.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品互不影响,则这两个零件中恰有一个一等品的概率为().【答案】B【解析】根据题意得:恰有一个一等品的概率.故选.【标注】【知识点】互斥事件的概率加法公式;相互独立事件的概率乘法公式16.为积极应对新冠肺炎疫情,提高大家对新冠肺炎的认识,某企业举办了“抗击疫情,共克时艰”预防新冠肺炎知识竞赛,知识竞赛规则如下:在预设的个问题中,选手若能连续正确回答出个问题,即停止答题,晋级下一轮.假定某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手至少回答了个问题晋级下一轮的概率等于.【答案】【解析】该选手至少回答了个问题晋级,包含两种情况:回答了五个或者留六个问题.一、回答了五个问题晋级,则第三、四、五个问题都回答正确,而第二个问题回答错误..二、回答了六个问题晋级,则第四、五、六个问题都回答正确,而第三个问题回答错误.,综上:,该选手至少回答了个问题晋级的概率为.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.17.首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为,,,且三家企业的购买结果相互之间没有影响,则三家企业中恰有家购买该机床设备的概率是().【答案】C【解析】甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为,,,且三家企业的购买结果相互之间没有影响,则三家企业中恰有家购买该机床设备的概率:.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.18.某地有,,,四人先后感染了传染性肺炎,其中只有到过疫区,确定是受感染的.对于因为难以判定是受还是受感染的,于是假定他受和感染的概率都是.同样也假定受,和感染的概率都是.在这种假定下,,,中恰有两人直接受感染的概率是().【答案】C【解析】根据题意得出:因为直接受感染的人至少是,而,二人也有可能是由感染的,,设,,直接受感染为事件,,,则,,是相互独立的,并且,,,表明除了外,,二人中恰有人是由感染的,∴,∴、、中直接受传染的人数为的概率为.故答案为:.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.19.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制(无平局),甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为().【答案】B【解析】由题意,甲获得冠军的概率为,其中比赛进行了局的概率,∴所以概率为.故选.【标注】【知识点】条件概率A. B.C. D.以上都不对20.甲、乙、丙三名同学用计算机联网学习数学,每天上课后独立完成道自我检测题,甲及格的概率为,乙及格的概率为,丙及格的概率为, 三人各检测一次,则三人中只有一人及格的概率为().【答案】C【解析】由题意可知分三种情况且三人及格与否相互独立,则.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.21.已知在个电子元件中,有个次品,个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都为止,则经过次测试恰好将个次品全部的概率().【答案】C【解析】找.到.找.出.11由题意可得:前次抽到了一个次品,且第四次抽到第二个次品,或前次抽到的全是正品,若前次抽到了一个次品,且第四次抽到第二个次品,概率为,若前四次抽到的全是正品,概率为,故所求事件的概率为.故选.【标注】【知识点】相互独立事件的概率乘法公式;古典概型;互斥事件与对立事件的概念辨析;互斥事件的概率加法公式5. 全概率公式22.(敏感性问题调查)要调查蔡老板在学生心目中是不是一个胖子,制作问卷 :蔡老板是胖子么?回答方式为“是”和“否”.由于这是一个敏感性问题学生没法当面回答,现采取如下策略进行调查.现同时制作问卷 :蔡老板是胖子么?问卷 :给你一枚硬币,你丢一次是正面朝上么?学生将从一个只装有红球和白球的盒子中抽球决定回答哪个问题,如果抽到红球,回答 问题,抽到白球,回答 问题,假设抽到红球的概率是.现在对名学生进行调查,发现收到的答案中有个是,你认为根据统计结果,蔡老板是一个胖子么?【答案】是.【解析】 :抽到的球是红球, :回答是,设选择蔡老板是胖子的概率为,,,,,,解得.【标注】【素养】数学运算【知识点】条件概率。
《独立性》习题
独立性一、判断题1.概率为零的事件与任何事件都是独立的。
( )2.设()()0,0>>B P A P 若A 与B 为对立事件,则A 与B 相互独立( )3. ()()0,0>>B P A P 若A 与B 相互独立,则A 与B 相容( )4. A ,B ,C 相互独立的充分必要条件是他们两两相互独立( )5.从一大批产品中“不返回”地抽取,则可以认为各次抽取间产生的事件 是独立的 ( )二、填空题1.设事件A 与B 相互独立,已知()()8.0,5.0=⋃=B A P A P , 则()=B A P ()=⋃B A P2.设两个相互独立的事件A 和B 都不发生的概率为,91A 发生B 不发生的概率 与B 发生A 不发生的概率相等,则()=A P三、选择题1.设()()()8.0,7.0,8.0===B A P B P A P ,则下列结论正确的是A .A 与B 互不相容 B.B A ⊂C .A 与B 相互独立 D.()()()B P A P B A P +=⋃2.将一枚硬币独立地掷两次,引进事件: }{1掷第一次出现正面=A }{2掷第二次出现正面=A}{3正反面各出现一次=A }{4正面出现两次=A ,则A .321,,A A A 相互独立 B. 432,,A A A 相互独立C .321,,A A A 两两独立 D. 432,,A A A 两两独立四、设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有 2只蓝球,3只绿球,4只白球。
独立的分别在两只盒子中各取一只球。
1.求至少有一只蓝球的概率;2.求有一只蓝球一只白球的概率;3.已知至少有一只蓝球,求一只篮球一只白球的概率。
五、甲乙两人投篮,甲投中的概率为0.6,乙投中的概率为0.7 。
今各投三次。
求:1.两人投中次数相等的概率;2.甲比乙投中次数多的概率。
六、证明下列各题1.已知()()()pq q B A P q B P p A P +-=⋃==1,,,证明B A ,相互独立;2.设A , B ,C 三个事情相互独立,试证: B A AB B A -⋃,,皆与C 相互独立。
高中数学-事件的相互独立性跟踪测试卷及答案
课时跟踪检测(四十三)事件的相互独立性层级(一)“四基”落实练1.甲、乙两名射手同时向一目标射击,设事件A=“甲击中目标”,事件B=“乙击中目标”,则事件A与事件B () A.相互独立但不互斥B.互斥但不相互独立C.相互独立且互斥D.既不相互独立也不互斥解析:选A对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B可能同时发生,所以事件A与B不是互斥事件.2.甲、乙两班各有36名同学,甲班有9名三好学生,乙班有6名三好学生,两班各派1名同学参加演讲活动,派出的恰好都是三好学生的概率是 ()A.524 B.512C.124 D.38解析:选C两班各自派出代表是相互独立事件,设事件A,B分别为甲班、乙班派出的是三好学生,则事件AB为两班派出的都是三好学生,则P(AB)=P(A)P(B)=936×636=1 24.3.有一道竞赛题,A,B,C三人可解出的概率分别为12,13,14,则三人独立解答,仅有一人解出的概率为()A.124 B.1124C.1324 D.1724解析:选B设仅有一人解出的事件为D,则P(D)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=12×23×34+12×13×34+12×23×14=1124.4.两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是() A.0.56 B.0.92C.0.94 D.0.96解析:选C ∵两人都没有击中的概率为0.2×0.3=0.06,∴目标被击中的概率为1-0.06=0.94.5.(多选)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是( )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12解析:选ACD 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2相互独立.2个球都是红球为A 1A 2,其概率为13×12=16,A 正确;“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;2个球中至少有1个红球的概率为 1-P (A )P (B )=1-23×12=23,C 正确;2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选A 、C 、D.6.已知A ,B 是相互独立事件,且P (A )=12P (B )=23,则P (A B -)=________;P (A - B -)=________.解析:∵P (A )=12,P (B )=23,∴P (A -)=12,P (B -)=13.∴P (A B -)=P (A )P (B -)=12×13=16,P (A - B -)=P (A -)P (B -)=12×13=16.答案:16 167.已知生产某零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和P ,每道工序是否产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.960 3,则P=________.解析:由题意,得(1-0.01)(1-P)=0.960 3,解得P=0.03.答案:0.038.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.求:(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;(2)进入商场的1位顾客购买甲、乙两种商品中的一种的概率.解:记A表示事件“进入商场的1位顾客购买甲种商品”,则P(A)=0.5;记B表示事件“进入商场的1位顾客购买乙种商品”,则P(B)=0.6;记C表示事件“进入商场的1位顾客,甲、乙两种商品都购买”;记D表示事件“进入商场的1位顾客购买甲、乙两种商品中的一种”.(1)易知C=AB,则P(C)=P(AB)=P(A)P(B)=0.5×0.6=0.3.(2)易知D=(A B-)∪(A-B),则P(D)=P(A B-)+P(A-B)=P(A)P(B-)+P(A-)P(B)=0.5×0.4+0.5×0.6=0.5.层级(二) 能力提升练1.如图所示,A,B,C表示3个开关,若在某段时间内,它们正常工作的概率分别为0.9,0.8,0.7,则该系统的可靠性(3个开关只要有一个开关正常工作即可靠)为()A.0.504 B.0.994C.0.496 D.0.064解析:选B由题意知,所求概率为1-(1-0.9)·(1-0.8)(1-0.7)=1-0.006=0.994. 2.甲袋中有8个白球、4个红球,乙袋中有6个白球、6个红球,这些小球除颜色外完全相同.从每袋中任取1个球,则取得同色球的概率为________.解析:设从甲袋中任取1个球,事件A为“取得白球”,则事件A为“取得红球”;从乙袋中任取1个球,事件B为“取得白球”,则事件B为“取得红球”.∵事件A与B相互独立,∴事件A与B也相互独立.∴从每袋中任取1个球,取得同色球的概率为P(AB∪A B)=P(AB)+P(A B)=P(A)P(B)+P(A)P(B)=23×12+13×12=12.答案:123.甲、乙两名同学参加一项射击比赛,其中任何一人每射击一次击中目标得2分,未击中目标得0分.已知甲、乙两人射击互不影响,且命中率分别为35和p .若甲、乙两人各射击一次得分之和为2的概率为920,则p 的值为________. 解析:设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,则“甲射击一次,未击中”为事件A ,“乙射击一次,未击中目标”为事件B ,则P (A )=35,P (A )=25,P (B )=p ,P (B )=1-p ,依题意35×(1-p )+25×p =920,解得p =34.答案:344.(2022·全国甲卷节选)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.求甲学校获得冠军的概率.解:设三个项目比赛中甲学校获胜分别为事件A ,B ,C ,易知事件A ,B ,C 相互独立.甲学校获得冠军,对应事件A ,B ,C 同时发生,或事件A ,B ,C 中有两个发生,故甲学校获得冠军的概率为P =P (ABC +A BC +A B C +AB C ) =P (ABC )+P (A BC )+P (A B C )+P (AB C )=0.5×0.4×0.8+(1-0.5)×0.4×0.8+0.5×(1-0.4)×0.8+0.5×0.4×(1-0.8) =0.16+0.16+0.24+0.04 =0.6.5.已知某音响设备由五个部件组成,A 电视机,B 影碟机,C 线路,D 左声道和E 右声道,其中每个部件工作的概率如图所示,当且仅当A 与B 中至少有一个工作,C 工作,D 与E 中至少有一个工作时能听到声音,且若D 和E 同时工作则有立体声效果.(1)求能听到立体声效果的概率; (2)求听不到声音的概率.解:(1)能听到立体声效果的概率P 1=[1-(1-0.9)×(1-0.95)]×0.95×0.94×0.94=0.835 222 9.(2)能听到声音的概率P 2=[1-(1-0.9)×(1-0.95)]×0.95×[1-(1-0.94)2]=0.941 847 1,故听不到声音的概率为1-P 2=1-0.941 847 1=0.058 152 9. 层级(三) 素养培优练在生活小常识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关生活小常识的问题,已知甲答对这道题的概率是34112,乙、丙两人都回答正确的概率是14.设每人回答问题正确与否相互独立.(1)求乙答对这道题的概率;(2)求甲、乙、丙三人中,至少有一人答对这道题的概率.解:(1)记“甲答对这道题”“乙答对这道题”“丙答对这道题”分别为事件A ,B ,C ,设乙答对这道题的概率P (B )=x ,由于每人回答问题正确与否相互独立,因此A ,B ,C 是相互独立事件.由题意可知,P (A )=34,P (A B )=P (A )P (B )= 1-34×(1-x )=112,解得x =23,所以乙答对这道题的概率为P (B )=23.(2)设“甲、乙、丙三人中,至少有一人答对这道题”为事件M ,丙答对这道题的概率P (C )=y ,由题可知,P (BC )=P (B )·P (C )=23×y =14,解得y =38.甲、乙、丙三人都回答错误的概率为P (A B C )=P (A )P (B )·P (C )= 1-34× 1-23× 1-38=596. 因为事件“甲、乙、丙三人都回答错误”的对立事件是“甲、乙、丙三人中,至少有一人答对”,所以P (M )=1-596=9196.。
课时作业9:5.3.5 随机事件的独立性
5.3.5 随机事件的独立性一、选择题1.一袋中装有5只白球,3只黄球,在有放回地摸球中,用A 1表示第一次摸得白球,A 2表示第二次摸得白球,则事件A 1与A -2是( ) A.相互独立事件 B.不相互独立事件 C.互斥事件 D.对立事件答案 A解析 由题意可得A -2表示“第二次摸到的不是白球”,即A -2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A 1与A -2是相互独立事件.2.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别是13,12,23,则汽车在这三处因遇红灯而停车一次的概率为( ) A.19 B.16 C.13 D.718 答案 D解析 设汽车分别在甲、乙、丙三处通行为事件A ,B ,C ,则P (A )=13,P (B )=12,P (C )=23,停车一次即为事件A -BC +AB -C +ABC -,故概率为P =⎝ ⎛⎭⎪⎫1-13×12×23+13×⎝ ⎛⎭⎪⎫1-12×23+13×12×⎝ ⎛⎭⎪⎫1-23=718.3.若P (AB )=19,P (A -)=23,P (B )=13,则事件A 与B 的关系是( ) A.事件A 与B 互斥 B.事件A 与B 对立C.事件A 与B 相互独立D.事件A 与B 既互斥又独立 答案 C解析 因为P (A -)=23,所以P (A )=13,又P (B )=13,P (AB )=19,所以有P (AB )=P (A )P (B ), 所以事件A 与B 相互独立但不互斥.4.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生所有项均合格的概率为(假设各项标准互不影响)( ) A.49 B.190 C.45 D.59答案 B解析 该生各项均合格的概率为13×16×15=190.5.在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( )A.18B.38C.14D.78答案 B解析 设开关a ,b ,c 闭合的事件分别为A ,B ,C ,则灯亮这一事件E =ABC ∪ABC-∪AB -C ,且A ,B ,C 相互独立,ABC ,ABC -,AB -C 互斥,所以P (E )=P ((ABC )∪(ABC -)∪(AB -C ))=P (ABC )+P (ABC -)+P (AB -C )=P (A )P (B )P (C )+P (A )P (B )P (C -)+P (A )P (B -)P (C ) =12×12×12+12×12×⎝ ⎛⎭⎪⎫1-12+12×1-⎝ ⎛⎭⎪⎫12×12=38.二、填空题6.有一道数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,2人试图独立地在半小时内解决它,则2人都未解决的概率为________,问题得到解决的概率为________. 答案 13 23解析 甲、乙两人都未能解决的概率为⎝ ⎛⎭⎪⎫1-12⎝ ⎛⎭⎪⎫1-13=12×23=13, 问题得到解决就是至少有1人能解决问题, ∴P =1-13=23.7.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者,则乙连胜四局的概率为________. 答案 0.09解析 乙连胜四局,即乙先胜甲,然后胜丙,接着再胜甲,最后再胜丙,∴概率P =(1-0.4)×0.5×(1-0.4)×0.5=0.09.8.国庆节放假,甲、乙、丙三人去北京旅游的概率分别是13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 35解析 设“国庆节放假,甲、乙、丙三人去北京旅游”分别为事件A ,B ,C ,则A ,B ,C 相互独立且P (A )=13,P (B )=14,P (C )=15,∴至少有1人去北京旅游的概率为1-P (A -B -C -)=1-P (A -)·P (B -)·P (C -)=1-⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14×⎝ ⎛⎭⎪⎫1-15=1-25=35.三、解答题9.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率: (1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解 设A i ={第i 次拨号接通电话},i =1,2,3,(1)第3次才接通电话可表示为A -1 A -2A 3, 于是所求概率为P (A -1 A -2A 3)=910×89×18=110;(2)拨号不超过3次而接通电话可表示为A 1+A -1A 2+A -1 A -2A 3,于是所求概率为P (A 1+A -1A 2+A -1 A -2A 3)=P (A 1)+P (A -1A 2)+P (A -1 A -2A 3) =110+910×19+910×89×18=310.10.某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中: (1)三科成绩均未获得第一名的概率是多少? (2)恰有一科成绩未获得第一名的概率是多少?解 分别记该生语、数、英考试成绩排名全班第一的事件为A ,B ,C ,则A ,B ,C 两两相互独立且P (A )=0.9,P (B )=0.8,P (C )=0.85.(1)“三科成绩均未获得第一名”可以用A -B -C -表示,P (A -B -C -)=P (A -)P (B -)P (C -) =[1-P (A )][1-P (B )][1-P (C )] =(1-0.9)(1-0.8)(1-0.85)=0.003, 所以三科成绩均未获得第一名的概率是0.003.(2)“恰有一科成绩未获得第一名”可以用(A -BC )∪(AB -C )∪(ABC -)表示.由于事件A -BC ,AB -C 和ABC -两两互斥,根据概率加法公式和相互独立事件的意义,所求的概率为P (A -B B C )+P (AB -B C )+P (ABC -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -)=[1-P (A )]P (B )P (C )+P (A )[1-P (B )]P (C )+P (A )P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329, 所以恰有一科成绩未获得第一名的概率是0.329.11.(多选题)下列各对事件中,M ,N 是相互独立事件的有( )A.掷1枚质地均匀的骰子一次,事件M =“出现的点数为奇数”,事件N =“出现的点数为偶数”B.袋中有5个白球,5个黄球,除颜色外完全相同,依次不放回地摸两次,事件M =“第1次摸到红球”,事件N =“第2次摸到红球”C.分别抛掷2枚相同的硬币,事件M =“第1枚为正面”,事件N =“两枚结果相同”D.一枚硬币掷两次,事件M =“第一次为正面”,事件N =“第二次为反面” 答案 CD解析 A 中,M ,N 是互斥事件,不相互独立;B 中,M ,N 不是相互独立事件;C 中,P (M )=12,P (N )=12,P (MN )=14,P (MN )=P (M )P (N ),因此M ,N 是相互独立事件;D 中,第一次为正面对第二次的结果不影响,因此M ,N 是相互独立事件.故选CD.12.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________. 答案 0.18解析 甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输. 若在主场输一场,则概率为2×0.6×0.4×0.5×0.5×0.6; 若在客场输一场,则概率为2×0.6×0.6×0.5×0.5×0.6.∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×(0.6+0.4)×0.6=0.18. 13.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率; (2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?(参考数据:lg 2≈0.301 0)解 (1)设敌机被第k 门高炮击中的事件为A k (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为A -1·A -2·A -3·A -4·A -5. ∵事件A 1,A 2,A 3,A 4,A 5相互独立, ∴敌机未被击中的概率为P (A -1·A -2·A -3·A -4·A -5)=P (A -1)·P (A -2)·P (A -3)·P (A -4)·P (A -5)=(1-0.2)5=⎝ ⎛⎭⎪⎫455.∴敌机未被击中的概率为⎝ ⎛⎭⎪⎫455.(2)设需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-⎝ ⎛⎭⎪⎫45n,令1-⎝ ⎛⎭⎪⎫45n≥0.9,即⎝ ⎛⎭⎪⎫45n≤110,两边取常用对数,得n ≥11-3lg 2≈10.3.∵n ∈N +,∴n 的最小值为11.∴至少需要布置11门高炮才能有0.9以上的概率击中敌机.14.为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费用如下表:预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.解方案一单独采用一种预防措施的费用均不超过120万元,由题表可知,采用甲措施可使此突发事件不发生的概率最大,其概率为0.9.方案二联合采用两种预防措施,费用不超过120万元.由题表可知,联合甲、丙两种预防措施可使此突发事件不发生的概率为1-(1-0.9)(1-0.7)=0.97.联合甲、丁,或乙、丙,或乙、丁,或丙、丁两种预防措施,此突发事件不发生的概率均小于0.97.所以联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为0.97.方案三联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施.此时突发事件不发生的概率为1-(1-0.8)(1-0.7)(1-0.6)=0.976.由三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使突发事件不发生的概率最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
事件的独立性练习题
————————————————————————————————作者:————————————————————————————————日期:
巩固与提高(事件的独立性)
A 组
一、选择题
1、若A 与B 相互独立,则下面不相互独立的事件是(A )
A. A 与A --
B.A 与B --
C. A -- 与B
D. A --与B --
2、抛掷一颗骰子一次,记A 表示事件:出现偶数点,B 表示事件:出现3点或
6点,则事件A 与B 的关系。
(B )
A 、相互互斥事件
B 、相互独立事件
C 、既相互互斥事件又相互独立事件
D 、既不互斥事件又不独立事件
3、在下列命题中为假命题的是(B )
A. 概率为0的事件与任何事件都是互相独立的
B. 互斥的两个事件一定不是相互独立的,同样互相独立的两个事件也一
定不是互斥的
C. 必然事件与不可能事件是相互独立的
D. 概率为1的事件与任何事件都是相互独立的
4、甲乙丙射击命中目标的概率分别为12、14、112
,现在三人射击一个目标各一次,目标被设计中的概率是(C )
A. 196
B. 4796
C. 2132
D. 56
3、填空题
5、某商场经理根据以往经验知道,有40%的客户在结账时会使用信用卡,则
连续三位顾客都使用信用卡的概率为 0.064
6、三个同学同时作一电学实验,成功的概率分别为1P ,2P ,3P ,则此实验在三人中恰有两个人成功的概率是 ()()()123132231111PP P PP P P P P -+-+-
7、甲、乙射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,则2人中至少有一人射中的概率是 0.98
三、解答题
8、甲.乙、丙三位同学完成六道数学自测题,他们及格的概率依次为45、35、710
,求: (1) 三人中有且只有两人及格的概率;
(2) 三人中至少有一人不及格的概率。
解:设甲.乙、丙答题及格分别为事件A 、B 、C ,则A 、B 、C 相互
独立。
(1) 三人中有且只有2人及格的概率为
()()()()()()1P P AB C P A B C P A BC P A P B P C P A P B P C P A P B P C ------------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++=⋅++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
437437437113111551055105510250
⎛⎫⎛⎫⎛⎫⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2). 三人中至少有一人不及格的概率为
()()()()2437831115510125
P P ABC P A P B P C =-=-=-⨯⨯=
B 组
一. 选择题
1. 设两个独立事件A 和B 都不发生的概率为19
,A 发生B 不发生的概率与B 发生A 不发生的概率相同则事件A 发生的概率P (A )是(A )
A. 23
B. 13
C. 19 D 118
2. 假设每一架飞机的引擎在飞行中出现故障率为1-P ,且各引擎是否有故障
是独立的,如有至少50%的引擎能正常运行,飞机就可以成功飞行,若使4引擎飞机比2引擎飞机更安全,则P 的取值范围是(A )
A . 2,13⎛⎫ ⎪⎝⎭ B. 20,3⎛⎫ ⎪⎝⎭ C. 1,13⎛⎫ ⎪⎝⎭ D 10,4⎛⎫ ⎪⎝⎭
二、填空题
3、每门高射炮射击飞机的命中率为0.6,至少要 门高射炮独立的对飞机
同时进行一次射击就可以使击中的概率超过0.98. 5
4、甲、乙两人同时应聘一个工作岗位,若甲、乙被应聘的概率分别为0.5和
0.6两人被聘用是相互独立的,则甲、乙两人中最多有一人被聘用的概率 0.7
三、解答题
5、设A 、B 为两个事件,若P(A)=0.4, ()()0.7,p A B P B x ==U ,试求满足下
列条件的X 的值:
(1) A 与B 为互斥事件
(2) A 与B 为独立事件
解:(1)因为A 与B 为互斥事件,所以A B =∅I .故()P A B =I
()p A B U -- ()P A -- ()P B =0.7--0.4—X,所以X=0.3
(2).因为 A 与B 为独立事件,所以()P A B I = ()P A ⋅ ()P B ,由此可得,
()p A B U = ()P A + ()P B -- ()P A B I = ()P A + ()P B --
()
P B,即0.7=0.4+X-0.4X解得X=0.5 P A⋅()。