高一数学函数的基本性质(教师版)

合集下载

高中数学教案《函数的基本性质》

高中数学教案《函数的基本性质》

教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。

2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。

二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。

教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。

三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。

提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。

明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。

2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。

性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。

示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。

3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。

小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数奇偶性的概念)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数奇偶性的概念)

课件 课件
课件 课件
课件 课件
课件
课件
课件
(2)已知 f(x)=x7-ax5+bx3+cx+2,若 f(-3)=-3,则 f(3)=________.
[思路点拨] (1) fx是偶函数 定原义―点―域对→关称于 求a的值 图y―轴象―对关→称于 求b的值
(2)
令gx=x7-ax5+bx3+cx
―→
判断gx 的奇偶性
(2)由图象知,使函数值 y<0 的 x 的取值集合为(-2,0)∪(2,5).
栏目导航
(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.
[解]
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
(1)如图所示 课件 课件
课件 课件
课件
课件
(2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).
需多项式的奇次项系数为 0,即 a-4=0,则 a=4.
法三:根据二次函数的奇偶性可知,形如 f(x)=ax2+c 的都是偶函数,
因而本题只需将解析式看成是平方差公式,则 a=4.]
栏目导航
1.奇偶性是函数“整体”性质,只有对函数 f(x)定义域内的每一个值 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。

人教版高一数学必修一1.3函数的基本性质(单调性)(共25张PPT)

人教版高一数学必修一1.3函数的基本性质(单调性)(共25张PPT)
择决定命运,环境造就人生!
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他பைடு நூலகம்脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选

人教版高一数学必修一函数的基本性质最大(小)值课件PPT

人教版高一数学必修一函数的基本性质最大(小)值课件PPT
●你是否曾遇到过这种情形,离下课还有一点时间时,你对学生 说:“如果你们保持安静,我就不会再布置更多的任务了。”学生 会有哪些反应? 你是否曾发现自己预先安排的内容已经讲完了,却还没到下课时 间,于是决定给学生布置课堂任务来填补这段空白,此时学生有哪 些反应?
以上这些问题,我们或多或少都曾经历过。我们也都知道,如果 在课堂上学生没有事情可做的话,他们就会自己找事。而且往往 学生自己找来的事都不会是什么好事。
x∈[1,+∞).
(Ⅰ)当a= (Ⅱ)若对任意x∈[1,+∞),f (x)>0恒成立, 试求实数a的取值范围.
课堂小结
1. 最值的概念;
课堂小结
1. 最值的概念; 2. 应用图象和单调性求最值的一般步骤.
课后作业
1. 阅读教材P.30 -P.32; 2.《习案》:作业10
思考题:
1.已知函数f (x)=x2-2x-3,若x∈ [t, t +2]时,求函数f(x)的最值.
你是否曾注意到,有些学生能够立刻着手行动,并且完成的速度也 很快
你是否曾注意到,有些学生再怎样努力,也无法在规定时间内完成 任务。
你是否曾注意到,学生做练习的时候,往往也是最容易出现课堂 纪律问题的时候。比如,有些学生会在完成自己的任务之后,询问 接下来要做什么,有些学生没有专心完成课堂任务,而是做些违纪 动作,还有些学生不停地抱怨自己不明白要做什么?
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最大值.

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
2. f(x)为奇函数 f(-x)=-f(x)
f(x)为偶函数 f(-x)=f(x)
定义域
x≠0
3. f(x)为奇函数,且f(x)在 x=0 处有定义 f(0)=0
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
5. 根据函数奇偶性的特征,可以简化函数图象的画法.
偶函数图象关于 y轴 对称. 奇函数图象关于 原点 对称.
例3、已知函数 y=f(x) 是偶函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
y
相等
0
x
例3、已知函数 y=f(x) 是奇函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
即f ( x 1 ) < f ( x 2 ) 所以,函数 f ( x ) = 3x+2 在 R上是单调增函数。
练习1 证明:函数 f ( x ) = x2+3 在 (0,+∞)上是单调增函数.
练习2 证明函数 y 1 在 (0,+∞)上是单调性. x
证明:设x1, x2是(0,+∞)上任意两个实数,且x1<x2,则
若函数在此区间上是增函数,则区间为单调递增区间

高一数学函数的基本性质

高一数学函数的基本性质
添加标题
当x1<x2时,都有f(x1)<f(x2),
添加标题
那么就说函数y=f(x)在区间I上是单调增函 数,区间I称为函数y=f(x)的单调增区间.
问题: 如何定义单调减函数和单调减区间呢?
函数y=f(x)的定义域为A,区间I A,如 果对于区间I内的任意两个值x1,x2
当x1<x2时,都有f(x1)>f(x2), 那么就说函数y=f(x)在区间I上是单调减函数, 区间I称为函数y=f(x)的单调减区间.
(2)它在定义 域I上的单调性 是怎样的?证明
你的结论。
通过观察图象,先 对函数是否具有某 种性质做
出猜想,然后通过 逻辑推理,证明这 种猜想的正确
性,是研究函数性 质的一种常用方法。
证明:设x1,x2∈(0,+∞),且x1<x2,则
1
1
f ( x1 ) x1 , f ( x2 ) x2
f ( x1 ) f ( x2 )
1 说出y=f(x)的单调区间,以及在各单调区间上 的单调性;
2 指出图象的最高点或最低点,并说明它能体现
函数的什么特征?
y
y
2
-1 o x
o
x
最大值
一般地,设函数y=f(x)的定义域为 I,如果存在实数M满足:
那么,称M是函数y=f(x)的最大值
一.对于任意的x∈I,都有f(x)≤M; 二.存在x0∈I,使得f(x0) = M
= (x1-x2)[(x1+ x2) 2 + x22]
因为 x1<x2 ,则 x1-x2 <0
又 (x1+ x2) 2 + x22>0
所以 f(x1)-f(x2)<0

高中数学人教A版必修1课件:1.3函数的基本性质

高中数学人教A版必修1课件:1.3函数的基本性质
②“对于…”,“任意…”,“都有…”,“ 对于”即两个自变量x1,x2,必须取自给定的 区间;“任意”即不能用特殊值代替;“都有 ”即只要x1<x2,就必须有f(x1)<f(x2)或f(x1)> f(x2).
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)
栏目 导引
第三章 函数的概念与性质
利用奇偶性求函数解析式的思路 (1)“求谁设谁”,即在哪个区间求解析式,x 就设在哪个区间 内. (2)利用已知区间的解析式代入. (3)利用 f(x)的奇偶性写出-f(x)或 f(-x),从而解出 f(x).
栏目 导引
第三章 函数的概念与性质
1.设 f(x)是偶函数,g(x)是奇函数,且 f(x)+g(x)=x2+2x,求 函数 f(x),g(x)的解析式. 解:因为 f(x)是偶函数,g(x)是奇函数, 所以 f(-x)=f(x),g(-x)=-g(x), 由 f(x)+g(x)=2x+x2.① 用-x 代替 x 得 f(-x)+g(-x)=-2x+(-x)2, 所以 f(x)-g(x)=-2x+x2,② (①+②)÷2,得 f(x)=x2. (①-②)÷2,得 g(x)=2x.
条件 当 x1<x2 时
都有 f(x1)<f(x2)
都有 f(x1)>f(x2)
那么就说函数 f(x)在区间 D 上 那么就说函数 f(x)在区间 D 上
结论
是增函数
是减函数
栏目导航
图示
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
栏目导航
思考 1:增(减)函数定义中的 x1,x2 有什么特征?
栏目 导引
第三章 函数的概念与性质
2.(2019·襄阳检测)已知偶函数 f(x)在区间[0,+∞)上单调递减,
则满足 f(2x-1)>f13的实数 x 的取值范围是(
)
A.13,23

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果依照某个肯定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有肯定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范畴A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子成心义的实数的集合; 函数的定义域、值域要写成集合或区间的情势.定义域补充能使函数式成心义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要根据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于 1.(5) 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都成心义的 x 的值组成的集合 .(6)指数为零底不可以等于零构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判定方法:①表达式相同;②定义域一致 (两点必须同时具有)值域补充( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先推敲其定义域 . ( 2 ) . 应熟悉掌控一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 . ( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .3. 高中数学必修一函数的基本性质——函数图象知识归纳(1) 定义:在平面直角坐标系中,以函数y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点P(x , y) 的集合 C ,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 .即记为C={ P(x,y) | y= f(x) , x ∈A }图象 C 一样的是一条光滑的连续曲线 ( 或直线 ), 也多是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2) 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在座标系内描出相应的点 P(x, y) ,最后用平滑的曲线将这些点连接起来 .B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。

7函数的基本性质(一)(单调性、奇偶性、周期性)-教师版

7函数的基本性质(一)(单调性、奇偶性、周期性)-教师版

教学内容概要教学内容【知识精讲】1、函数的单调性 若函数()x f 满足则称函数()x f 在区间D 上是单调递增函数。

若函数()x f 满足则称函数()x f 在区间D 上是单调递减函数。

单调性是函数的局部性质,反映的是函数在其定义域的某个子集上所具备的变化趋势,所以在描述单调性的时候必须阐明单调区间。

2、函数奇偶性(1)函数奇偶性的定义:函数()x f 满足,则称()x f 为奇函数 函数()x f 满足,则称()x f 为偶函数 (2)判断奇偶性的基本步骤:(3)奇函数的性质、、 偶函数的性质、3、函数的周期性对于函数()x f y =,如果存在一个常数()0≠T T ,使得对于定义域内的任意一个x ,都有()()f x T f x +=,那么这个函数()x f 叫做周期函数,非零常数T 叫做()x f 的周期,对于一个周期函数来说,如果在所有的周期中存在一个最小正数,那么这个最小正数叫做这个函数的最小正周期。

4、补充常用性质:①若)()(x f a x f -=+,则[])()()()2(x f x f a x f a x f =--=+-=+,即a T 2=; ②若)(1)(x f a x f =+,则)()(11)(1)2(x f x f a x f a x f ==+=+,即a T 2=; ③若)(1)(x f a x f -=+,则)()(11)(1)2(x f x f a x f a x f =--=+-=+,即a T 2=。

④若)(1)(1)2(x f x f a x f -+=+或)(1)(1)2(x f x f a x f +-=+,a T 2= ⑤如果奇函数满足)()(x f T x f -=+则可以推出其周期是T 2,且可以推出对称轴为kT Tx 22+=)(z k ∈,根据)2()(T x f x f +=可以找出其对称中心为)0(kT ,)(z k ∈(以上0≠T )如果偶函数满足)()(x f T x f -=+则亦可以推出周期是T 2,且可以推出对称中心为)0,22(kT T+)(z k ∈,根据)2()(T x f x f +=可以推出对称轴为kT T x 2+=)(z k ∈(以上0≠T )。

函数的基本性质高一数学人教版(必修1)

函数的基本性质高一数学人教版(必修1)

第一章 集合与函数概念1.3 函数的基本性质一、函数的单调性 1.函数单调性的定义一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是增函数;如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是减函数.对函数单调性的理解(1)定义中的x 1,x 2有三个特征:①任意性,即不能用特殊值代替;②属于同一个区间;③有大小,一般令x 1<x 2.学科网(2)增、减函数的定义实现自变量的大小关系与函数值的大小关系的直接转化:若()f x 是增函数,则()()1212f x f x x x ⇔<<;若()f x 是减函数,则()()1212f x f x x x ⇔<>.2.函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)___________,区间D 叫做y =f (x )的___________.对函数单调区间的理解(1)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接.(2)函数的单调性是函数的局部性质,体现在函数的定义域或其子区间上,所以函数的单调区间是其定义域的子集.(3)函数的单调性是对某个区间而言的,在某一点上不存在单调性.(4)并非所有的函数都具有单调性.如函数()1,0,x x f x ⎧=⎨⎩是有理数是无理数就不具有单调性.常见函数的单调性函数类型单调性一次函数()0y kx b k =+≠0k > 在R 上单调递增 0k <在R 上单调递减反比例函数(0)ky k x=≠0k >单调减区间是(,0)-∞和(0,)+∞ 0k <单调增区间是(,0)-∞和(0,)+∞二次函数2()0y ax bx c a +≠+=0a > 单调减区间是(,)2b a -∞-,单调增区间是[,)2ba-+∞ 0a < 单调减区间是[,)2b a -+∞,单调增区间是(,)2b a-∞-二、函数的最大(小)值 1.最大值一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有___________; (2)存在0x I ∈,使得___________. 那么,我们称M 是函数()y f x =的最大值. 函数的最大值对应图象最高点的纵坐标. 2.最小值一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: (1)对于任意的x I ∈,都有___________; (2)存在0x I ∈,使得___________. 那么,我们称m 是函数()y f x =的最小值.函数的最小值对应图象最低点的纵坐标.函数的最值与单调性的关系如果函数()y f x =在区间(],a b 上是增函数,在区间[),b c 上是减函数,则函数()y f x =,,()x a c ∈在x b =处有最大值()f b .如果函数()y f x =在区间(],a b 上是减函数,在区间[),b c 上是增函数,则函数()y f x =,,()x a c ∈在x b =处有最小值()f b .如果函数()y f x =在区间[],a b 上是增(减)函数,则在区间[],a b 的左、右端点处分别取得最小(大)值和最大(小)值. 三、函数的奇偶性一般地,如果对于函数f (x )的定义域内任意一个x ,都有___________,那么函数f (x )就叫做偶函数. 一般地,如果对于函数f (x )的定义域内任意一个x ,都有___________,那么函数f (x )就叫做奇函数.函数具有奇偶性的条件(1)①首先考虑定义域是否关于原点对称,如果定义域不关于原点对称,则函数是非奇非偶函数; ②在定义域关于原点对称的前提下,进一步判定()f x -是否等于()f x ±.(2)分段函数的奇偶性应分段说明()f x -与()f x 的关系,只有当对称区间上的对应关系满足同样的关系时,才能判定函数的奇偶性.(3)若奇函数的定义域包括0,则()00f =.四、奇函数、偶函数的图象特征如果一个函数是奇函数,则这个函数的图象是以___________为对称中心的中心对称图形;反之,如果一个函数的图象是以___________为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则这个函数的图象是以___________为对称轴的轴对称图形;反之,如果一个函数的图象关于___________对称,则这个函数是偶函数.奇、偶函数的单调性根据奇、偶函数的图象特征,可以得到:(1)奇函数在关于原点对称的区间上有相同的单调性,偶函数在关于原点对称的区间上有相反的单调性.上述结论可简记为“奇同偶异”.(2)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.性质法判断函数的奇偶性()f x ,()g x 在它们的公共定义域上有下面的结论:()f x()g x()()f x g x +()()f x g x -()()f x g x(())f g x偶函数偶函数偶函数偶函数偶函数偶函数偶函数 奇函数 不能确定 不能确定 奇函数 偶函数奇函数 偶函数 不能确定 不能确定 奇函数 偶函数奇函数 奇函数 奇函数 奇函数 偶函数 奇函数K 知识参考答案:一、1.()()12f x f x < ()()12f x f x > 2.单调性 单调区间二、1.(1)()f x M ≤ (2)0()f x M = 2.(1)()f x m ≥ (2)0()f x m = 三、()()f x f x -= ()()f x f x -=- 四、坐标原点 坐标原点 y 轴 y 轴K—重点1.函数的单调性及其几何意义,函数的最大(小)值及其几何意义;2.函数的奇偶性及其判断方法;3.奇函数、偶函数的图象特征;K—难点1.利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值;2.函数奇偶性的判断方法;K—易错1.写函数的单调区间或利用单调区间求解时,首先要关注函数的定义域,否则容易出错;2.需注意单调区间与在区间上单调的区别;3.在判断函数的奇偶性时,不仅要关注定义域是否关于原点对称,而且要注意函数的奇偶性是针对定义域的任意一个x而言的.另外,不要忽略奇函数若在原点处有定义,则(0)0f .1.函数单调性的判断或证明(1)判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格按照单调性的定义操作.利用定义法判断(或运用)函数的单调性的步骤为:(2)若判断复合函数的单调性,则需将函数解析式分解为一些简单的函数,然后判断外层函数和内层函数的单调性,外层函数和内层函数的单调性相同时,则复合函数单调递增;外层函数和内层函数的单调性相反时,则复合函数单调递减.可简记为“同增异减”,需要注意内层函数的值域在外层函数的定义域内.(3)函数单调性的常用结论:①若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; ②若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; ③函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; ④函数()()()0y f x f x =≥在公共定义域内与()y f x =的单调性相同.【例1】证明:函数21()f x x x=-在区间(0,+∞)上是增函数. 【答案】证明详见解析.【名师点睛】函数单调性判断的等价变形:()f x 是增函数⇔对任意12x x <,都有12()()f x f x <,或1212()()0f x f x x x ->-,或1212(()())()0f x f x x x -->;()f x 是减函数⇔对任意12x x <,都有12()()f x f x >,或1212()()0f x f x x x -<-,或1212(()())()0f x f x x x --<.2.单调性的应用函数单调性的应用主要有:(1)由12,x x 的大小关系可以判断()1f x 与()2f x 的大小关系,也可以由()1f x 与()2f x 的大小关系判断出12,x x 的大小关系.比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质转化到同一个单调区间上进行比较.(2)利用函数的单调性,求函数的最大值和最小值.(3)利用函数的单调性,求参数的取值范围,此时应将参数视为已知数,依据函数的单调性,确定函数的单调区间,再与已知单调区间比较,即可求出参数的取值范围.若函数为分段函数,除注意各段的单调性外,还要注意衔接点.(4)利用函数的单调性解不等式.首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.【例2】若函数()223()1f x ax a x a -+=-在[1,+∞)上是增函数,求实数a 的取值范围. 【答案】0≤a ≤1【名师点睛】本题中()223()1f x ax a x a -+=-不一定是二次函数,所以要对a 进行讨论.另外,需熟练掌握一次函数、反比例函数和二次函数的单调性,并能灵活应用. 3.求函数的最大(小)值求函数最大(小)值的常用方法有:(1)配方法,对于“二次函数类”的函数,一般通过配方法求最值; (2)图象法,对于图象较为容易画出来的函数,可借助图象直观求出最值;(3)单调性法,对于较复杂的函数,分析单调性(需给出证明)后,可依据单调性确定函数最值; (4)若函数存在最值,则最值一定是值域两端处的值,所以求函数的最大(小)值可利用求值域的方法. 注意:(1)无论用哪种方法求最值,都要考查“等号”是否成立.(2)函数的值域是一个集合,函数的最值是一个函数值,它是值域的一个元素,函数的值域一定存在,但函数并不一定有最大(小)值.【例3】已知函数()223f x x x =--,若x ∈[t ,t +2],求函数f (x )的最值. 【答案】答案详见解析.【解析】易知函数()223f x x x =--的图象的对称轴为直线x =1,(1)当1≥t +2,即t ≤-1时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=t 2+2t -3. (2)当22t t ++≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (1)=-4. (3)当t ≤1<22t t ++,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (1)=-4. (4)当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有2223,0()23,0t t t g t t t t ⎧--≤⎪=⎨+->⎪⎩ ,2223,1()4,1123,1t t t t t t t t ϕ⎧+-≤-⎪=--<≤⎨⎪-->⎩. 【名师点睛】求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值; 二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,若含有参数,则要根据对称轴与x 轴的交点与区间的位置关系对参数进行分类讨论,解题时要注意数形结合. 4.判断函数的奇偶性 判断函数奇偶性的方法: (1)定义法:(2)图象法:(3)性质法:利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断. 判断()f x -与()f x 的关系时,也可以使用如下结论: 如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 【例4】下列判断正确的是A .函数22)(2--=x xx x f 是奇函数B .函数2()1f x x x =-C .函数2211,02()11,02x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩是偶函数D .函数1)(=x f 既是奇函数又是偶函数 【答案】B【解析】对于A ,22)(2--=x xx x f 的定义域为2x ≠,不关于原点对称,不是奇函数.对于B ,2()1f x x x =-2()1f x x x -=--对于C ,函数的定义域为(,0)(0,)-∞+∞,关于原点对称.当0x >时,2211()()1(1)()22f x x x f x -=---=-+=-;当0x <时,2211()()11()22f x x x f x -=-+=+=-.综上可知,函数()f x 是奇函数.对于D ,1)(=x f 的图象为平行于x 轴的直线,不关于原点对称,不是奇函数.【名师点睛】对于C ,判断分段函数的奇偶性时,应分段说明()f x -与()f x 的关系,只有当对称的两段上都满足相同的关系时,才能判断其奇偶性.若D 项中的函数是()0f x =,且定义域关于原点对称,则函数既是奇函数又是偶函数. 5.奇偶函数图象对称性的应用奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此可以借助函数一部分的图象得出函数另一部分的图象,进而研究函数的性质.【例5】设奇函数()f x 的定义域为[5,5]-.若当[0,5]x ∈时,()f x 的图象如图所示,则不等式()0f x <的解集是A .(2,0)(2,5)-B .(5,2)(2,5)--C .[2,0](2,5]-D .(2,0)(2,5]-【答案】D【名师点睛】利用数形结合思想解题时,要准确画出草图,并注意特殊点的位置,且求解时不要忽略定义域的限制.6.函数奇偶性的应用(1)利用奇偶性的定义求函数的值或参数的值,这是奇偶性定义的逆用,注意利用常见函数(如一次函数、反比例函数、二次函数)具有奇偶性的条件求解.(2)利用奇偶性求函数的解析式,已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可.(3)利用奇偶性比较大小,通过奇函数在关于原点对称的两个区间上的单调性一致,偶函数在关于原点对称的两个区间上的单调性相反,把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上比较大小.【例6】设偶函数()f x 的定义域为R ,当x [0,)∈+∞时()f x 是增函数,则(2)f -,(π)f ,(3)f -的大小关系是A .(π)f >(3)f ->(2)f -B .(π)f >(2)f ->(3)f -C .(π)f <(3)f -<(2)f -D .(π)f <(2)f -<(3)f -【答案】A【解析】由函数为偶函数得()()()()22,33f f f f -=-=,当x [0,)∈+∞时()f x 是增函数,所以(π)f >()()32f f >,从而(π)f >(3)f ->(2)f -.【名师点睛】由于偶函数在y 轴两侧的单调性相反,故不可直接由π>23->-得出(π)(2)(3)f f f >->-.7.对单调区间和在区间上单调两个概念的理解【例7】已知二次函数2()2(1)6f x x a x =--+在区间(,5]-∞上单调递减,求实数a 的取值范围. 【错解】易知函数2()2(1)6f x x a x =--+的图象的对称轴为直线1x a =-,由题意知()f x 在区间(,5]-∞上单调递减,所以15a -=,解得6a =.【错因分析】错解中把在区间上单调误认为是单调区间,若把本题改为二次函数2()2(1)6f x x a x =--+的单调递减区间是(,5]-∞,则错解中的解法是正确的.【正解】易知函数2()2(1)6f x x a x =--+的图象的对称轴为直线1x a =-,由题意知()f x 在区间(,5]-∞上单调递减,所以15a -≥,解得6a ≥.【名师点睛】单调区间是一个整体概念,比如说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I .而函数在某一区间上单调,则指此区间是相应单调区间的子区间,一定要区分开. 8.判断函数奇偶性时,注意定义域【例8】判断函数42()3,(2,2]f x x x x =+∈-的奇偶性.【错解】因为4242()()3()3()f x x x x x f x -=-+-=+=,所以函数42()3,(2,2]f x x x x =+∈-是偶函数. 【错因分析】判断函数的奇偶性时,需先判断函数的定义域是否关于原点对称.【正解】函数42()3,(2,2]f x x x x =+∈-的定义域为(2,2]-,不关于原点对称,故函数42()3,(2,2]f x x x x =+∈-既不是奇函数又不是偶函数.【名师点睛】由函数奇偶性的定义可知,具有奇偶性的函数的定义域必是关于原点对称的.1.集合{x |x ≥2}表示成区间是A .(2,+∞)B .[2,+∞)C .(–∞,2)D .(–∞,2]2.集合{x |x >0且x ≠2}用区间表示出来A .(0,2)B .(0,+∞)C .(0,2)∪(2,+∞)D .(2,+∞)3.函数f (x )=(x –1)2的单调递增区间是A .[0,+∞)B .[1,+∞)C .(–∞,0]D .(–∞,1]4.已知函数f (x )=–1+11x -(x ≠1),则f (x ) A .在(–1,+∞)上是增函数 B .在(1,+∞)上是增函数 C .在(–1,+∞)上是减函数D .在(1,+∞)上是减函数5.函数y =f (x ),x ∈[–4,4]的图象如图所示,则函数f (x )的所有单调递减区间为A .[–4,–2]B .[1,4]C .[–4,–2]和[1,4]D .[–4,–2]∪[1,4]6.函数g (x )=|x |的单调递增区间是A .[0,+∞)B .(–∞,0]C .(–∞,–2]D .[–2,+∞)7.已知f (x )是定义在[0,+∞)上单调递增的函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是A .1223⎛⎫ ⎪⎝⎭,B .23⎛⎫-∞ ⎪⎝⎭,C .1223⎡⎫⎪⎢⎣⎭,D .23⎛⎤-∞ ⎥⎝⎦,8.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)9.函数254y x x =-+的单调递增区间是A .52⎡⎫+∞⎪⎢⎣⎭,B .542⎡⎫⎪⎢⎣⎭,C .[4,+∞)D .[)5142⎡⎫+∞⎪⎢⎣⎭,,,10.已知函数f (x )是定义域为R 的奇函数,且f (1)=–2,那么f (–1)+f (0)=A .–2B .0C .1D .211.函数f (x )=1x–x 的图象关于 A .坐标原点对称 B .x 轴对称C .y 轴对称D .直线y =x 对称12.函数f (x )=x 3+x 的图象关于A .y 轴对称B .直线y =–x 对称C .坐标原点对称D .直线y =x 对称13.用区间表示数集{x |2<x ≤4}=___________.14.奇函数f (x )的图象关于点(1,0)对称,f (3)=2,则f (1)=___________. 15.y =f (x )为奇函数,当x >0时f (x )=x (1–x ),则当x <0时,f (x )=___________.16.函数f(x)=x+2x(x>0)的单调减区间是A.(2,+∞)B.(0,2)C+∞)D.(017.函数f(x)=x+bx(b>0)的单调减区间为A.()B.(–∞,,+∞)C.(–∞,)D.(,0),(0)18.函数f(x)=x+3|x–1|的单调递增区间是A.(–∞,+∞)B.(1,+∞)C.(–∞,1)D.(0,+∞)19.函数y=21xx-+,x∈(m,n]最小值为0,则m的取值范围是A.(1,2)B.(–1,2).C.[1,2)D.[–1,2)20.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A.13-B.13C.12-D.1221.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2–2x,则当x<0时,f(x)的解析式是A.f(x)=–x(x+2)B.f(x)=x(x–2)C.f(x)=–x(x–2)D.f(x)=x(x+2)22.已知函数y=f(x)是R上的偶函数,且f(x)在[0,+∞)上是减函数,若f(a)≥f(–2),则a的取值范围是A.a≤–2 B.a≥2C.a≤–2或a≥2D.–2≤a≤223.已知一个奇函数的定义域为{–1,2,a,b},则a+b=A.–1 B.1 C.0 D.224.已知函数f(x)=–x|x|+2x,则下列结论正确的是A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(–∞,–1)C .f (x )是奇函数,递增区间是(–∞,–1)D .f (x )是奇函数,递增区间是(–1,1) 25.奇函数y =f (x )的局部图象如图所示,则A .f (2)>0>f (4)B .f (2)<0<f (4)C .f (2)>f (4)>0D .f (2)<f (4)<026.已知函数f (x )=x 3–3x ,求函数f (x )在[–3,32]上的最大值和最小值.27.(2017•浙江)若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关28.(2017•新课标全国Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]29.(2017•新课标Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(–∞,0)时,f (x )=2x 3+x 2,则f(2)=__________. 30.(2016•北京)函数()(2)1xf x x x =≥-的最大值为_________.1 2 3 4 5 6 7 8 9 10 11 12 B C B D C A C B C D A C 16 17 18 19 20 21 22 23 24 25 27 28 DDBDBADADABD1.【答案】B【解析】集合{x |x ≥2}表示成区间是[2,+∞),故选B . 2.【答案】C【解析】集合{x |x >0且x ≠2}用区间表示为:(0,2)∪(2,+∞).故选C .5.【答案】C【解析】由如图可得,f (x )在[–4,–2]递减,在[–2,1]递增,在[1,4]递减,可得f (x )的减区间为 [–4,–2],[1,4].故选C .6.【答案】A【解析】x ≥0,时,g (x )=x ,x <0时,g (x )=–x ,故函数在[0,+∞)递增,故选A . 7.【答案】C【解析】∵f (x )是定义在[0,+∞)上单调递增的函数,∴不等式()1213f x f ⎛⎫-< ⎪⎝⎭等价为0≤2x –1<13,即12≤x <23,即不等式的解集为1223⎡⎫⎪⎢⎣⎭,,故选C . 8.【答案】B【解析】∵y =|x –2|=2222x x x x -≥⎧⎨-+<⎩,,,∴函数y =|x –2|的单调递减区间是(–∞,2],∴f (x )=–|x –2|的单调递减区间是[2,+∞),故选B.11.【答案】A【解析】函数f(x)=1x–x,定义域为{x|x≠0}关于原点对称,f(–x)=–1x+x=–f(x),则f(x)为奇函数,图象关于原点对称.故选A.12.【答案】C【解析】∵f(–x)=–x3–x=–f(x),∴函数f(x)=x3+x为奇函数,∵奇函数的图象关于原点对称,故选C.13.【答案】(2,4]【解析】数集{x|2<x≤4}=(2,4],故答案为:(2,4].14.【答案】2【解析】奇函数f(x)的图象关于点(1,0)对称,f(3)=2,所以f(–1)=–2,所以f(1)=–f(–1)=2,故答案为:2.15.【答案】x2+x【解析】∵f(x)为奇函数,x>0时,f(x)=x(1–x),∴当x<0时,–x>0,f(x)=–f(–x)=–(–x (1+x))=x(1+x),即x<0时,f(x)=x(1+x),故答案为:x2+x.16.【答案】D【解析】函数f(x)=x+2x(x>0),根据对勾函数图象及性质可知,函数f(x)=x+2x(x>02,+∞)单调递增,函数f(x)在(02)单调递减.故选D.17.【答案】D【解析】函数f(x)=x+bx(b>0),的导数为f′(x)=1–2bx,由f′(x)<0,即为x2<b,解得b<x<0或0<x b,则f(x)的单调减区间为(b,0),(0b).故选D.18.【答案】B【解析】函数f(x)=x+3|x–1|,当x≥1时,f(x)=x+3x–3=4x–3,可得f(x)在(1,+∞)递增;当x<1时,f(x)=x+3–3x=3–2x,可得f(x)在(–∞,1)递减.故选B.19.【答案】D【解析】函数y=2313111x xx x x---==+++–1,且在x∈(–1,+∞)时,函数y是单调递减函数,在x=2时,y取得最小值0;根据题意x∈(m,n]时y的最小值为0,∴m的取值范围是–1≤m<2.故选D.22.【答案】D【解析】由题意可得|a|≤2,∴–2≤a≤2,故选D.23.【答案】A【解析】因为一个奇函数的定义域为{–1,2,a,b},根据奇函数的定义域关于原点对称,所以a与b 有一个等于1,一个等于–2,所以a+b=1+–2=–1.故选A.24.【答案】D【解析】由题意可得函数定义域为R,∵函数f(x)=–x|x|+2x,∴f(–x)=x|–x|–2x=–f(x),∴f(x)为奇函数,当x≥0时,f(x)=–x2+2x=–(x–1)2+1,由二次函数可知,函数在(0,1)单调递增,在(1,+∞)单调递减;由奇函数的性质可得函数在(–1,0)单调递增,在(–∞,–1)单调递减;综合可得函数的递增区间为(–1,1),故选D.25.【答案】A【解析】∵函数f(x)为奇函数,∴其图象关于原点对称.由题图可知,f(–4)>0>f(–2),即–f(4)>0> –f(2),∴f(2)>0>f(4).故选A.26.【答案】最大值是2,最小值是–18【解析】f′(x)=3x2–3=3(x+1)(x–1),令f′(x)>0,解得:x>1或x<–1,令f′(x)<0,解得:–1<x<1,故f (x )在[–3,–1)递增,在(–1,1)递减,在(1,32]递增, 而f (–3)=–27+9=–18,f (–1)=2,f (1)=–2,f (32)=–98,故函数的最大值是2,最小值是–18. 27.【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值. 28.【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3],选D. 29.【答案】12【解析】∵当x ∈(–∞,0)时,f (x )=2x 3+x 2,∴f (–2)=–12,又∵函数f (x )是定义在R 上的奇函数,∴f (2)=12,故答案为:12. 30.【答案】2【解析】1()11121f x x =+≤+=-,即最大值为2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学函数的基本性
质(教师版)
work Information Technology Company.2020YEAR
学科教师辅导讲义
答案:
【课后练习】(可作为单元测试卷) 一、选择题
1.下面说法正确的选项 ( )
A .函数的单调区间可以是函数的定义域
B .函数的多个单调增区间的并集也是其单调增区间
C .具有奇偶性的函数的定义域定关于原点对称
D .关于原点对称的图象一定是奇函数的图象 2.在区间)0,(-∞上为增函数的是 ( )
A .1=y
B .21+-=
x
x
y C .122---=x x y D .21x y +=
3.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 ( ) A .2-≥b B .2-≤b C .2->b D . 2-<b
4.如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有
( )
A .最大值
B .最小值
C .没有最大值
D . 没有最小值 5.函数px x x y +=||,R x ∈是
( )
A .偶函数
B .奇函数
C .不具有奇偶函数
D .与p 有关。

相关文档
最新文档