MATLAB数据及其运算_习题答案
matlab 部分答案
课
D=A.*B
后
答
MATLAB: A=[1,4,8,13; -3,6,-5,-9; 2,-7,-12,-8];
案
网
8 13 ⎤ ⎡ 5 4 3 −2 ⎤ ⎡1 4 ⎥ ⎢ ⎥ 10. 设 A = ⎢ −3 6 −5 −9 ⎥ , B = ⎢ ⎢ 6 −2 3 − 8 ⎥ ⎢ ⎢ ⎣ −1 3 −9 7 ⎥ ⎦ ⎣ 2 −7 −12 −8⎥ ⎦
2
+ y2 )
,求定义域 x = [−2, 2] , y = [−2, 2] 内的 z 值(网格取 0.1 见方) ,并绘制
15.设 x = cos(t ) , y = sin( Nt + α ) ,若 N = 2 , α = 0, π / 3, π / 2, π ,在 4 个子图中分别画出其
MATLAB: t=0:0.01:3; N=2;
4. 用三点公式计算 y=f(x)在 x=1.0,1.2 处的导数值, f(x)值由下表给出; x f(x)
5
1.0 0.25
4
1.1
ww w
1.2
2
.k
1.3 0.1890 1.4 0.1736
后
7. 求解下列线性常微分方程的解析解。
答
6.设方程的根为 x = [−3, −5, −8, −9] ,求它们对应的 x 多项式的系数。
π
2π
课
=∫
0
17.设 ( X , Y ) 的概率密度为
网
⎧ d 2 x dy + − x = et ⎪ ⎪ dt 2 dt ⎨ 2 ⎪ d y + dx + y = 0 ⎪ ⎩ dt 2 dt
dy 。 dx
2π
(完整版)MATLAB)课后实验答案[1]
1 + e2 (2) z = 1 ln( x + 1 + x 2 ) ,其中 x = ⎡⎢ 2⎣-0.45 ⎦2 2 ⎪t 2 - 2t + 1 2 ≤ t <3 ⎨实验一MATLAB 运算基础1. 先求下列表达式的值,然后显示 MATLAB 工作空间的使用情况并保存全部变量。
(1) z = 2sin 8501221 + 2i ⎤5 ⎥(3) z = e 0.3a - e -0.3asin(a + 0.3) + ln 0.3 + a ,a = -3.0, - 2.9, L , 2.9, 3.03⎧t 2 0 ≤ t < 1 (4) z = ⎪t 2 - 11 ≤ t <2 ,其中 t=0:0.5:2.5 4⎩解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4.完成下列操作:(1)求[100,999]之间能被21整除的数的个数。
(2)建立一个字符串向量,删除其中的大写字母。
解:(1)结果:m=100:999;n=find(mod(m,21)==0);length(n)ans=43(2).建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch=⎣O2⨯3⎥,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩S⎦阵和对角阵,试通过数值计算验证A=⎢⎥。
matlab习题及答案
matlab习题及答案2. ⽤MATLAB 语句输⼊矩阵A 和B3.假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数⾏提取出来,赋给B 矩阵,⽤magic(8)A =命令⽣成A 矩阵,⽤上述命令检验⼀下结果是不是正确。
4.⽤数值⽅法可以求出∑=++++++==6363622284212i i S ,试不采⽤循环的形式求出和式的数值解。
由于数值⽅法是采⽤double 形式进⾏计算的,难以保证有效位数字,所以结果不⼀定精确。
试采⽤运算的⽅法求该和式的精确值。
5.选择合适的步距绘制出下⾯的图形。
(1))/1sin(t ,其中)1,1(-∈t ;(2))tan(sin )sin(tan t t -,其中),(ππ-∈t6. 试绘制出⼆元函数2222)1(1)1(1),(yx yx y x f z ++++-==的三维图和三视图7. 试求出如下极限。
(1)xxxx 1)93(lim +∞→;(2)11lim0-+→→xy xy y x ;(3)22)()cos(1lim222200y x y x ey x y x +→→++-8. 已知参数⽅程-==tt t y t x sin cos cos ln ,试求出x y d d 和3/22d d π=t x y9. 假设?-=xyt t e y x f 0d ),(2,试求222222y fy x f x f y x ??+-?? 10. 试求出下⾯的极限。
(1)-++-+-+-∞→1)2(1161141121lim 2222n n ;(2))131211(lim 2222ππππn n n n n n n ++++++++∞→ 11. 试求出以下的曲线积分。
(1)?+ls y x d )(22,l 为曲线)sin (cos t t t a x +=,)cos (sin t t t a y -=,)20(π≤≤t 。
(2)?-+++ly y y xe x e yx )dy 2(xy d )(33,其中l 为22222c y b x a =+正向上半椭圆。
matlab课后习题答案第三章
第3章数值数组及其运算习题3及解答1 要求在闭区间]2,0[ 上产生具有10个等距采样点的一维数组。
试用两种不同的指令实现。
〖目的〗●数值计算中产生自变量采样点的两个常用指令的异同。
〖解答〗%方法一t1=linspace(0,2*pi,10)%方法二t2=0:2*pi/9:2*pi %要注意采样间距的选择,如这里的2*pi/9.t1 =Columns 1 through 70 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 Columns 8 through 104.88695.58516.2832t2 =Columns 1 through 70 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 Columns 8 through 104.88695.58516.28322 由指令rng('default'),A=rand(3,5)生成二维数组A,试求该数组中所有大于0.5的元素的位置,分别求出它们的“全下标”和“单下标”。
〖目的〗●数组下标的不同描述:全下标和单下标。
●sub2ind, int2str, disp的使用。
●随机发生器的状态控制:保证随机数的可复现性。
〖解答〗rng('default')A=rand(3,5)[ri,cj]=find(A>0.5);id=sub2ind(size(A),ri,cj);ri=ri';cj=cj';disp(' ')disp('大于0.5的元素的全下标')disp(['行号 ',int2str(ri)])disp(['列号 ',int2str(cj)])disp(' ')disp('大于0.5的元素的单下标')disp(id')A =0.8147 0.9134 0.2785 0.9649 0.95720.9058 0.6324 0.5469 0.1576 0.48540.1270 0.0975 0.9575 0.9706 0.8003大于0.5的元素的全下标行号 1 2 1 2 2 3 1 3 1 3列号 1 1 2 2 3 3 4 4 5 5大于0.5的元素的单下标1 2 4 5 8 9 10 12 13 153 采用默认全局随机流,写出产生长度为1000的“等概率双位(即取-1,+1)取值的随机码”程序指令,并给出 -1码的数目。
matlab 部分答案
4. 用三点公式计算 y=f(x)在 x=1.0,1.2 处的导数值, f(x)值由下表给出; x f(x)
5
1.0 0.25
4
1.1
ww w
1.2
2
.k
1.3 0.1890 1.4 0.1736
后
7. 求解下列线性常微分方程的解析解。
答
6.设方程的根为 x = [−3, −5, −8, −9] ,求它们对应的 x 多项式的系数。
y=x(:,1);
20. 求解线性常微分方程 3 y + 4 y + 5 y + 6 y = 3u + 0.5u + 4u , 在输入 u(t)为单位脉冲
''' '' ' '' '
并单位阶跃信号时的解析解。
第四章 习题
1.若 x(n) = cos(
课
2.求有限长序列 x( n) = 5(0.6) ( 0 ≤ n < 20 )的圆周移位 f (n) = x((n − 10)) 20 R20 ( n) 。
5. 创建 3×4 矩阵魔方阵和相应的随机矩阵,将两个矩阵并接起来,然后提取任意两个列向
6. 创建一个 4×4 单位阵,提取对角线以上部分。
8. 创建一个 5×5 随机阵并求其逆。 9. 利用上题的矩阵,计算矩阵的 5 次方。
求 C = A * B , D = A.* B 。
B=[5,4,3,-2; 6,-2,3,-8; -1,3,-9,7]; C=A*B
部分习题与解答
第二章 习题及部分解答
1 1. 计算 y = x3 + ( x − 0.98) 2 /( x + 1.35)3 − 5( x + ) ,当 x = 2 和 x = 4 时的值。 x
matlab课后习题答案(附图)
matlab课后习题答案(附图)习题2.1画出下列常见曲线的图形y (1)⽴⽅抛物线3x命令:syms x y;ezplot('x.^(1/3)')(2)⾼斯曲线y=e^(-X^2);命令:clearsyms x y;ezplot('exp(-x*x)')(3)笛卡尔曲线命令:>> clear>> syms x y;>> a=1;>> ezplot(x^3+y^3-3*a*x*y)(4)蔓叶线命令:>> clear>> syms x y;>> a=1ezplot(y^2-(x^3)/(a-x))(5)摆线:()()tsin-=,=-by1命令:>> clear>> t=0:0.1:2*pi;>> x=t-sin(t);>>y=2*(1-cos(t)); >> plot(x,y)7螺旋线命令:>> clear >> t=0:0.1:2*pi; >> x=cos(t); >> y=sin(t); >> z=t;>>plot3(x,y,z)(8)阿基⽶德螺线命令:clear>> theta=0:0.1:2*pi;>> rho1=(theta);>> subplot(1,2,1),polar(theta,rho1)(9) 对数螺线命令:cleartheta=0:0.1:2*pi;rho1=exp(theta);subplot(1,2,1),polar(theta,rho1)(12)⼼形线命令:>> clear >> theta=0:0.1:2*pi; >> rho1=1+cos(theta); >> subplot(1,2,1),polar(theta,rho1)练习2.21. 求出下列极限值(1)nnn n3→命令:>>syms n>>limit((n^3+3^n)^(1/n)) ans = 3(2))121(lim n n n n ++-+∞→命令:>>syms n>>limit((n+2)^(1/2)-2*(n+1)^(1/2)+n^(1/2),n,inf) ans = 0(3)x x x 2cot lim 0→命令:syms x ;>> limit(x*cot(2*x),x,0) ans = 1/2 (4))(coslimcm xx ∞→命令:syms x m ; limit((cos(m/x))^x,x,inf) ans = 1(5))111(lim 1--→exx x命令:syms x>> limit(1/x-1/(exp(x)-1),x,1) ans =(exp(1)-2)/(exp(1)-1) (6))(2lim x x xx -+∞>> limit((x^2+x)^(1/2)-x,x,inf)ans = 1/2练习2.41. 求下列不定积分,并⽤diff 验证:(1)+x dxcos 1>>Clear >> syms x y >> y=1/(1+cos(x)); >> f=int(y,x) f =tan(1/2*x) >> y=tan(1/2*x); >> yx=diff(y ,x); >> y1=simple(yx) y1 =1/2+1/2*tan(1/2*x)^2 (2)+exdx1clear syms x yy=1/(1+exp(x));f=int(y,x) f =-log(1+exp(x))+log(exp(x)) syms x yy=-log(1+exp(x))+log(exp(x)); yx=diff(y,x); y1=simple(yx) y1 = 1/(1+exp(x)) (3)dx x x ?sin 2syms x yy=x*sin(x)^2; >> f=int(y,x) f =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2 clearsyms x y y=x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2; yx=diff(y,x); >> y1=simple(yx) y1 = x*sin(x)^2 (4)xdx ?sec3syms x y y=sec(x)^3;f=int(y,x) f =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)) clear syms x yy=1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)); yx=diff(y,x); y1=simple(yx) y1 =1/cos(x)^32. 求下列积分的数值解 1)dx x-10clearsyms xy=int(x^(-x),x,0,1) y =int(x^(-x),x = 0 .. 1) vpa(y,10) ans =1.291285997 2)xdx e x cos3202?πclearsyms xy=int(exp(2*x)*cos(x)^3,x, clear syms xy=int((1/(2*pi)^(1/2))*exp(-x^2/2),x,0,1) y =7186705221432913/36028797018963968*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/0,2*pi) y =22/65*exp(pi)^4-22/65vpa(ans,10)(3)dx xe21221-π>> clear >> syms x>> y=int(1/(2*pi)^(1/2)*exp(-x^2/2),0,1); >> vpa(y,14) ans =.341344746068552(4)>> clear >> syms x>> y=int(x*log(x^4)*asin(1/x^2),1,3); Warning: Explicit integral could not be found. > In sym.int at 58 >> vpa(y,14) ans = 2.45977212823752(5) >> clear >> syms x1判断下列级数的收敛性,若收敛,求出其收敛值。
第2章--MATLAB数据及其运算-习题答案教学内容
第2章--M A T L A B数据及其运算-习题答案第2章 MATLAB数据及其运算习题2一、选择题1.下列可作为MATLAB合法变量名的是()。
D A.合计 B.123 C.@h D.xyz_2a 2.下列数值数据表示中错误的是()。
CA.+10 B.1.2e-5 C.2e D.2i3.使用语句t=0:7生成的是()个元素的向量。
A A.8 B.7 C.6 D.54.执行语句A=[1,2,3;4,5,6]后,A(3)的值是()。
B A.1 B.2 C.3 D.45.已知a为3×3矩阵,则a(:,end)是指()。
D A.所有元素 B.第一行元素C.第三行元素 D.第三列元素6.已知a为3×3矩阵,则运行a (1)=[]后()。
A A.a变成行向量 B.a变为2行2列C.a变为3行2列 D.a变为2行3列7.在命令行窗口输入下列命令后,x的值是()。
B >> clear>> x=i*jA.不确定 B.-1 C.1 D.i*j 8.fix(354/100)+mod(354,10)*10的值是()。
D A.34 B.354 C.453 D.439.下列语句中错误的是()。
BA.x==y==3 B.x=y=3C.x=y==3 D.y=3,x=y10.find(1:2:20>15)的结果是()。
CA.19 20 B.17 19C.9 10 D.8 911.输入字符串时,要用()将字符括起来。
C A.[ ] B.{ } C.' ' D." " 12.已知s='显示"hello"',则s的元素个数是()。
A A.9 B.11 C.7 D.1813.eval('sqrt(4)+2')的值是()。
BA.sqrt(4)+2 B.4 C.2 D.2, 214.有3×4的结构矩阵student,每个结构有name(姓名)、scores(分数)两个成员,其中scores是以1×5矩阵表示的5门课的成绩,那么要删除第4个学生的第2门课成绩,应采用的正确命令是()。
Matlab习题答案
参考答案: (1) >> (3-5*i)*(4+2*i) ans =
22.0000 -14.0000i
(2) >> sin(2-8*i) ans =
1.3553e+003 +6.2026e+002i
5.判断下面语句的运算结果。 (1) 4 < 20 (2) 4 <= 20 (3) 4 == 20 (4) 4 ~= 20 (5) 'b'<'B' 参考答案: (1) >> 4<20 ans =
y_nearest(i)=interp1(x,y,scalar_x(i),'nearest'); y_linear(i) =interp1(x,y,scalar_x(i),'linear'); y_spline(i) =interp1(x,y,scalar_x(i),'spline'); y_cubic(i) =interp1(x,y,scalar_x(i),'cubic'); end subplot(2,2,1),plot(x,y,'*'),hold on,plot(scalar_x,y_nearest),title('method=nearest'); subplot(2,2,2),plot(x,y,'*'),hold on,plot(scalar_x,y_linear),title('method=linear'); subplot(2,2,3),plot(x,y,'*'),hold on,plot(scalar_x,y_spline),title('method=spline'); subplot(2,2,4),plot(x,y,'*'),hold on,plot(scalar_x,y_cubic),title('method=cubic'); 得到结果为:
matlab习题及答案
matlab习题及答案Matlab习题及答案Matlab是一种强大的数学计算软件,被广泛应用于科学计算、数据分析和工程设计等领域。
在学习和使用Matlab的过程中,习题是一种非常有效的学习方式。
本文将给出一些常见的Matlab习题及其答案,帮助读者更好地掌握Matlab的使用技巧。
一、基础习题1. 计算1到100之间所有奇数的和。
解答:```matlabsum = 0;for i = 1:2:100sum = sum + i;enddisp(sum);```2. 编写一个函数,计算任意两个数的最大公约数。
解答:```matlabfunction gcd = computeGCD(a, b)while b ~= 0temp = b;a = temp;endgcd = a;end```3. 编写一个程序,生成一个5×5的随机矩阵,并计算矩阵的行和列的平均值。
解答:```matlabmatrix = rand(5);row_average = mean(matrix, 2);col_average = mean(matrix);disp(row_average);disp(col_average);```二、进阶习题1. 编写一个程序,实现插入排序算法。
解答:```matlabfunction sorted_array = insertionSort(array)n = length(array);for i = 2:nj = i - 1;while j > 0 && array(j) > keyarray(j+1) = array(j);j = j - 1;endarray(j+1) = key;endsorted_array = array;end```2. 编写一个程序,实现矩阵的转置。
解答:```matlabfunction transposed_matrix = transposeMatrix(matrix) [m, n] = size(matrix);transposed_matrix = zeros(n, m);for i = 1:mfor j = 1:ntransposed_matrix(j, i) = matrix(i, j);endendend```3. 编写一个程序,实现二分查找算法。
习题六(Matlab数值计算)课后习题
习题六(Matlab数值计算)课后习题1、利⽤MATLAB 提供的randn 函数⽣成符合正态分布的10×5随机矩阵A,进⾏如下操作:(1)A 各列元素的均值和标准⽅差。
(2)A 的最⼤元素和最⼩元素。
(3)求A 每⾏元素的和以及全部元素之和。
(4)分别对A 的每列元素按升序、每⾏元素按降序排序。
A=randn(10,5);disp('各列元素的均值:');mean(A)disp('各列元素的标准⽅差:');std(A)disp('A 的最⼤元素:');max(max(A))disp('A 的最⼩元素:');min(min(A))disp('A 每⾏元素之和:');sum(A,2)disp('全部元素之和:');sum(sum(A))disp('每列元素按升序:');Y=sort(A)disp('每⾏元素按降序:');Y=sort(A,2,'descend')各列元素的均值:ans =-0.1095 0.1282 -0.2646 0.3030 -0.2464各列元素的标准⽅差:ans =0.9264 1.2631 0.8129 0.8842 1.3151A 的最⼤元素:ans =2.5855A 的最⼩元素:ans =-1.9330A 每⾏元素之和:ans =-2.29701.25450.06615.0489-0.69881.1002-2.9310-2.0595-1.68780.3112全部元素之和:ans =-1.8932每列元素按升序:Y =-1.2141 -1.4916 -1.4224 -1.1658 -1.9330-1.1135 -1.0891 -1.4023 -0.8045 -1.7947-0.8637 -1.0616 -0.7648 -0.2437 -1.1480-0.7697 -0.7423 -0.6156 0.1978 -0.6669-0.2256 0.0326 -0.1961 0.2157 -0.4390-0.0068 0.0859 -0.1924 0.2916 -0.08250.0774 0.5525 -0.1774 0.6966 0.10490.3714 1.1006 0.4882 0.8351 0.18731.1174 1.5442 0.7481 1.4193 0.72231.53262.3505 0.8886 1.5877 2.5855每⾏元素按降序:Y =1.4193 -0.6156 -0.8637 -1.0891 -1.14800.7481 0.2916 0.1049 0.0774 0.03260.7223 0.5525 0.1978 -0.1924 -1.21412.5855 1.5877 1.1006 0.8886 -1.11351.5442 -0.0068 -0.6669 -0.7648 -0.80451.5326 0.6966 0.1873 0.0859 -1.40230.8351 -0.0825 -0.7697 -1.4224 -1.49160.4882 0.3714 -0.2437 -0.7423 -1.93300.2157 -0.1774 -0.2256 -0.4390 -1.06162.3505 1.1174 -0.1961 -1.1658 -1.79472、按要求对指定函数进⾏插值和拟合。
matlab习题及答案
matlab习题及答案《Matlab习题及答案:提升编程技能,解决实际问题》Matlab是一种强大的数值计算和数据分析工具,它被广泛应用于工程、科学和其他领域的计算和模拟。
为了帮助大家提升编程技能,解决实际问题,我们为大家准备了一些Matlab习题及答案,希望能够帮助大家更好地掌握Matlab的使用。
1. 习题一:编写一个Matlab程序,计算斐波那契数列的前20个数字,并将结果打印出来。
答案:下面是一个简单的Matlab程序,用于计算斐波那契数列的前20个数字。
```matlaba = 0;b = 1;fib = zeros(1, 20);fib(1) = a;fib(2) = b;for i = 3:20fib(i) = fib(i-1) + fib(i-2);enddisp(fib);```2. 习题二:编写一个Matlab程序,求解一个二次方程ax^2 + bx + c = 0的根。
答案:下面是一个简单的Matlab程序,用于求解二次方程的根。
```matlaba = 1;b = -3;c = 2;delta = b^2 - 4*a*c;if delta > 0x1 = (-b + sqrt(delta))/(2*a);x2 = (-b - sqrt(delta))/(2*a);disp(['The roots are ', num2str(x1), ' and ', num2str(x2)]);elseif delta == 0x = -b/(2*a);disp(['The root is ', num2str(x)]);elsedisp('The equation has no real roots');end```通过以上两个习题及答案的示例,我们可以看到Matlab的强大功能和灵活性。
通过练习这些习题,我们可以更好地掌握Matlab的基本语法和常用函数,从而在实际问题中更快更准确地解决数值计算和数据分析的挑战。
第2章 MATLAB数据及其运算_习题答案
第2章 MATLAB数据及其运算习题2一、选择题1.下列可作为MA TLAB合法变量名的是()。
DA.合计B.123 C.@h D.xyz_2a 2.下列数值数据表示中错误的是()。
CA.+10 B.1.2e-5 C.2e D.2i3.使用语句t=0:7生成的是()个元素的向量。
AA.8 B.7 C.6 D.54.执行语句A=[1,2,3;4,5,6]后,A(3)的值是()。
BA.1 B.2 C.3 D.4 5.已知a为3×3矩阵,则a(:,end)是指()。
DA.所有元素B.第一行元素C.第三行元素D.第三列元素6.已知a为3×3矩阵,则运行a (1)=[]后()。
AA.a变成行向量B.a变为2行2列C.a变为3行2列D.a变为2行3列7.在命令行窗口输入下列命令后,x的值是()。
B>> clear>> x=i*jA.不确定B.-1 C.1D.i*j 8.fix(354/100)+mod(354,10)*10的值是()。
DA.34 B.354 C.453D.43 9.下列语句中错误的是()。
BA.x==y==3 B.x=y=3C.x=y==3 D.y=3,x=y10.find(1:2:20>15)的结果是()。
CA.19 20 B.17 19C.9 10 D.8 911.输入字符串时,要用()将字符括起来。
CA.[ ] B.{ } C.' ' D." " 12.已知s='显示"hello"',则s的元素个数是()。
AA.9 B.11 C.7 D.1813.eval('sqrt(4)+2')的值是()。
BA.sqrt(4)+2 B.4 C.2 D.2,214.有3×4的结构矩阵student,每个结构有name(姓名)、scores(分数)两个成员,其中scores是以1×5矩阵表示的5门课的成绩,那么要删除第4个学生的第2门课成绩,应采用的正确命令是()。
matlab课后习题解答第二章
matlab课后习题解答第⼆章第2章符号运算习题2及解答1 说出以下四条指令产⽣的结果各属于哪种数据类型,是“双精度”对象,还是“符号”符号对象3/7+; sym(3/7+; sym('3/7+'); vpa(sym(3/7+)〖⽬的〗不能从显⽰形式判断数据类型,⽽必须依靠class指令。
〖解答〗c1=3/7+c2=sym(3/7+c3=sym('3/7+')c4=vpa(sym(3/7+)Cs1=class(c1)Cs2=class(c2)Cs3=class(c3)Cs4=class(c4)c1 =c2 =37/70c3 =c4 =Cs1 =doubleCs2 =symCs3 =symCs4 =sym2 在不加专门指定的情况下,以下符号表达式中的哪⼀个变量被认为是⾃由符号变量.sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)')〖⽬的〗理解⾃由符号变量的确认规则。
〖解答〗symvar(sym('sin(w*t)'),1)ans =wsymvar(sym('a*exp(-X)'),1)ans = asymvar(sym('z*exp(j*th)'),1) ans = z5求符号矩阵=333231232221131211a a a a a a a a a A 的⾏列式值和逆,所得结果应采⽤“⼦表达式置换”简洁化。
〖⽬的〗理解subexpr 指令。
〖解答〗A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]')DA=det(A) IA=inv(A);[IAs,d]=subexpr(IA,d) A =[ a11, a12, a13] [ a21, a22, a23] [ a31, a32, a33] DA =a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31 IAs =[ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 - a13*a22)] [ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d* (a11*a23 - a13*a21)] [ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 - a12*a21)] d =1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)8(1)通过符号计算求t t y sin )(=的导数dtdy。
MATLAB习题及参考答案
2 9 0 1310,解方程组3 4 11 x 6。
(应用x=a\b)2 2 6 611,求欠定方程组294 73 54x68的最小范数解。
(应用pinv)5习题:6 9 3 2 4 1与b 的数组乘积。
2 7 5 4 6 81,计算a2, 对于AX B,如果A 3726,求解X。
283,已知:a 1 2 34 5 6,分别计算a的数组平方和矩阵平方,并观察其结果。
7 8 94,角度x 30 45 60,求x的正弦、余弦、正切和余切。
(应用sin,cos,4 2 7 15 95,将矩阵a 、b 和c 组合成两个新矩阵:5 7 8 36 2(1)组合成一个4 3的矩阵,第一列为按列顺序排列的a矩阵元素,第二列为按列顺序排列的元素,第三列为按列顺序排列的c矩阵元素,即b矩阵4 7 55 8 62 1 97 3 2(2)按照a、b、c的列顺序组合成一个行矢量,即4527781356926,将(x-6)(x-3)(x-8)展开为系数多项式的形式。
(应用poly,polyvalm)7,求解多项式X3-7X2+2X+40的根。
(应用roots)8,求解在x=8 时多项式(x-1)( x-2) ( x-3)( x-4)的值。
(应用poly,polyvalm)9, 计算多项式4x412x314x25x 9的微分和积分。
(应用polyder,polyint ,poly2sym)2 2计算表达式z 10 x 3 y 5 e x y 的梯度并绘图。
(应用meshgrid, gradient, con tour, holdon, quiver)15,用符号函数法求解方程a t 2+b*t +c=0。
(应用solve )16,用符号计算验证三角等式:(应用syms,simple )用 syms,ezplot)用 plot,title,text,legend)24, x= [66 49 71 56 38] ,绘制饼图,并将第五个切块分离出来。
matlab习题与答案
matlab习题与答案MATLAB习题与答案MATLAB是一种强大的数学软件,被广泛应用于科学、工程和金融等领域。
它不仅提供了丰富的数学函数和工具,还具备强大的数据可视化能力。
在学习和使用MATLAB的过程中,习题与答案的练习是非常重要的一部分。
本文将介绍一些常见的MATLAB习题,并给出相应的答案。
1. 习题:计算一个数组的平均值和标准差。
答案:```matlabA = [1, 2, 3, 4, 5];mean_A = mean(A);std_A = std(A);```2. 习题:生成一个10x10的随机矩阵,并计算其中每一行的和。
答案:```matlabA = rand(10, 10);row_sum = sum(A, 2);```3. 习题:计算两个数组的点积。
答案:```matlabA = [1, 2, 3];B = [4, 5, 6];dot_product = dot(A, B);```4. 习题:将一个字符串数组中的所有元素连接起来。
答案:```matlabstr_array = ["Hello", "World"];joined_str = strjoin(str_array);```5. 习题:计算一个数组中每个元素的平方根。
答案:```matlabA = [1, 4, 9, 16];sqrt_A = sqrt(A);```6. 习题:将一个数组中的所有负数替换为0。
答案:```matlabA = [-1, 2, -3, 4];A(A < 0) = 0;```7. 习题:计算一个矩阵的转置矩阵。
答案:```matlabA = [1, 2, 3; 4, 5, 6];transpose_A = A';```8. 习题:计算一个数组中的最大值和最小值。
答案:```matlabA = [1, 2, 3, 4, 5];max_A = max(A);min_A = min(A);```9. 习题:计算一个矩阵的行列式。
第02章_MATLAB数据及其运算_参考解答
第2章 MATLAB数据及其运算教材P37习题二1. 如何理解“矩阵是MATLAB最基本的数据对象”?答:MATLAB的数据类型有:数值型、字符型、结构体、单元、多维矩阵、稀疏矩阵等。
以上各种数据类型都以矩阵形式存在,所以矩阵是MATLAB最基本的数据对象。
2. 设A和B是两个同维同大小的矩阵,问:(1) A*B和A.*B的值是否相等?(2) A./B和B.\A的值是否相等?(3) A/B和B\A的值是否相等?(4) A/B和B\A所代表的数学含义是什么?答:(1)不相等;(2)不相等;(3)不相等;(4) A/B=A*inv(B); B\A=inv(B)*A;3. 写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1,3,5列元素赋给矩阵B。
(2)删除矩阵A的第7号元素。
(3)将矩阵A的每个元素值加30。
(4)求矩阵A的大小和维数。
(5)将向量t的0元素用机器零来代替。
(6)将含有12个元素的向量x转换成3×4矩阵。
(7)求一个字符的ASCII码。
(8)求一个ASCII码所对应的字符。
答:假设A=rand(5,5)%或假设A=[1,2,3,4,5; 6,7,8,9,10; 11,12,13,14,15; 16,17,18,19,20; 21,22,23,24,25](1) B=A(2:5,[1,3,5]) %或者 B=A(2:5, 1:2:5)(2) A(7)=[](3) A+30(4) size(A), ndims(A)(5) t=0:0.1:1, t(find(t==0))=eps(6) x=1:12, reshape(x,3,4)(7) abs('b') %或者double('b')(8) char(98) %或者setstr(98)4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9; B=10-A;L1=A==B;L2=A<=5;L3=A>3 & A<7;L4=find(A>3&A<7);答:L1L2L3L4L1 =0 0 0 0 1 0 0 0 0L2 =1 1 1 1 1 0 0 0 0L3 =0 0 0 1 1 1 0 0 0L4 =4 5 65. 已知: 23100.7780414565532503269.5454 3.14−⎡⎤⎢⎥−⎢⎥=⎢⎥⎢⎥−⎣⎦A 完成下列操作:(1) 取出A 的前3行构成矩阵B ,前两列构成矩阵C ,右下角3×2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 。
MATLAB习题参考答案(胡良剑
第一章 MATLAB 入门4、求近似解解:>> x=-2:0.05:2;y=x.^4-2.^x两个近似解:y1=f(-0.85)= -0.0328; y2=f(1.250)= 0.0630第二章 MATLAB 编程与作图1、 设x 是数组,求均值和方差解:函数文件如下:function [xx,s]=func1(x)n=length(x);xx=sum(x)/n;s=sqrt((sum(x.^2)-n*xx^2)/(n-1));命令窗口:>> x=[1 2 3 4 5];[xx,s]=func1(x)2、求满足的最小m 值 100)1ln(0>+∑=m n n s=0;n=0;while(s<=100)s=s+log(1+n);n=n+1;endn,s3、用循环语句形成Fibonacci 数列,....4,3,,12121=+===−−k F F F F F k k k 。
并验证极限2511+→−k k F F (提示:计算至两边误差小于精度1e-8为止) 解: 求Fibonacci 数列的函数文件:function f=fun(n)if n<=2f=1;elsef=fun(n-1)+fun(n-2);end验证极限的函数文件:function [k,a]=funTest(e)a=abs(1-(1+sqrt(5))/2);k=2;while(a>e)k=k+1;a=abs(fun(k)/fun(k-1)-(1+sqrt(5))/2);end命令行:>> [k,a]=funTest(10^-8)k =21a =9.7719e-009或者M 文件如下:clear; F(1)=1;F(2)=1;k=2;x=0;e=1e-8; a=(1+sqrt(5))/2;while abs(x-a)>ek=k+1; F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1);enda,x,k4、分别用for 和while 循环结构编写程序,求出∑==610123i i K ,并考虑一种避免循环语句的程序设计,比较各种算法的运行时间。
数值计算与MATLAB方法课后答案
第一章习题1. 序列满足递推关系,取及试分别计算,从而说明递推公式对于计算是不稳定的。
n1 1 0.01 0.00012 0.01 0.0001 0.0000013 0.0001 0.000001 0.000000014 0.000001 0.0000000110-105 0.00000001 10-10n1 1.000001 0.01 0.0000992 0.01 0.000099 -0.000099013 0.000099 -0.00009901-0.010000994 -0.00009901 -0.01000099-1.00015 -0.01000099-1.0001初始相差不大,而却相差那么远,计算是不稳定的。
2. 取y0=28,按递推公式,去计算y100,若取(五位有效数字),试问计算y100将有多大误差?y100中尚留有几位有效数字?解:每递推一次有误差因此,尚留有二位有效数字。
3.函数,求f(30)的值。
若开方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?设z=ln(30-y),,y*, |E(y)| 10-4z*=ln(30-y*)=ln(0.0167)=-4.09235若改用等价公式设z=-ln(30+y),,y*, |E(y)|⨯10-4z*=-ln(30+y*)=-ln(59.9833)=-4.094074.下列各数都按有效数字给出,试估计f的绝对误差限和相对误差限。
1)f=sin[(3.14)(2.685)]设f=sin xyx*=3.14, E(x)⨯10-2, y*=2.685, E(y)⨯10-3,sin(x*y*)=0.838147484, cos(x*y*)=-0.545443667⨯(-0.5454) ⨯⨯10-2+3.14(-0.5454) ⨯⨯10-3|⨯10-2⨯10-2|E r(f)| ⨯10-2⨯10-2<10-22)f=(1.56)设f = x y ,x*=1.56, E(x)⨯10-2, y*=3.414, E(y)⨯10-3,⨯⨯⨯10-2⨯⨯⨯10-3|⨯⨯⨯10-2⨯⨯⨯10-3|=0.051|E r(f)| =0.01125.计算,利用下列等式计算,哪一个得到的结果最好,为什么?6.下列各式怎样计算才能减少误差?7. 求方程x2-56x+1=0的二个根,问要使它们具有四位有效数字,至少要取几位有效数字?如果利用伟达定理, 又该取几位有效数字呢?解一:若要取到四位有效数字,如果利用伟达定理,解二:由定理二,欲使x1,x2有四位有效数字,必须使由定理一知,∆至少要取7位有效数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 MATLAB数据及其运算
习题2
一、选择题
1.下列可作为MATLAB合法变量名的是()。
D
A.合计 B.123 C.@h D.xyz_2a 2.下列数值数据表示中错误的是()。
C
A.+10 B. C.2e D.2i
3.使用语句t=0:7生成的是()个元素的向量。
A A.8 B.7 C.6 D.5
4.执行语句A=[1,2,3;4,5,6]后,A(3)的值是()。
B A.1 B.2 C.3 D.4 5.已知a为3×3矩阵,则a(:,end)是指()。
D
A.所有元素 B.第一行元素
C.第三行元素 D.第三列元素
6.已知a为3×3矩阵,则运行a (1)=[]后()。
A A.a变成行向量 B.a变为2行2列
C.a变为3行2列 D.a变为2行3列
7.在命令行窗口输入下列命令后,x的值是()。
B
>> clear
>> x=i*j
A.不确定 B.-1 C.1 D.i*j 8.fix(354/100)+mod(354,10)*10的值是()。
D
A.34 B.354 C.453 D.43
9.下列语句中错误的是()。
B
A.x==y==3 B.x=y=3
C.x=y==3 D.y=3,x=y
10.find(1:2:20>15)的结果是()。
C
A.19 20 B.17 19
C.9 10 D.8 9
11.输入字符串时,要用()将字符括起来。
C
A.[ ] B.{ } C.' ' D." " 12.已知s='显示"hello"',则s的元素个数是()。
A A.9 B.11 C.7 D.18
13.eval('sqrt(4)+2')的值是()。
B
A.sqrt(4)+2 B.4 C.2 D.2, 2
14.有3×4的结构矩阵student,每个结构有name(姓名)、scores(分数)两个成
员,其中scores是以1×5矩阵表示的5门课的成绩,那么要删除第4个学生的第2门课
成绩,应采用的正确命令是()。
D
A.rmfield(student(1,2).scores(2)) B.rmfield(student(4).scores)
C.student(4).scores(2)=0 D.student(1,2).scores(2)=[] 15.有一个2行2列的单元矩阵c,则c(2)是指()。
B
A.第一行第二列的元素内容 B.第二行第一列的元素内容
C.第一行第二列的元素 D.第二行第一列的元素
二、填空题
1.从键盘直接输入矩阵元素来建立矩阵时,将矩阵的元素用括起来,按矩阵
行的顺序输入各元素,同一行的各元素之间用分隔,不同行的元素之间用
分隔。
中括号,逗号或空格,分号
2.设A=[1,2;3,4],B=[5,6;7,8],则A*B= , A.*B= 。
A*B=[19,22;43,50],A.*B=[5,12;21,32]
3.有3×3矩阵,求其第 5个元素的下标的命令是,求其第三行、第三列元
素的序号的命令是。
[i,j]=ind2sub([3 3],5),ind=sub2ind([3 3],3,3) 4.下列命令执行后的输出结果是。
20
>> ans=5;
>> 10;
>> ans+10
5.下列命令执行后,new_claim的值是。
This is a great example.
claim= 'This is a good example.';
new_claim=strrep(claim,'good','great')
三、应用题
1.命令X=[]与clear X有何不同请上机验证结论。
Clear X是将X从工作空间中删除,而X=[]是给X赋空矩阵。
空矩阵存在于工作空间
中,只是没有任何元素。
2.在一个MATLAB命令中,6?+?7i和6?+ 7*i有何区别i和I有何区别
3.设A和B是两个同大小的矩阵,试分析A*B和A.*B、A./B和B.\A、A/B和B\A的
区别如果A和B是两个标量数据,结论又如何
4.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1,3,5列元素赋给矩阵B。
(2)删除矩阵A的第5号元素。
(3)求矩阵A 的大小和维数。
(4)将向量t 的0元素用机器零来代替。
(5)将含有12个元素的向量x 转换成3?×?4矩阵。
5.已知:
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡---=14.35454.9632053256545410778.01023Α 完成下列操作:
(1)取出 A 的前3行构成矩阵B ,前两列构成矩阵C ,右下角3×2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 。
(2)分别求E<D 、E&D 、E|D 、~E|~D 和find(A>=10&A<25)。
6.建立单元矩阵B ,并回答有关问题。
=1;
=[1:3;4:6];
B{1,1}=1;
B{1,2}='Brenden';
B{2,1}=y;
B{2,2}={12,34,2;54,21,3;4,23,67};
(1)size(B)和ndims(B)的值分别是多少
(2)B(2)和B(4)的值分别是多少
(3)B(3)=[]和B{3}=[]执行后,B 的值分别是多少。