北师大版九年级上册数学矩形的性质教案
北师大课标版初中数学初三上册矩形的性质与判定教学设计
北师大课标版初中数学初三上册1一、教学目标:知识与技能:了解矩形的概念,明白得并把握矩形的有关性质,以及矩形的常用判定方法。
过程与方法:经历探究矩形有关性质和判定方法的过程,在直观操作活动和简单的说理观看中,进展初步的合情推理能力,主动探究适应,逐步把握说理的差不多方法。
情感态度和价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值。
二、学情分析:认知基础:上节课刚学完菱形这一专门的四边形。
这对本节课研究另一种专门四边形——矩形,有着较强的指导作用,且两者的研究思路也专门类似。
如此,学生能够类比菱形来学习矩形。
加之小学时期也接触过长方形,因此学生同意起来比较容易。
活动体会基础:在学习菱形的知识时,学生差不多经历了观看、实验、推理的过程,观看能力、操作能力、合情推理能力,以及数学语言的表达能力都有了较大提高,关于解决本节课的研究主题有专门大关心。
三、教材分析:1、本节课的作用和地位:矩形的概念及其性质是这章的重点内容之一.既是平行四边形知识的延伸,又为学习其它专门平行四边形提供了研究方法和学习策略,也为今后学习其它有关知识奠定了基础,起承上启下的重要作用。
同时本节课还渗透着转化、类比的数学思想,重在训练学生的逻辑思维能力和分析归纳总结的能力。
2、重点:矩形的定义,性质和判定方法。
难点:矩形性质和判定的综合应用。
四、教学预备:教师预备:多媒体以及四根木棍做的平行四边形。
依照学生的数学成绩将学生分为成绩优秀,成绩中等,学困生三组,分别定为A、B、C三组。
学生预备:复习平行四边形、菱形的相关知识点。
五、教学方法与手段:采取发觉与探究相结合的教学方法,依照学生的心理特点,循序渐进的原则,精心编排和分层设置问题,使每一个层次的学生都能在本节课中获得进步,同时也达到面向全体的目的,时学生的主体地位得到充分的表达。
六、教学过程:1、给矩形下定义:学生利用四根木棍做的平行四边形,进行动手操作,观看当平行四边形的一个内角在变化到多少度时,平行四边形会变形为小学学过的长方形?教师也能够采纳多媒体展现此变化过程。
北师大版数学九年级上册1.2矩形的性质与判定(第3课时)教学设计
6.融入情感态度与价值观教育:在教学过程中,注重培养学生的审美观念、团队合作精神和勇于探索的精神。
教学策略:通过设计有趣的活动,如矩形拼接、折叠等,让学生在动手操作的过程中,体验数学的乐趣,培养良好的情感态度与价值观。
1.完成教材中的练习题。
2.结合生活实际,发现并提出与矩形相关的问题。
八、板书设计
1.矩形的性质与判定方法。
2.实际问题的解决方法。
二、学情分析
九年级的学生已经具备了一定的几何图形认知基础,对矩形的性质和判定方法有初步的了解。在此基础上,他们对本节课的学习有以下特点:
1.学生对矩形的性质有一定的认识,但可能对判定方法的掌握不够熟练,需要教师在教学中进行针对性指导。
教学策略:利用多媒体展示生活中的矩形物体,如窗户、桌面等,引导学生观察并思考这些物体的共同特点。
2.自主探究,合作交流:引导学生自主探究矩形的性质与判定方法,鼓励学生在小组内分享心得,共同解决问题。
教学策略:设置具有挑战性的问题,让学生在小组内讨论、探究,培养他们的合作精神和解决问题的能力。
3.梳理知识,突破难点:针对矩形性质与判定方法这一重点,通过讲解、示范、练习等多种方式,帮助学生巩固知识,突破难点。
4.作业提交前,可以与同学相互讨论、交流,提高作业质量。
1.复习上节课的知识点:矩形的定义及基本性质。
2.提问:如何判定一个四边形是矩形?
二、自主学习
1.学生阅读教材,了解矩形的判定方法。
2.教师通过实例演示,引导学生观察、思考、总结矩形的判定方法。
三、课堂讲解
1.讲解矩形的判定方法,如对边平行且相等、对角相等、对角线互相平分等。
北师大版九年级上册2矩形的性质与判定课程设计
北师大版九年级上册2矩形的性质与判定课程设计一、课程目标通过本节课程的学习,旨在让学生掌握矩形的定义、性质和判定方法,了解矩形在生活和实际应用中的重要地位,培养学生的推理和证明能力,探索靠近实际的数学教学方法。
二、教学内容1. 知识点1.矩形的定义与性质2.矩形的判定方法2. 教学形式本次课程主要采用启发式教学方法,通过学生自主探究与合作学习,逐步引导学生掌握矩形的定义、性质和判定方法。
3. 教学过程3.1 导入环节通过提问和数学游戏等形式,快速激发学生学习矩形知识的兴趣,预告本堂课的主要内容。
3.2 自主学习1.学生自主研究矩形的定义,通过组内讨论和解决问题的形式,加深对矩形的认识。
2.学生结合生活中常见矩形的客观事物,如文具盒、窗户等,讨论矩形的特点。
3.学生通过实验探究和举例分析,总结矩形的性质。
4.学生总结出矩形的四个判定条件,讨论对矩形的判定方法。
3.3 合作探究1.将学生分成小组,每组依次讲述矩形的定义、性质、判定方法,其他组进行点评和补充。
2.学生通过小组合作完成课堂练习和课后作业,帮助他们巩固所学知识。
3.4 总结归纳在学生完成课堂练习后,对矩形的定义、性质和判定方法进行总结归纳,强化学生对所学知识的掌握。
3.5 展示交流学生通过展示和交流方式,对所学知识和掌握的方法进行分享和交流,增强沟通和表达能力。
三、教学评价1.采用启发式教学方法,让学生在自主学习与合作探究中获得知识和技能,达到了良好的教学效果。
2.通过课堂练习和课后作业巩固所学知识,培养了学生的学习兴趣和学习计划能力。
3.通过小组互动和展示交流的形式,增强学生的沟通和表达能力,有助于提升学生的综合素质。
四、教学反思在本次课程中,虽然采用了启发式教学方法,但在课堂组织和教学内容设置上还需要进一步探讨和改进,如加强学生的自学能力,提高教师的指导能力等,以更好地完成教学目标。
同时,还应该注重教学评价环节,在课堂评价和教学效果评估上进行更加全面的考虑。
北师大版九年级数学上册1.2.2矩形的性质与判定优秀教学案例
4.反思与评价:在课堂的最后阶段,我组织学生进行反思,让他们回顾本节课所学的矩形的性质和判定方法,巩固知识。同时,我设计相关的练习题目,让学生进行实践操作,检验他们对矩形性质和判定方法的掌握程度。这种反思与评价的教学策略能够培养学生的自我评估和自我改进能力,提高他们的学习效果。
北师大版九年级数学上册1.2.2矩形的性质与判定优秀教学案例
一、案例背景
本节课的教学内容是北师大版九年级数学上册1.2.2矩形的性质与判定。矩形是初中数学中的重要几何图形之一,它具有独特的性质和判定方法。在本节课中,学生需要掌握矩形的性质,包括对角线相等、四个角都是直角等,同时还需要学习如何判定一个四边形是矩形。
在教学过程中,我以实际生活中的情境为导入,让学生观察教室的黑板,发现黑板是一个矩形。通过这个实例,让学生初步感知矩形的性质,并激发他们对本节课的学习兴趣。接着,我引导学生通过小组合作、讨论交流的方式,探索矩形的性质和判定方法。在学生掌握矩形的性质后,我组织学生进行实践操作,让他们运用所学知识解决实际问题,如测量教室的长和宽等。
(四)反思与评价
1.在课堂的最后阶段,组织学生进行反思,让他们回顾本节课所学的矩形的性质和判定方法,巩固知识。
2.设计相关的练习题目,让学生进行实践操作,检验他们对矩形性质和判定方法的掌握程度。
3.教师对学生的学习情况进行评价,及时给予肯定和鼓励,提高他们的学习积极性和自信心。
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学策略,以激发学生的学习兴趣,培养他们的几何思维和问题解决能力,提高他们的学习效果。同时,我还会注重学生的情感态度与价值观的培养,让他们在愉快的氛围中学习和成长。
北师大版数学九年级上册1.2.1矩形的性质(教案)
在本次教学过程中,我发现学生们对矩形的性质表现出较高的兴趣。通过日常生活中的实例引入,他们能够更快地理解并接受新知识。但在教学过程中,我也注意到以下几点需要改进和反思:
1.对于矩形性质的理解,部分学生仍然存在困难,特别是在证明矩形对角线平分和相等的过程中。在今后的教学中,我需要更加注重引导学生们通过实际操作和逻辑推理来加深理解。
2.教学难点
-矩形性质的证明:理解并掌握矩形性质证明的过程,特别是对角线相等和平分的证明。
-举例:引导学生通过画图和逻辑推理,证明矩形的对角线互相平分。
-矩形与平行四边形的区别与联系:理解矩形是平行四边形的特殊情况,掌握两者之间的相互关系。
-举例:对比矩形和平行四边形的性质,强调矩形的特殊性。
-解决实际问题时建模能力的培养:将实际问题抽象为矩形模型,运用矩形性质解决。
-举例:给出实际情境,如设计矩形花园或房间,让学生应用矩形性质进行计程中,鼓励学生提出新的解题方法或发现新的性质。
-举例:组织学生进行小组讨论,分享各自发现的不同解题思路或对矩形性质的深入理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状类似长方形或正方形的物体?”(如门、窗户、书本等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形性质的奥秘。
2.在小组讨论环节,我发现有的学生参与度不高,可能是因为他们对主题不够感兴趣或者不知道如何表达自己的观点。为了提高学生的参与度,我可以在选题和引导方式上做出调整,鼓励他们积极发表自己的看法。
3.在实践活动过程中,学生们对矩形性质的应用表现出较高的热情,但部分学生在具体操作中仍然存在一定的困难。这说明我们在实践教学环节还需要进一步加强,让学生们在动手操作中更好地消化和吸收知识。
北师大版数学九年级上册《矩形的性质》教案x
北师大版数学九年级上册《矩形的性质》教案x一. 教材分析《矩形的性质》是北师大版数学九年级上册第17章第1节的内容。
本节课主要让学生掌握矩形的性质,包括矩形的对角相等、矩形的对边平行且相等、矩形的四个角都是直角等。
同时,通过探究矩形的性质,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了平行四边形的性质,对矩形有一定的了解。
但在理解和运用矩形的性质方面,学生可能还存在一定的困难。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等活动,深入理解矩形的性质。
三. 教学目标1.知识与技能:掌握矩形的性质,能运用矩形的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的观察能力、动手能力、思考能力、交流能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:矩形的性质。
2.难点:矩形的性质的灵活运用。
五. 教学方法采用问题驱动法、合作交流法、操作实践法等教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和思考能力。
六. 教学准备1.准备矩形的相关图片和实例。
2.准备矩形的性质的PPT课件。
3.准备矩形的性质的练习题。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的矩形实例,如门窗、电视屏幕等,引导学生关注矩形在日常生活中的应用。
提问:你们对这些矩形有什么了解?矩形有哪些性质?2.呈现(10分钟)通过PPT课件,呈现矩形的性质。
引导学生观察、思考,并总结出矩形的性质。
同时,教师进行讲解,确保学生理解。
3.操练(10分钟)学生分组进行操作实践,利用准备好的矩形纸片,验证矩形的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些有关矩形性质的练习题,让学生独立完成。
教师选取部分题目进行讲解,确保学生掌握矩形的性质。
5.拓展(10分钟)出示一些有关矩形性质的综合题,让学生分组讨论、交流,寻找解题策略。
北师大版数学九年级上册《矩形的性质》说课稿
北师大版数学九年级上册《矩形的性质》说课稿一. 教材分析北师大版数学九年级上册《矩形的性质》这一节的内容,主要包括矩形的定义、性质和判定。
本节内容是在学生已经掌握了平行四边形的基础上进行学习的,矩形的性质是平行四边形性质的一个特殊情形,对于学生来说,既有联系又有挑战。
在教材的处理上,我将以学生为主体,引导学生通过观察、思考、探究,从而发现矩形的性质,并能够运用这些性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识,对于平行四边形的概念和性质有一定的了解。
但是,对于矩形的性质,他们可能还比较陌生。
因此,在教学过程中,我需要关注学生的认知水平,引导学生从已有的知识出发,逐步探究矩形的性质。
同时,学生对于合作探究的学习方式已经比较熟悉,我可以充分利用这一点,学生进行小组合作,共同发现矩形的性质。
三. 说教学目标1.知识与技能:使学生了解矩形的定义,掌握矩形的性质,并能够运用矩形的性质解决实际问题。
2.过程与方法:通过观察、思考、探究,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.重点:矩形的性质及其应用。
2.难点:矩形性质的发现和证明。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作探究法、讲解法等。
2.教学手段:多媒体课件、黑板、几何模型等。
六. 说教学过程1.导入新课:通过展示生活中的矩形图片,引导学生回顾矩形的概念,为新课的学习做好铺垫。
2.探究矩形的性质:学生进行小组合作,引导学生通过观察、思考、操作,发现矩形的性质。
3.讲解与演示:对于学生发现的知识点,进行讲解和演示,帮助学生理解和掌握。
4.练习与拓展:设计一些练习题,让学生运用矩形的性质解决问题,并进行拓展训练。
5.总结与反思:让学生回顾本节课的学习内容,总结矩形的性质,并反思自己的学习过程。
七. 说板书设计板书设计要清晰、简洁,能够突出矩形的性质。
北师大版九年级数学上册1.2矩形的性质与判定教学设计
(二)讲授新知
1.矩形的定义:回顾平行四边形的定义,引导学生理解矩形是一种特殊的平行四边形,即四个角都是直角的平行四边形。
2.矩形的性质:通过动画演示、实际操作等方式,引导学生发现矩形的性质,如对边相等、对角线相等、对角线互相平分等。
1.基础巩固题:完成教材课后习题1、2、3题,要求学生熟练掌握矩形的基本性质和判定方法,加强对矩形知识点的理解。
2.提高拓展题:完成教材课后习题4、5题,引导学生运用矩形知识解决实际问题,培养学生的逻辑思维和知识运用能力。
4.实践应用题:设计一道与实际生活相关的矩形问题,如计算教室黑板的面积、设计一个矩形花园等,让学生将所学知识应用于解决实际问题。
4.培养学生的空间观念,使学生能够将矩形的相关知识应用到生活中,体会数学在现实生活中的重要作用。
二、学情分析
九年级学生在前两年的数学学习过程中,已经掌握了平行四边形、三角形等基本的几何图形知识,具备了一定的几何图形识别和分析能力。在此基础上,学生对矩形的认识已经具备了一定的基础,但在理解矩形性质的推理和应用方面,仍需进一步引导和培养。此外,学生在解决实际问题时,可能对矩形相关性质的应用还不够熟练,需要通过本章节的学习,提高对矩形的认识和运用能力。因此,在教学过程中,应关注以下几个方面:
北师大版九年级数学上册1.2矩形的性质与判定教学设计
一、教学目标ቤተ መጻሕፍቲ ባይዱ
(一)知识与技能
1.理解矩形的定义,知道矩形是一种特殊的平行四边形,并掌握矩形的四个角都是直角的特性。
2.掌握矩形的基本性质,如对边相等、对角线相等、对角线互相平分等,并能够运用这些性质解决相关问题。
北师大版九年级上册数学 第1课时 矩形的性质第1课时 矩形的性质教案1
1.2矩形的性质与判定第1课时矩形的性质一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.三、例题的意图分析例1是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.四、课堂引入1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.五、例习题分析例1 已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4cm ,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB 是等边三角形,因此对角线的长度可求.解:∵ 四边形ABCD 是矩形,∴ AC 与BD 相等且互相平分.∴ OA=OB .又 ∠AOB=60°,∴ △OAB 是等边三角形.∴ 矩形的对角线长AC=BD = 2OA=2×4=8(cm ).例2(补充)已知:如图 ,矩形 ABCD ,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A到BD 的距离AE 的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.略解:设AD=xcm ,则对角线长(x+4)cm ,在Rt △ABD 中,由勾股定理:222)4(8+=+x x ,解得x=6. 则 AD=6cm .“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB = AD×AB ,解得 AE = 4.8cm .例3(补充) 已知:如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F ,若AE=BC . 求证:CE =EF .分析:CE 、EF 分别是BC ,AE 等线段上的一部分,若AF =BE ,则问题解决,而证明AF =BE ,只要证明△ABE ≌△DFA 即可,在矩形中容易构造全等的直角三角形.证明:∵ 四边形ABCD 是矩形,∴ ∠B=90°,且AD ∥BC . ∴ ∠1=∠2.∵ DF ⊥AE , ∴ ∠AFD=90°.∴ ∠B=∠AFD .又 AD=AE ,∴ △ABE ≌△DFA (AAS ).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.六、随堂练习1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.七、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.。
1.2《矩形的性质与判定》北师大版九年级数学上册教案(第2课时)
第一章特殊的平行四边形1.2 矩形的性质与判定第2课时一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形判定定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的判定定理,以及其他相关结论,进一步发展演绎推理能力.4.进一步体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:探索矩形的判定方法.难点:合理应用矩形的判定定理解决问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资《四边形到平行四边形再到矩形的变化》动画,《矩形的判定》微课.五、教学过程设计【复习引入】1.什么叫做矩形?答:有一个角是直角的平行四边形叫做矩形.2.矩形与平行四边形及四边形有什么从属关系?3.矩形有什么特有的性质呢?答:(1)矩形的四个角都是直角;(2)矩形的对角线相等.4.你知道如何判定一个平行四边形是矩形吗?答:有一个角是直角的平行四边形是矩形(定义判定).5.那么除了矩形的定义外,还有没有其他判定矩形的方法呢?这节课我们就共同来探究一下.师生活动:教师出示问题,学生回答,让学生复习前面学过的内容.设计意图:通过复习,巩固旧知,铺垫新知,设置问题,引出新课.【探究新知】做一做如图,是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想?师生活动:教师出示“做一做”并操作演示,学生思考、讨论、交流,猜想出矩形的一个判定方法.答:(1)当∠α增大到90°时,两条对角线的长度相等.当∠α超过90°时,以∠α的顶点为端点的一条对角线逐渐变短,另一条对角线逐渐变长.(2)当两条对角线的长度相等时,平行四边形的四个角都等于90°.得到的猜想是:对角线相等的平行四边形是矩形.思考你能证明你的猜想吗?师生活动:教师出示问题,学生思考,教师引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AC,DB是它的两条对角线,AC=DB.求证:□ABCD是矩形.分析:利用全等三角形证明平行四边形的某两个相邻的角相等,而这两个角又互补,所以它们都是直角,从而得证.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BC=CB,AC=DB,∴△ABC≌△DCB.∴∠ABC=∠DCB.∵AB∥DC,∴∠ABC+∠DCB=180°.∴∠ABC=∠DCB=.∴□ABCD是矩形(矩形的定义).设计意图:培养学生发现规律的能力和逻辑推理能力.判定定理1:对角线相等的平行四边形是矩形.几何语言:∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形.该判定定理的两个适用条件:(1)对角线相等;(2)是平行四边形.想一想:我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论.师生活动:教师出示问题,学生思考、讨论、交流,形成猜想并证明猜想.猜想:一个四边形至少有三个角是直角时,这个四边形就是矩形.已知:在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=90°,∴∠A+∠B=180°.∴AD∥BC.∵∠B+∠C=180°,∴AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).又∵∠A=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).设计意图:培养学生的归纳猜想,推理论证的能力.判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.归纳:矩形的判定方法:方法1:有一个角是直角的平行四边形是矩形;方法2:对角线相等的平行四边形是矩形;方法3:有三个角是直角的四边形是矩形.议一议你有什么方法检查你家(或教室)刚安装的门框是不是矩形?如果仅有一根较长的绳子,你怎样检查?请说明检查方法的合理性,并与同伴交流.师生活动:教师出示问题,学生思考,教师找学生代表回答.答:可以用直角尺检查安装的门框的四个角是否为直角.如果有三个角是直角,那么刚安装的门框一定是矩形.也可以用直尺(或皮尺)分别量出门框两组对边的长度,如果两组对边长度分别相等,则门框一定是平行四边形,再测量门框的对角线的长度,如果两条对角线的长度相等,那么刚安装的门框一定是矩形.如果仅有一根较长的绳子,可以先用绳子分别测量出门框的两组对边的长度,做上记号.如果两组对边的长度分别相等,那么这个门框一定是平行四边形,再用绳子量出门框的对角线的长度.如果这两条对角线的长度相等,那么这个刚安装的门框一定是矩形,否则不是矩形.理由是对角线相等的平行四边形是矩形.设计意图:让学生运用所学知识解决实际问题.【典例精析】例1 如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.师生活动:教师出示例题,学生思考,教师引导学生完成本题.分析:教师先带学生从已知条件入手,对平行四边形对角线的性质进行分析,再结合△ABO是等边三角形的条件,很容易推出对角线相等,从而利用刚学的矩形的判定定理“对角线相等的四边形是矩形”证得是矩形,再利用勾股定理求出边长BC,进而求出矩形的面积.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴OA=OB=OC=OD=4.∴AC=BD=2OA=2×4=8.∴□ABCD是矩形(对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴.∴S□ABCD=AB·BC=4×=.设计意图:培养学生应用所学知识解决问题的能力.【课堂练习】1.下列命题错误的是().A.对角线相等且互相平分的四边形是矩形B.对角互补的平行四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.四个角都相等的四边形是矩形参考答案C2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.参考答案12.3.已知:如图,在□ABCD中,M是AD边的中点,且MB=MC.求证:四边形ABCD是矩形.师生活动:教师先找几名学生板演,然后讲解出现的问题.答案证明:∵四边形ABCD是平行四边形,∴AB=DC.∵M是AD边的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS).∴∠A=∠D.又∵AB∥DC,∴∠A+∠D=180°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).4.如图,在□ABCD中,对角线AC,BD相交于点O,点E是□ABCD外一点,且∠AEC=∠BED=90°.求证:□ABCD是矩形.师生活动:教师出示题目,学生思考,教师请有思路的学生讲述解题思路,然后订正,最后教师写出解题过程.证明:如图,连接OE.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠AEC=∠BED=90°,∴OE=AC=BD.∴AC=BD.∴□ABCD是矩形(对角线相等的平行四边形是矩形).设计意图:通过本环节的学习,让学生巩固所学知识,进一步加深对所学知识的理解.六、课堂小结请同学们回顾一下,我们学过的矩形的判定方法有哪些?答:我们学过的矩形的判定方法有:(1)定义:有一个角是直角的平行四边形是矩形;(2)判定定理1:对角线相等的平行四边形是矩形;(3)判定定理2:有三个角是直角的四边形是矩形.师生活动:教师出示问题,引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.2 矩形的性质与判定(2)1.矩形的判定方法:(1)定义:有一个角是直角的平行四边形是矩形(2)判定定理1:对角线相等的平行四边形是矩形(3)判定定理2:有三个角是直角的四边形是矩形。
北师大版九年级数学上册教学设计:1.2矩形的性质与判定
2.话题:给出以下讨论话题,让学生在小组内共同探讨。
-矩形性质在实际生活中的应用
-除了教材中的判定方法,还有哪些方法可以判定矩形?
3.讨论成果展示:每个小组选派一名代表,汇报本组的讨论成果。
(四)课堂练习
课堂练习旨在巩固学生对矩形性质和判定的掌握,提高学生的实际应用能力。
3.学生解决实际问题的能力:将矩形知识应用于实际问题时,学生可能会感到困惑。教师需要设计贴近生活的问题,引导学生将理论知识与实际情境相结合,提高解决问题的能力。
4.学生的合作交流能力:在教学过程中,教师应关注学生的合作交流能力,鼓励学生积极参与小组讨论,学会倾听他人意见,提高合作解决问题的能力。
三、教学重难点和教学设想
1.设计不同难度的练习题,包括基础题、提高题和拓展题。
2.学生独立完成练习题,期间教师巡回指导,解答学生的疑问。
3.练习题完成后,组织学生进行互评,相互借鉴解题方法。
(五)总结归纳
在总结归纳环节,我将带领学生回顾本节课所学内容,巩固知识点。பைடு நூலகம்
1.回顾:引导学生回顾矩形的定义、性质和判定方法。
2.归纳:总结本节课的重点和难点,强调矩形性质在实际问题中的应用。
1.学生对矩形定义的理解深度:部分学生可能对矩形定义中的“四个内角都是直角”和“对边平行且相等”这两个条件理解不够透彻,需要通过具体实例和直观演示来加深理解。
2.学生在判定矩形时的思维方法:学生在运用判定定理时,可能会出现思维定势,只关注一种判定方法而忽略其他方法。教师应引导学生灵活运用多种判定方法,提高解题能力。
5.重视反馈和评价,促进学生的自我反思和持续进步。
-教学过程中,及时给予学生反馈,指导他们改进学习方法。
北师大版九年级数学上册1.2.2矩形的性质与判定教学设计
(2)探讨矩形与平行四边形、菱形之间的关系。
(3)研究矩形在生活中的应用,如建筑设计、包装设计等。
3.创新实践题:结合生活实际,设计一道运用矩形知识的创新题目,要求学生运用所学知识解决问题。
例如:设计一个矩形花园,已知矩形的长和宽之和,求矩形的最大面积。
4.小组合作作业:分小组完成以下任务,培养团队合作意识和沟通能力。
b.提高题:判断一个四边形是否为矩形,并说明理由。
c.应用题:运用矩形知识解决实际问题,如设计矩形包装盒等。
(五)总结归纳
1.教学内容:对本节课所学矩形性质、判定方法进行总结。
2.教学过程:
a.学生自主归纳矩形的性质和判定方法。
b.教师点评,强调矩形与平行四边形、菱形之间的关系。
c.学生分享学习心得,交流学习过程中遇到的困难和解决方法。
1.学生对矩形性质的掌握程度,特别是对边平行且相等、对角线互相平分等基本性质的理解。
2.学生在运用矩形判定定理时的困惑和误区,如容易将矩形的判定与平行四边形、菱形的判定混淆。
3.学生在解决实际问题时,运用矩形知识的能力,尤其是在求矩形面积、周长等方面。
4.学生的几何直观和空间观念的发展情况,以及他们对几何图形美的感知。
d.教师布置课后作业,巩固所学知识。
五、作业布置
1.基础巩固题:完成课本练习题1-5题,巩固矩形的性质及判定方法。
(1)求矩形的面积和周长。
(2)判断给定四边形是否为矩形,并说明理由。
(3)运用矩形的性质解决实际问题,如设计矩形桌面等。
2.提高拓展题:完成课本练习题6-10题,提高学生运用矩形知识解决问题的能力。
(二)教学设想
1.教学方法:
最新北师大版九年级数学上册《矩形的性质与判定》教学设计(精品教案)
1.2 矩形的性质与判定第1课时【教学目标】1.了解矩形的有关概念,理解并掌握矩形的有关性质.2.经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法. 【教学重难点】重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.【教学过程】一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形)教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具,同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才α变为90°,可以得到α的补角也是90°从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等.口述证明过程是:充分利用(SAS)三角形全等来证明.口述:∵四边形ABCD是矩形,∴∠ABC=∠DCB = 90°,AB=DC.又∵BC为公共边,∴ΔABC≌ΔDCB(SAS),∴AC=BD.教师提问:AO= AC, BO= BD呢?BO是RtΔABC的什么线?由此你可以得到什么结论?学生活动:观察、思考后发现AO=1/2AC,BO=1/2BD,BO是RtΔABC的中线.由此归纳直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.直角三角形中,30°角所对的边等于斜边的一半(师生回忆).【设计意图】采用观察、操作、交流、演绎的手法来解决重点,突破难点.二、范例点击例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2. 5,这个矩形对角线的长. (投影显示)分析:利用矩形对角线相等且平分得到OA =OB,由于∠AOB= 60°,因此,可以发现ΔAOB为等边三角形,这样可求出OA=AB=2. 5,∴AC= BD= 2OA=5.【活动方略】教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程(课本P13).学生活动:参与教师讲例,总结几何分析思路.【问题探究】(投影显示)如图,ΔABC 中,∠A=2∠B,CD 是ΔABC 的高,E是AB的中点,求证::DE=1/2AC.分析:本题可从E是AB的中点切入,考虑应用三角形中位线定理.应用三角形中位线必需找到另一个中点.分析可知:可以取BC中点F,也可以取AC的中点G为尝试.教师活动:操作投影仪,引导、启发学生的分析思路,教会学生如何书写辅助线.学生活动:分四人小组,合作探索,想出几种不同的证法.证法一:取BC的中点F,连接EF、DF,如图(1).【设计意图】补充这道演练题是训练学生的应用能力,提高一题多解的意识,形成几何思路.三、随堂练习教材P13随堂练习四、应用拓展已知:如图,从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线相交于点E,求证:AC=CE.∠FAB .现在只要证明∠BAF= ∠DAC即可,而实际上,∠BAF=∠BDA=∠DAC,问题迎刃而解.五、课堂小结本节课应掌握:1.矩形定义:有一个角是直角的平行四边形叫做矩形,因此矩形是平行四边形的特例,具有平行四边形所有性质。
北师大版九年级数学上册1.2.矩形的性质与判定(第2课时)教学设计
1.激发兴趣:以生活中的矩形为例,让学生感受数学与生活的紧密联系,提高学习数学的兴趣。
2.培养审美:引导学生欣赏矩形的对称美、简洁美,提高学生的审美能力。
3.严谨态度:在探究矩形性质和判定方法的过程中,培养学生严谨、细致的思考习惯。
二、学情分析
九年级的学生已经在之前的学习中掌握了平行四边形的基本性质和判定方法,具备了一定的几何图形认知基础。在此基础上,学习矩形的性质与判定,学生能够更加深入地理解几何图形的特性和应用。然而,由于矩形性质的探究涉及角度、边长等多个因素,学生在理解上可能会遇到一些困难,如对矩形的判定方法的理解不够深入,对性质的应用不够熟练等。因此,在教学过程中,教师需要关注学生的个体差异,给予适当的引导和帮助,以促进学生对矩形性质与判定的理解和掌握。同时,通过生活实例的引入,激发学生的学习兴趣,培养他们运用数学知识解决实际问题的能力。
4.小组合作任务:请各小组设计一道关于矩形性质与判定的应用题,并给出解答过程。
a.各小组需充分发挥创意,设计具有实际意义的题目。
b.鼓励学生运用多种方法解决问题,提高应用能力。
5.预习下一节课内容:了解矩形的应用,如矩形在建筑、设计等方面的应用。
a.鼓励学生提前了解课程内容,培养自主学习能力。
b.教师在下次课堂上检查预习情况,并进行讲解。
四、教学内容与过程
(一)导入新课
1.教师出示一块矩形形状的木板,引导学生观察并提问:“你们知道这个图形是什么吗?它在我们的生活中有哪些应用?”
2.学生回答问题,教师总结:这个图形是矩形,它在我们的生活中随处可见,如黑板上、桌面上、门窗上等。
3.教师进一步提问:“我们已经学习了平行四边形的性质,那么矩形作为一种特殊的平行四边形,它有哪些独特的性质呢?这节课我们就来学习矩形的性质与判定。”
北师大版初三上册第一章2.3矩形的性质与判定(教案)
北师大版初三上册第一章2教学目标:1.矩形的性质与判定方法的应用.2.在复习的过程中,提升推理论证能力,通过复习,提高学生运用知识的能力.教学重难点:【重点】矩形的有关性质与判定方法.【难点】如何运用矩形的性质与判定来解决问题教学过程:一、新课导入:回答下列问题.问题1矩形有哪些性质?问题2如何判定一个平行四边形是矩形?问题3如何判定一个四边形是矩形?[处理方式]3个问题由学生口答完成,在学生口答时先让学生叙述出文字语言,再让学生结合图形说出如何用数学符号来表达矩形的性质及判定,教师适时点评、矫正.二、新知构建矩形性质的应用(教材例3)如图所示,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE 的长.矩形判定的应用(教材例4)已知:如图所示,在ΔABC中,AB=AC,AD是ΔABC的一条角平分线,AN为ΔABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.三、学生活动积极探究多种解题方法,尝试用不同的方法解决问题,小组合作交流探究的成果,体验成功的欢乐.四、课堂小结1.矩形的性质(1)矩形的四个角差不多上直角.(2)矩形的对边相等.(3)矩形的对角线平分且相等.2.矩形的判定方法(1)一个角是直角的平行四边形是矩形.(2)三个角是直角的四边形是矩形.(3)对角线相等的平行四边形是矩形.五、课堂练习1、在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠AOB=60°,A B=4㎝,则AC=_______㎝.2、如图所示,已知ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB ⊥BC 中,能说明ABCD 是矩形的有 (填写序号). 3、如图,矩形的对角线交于点O ,过点O 的直线交AD 、BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为___ _______.4、一个平行四边形,假如对角线 ,则此平行四边形就变成矩形;假如对角线 ,则此平行四边形就变成菱形.六、布置作业1、如上图1,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PF ⊥AC 于F,PE ⊥BD 于E,则PE+PF 的值为( ) A .125 B .135 C .52 D .22、已知:如图,在△ABC 中,AB=AC ,D 为BC 的中点,四边形AB DE 是平行四边形, 求证:四边形ADCE 是矩形.3、如图,以△ABC 的三边为边,在BC 的同侧分别作3个等边三角形,即△ABD 、△BCE 、△ACF .请回答问题并说明理由:(1)四边形ADEF 是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?。
矩形的性质 (教案)数学九年级上册同步备课(北师大版)
北师版九年级上册数学1.2.1 矩形的性质教学设计课题 1.2.1 矩形的性质单元一单元学科数学年级九学习目标1.经历探索矩形的概念和有关性质的过程,掌握矩形的概念和矩形的性质定理.2.了解矩形既是中心对称图形,又是轴对称图形.3.经历利用矩形的定义探索矩形的性质的过程,培养动手实践能力、观察、推理的意识,发展逻辑思维,获得从一般到特殊的数学思维经验,掌握转化数学思想.重点矩形的概念与性质.难点矩形性质定理的探索和应用.教学过程教学环节教师活动学生活动设计意图导入新课上节课我们学习了特殊的平行四边形中的菱形,你能说一说菱形有什么性质吗?怎样判定一个四边形是不是菱形?下面图片中都含有一些特殊的平行四边形,观察这些特殊的平行四边形,你能发现它们有什么样的共同特征? 学生回忆并回答,为本课的学习提供迁移或类比方法.通过复习,使学生更好的掌握菱形的性质和判定方法,为本节课的学习做铺垫。
通过展示生活中的实例,让学生感受数学与生活的联系。
讲授新课观察下图,改变平行四边形的一个内角(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。
学生思考回答问题。
通过实例和教具演示,可激发学生的学习兴趣,使学生实现由感性认识到理性认识的转变,并使其感受到数学与生活是紧密联系师:你能说一说矩形的定义吗?矩形的对角线有什么特点?你能证明猜想吗?教师出示问题。
已知:如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与BD相交于点O.求证:(1)∠DAB=∠ABC=∠BCD=∠CDA=90°;(2)AC=BD.证明:(1)∵四边形ABCD是矩形,∴∠ABC=∠CDA,∠DAB=∠BCD(矩形的对角相等), AB∥CD(矩形的对边平行).∴∠ABC+∠BCD=180°.又∵∠ABC=90°,∴∠BCD=90°.∴∠DAB=∠ABC=∠BCD=∠CDA=90°.(2)∵四边形ABCD是矩形,∴AB=CD(矩形的对边相等).在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB,∴AC=DB.【总结归纳】矩形性质小结:矩形性质定理1 矩形的四个角都是直角.矩形性质定理2 矩形的对角线相等. 生:猜想:矩形的四个角都是直角。
矩形的性质公开课教案+说课稿
《矩形的性质》教学设计对角线:对角线互相平分对称性:中心对称图形2.但矩形是特殊的平行四边形,它还具有一些特殊性质。
下面我们来进一步研究矩形的其他性质。
活动:(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;(2)根据测量的结果,猜想结论。
当矩形的大小不断变化时,发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?结论:矩形性质1:矩形的四个角都是直角;矩形性质2:矩形的对角线相等.活动:请同学们拿出准备好的矩形纸片,折一折,观察并思考。
①矩形是不是中心对称图形? 如果是,那么对称中心是什么?②矩形是不是轴对称图形?如果是,那么对称轴有几条?结论:矩形是轴对称图形,它有两条对称轴。
3.请你总结一下矩形有哪些性质?归纳概括矩形的性质:从边来说,矩形的对边平行且相等;从角来说,矩形的四个角都是直角;从对角线来说,矩形的对角线相等且互相平分;从对称性来说,矩形既是轴对称图形,又是中心对称图形。
4.问题:矩形具有而一般平行四边形不具有的性质是 ( C )A.对角相等B.对边相等C.对角线相等D.对角线互相平分形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”,学生通过动手测量,动脑思考,动口讨论,自主发现矩形的性质。
学生完全可以通过自己的操作、观察、猜想,最终得到矩形的对称特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。
第三环节:层层递进,推理论证提问:怎样证明你的猜想?已知:如图,四边形ABCD是矩形,∠ABC=90°对角线AC与DB相交于点O。
求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90°教师写出定理1、2的已知、求证,请同学分析思路,写出证明过程后互相订正交流。
该环节重在训练学生规范写出推理过程。
(2) AC=BD (答案参考课本例题)第四环节:建构新知,发展问题1、提出问题:(1)由矩形的四个角都是直角可得几个直角三角形?(2)在Rt△ABC中,点O是AC的中点,线段BO是AC边上的中线。
北师大版数学九年级上册《矩形的性质》教学设计
北师大版数学九年级上册《矩形的性质》教学设计一. 教材分析《矩形的性质》是北师大版数学九年级上册第17章的内容,本节内容主要让学生掌握矩形的性质,包括矩形的对边相等、对角相等、对角线互相平分且相等。
这些性质是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力有重要作用。
二. 学情分析九年级的学生已经学习了平行四边形的性质,对几何图形有了一定的认识。
但是,对于矩形的性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已知的平行四边形性质出发,探索矩形的性质,培养他们的探究能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握矩形的性质,能够运用矩形的性质解决一些简单的问题。
2.过程与方法:通过学生的自主探究活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的合作意识和探究精神。
四. 教学重难点1.重点:矩形的性质。
2.难点:矩形性质的证明和运用。
五. 教学方法采用问题驱动法、探究式教学法和案例教学法。
通过设置问题,引导学生自主探究矩形的性质,并通过具体的案例,使学生学会如何运用矩形的性质解决问题。
六. 教学准备1.教学课件:制作课件,展示矩形的性质和相关的例题。
2.教学素材:准备一些关于矩形的图片和实际的例子,用于引导学生理解和运用矩形的性质。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平行四边形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件呈现矩形的性质,包括矩形的对边相等、对角相等、对角线互相平分且相等。
同时,给出相关的证明和例题。
3.操练(10分钟)让学生分组讨论,每组选择一个矩形,根据矩形的性质,找出矩形的对边、对角和对角线,并进行验证。
4.巩固(10分钟)出示一些关于矩形的练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)让学生举例说明生活中哪些物体可以看作是矩形,并运用矩形的性质进行分析。
9年级数学北师大版上册教案第1章《矩形的性质与判定》
教学设计矩形的性质与判定教师提问:1.矩形的定义是什么?___________________________________________2.矩形的性质有哪些,从那些方面考虑的?对称性:___________________________________角:___________________________________对角线:___________________________如图所示,有一个需要安装的窗框,假如你是做窗框的师傅,你有什么方法检验你做的这个窗框成矩形?能不能由定义判定一个平行四边形是否为矩形?动手试验,发现问题:如图是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.教师课件出示平行四边形框架的变化过程。
师提问:∠α满足什么条件时,平行四边形会变成矩形?【思考】如果一个四边形是平行四边形,那么只要再添加一个什么条件,就可以判定它就是一个矩形?根据什么?教师出示矩形的定义:有一个角是直角的平行四边形是矩形。
符号语言:∵四边形ABCD是平行四边形,∠B=90°,∴四边形ABCD是矩形.动手试验,发现问题:师:随着∠α的变化,两条对角线将发生怎样的变化?师:当两条对角线长度相等时,平行四边形有什么特征?你得到了怎样的猜想?师:怎样证明呢?教师出示问题:已知:如图,在□ABCD中,AC,BD是它的两条对角线,AC=BD.求证:□ABCD是矩形.教师总结过程:证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BC=CB,AC=DB,∴△ABC≌△DCB.∴∠ABC=∠DCB.∵AB ∥DC,∴∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°∴□ABCD是矩形(矩形的定义).【总结归纳】由对角线的关系判定矩形矩形的判定定理2:对角线相等的平行四边形是矩形。
师:用符号语言怎样表示? 合作探究小明同学用四步画出了一个四边形,他的画法是“边——直角、边——直角、边——直角、边”,他说这就是一个矩形,他的判断对吗?师:想一想:矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢? 师:怎样证明呢?已知:在四边形ABCD 中,∠A=∠B=∠C=90°, 求证:四边形ABCD 是矩形.证明:∵ ∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°, ∴AD ∥BC ,AB ∥CD.∴四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形. 【总结归纳】 矩形的判定定理3:ABCD有三个角是直角的四边形是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册教案吧斗 Assistant teacher 为 梦 想 奋1.2矩形的性质与判定第1课时矩形的性质1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;(重点)2.会运用矩形的概念和性质来解决有关问题.(难点)一、情景导入1.展示生活中一些平行四边形的实际应用图片(推拉门、活动衣架、篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形),引出本课题及矩形定义.矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都是矩形.有一个角是直角的平行四边形是矩形.矩形是平行四边形,但平行四边形不一定是矩形,矩形是特殊的平行四边形,它具有平行四边形的所有性质.二、合作探究探究点一:矩形的性质【类型一】矩形的四个角都是直角如图,矩形ABCD中,点E在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC的面积为()A.15B.30C.45D.60解析:如图,过E作EF⊥AC,垂足为F.∵AE 平分∠BAC ,EF ⊥AC ,BE ⊥AB , ∴EF =BE =4,∴S △AEC =12AC ·EF =12×15×4=30.故选B.方法总结:矩形的四个角都是直角,常作为证明或求值的隐含条件.【类型二】 矩形的对角线相等如图所示,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =2,则AC的长是( )A .2B .4C .23D .43解析:根据矩形的对角线互相平分且相等可得OC =OD =OA =12AC ,由∠AOD =60°得△AOD 为等边三角形,即可求出AC 的长.∵四边形ABCD 为矩形,∴AC =BD ,OA =OC =12AC ,OD =OB =12BD ,∴OA =OD .∵∠AOD =60°,∴△AOD 为等边三角形,∴OA =OD =2,∴AC =2OA =4. 故选B.方法总结:矩形的两条对角线互相平分且相等,即对角线把矩形分成四个等腰三角形,当两条对角线的夹角为60°或120°时,图中有等边三角形,从而可以利用等边三角形的性质解题.探究点二:直角三角形斜边上的中线等于斜边的一半如图,已知BD ,CE 是△ABC 不同边上的高,点G ,F 分别是BC ,DE 的中点,试说明GF ⊥DE .解析:本题的已知条件中已经有直角三角形,有斜边上的中点,由此可联想到应用“直角三角形斜边上的中线等于斜边的一半”这一定理.解:连接EG ,DG .∵BD ,CE 是△ABC 的高, ∴∠BDC =∠BEC =90°. ∵点G 是BC 的中点,∴EG =12BC ,DG =12BC .∴EG =DG .又∵点F 是DE 的中点, ∴GF ⊥DE .方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.探究点三:矩形的性质的应用【类型一】 利用矩形的性质求有关线段的长度如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解析:先判定△AEF ≌△DCE ,得CD =AE ,再根据矩形的周长为32列方程求出AE 的长.解:∵四边形ABCD 是矩形, ∴∠A =∠D =90°, ∴∠CED +∠ECD =90°. 又∵EF ⊥EC ,∴∠AEF +∠CED =90°, ∴∠AEF =∠ECD . 而EF =EC ,∴△AEF ≌△DCE , ∴AE =CD . 设AE =x cm ,∴CD =x cm ,AD =(x +4)cm , 则有x +4+x =16,解得x =6. 即AE 的长为6cm.方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件解决直角三角形中的问题.【类型二】 利用矩形的性质求有关角度的大小如图,在矩形ABCD 中,AE ⊥BD 于E ,∠DAE :∠BAE =3:1,求∠BAE 和∠EAO的度数.解析:由∠BAE 与∠DAE 之和为90°及这两个角之比可求得这两个角的度数,从而得∠ABO 的度数,再根据矩形的性质易得∠EAO 的度数.解:∵四边形ABCD 是矩形,∴∠DAB =90°,AO =12AC ,BO =12BD ,AC =BD ,∴∠BAE +∠DAE =90°,AO =BO .又∵∠DAE :∠BAE =3:1, ∴∠BAE =22.5°,∠DAE =67.5°. ∵AE ⊥BD ,∴∠ABE =90°-∠BAE =90°-22.5°=67.5°, ∴∠OAB =∠ABE =67.5° ∴∠EAO =67.5°-22.5°=45°. 方法总结:矩形的性质是证明线段相等或倍分、角的相等与求值及线段平行或垂直的重要依据.【类型三】 利用矩形的性质求图形的面积如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15B.14C.13D.310解析:由四边形ABCD 为矩形,易证得△BEO ≌△DFO ,则阴影部分的面积等于△AOB 的面积,而△AOB 的面积为矩形ABCD 面积的14,故阴影部分的面积为矩形面积的14.故选B.方法总结:求阴影部分的面积时,当阴影部分不规则或比较分散时,通常运用割补法将阴影部分转化为较规则的图形,再求其面积.【类型四】 矩形中的折叠问题如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E ,AD=8,AB =4,求△BED 的面积.解析:这是一道折叠问题,折后的图形与原图形全等,从而得知△BCD ≌△BC ′D ,则易得BE =DE .在Rt △ABE 中,利用勾股定理列方程求出BE 的长,即可求得△BED 的面积.解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°, ∴∠2=∠3.又由折叠知△BC ′D ≌△BCD , ∴∠1=∠2.∴∠1=∠3.∴BE =DE .设BE =DE =x ,则AE =8-x .∵在Rt △ABE 中,AB 2+AE 2=BE 2, ∴42+(8-x )2=x 2.解得x =5, 即DE =5.∴S △BED =12DE ·AB =12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED 是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形⎩⎪⎨⎪⎧矩形的定义:有一个角是直角的平行四边形叫做矩形矩形的性质⎩⎪⎨⎪⎧四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.1.2矩形的性质与判定第1课时 矩形的性质教学目 标 1.知道矩形的概念与有关性质,会用这些知识进行简单的推理与计算。
2. 在了解矩形与平行四边形之间的关系,掌握、运用矩形性质的过程中,渗透数形结合、转化化归与方程思想,进一步提高分析问题与解决问题的能力。
重点 矩形概念的理解;掌握并会运用矩形的性质 难点运用矩形的性质进行简单的推理与计算。
一、定义:矩形的定义: 。
由此可见,矩形是特殊的 ,它具有 的所有性质。
二、探究矩形的性质:1.四个角都是直角.2.对角线相等且平分. . .三、知识延展:(1)、由矩形性质有OA=OC=21AC OB=OD=21BD 且AC=BD得OA= = = ∴矩形对角线的交点O 到各顶点的距离 。
(2)由图可知,在矩形中有 个直角三角形,它们分别是有 个等腰三角形,它们分别是∴我们通常在直角三角形、等腰三角形中求有关边与角。
(3)、由矩形性质有∠ABC=900,OA=OB=OC这说明:Rt △ABC 中,若OB 是斜边AC 的 ,则O ∴直角三角形斜边上的中线等于斜边长的(4)思考:矩形是轴对称图形吗?将矩形作业纸对折,我们发现:矩形是 图形,有 条对轴是 。
∴矩形既是 对称图形,又是 对称图形,对四、应用 1、例题:(P13例1,先看题目自己完成证明过程,再对2、课堂检测:(1)如图,在矩形ABCD 中,对角线AC ,BD 交于点O .已知∠AC =16,则图中长度为8的线段有( )A .2条B .4条C .5条D .6条(2)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分(3)将矩形ABCD 沿AE 折叠,得到如图所示图形。
若∠则∠AED 的大小是_______.。