井身结构设计ppt课件
合集下载
《井身结构设计》课件
井身材料
常用井身材料包括钢筋混凝 土、混凝土、钢和玻璃钢等。
井身结构设计的目的
提高井身稳定性
井身结构设计的目的是为了提高 井身的稳定性,确保石油井的平 稳生产。
降低事故风险
合理的井身结构设计可以减少石 油井事故的概率,保障工人的生 命安全。
提高生产效率
通过优化井身结构设计,可以提 高石油井的生产效率,降低维护 成本。
1
基础工程
进行基础开挖、标出基坑轮廓线、安置钢筋骨架等。
2
混凝土浇筑
进行钢筋模板组装、浇筑混凝土等。
3
砼强度与养护
根据测量计算、检验、养护高强度混凝土的质量。
预应力混凝土结构井的施工
预应力钢筋制作
预应力混凝土井筒需要应用预应 力钢筋,进行钢筋的制作和预应 力张拉。
施工工艺
构件之间的连接
进行预制整体与预制分段两种工 艺,将预制件安装到已完成地基 的基础上,进行钢束拉紧与固定。
井身结构设计实例分享
பைடு நூலகம்
1
长江三峡水电站井身设计
针对高水压和高岸坡等复杂工况,设计了多层钢筋混凝土结构的井身,确保水电 站的正常运行。
2
渤海海洋油田厂房井身设计
针对海洋环境的复杂性,设计高强度钢结构井身,提高了设施稳定性和运行效率。
3
南海油田纯海上井身设计
针对纯海上井身不稳定等特点,设计了预制单元式混凝土井身结构,解决了海上 施工难度大的问题。
井身结构的安全性检查
1 验收检查
在施工完成后,进行对井身结构的检查,确认是否符合设计要求。
2 日常检查
对井身结构进行日常管护与维修,确保井身结构的稳定性和安全性。
3 保护检查
第2讲_井身结构设计
测技术得到发展,特别是近平衡钻井的推广和井控技术的掌
握,使井身结构中套管层次和下入深度的设计,逐步总结出 一套较为科学的设计方法。
在“六五”期间,我国开始应用这套方法.首先在中原
油田取得很大效益。如在3500到4700m深井中,使平均事故 时间大幅度下降、建井周期缩短、钻井成本下降。
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
2.2、发生溢流(井涌)时
f 2
剖面图中最大地层压力梯度点对应的深度(m)
p m ax
Sb S
f
D p m ax D 21
Sk
井涌条件允许值
地层设计破裂压当量密度
激动压力系数
剖面图中最大地层压力对应的当量密度值 破裂压力安全增值 中间套管下入深度的初始假定点深度(m)
长江大学石油工程学院钻井工程研究所
3、井身结构设计中所需要的基础数据
地层破裂安全增值Sf由地区统计资料得到,一般取 0.031 g/cm3; 井涌条件允许值Sk由地区统计资料得到,一般取 0.051-0.10 g/cm3; 最大回压pwh由工艺条件决定,一般取2.0-4.0MPa;
. 钻压差允许值 卡
7、水泥返深设计
对于油层,生产套管的管外水泥返深至少应该在油 层顶部200m以上。对于气层,生产套管的管外水泥 返深至少应该在油层顶部300m以上;
中间套管的管外水泥返深至少应该在复杂或大断层
100m以上; 尾管的管外水泥返深至少在尾管的悬挂器以上;
表层套管的管外水泥返到地面。
长江大学石油工程学院钻井工程研究所
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
(2)中间套管下入深度 的初始假定点D21 在压力剖面图的横坐标 上,找出前面已经确定的
井身结构课件
套 入 公 位 ( 射 部 开 部 的 位套 下 管 单 ( 人 度 套 部 面 的 位套 井 心 的 位 射 部 开 部 的 位管 油 称 为 开 深 井 至 距 为m管 入 的 位 m工 : 管 水 至 距 为补 时 与 距 为 开 深 井 至 距 为m直 层 直 毫 油 度 段 方 离 米)深 油 深 为 井 完 内 泥 方 离 米距 的 套 离 米 油 度 段 方 离 米)(径 套 径 米 层 : 最 补 ,。度 层 度 米 底 井 最 顶 补 , (: 方 管 , (层 : 最 补 , (mmmm。: 管 , 底 射 下 心 单: 套 , 深 时 下 界 心 单钻 补 头 单 顶 射 上 心 单))))。下 的 单。。 。
井身结构简介
井口
井
井
井壁
井径
井
段
深
身
井底
钻井
下套管
井
固井
地面与地 下连通完井Leabharlann 采油目的层与井 筒连接
井身结构介绍 井身结构类型 完井技术简介
一、井身结构
1、概念 井身结构——采油目的层以上井段须
下入专用套管的层次、深 度以及相应的井眼(钻头) 尺寸。
油层套管
一、井身结构
导管 表层套管 水泥返高 技术套管
完井方式
射孔完井 裸眼完井
适用的地质条件
有气顶,或有底水,或有含水夹层及易塌夹层等复杂地质条件, 因而要求实施分隔层段的储层
各分层之间存在压力、岩性等差异,因而要求实施分层测试、分 层采油、分层注水、分层处理的油层
要求实施大规模水力压裂作业的低渗透储层
含油层段长、夹层厚度大、不适于裸眼完井的构造复杂的油气藏 岩性坚硬致密、天然裂隙发育、井壁稳定不坍塌的碳酸盐岩或砂 岩储层
井身结构设计课件16页PPT文档
mEma x Sg
– Sg:激动压力梯度当量密度; g/cm3; – Sg=0.024-0.048 g/cm3
井身结构设计
井身结构设计关键参数
最大井内压力梯度(续)
发生液流时:为了制止液流,如压井时井内压力 增高值为Sk,则最大井内压力梯度为:
mE maxSK
– Sk=0.060 g/cm3
生产套管根据采油方面要求来定。勘探井则按照勘探方 要求来定。
套管与井眼之间有一定间隙,间隙过大则不经济,过小 会导致下套管困难及注水泥后水泥过早脱水形成水泥桥 。间隙值一般最小在9.5~12.7mm(3/8~1/2in)范围,最 好为19mm(3/4in)。
四、套管尺寸与井眼尺寸选择及配合
3.套管及井眼尺寸标准组合
81/2
、卡钻等井下复杂情况,为全井 安全、优质、快速和经济地钻 进创造条件; 当实际地层压力超过预测值使 井出现液流时,在一定范围内 ,具有压井处理溢流的能力。
井身结构设计
套管类型
导管
钻表层井眼时,将钻井液从地表引导 到钻台平面上来。
表层套管
防止浅层水受污染,封闭浅层流砂、 砾石层及浅层气,支撑井口设备装置 ,悬挂依次下入的各层套管的载荷。
mEf Sf
ρf:上一层套管下入深 度处裸露地层的破裂 压力梯度; g/cm3
Sf:为避免将上一层套管 下入深度处裸露地层压裂 的安全值, Sf =0.0240.048 g/cm3
Gf Gp
当量泥浆密度
井身结构设计
最大允许压差
为了在下套管过程中,不致于发生压差粘卡 套管的事故,应该限制井内钻井液液柱压力 与地层压力的压力差值,即规定最大允许压 差。
井身结构设计
– Sg:激动压力梯度当量密度; g/cm3; – Sg=0.024-0.048 g/cm3
井身结构设计
井身结构设计关键参数
最大井内压力梯度(续)
发生液流时:为了制止液流,如压井时井内压力 增高值为Sk,则最大井内压力梯度为:
mE maxSK
– Sk=0.060 g/cm3
生产套管根据采油方面要求来定。勘探井则按照勘探方 要求来定。
套管与井眼之间有一定间隙,间隙过大则不经济,过小 会导致下套管困难及注水泥后水泥过早脱水形成水泥桥 。间隙值一般最小在9.5~12.7mm(3/8~1/2in)范围,最 好为19mm(3/4in)。
四、套管尺寸与井眼尺寸选择及配合
3.套管及井眼尺寸标准组合
81/2
、卡钻等井下复杂情况,为全井 安全、优质、快速和经济地钻 进创造条件; 当实际地层压力超过预测值使 井出现液流时,在一定范围内 ,具有压井处理溢流的能力。
井身结构设计
套管类型
导管
钻表层井眼时,将钻井液从地表引导 到钻台平面上来。
表层套管
防止浅层水受污染,封闭浅层流砂、 砾石层及浅层气,支撑井口设备装置 ,悬挂依次下入的各层套管的载荷。
mEf Sf
ρf:上一层套管下入深 度处裸露地层的破裂 压力梯度; g/cm3
Sf:为避免将上一层套管 下入深度处裸露地层压裂 的安全值, Sf =0.0240.048 g/cm3
Gf Gp
当量泥浆密度
井身结构设计
最大允许压差
为了在下套管过程中,不致于发生压差粘卡 套管的事故,应该限制井内钻井液液柱压力 与地层压力的压力差值,即规定最大允许压 差。
井身结构设计
【钻井工程】井身结构设计
井
深 ,
表 套
m
破裂压力
技 套
设计 井深
地层压力
1.0 1.3 1.6
油套
1.8 当量密度,g/cm3
1. 自下而上的设计法
2)设计特点
(1)每层套管下入的深度最浅,套管费用最低。适合已探明 地区开发井的井身结构设计;
(2)上部套管下入深度的合理性取决于对下部地层特性了解 的准确程度和充分程度;
(3)应用于已探明地区的开发井的井身结构设计比较合理; (4)在保证钻井施工顺利的前提下,自下而上的设计方法可 使井身结构的套管层次最少,每层套管下入的深度最浅,从而达 到成本最优的目的。
(3) 0.00981 (dmax pmin ) Dpmin P
(4)
d max S f
Sk
Dpmax Dc1
fc1
防井涌 防井漏 防压差卡钻 防关井井漏
第三节 井身结构设计依据与原理
五、地层必封点
(1)钻进过程中钻遇易坍塌页岩层、塑性泥岩层、盐岩层、岩膏 层、煤层等,易造成井壁坍塌和缩径。 (2)裂缝溶洞型、破裂带地层、不整合交界面地层。 (3)含H2S等有毒气体的油气层。 (4)低压油气层的防污染问题。 (5)井眼轨迹控制等施工方面的特殊要求。SY/T 6396-2009 中第4.6条的规定:“井身结构除按SY/T5431的规定执行外,丛 式井组各井的表层下深宜交替错开10m以上。” (6)在采用欠平衡压力钻井时,为了维持上部井眼的稳定性,通 常将技术套管下至产层顶部。 (7)表层套管的下入深度应满足环境保护的要求。
油气井工程设计与应用
第一部分 井身结构设计
第一部分 井身结构设计
第一节 地层—井眼压力系统 第二节 井身结构设计的内容及套管层次 第三节 井身结构设计依据与原理 第四节 井身结构设计方法 第五节 套管与井眼尺寸的选择 第六节 设计举例
井深结构设计
数
出。中原油田将Sk值定为0.06~0.14。
据
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大, 除使机械钻速降低外,而且也是造成压差卡钻的直接
原因,这会使下套管过程中,发生卡套管事故,使已
压差允值(△PN与△Pa)
钻成的井眼无法进行固井和完井工作。压差允值的确 定,各油田可以从卡钻资料中(卡点深度,当时泥浆
当△Prn>△P时,则可能发生压差卡钻,这时,该层套管下 深Hn应浅于初选点Hni。Hn的计算如下:
令△Prn=△P,则允许的最大地层孔隙压力ρpper为:
pper
P 9.8103
Hmm
p min
Sb
由地层孔隙压力梯度曲面图上查ρ 所在井深即该层套管下入 pper
深度Hn。
3)、当中间套管下入深度浅于初选点Hn<Hni时,则需要下尾管
第一节 井身结构设计
一、套管柱类型及作用
图3-8-1-1 套管类型 (a)正常压力井;(b)异常压力井
二、井眼中的压力体系
在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压
力。
三个压力体系必须同时满足于以下情况:
Pf≥Pm≥Pp
(1)
式中 Pf——地层的破裂压力,MPa;
Pm——钻井液的液柱压力,MPa;
作用下, 上部裸露地层不被压裂所应有的地层破
裂压力梯度,g/cm3; ρpmax——第n层套管以下井段预计最大地层孔隙压力等效
密度,g/cm3。
发生井涌情况时,由(4)、(7)(8)式,有:
fnk
pm ax
Sb
Sg
H pmax H ni
Sk
(10)
式中 ρfnk——第n层套管以下井段发生井涌时,在井内最大压力 梯度作用下,上部地层不被压裂所应有的地层破裂
石油钻探固井技术PPT课件
其平衡方程有:
z
t
2
t
r
2
r
z
2
2
2 s
38
在这三个应力中,r << t,故在上面方程中忽略其影响后可 得出方程:
2
2
z s
z s
t s
t s
1
式中,z/s和t/s分别表示轴向应力和周向应力在屈服应力中占的比例。
39
b. 方程意义 反映z 、t与s之关系,表示套管所受多向载荷 时,套管内轴向应力与周向应力的关系。
管生产的尺寸、钢级、壁厚、连接方式等。
目前一般使用的美国API套管规范。其规定的有关性能主要有
。
13
1、尺寸系列(又叫名义外径或公称直径) 41/2,5,51/2,65/8,7,75/8, 85/8,95/8,103/4,113/4,16, 285/8,20,30....
14
2、钢级系列
API钢级有10种:H,J,K,N,C,L,P,Q,X.
在空气中
பைடு நூலகம்26
1.2 弯曲附加拉力 如果井眼存在较大的井斜变化
或狗腿度时,由于套管弯曲效应 的影响将增大套管的拉力负荷, 特别是在靠近丝扣啮合处,易形 成裂缝损坏,由于API套管的连接 强度没有考虑弯曲应力,所以设 计时应从套管的连接强度中扣除 弯曲效应的影响,其计算公式见 有关资料。
27
1.3 其它附加拉力 在一般的套管设计中,没有具体考虑附加拉力,
次的余地。 要考虑到工艺技术水平以及管材、钻头等的库存情况。 地质复杂情况、取岩心尺寸要求、井眼曲率等。
12
第二节 套管柱设计
一、套管规范简介 套管受到各种类型外力作用,须具有一定强度。 外载大小、类型不同,所需的强度要求也不同,须有一系列
z
t
2
t
r
2
r
z
2
2
2 s
38
在这三个应力中,r << t,故在上面方程中忽略其影响后可 得出方程:
2
2
z s
z s
t s
t s
1
式中,z/s和t/s分别表示轴向应力和周向应力在屈服应力中占的比例。
39
b. 方程意义 反映z 、t与s之关系,表示套管所受多向载荷 时,套管内轴向应力与周向应力的关系。
管生产的尺寸、钢级、壁厚、连接方式等。
目前一般使用的美国API套管规范。其规定的有关性能主要有
。
13
1、尺寸系列(又叫名义外径或公称直径) 41/2,5,51/2,65/8,7,75/8, 85/8,95/8,103/4,113/4,16, 285/8,20,30....
14
2、钢级系列
API钢级有10种:H,J,K,N,C,L,P,Q,X.
在空气中
பைடு நூலகம்26
1.2 弯曲附加拉力 如果井眼存在较大的井斜变化
或狗腿度时,由于套管弯曲效应 的影响将增大套管的拉力负荷, 特别是在靠近丝扣啮合处,易形 成裂缝损坏,由于API套管的连接 强度没有考虑弯曲应力,所以设 计时应从套管的连接强度中扣除 弯曲效应的影响,其计算公式见 有关资料。
27
1.3 其它附加拉力 在一般的套管设计中,没有具体考虑附加拉力,
次的余地。 要考虑到工艺技术水平以及管材、钻头等的库存情况。 地质复杂情况、取岩心尺寸要求、井眼曲率等。
12
第二节 套管柱设计
一、套管规范简介 套管受到各种类型外力作用,须具有一定强度。 外载大小、类型不同,所需的强度要求也不同,须有一系列
《钻井与完井工程》课件-2井身结构设计
《钻井与完井工程》课件 -2井身结构设计
井身结构设计是钻井与完井工程中的重要环节,涉及到井筒的稳定性和安全 性。本课件将介绍井身结构设计的重要性、目标、原则以及主要方法。
井身结构的重要性
井身结构设计的合理性直接影响到井筒的稳定性和钻井、完井操作的安全性。 良好的井身结构设计可以减少井筒塌陷、井漏等问题,降低事故发生的风险。
井身结构设计的目标
井身结构设计的目标是保证井筒的稳定性和安全性,确保钻井、完井操作的 顺利进行。通过合理的设计,可以避免井筒失稳、井漏等问题,减少工作量 和成本。
井身结构设计的原则
井身结构设计应遵循以下原则:
1 强度与稳定性
井身结构要具备足够的强 度和稳定性,以承受地质 力学和工程力学的作用。
2 材料选择
3 施工过程控制
完井过程中,要 控制好施工参数和工况, 保证井身结构的完整性和 稳定性。
主要的井身结构设计方法
经验法
根据以往的经验和类似工程的 数据,进行井身结构设计。
计算法
依据地质力学和工程力学原理, 对井身结构进行计算和分析。
1 油藏工况
考虑油藏工况和井筒温度 等因素,选择合适的材料 和工艺。
2 套管设计
设计套管参数和套管布置 方案,保证油井的产能和 安全。
3 完井液体设计
确定完井液体的性质和配 方,满足井身结构和油藏 要求。
结论和总结
井身结构设计是钻井与完井工程中的关键环节。合理的结构设计可以提高井筒的稳定性和钻井、完井操作的安 全性,降低事故风险,提高工作效率。
仿真法
运用计算机仿真技术,对井身 结构进行模拟和优化设计。
钻井井身设计要点
地层评价
对钻井地层进行评价,了解地层的性质和特点。
井身结构设计是钻井与完井工程中的重要环节,涉及到井筒的稳定性和安全 性。本课件将介绍井身结构设计的重要性、目标、原则以及主要方法。
井身结构的重要性
井身结构设计的合理性直接影响到井筒的稳定性和钻井、完井操作的安全性。 良好的井身结构设计可以减少井筒塌陷、井漏等问题,降低事故发生的风险。
井身结构设计的目标
井身结构设计的目标是保证井筒的稳定性和安全性,确保钻井、完井操作的 顺利进行。通过合理的设计,可以避免井筒失稳、井漏等问题,减少工作量 和成本。
井身结构设计的原则
井身结构设计应遵循以下原则:
1 强度与稳定性
井身结构要具备足够的强 度和稳定性,以承受地质 力学和工程力学的作用。
2 材料选择
3 施工过程控制
完井过程中,要 控制好施工参数和工况, 保证井身结构的完整性和 稳定性。
主要的井身结构设计方法
经验法
根据以往的经验和类似工程的 数据,进行井身结构设计。
计算法
依据地质力学和工程力学原理, 对井身结构进行计算和分析。
1 油藏工况
考虑油藏工况和井筒温度 等因素,选择合适的材料 和工艺。
2 套管设计
设计套管参数和套管布置 方案,保证油井的产能和 安全。
3 完井液体设计
确定完井液体的性质和配 方,满足井身结构和油藏 要求。
结论和总结
井身结构设计是钻井与完井工程中的关键环节。合理的结构设计可以提高井筒的稳定性和钻井、完井操作的安 全性,降低事故风险,提高工作效率。
仿真法
运用计算机仿真技术,对井身 结构进行模拟和优化设计。
钻井井身设计要点
地层评价
对钻井地层进行评价,了解地层的性质和特点。
井身结构设计
一、井身结构设计
一、井身结构设计
一、井身结构 设计的任务
套管下入层次 每层套管的下入深度 各层套管相应的井眼尺寸(钻头尺寸) 各层套管外的水泥返深
➢ 确定井身结构的主要依据 钻井地质设计(地层压力、地层
破裂压力、地层坍塌压力、完井方 式)、复杂地层深度、地表水源情 况、钻井技术水平和采、试油、气 的技术要求等。。
✓ 井身结构设计的原则 (1)有效地保护油气层; (2)有效地避免漏、喷、塌、卡等井下复杂事故,保证安全、 快速钻井; (3)当发生井涌时,具有压井处理溢流的能力; (4)钻下部高压地层时,井内液柱压力不会压漏上层套管鞋处 的裸露地层。 (5)下套管过程中,不产生压差卡套管现象。 (6)对于压力不清楚或复杂深探井,套管设计应留有余量。 (7)同一裸眼井段,尽量不存在两个压力体系。 (8)地质预告有浅气层的井,应用套管封住。
➢ 裸眼井段应满足的力学平衡条件
在裸眼井段中存在着地层孔隙压力、钻井液液柱压力、地层破裂压力。
(1)防井涌
ρdmax≥ρpmax+ Sb (抽汲压力系数)
(2)防压差卡钻 0.00981 Dpmin (ρdmax-ρpmin) ≤ △P(△PN、△PA)
(3)防井漏 ρdmax+ Sg(激动压力系数)+ Sf(压裂安全系数)≤ρfmin
Dpmin — 最小地层孔隙压力所处的井深,m;
ρfmin — 裸眼井段最小地层破裂压力的当量钻液密度,g/cm3
Dc1 — 套管下入深度,m;
ρfc1 — 套管鞋处地层破裂压力的当量钻井液密度, g/cm3;
四、井身结构设计方法及步骤
下→上,内→外 五、设计举例
某井设计井深为4400m,地层压力梯度和地
一、井身结构设计
一、井身结构 设计的任务
套管下入层次 每层套管的下入深度 各层套管相应的井眼尺寸(钻头尺寸) 各层套管外的水泥返深
➢ 确定井身结构的主要依据 钻井地质设计(地层压力、地层
破裂压力、地层坍塌压力、完井方 式)、复杂地层深度、地表水源情 况、钻井技术水平和采、试油、气 的技术要求等。。
✓ 井身结构设计的原则 (1)有效地保护油气层; (2)有效地避免漏、喷、塌、卡等井下复杂事故,保证安全、 快速钻井; (3)当发生井涌时,具有压井处理溢流的能力; (4)钻下部高压地层时,井内液柱压力不会压漏上层套管鞋处 的裸露地层。 (5)下套管过程中,不产生压差卡套管现象。 (6)对于压力不清楚或复杂深探井,套管设计应留有余量。 (7)同一裸眼井段,尽量不存在两个压力体系。 (8)地质预告有浅气层的井,应用套管封住。
➢ 裸眼井段应满足的力学平衡条件
在裸眼井段中存在着地层孔隙压力、钻井液液柱压力、地层破裂压力。
(1)防井涌
ρdmax≥ρpmax+ Sb (抽汲压力系数)
(2)防压差卡钻 0.00981 Dpmin (ρdmax-ρpmin) ≤ △P(△PN、△PA)
(3)防井漏 ρdmax+ Sg(激动压力系数)+ Sf(压裂安全系数)≤ρfmin
Dpmin — 最小地层孔隙压力所处的井深,m;
ρfmin — 裸眼井段最小地层破裂压力的当量钻液密度,g/cm3
Dc1 — 套管下入深度,m;
ρfc1 — 套管鞋处地层破裂压力的当量钻井液密度, g/cm3;
四、井身结构设计方法及步骤
下→上,内→外 五、设计举例
某井设计井深为4400m,地层压力梯度和地
第二章第四节 井身结构设计1PPT课件
最大允许压差(避免压 差卡钻)
▪ ΔPN(ΔPa)
Gf Gp
当量泥浆密度
井身结构设计
1、正常作业时(起下钻、钻进): 起钻: 最大钻井液密度:某一层套管的钻进井段中所用的最大钻井液密
度应不小于和该井段中的最大地层压力梯度当量密度与最大抽吸 压力梯度当量密度之和。
ma x PmaxSw
ρmax:某层套管的钻进井段中所使用的最大钻井液密度,g/cm3; ρpmax该井段的最大地层压力梯度, g/cm3; Sw:考虑到上提钻柱时抽吸作用使井底压力降低,为了平衡地层压力
井底压力随作业不同而变化: (1)静止状态,井底压力=环形空间静液压力; (2)正常循环时,井底压力=环形空间静液压力+环形空间压力损失; (3)用旋转防喷器循环钻井液时,井底压力=环形空间静液压力+环形空间压力损
失+旋转防喷器的回压, (4)循环出气涌时,井底压力=环形空间静液压力十环形空间压力损失+节流器压
压力的差值过大.除使机械钻速降低外,而且也 是造成压差卡钻的直接原因,这会使下套管过程 中,发生卡套管事故。)。
套管层次和下入深度确定
考虑的因素
地层压力剖面
地层破裂压力剖面
工程参数(必封点确定)
正常作业:抽吸压力系
数地层Sw压、裂激安动全压增力值系S数f Sg、井深
出现井涌:抽吸压力系 数Sw、地层压裂安全增 值Sf、考虑液流情况下 地层压力增加值 SK
Sk
pa 0.00981H x
关井后井内压力平衡方程 pmE pm pa
mEH (p Sw)H Sk Hx
mE p
Sw Sk
Hx H
x
井身结构设计
井身结构设计关键参数
▪ ΔPN(ΔPa)
Gf Gp
当量泥浆密度
井身结构设计
1、正常作业时(起下钻、钻进): 起钻: 最大钻井液密度:某一层套管的钻进井段中所用的最大钻井液密
度应不小于和该井段中的最大地层压力梯度当量密度与最大抽吸 压力梯度当量密度之和。
ma x PmaxSw
ρmax:某层套管的钻进井段中所使用的最大钻井液密度,g/cm3; ρpmax该井段的最大地层压力梯度, g/cm3; Sw:考虑到上提钻柱时抽吸作用使井底压力降低,为了平衡地层压力
井底压力随作业不同而变化: (1)静止状态,井底压力=环形空间静液压力; (2)正常循环时,井底压力=环形空间静液压力+环形空间压力损失; (3)用旋转防喷器循环钻井液时,井底压力=环形空间静液压力+环形空间压力损
失+旋转防喷器的回压, (4)循环出气涌时,井底压力=环形空间静液压力十环形空间压力损失+节流器压
压力的差值过大.除使机械钻速降低外,而且也 是造成压差卡钻的直接原因,这会使下套管过程 中,发生卡套管事故。)。
套管层次和下入深度确定
考虑的因素
地层压力剖面
地层破裂压力剖面
工程参数(必封点确定)
正常作业:抽吸压力系
数地层Sw压、裂激安动全压增力值系S数f Sg、井深
出现井涌:抽吸压力系 数Sw、地层压裂安全增 值Sf、考虑液流情况下 地层压力增加值 SK
Sk
pa 0.00981H x
关井后井内压力平衡方程 pmE pm pa
mEH (p Sw)H Sk Hx
mE p
Sw Sk
Hx H
x
井身结构设计
井身结构设计关键参数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
井身结构设计原理—必封点深度的确定
1 工程约束条件下必封点深度的确定
(1)正常作业工况(起下钻、钻进) (2)出现溢流约束条件下必封点深度的确定 (3)压差卡钻约束条件下必封点深度的确定
2 目的层是裸露段的底界,油层套管的下深根据完井方法不同而定。 3 对于地质复杂层(如坍塌层,盐膏层,漏失层等),水层,非目的油气
(2)出现溢流约束条件下必封点深度的确定 正常钻井时,按近平衡压力钻井设计钻井液密度m 为P S
m P Sw
钻至某一井深Hx时,发生一个大小为Sk的溢流,停泵关闭防
喷器,立管压力读数为Psd
Psd 0.00981 Sk H
关井后井内有效液柱压力平衡方程为PmE=Pm+Psd
0.00981 mE H 0.00981 H ( P Sw ) 0.00981 Sk H x
井身结构设计的基础参数
井身结构设计的基础参数包括地质方面的数据和工程等数据 1.地质方面数据 (1)岩性剖面及故障提示; (2)地层压力梯度剖面; (3)地层破裂压力梯度剖面。 2.工程数据 (1)抽汲压力系数Sw,以当量钻井液密度表示;单位g/cm3 :
如 美 国 墨 西 湾 地 区 采 用 Sw=0.06。 我 国 中 原 油 田 Sw=0.015~0.049。
Sk
f min
工程约束条件下必封点深度的确定
(3)压差卡钻约束条件下必封点深度的确定 下套管中,钻井液密度为(P+Sw),当套管柱进入低压力 井段会有压差粘附卡套管的可能,故应限制压差值。限制 压差值在正常压力井段为PN,异常压力地层为Pa。即 Pm-PPmin PN(或 Pa) 在井身结构设计中,由前述设计出该层套管必封点深度后, 一般用上式来校核是否能安全下到必封点位置。
裸眼井内钻井液有效液柱压力必须大于或等于地层压力,防止井喷,但 又必须小于等于地层破裂压力,防止压裂地层发生井漏。
考虑到井壁的稳定,还应补充一个与时间有关的不等式: Gm (t) Gt (t) 能满足以上二不等式的同一井段,则该井段截面间不需要套管封隔。反之,
则需要用套管封隔。
式中:Pf——地层破裂压力; PmE——钻井液有效液柱压力;PP——地层 压力。Gt(t)——该截面岩层的坍塌压力梯度; Gm(t)——该截面 钻井液有效压力梯度。
层,以及目前钻井工艺技术难于解决的其它层段,只要裸露段中出现 了这一类必封点,则这些井段是应考虑的必封井段的顶界。
工程约束条件下必封点深度的确定
(1)正常作业工况(起下钻、钻进)
在满足近平衡压力钻井条件下,某一层套管井段钻进中所用最大钻井液密度 m应大或等于该井段最大地层压力梯度当量密度Pmax与该井深区间钻进 中可能产生的最大抽汲压力梯度当量密度Sw之和,以防止起钻中抽汲造 成溢流。即:
地层压力和地层破裂压力的数据一般是离Байду номын сангаас的,是由若干个压 力梯度和深度数据的离散点构成。为了求得连续的地层压力和 地层破裂压力梯度剖面,拟合曲线是不适用的,但可依靠线性 插值的方法。在线性插值中,认为离散的两邻点间压力梯度变 化规律为一直线。
对任意深度H求线性插值的步骤:
设自上而下顺序为i的点具有深度为Hi,地层压力梯度为GPi, 地层破裂压力梯度为Gfi,而其上部相邻点的序号为i-1,相邻 的地层压力梯度为GPi-1,地层破裂压力梯度为Gfi-1,则在深度 区间Hi~Hi-1内任意深度H有:
井身结构设计原理—液体压力体系的当
量梯度分布
Pm Pm 0.0981 mH m
Gm Gm 0.0981 m
非密封液柱体系的压力 分布和当量梯度分布
Po
Pm
Pm Po 0.0981 mH
Pm
Gm
Gm
Po H
0.0981Pm
密封液柱体系的压力 分布和当量梯度分布
井身结构设计原理—地层压力和地层破裂压力 剖面的线性插值
2.工程数据
(2)激动压力系数Sg,以当量钻井液密度表示,单位g/cm3。 Sg由计算的激动压力用(2-58)进行计算,美国墨西湾地 区取Sg=0.06,我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值Sf,以当量钻井液密度表示,单位 g/cm3。
m Pmax Sw
mE P max Sw Sg
下钻中使用这一钻井液密度, 在井内将产生一定的激动压力Sg
P max S w S g S f f min
考虑地层破裂压力检测误差,给予一
个安全系数Sf。则该层套管可行裸露 段底界(或该层套管必封点深度)
工程约束条件下必封点深度的确定
mE
P
Sw
Hx H
Sk
Psd—— 立 管 压 力 , Mpa; Hx——出 现 溢 流 的 井 深 , m
裸露井深区间内地层破裂强度(地层破裂压力)均应承受这 时井内液柱的有效液柱压力,考虑地层破裂安全系数Sf,
f min
P
Sw S f
Hx H
SK
Pmax Sw S f
Hx H
井身结构设计的任务和原则
主要任务:
确定套管的下入层次、下入深 度、水泥浆返深、水泥环厚度、 生产套管尺寸及钻头尺寸。
主要原则:
1.能有效地保护储集层;
2.避免产生井漏、井塌、卡钻等 井下复杂情况和事故。为安全、 优质、高速和经济钻井创造条 件;
3.当实际地层压力超过预测值发 生溢流时,在一定范围内,具 有处理溢流的能力。
GP
H Hi
H i1 H i1
(GPi
GPi1)
GPi1
Gf
H H i1 H i H i1
(G fi
G fi1 ) G fi1
井身结构设计原理—必封点深度的确定
必封点深度把裸露井眼中满足压力不等式:
Pf PmE PP
条件的极限长度井段定义为可行裸露段。可行裸露段的 长度是由工程和地质条件决定的井深区间,其顶界是 上一层套管的必封点,底界为该层套管的必封点深度。
套管 井壁 水泥环
井身结构设计的内容:
确定套管的下入层次 下入深度 水泥浆返深 水泥环厚度 钻头尺寸
井身结构设计原理
1.三个压力的相互关系:
地层—井内压力体系在裸眼井段中存在着地层压力、地层破裂压力和 井内钻井液有效液柱压力这三个相关的压力、地层—井内压力系统必须
满足以下条件: Pf PmE PP