数学物理方程 答案 谷超豪

合集下载

数学物理方程(谷超豪)-第三、四章 课后习题答案

数学物理方程(谷超豪)-第三、四章 课后习题答案

第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。

证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。

数学物理方程_谷超豪_第二章答案

数学物理方程_谷超豪_第二章答案

数学物理方程谷超豪第二章答案1. 引言本文档是《数学物理方程》一书中第二章的答案。

该章节主要涵盖了偏微分方程的分类和解法。

在本文中,我们将解答课后习题和深入讨论相关概念,以帮助读者更好地理解和应用这些知识。

2. 偏微分方程的分类在第二章中,我们学习了偏微分方程的分类方法。

根据方程中未知函数的阶数和自变量的个数,偏微分方程可以分为以下几类:1.一阶偏微分方程:只涉及一阶导数的方程,如线性一阶波动方程和拟线性一阶方程等。

2.二阶偏微分方程:涉及二阶导数的方程,如线性二阶波动方程和拉普拉斯方程等。

3.高阶偏微分方程:涉及高阶导数的方程,如线性高阶波动方程和椭圆方程等。

根据自变量的个数,偏微分方程还可以分为以下两类:1.单自变量偏微分方程:只含有一个自变量的方程,如一维波动方程和一维热传导方程。

2.多自变量偏微分方程:含有多个自变量的方程,如二维波动方程和三维热传导方程。

3. 课后习题答案3.1 第一题题目:求解一维波动方程 $\\frac{\\partial^2 u}{\\partial t^2} = c^2 \\frac{\\partial^2 u}{\\partial x^2}$,其中c为常数。

解答:我们可以使用分离变量法求解这个一维波动方程。

首先,假设c=c(c)c(c),代入原方程得到:$$\\frac{T''(t)}{c^2T(t)} = \\frac{X''(x)}{X(x)}$$两边同时等于一个常数 $-\\lambda^2$,即:$$\\begin{cases} T''(t) + \\lambda^2 c^2 T(t) = 0 \\\\ X''(x) + \\lambda^2 X(x) = 0 \\end{cases}$$解这个常微分方程得到:$$\\begin{cases} T(t) = A\\cos(\\lambda c t) +B\\sin(\\lambda c t) \\\\ X(x) = C\\cos(\\lambda x) +D\\sin(\\lambda x) \\end{cases}$$其中c,c,c,c都是常数。

电子科大 数理方程(谷超豪)作业4

电子科大 数理方程(谷超豪)作业4

P746.用分离变量法求解由下述调和方程的第一边界问题所描述的矩形平板)0,0b y a x ≤≤≤≤(上的稳定温度分布:⎪⎪⎪⎩⎪⎪⎪⎨⎧=====∂∂+∂∂.0),(,sin )0,(0),(),0(02222b x u a x x u y a u y u y uxu π 解:令)()(),(y Y x X y x u =代入方程 ,得λ-=''-=''YY x X x X )()(再由一对齐次边界条件0),(),0(==y a u y u 得0)()0(==a X X由此得边值问题 ⎩⎨⎧===+''0)()0(0a X X X X λ由第一章讨论知,当2)(an n πλλ==时,以上问题有零解 .s i n )(x an x X n π= ),2,1( =n又 0)(2=-''n n Y an Y π求出通解,得yan n yan n n eB eA Y ππ-+=所以 ∑∞=-+=1.s i n)()(n ya n n yan n x an eB eA y x u πππ,由另一对边值,得⎪⎪⎭⎪⎪⎬⎫+=+=∑∑∞=-∞=11s i n )(0s i n )(s i n n b a n n b a n n n n n x a n e B e A x a n B A a xπππππ 由此得,⎪⎩⎪⎨⎧==+==+=+-,2,10,3,20111n e B e A n B A B A ba n nb a n nn n ππ,解得 bashe A baππ--=211 bashe B baππ211=,3,20===n B A n n代入),(y x u 的表达式得x ae e bash y x u y b ay b aππππsin)(121),()()(----⋅=x ay b xsh bashπππsin)(1-=P794.证明当u(M)在闭曲面Γ的外部调和,并且在无穷远处成立着 ))(1(),1()(2∞→=∂∂=oM oMoMr r o ru r o M u则公式(2.6)仍成立,但0M 是Γ外的任一点。

数学物理方程答案谷超豪

数学物理方程答案谷超豪

数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。

定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。

解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。

仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。

?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。

且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。

2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。

数学物理方程(谷超豪)第三章调和方程习题解答

数学物理方程(谷超豪)第三章调和方程习题解答

∆u
=
1 r2

∂ ∂r
(r 2
∂u ) ∂r
+
r2
1 sin θ

∂ ∂θ
(sin θ
∂u ∂θ
)
+
r2
1 sin
2
θ

∂2u ∂ϕ 2
=0
证:球坐标 (r,θ ,ϕ) 与直角坐标 (x, y, z) 的关系:
x = r sinθ cosϕ , y = r sin θ sin ϕ , z = r cosθ
f
(r)
=

A1 n+
2
r −n+2
+
c1
即 n ≠ 2 ,则
f
(r)
=
c1
+
c2 r n−2
若 n = 2 ,则 即 n = 2 ,则
f ' (r) = A1 故 f (r) = c1 + A1Inr r
f (r) = c1 + c2 In 1 r
2. 证明拉普拉斯算子在球面坐标 (r,θ ,ϕ) 下,可以写成

∂u ∂ρ
(5)
∂ 2u ∂x 2
+
∂2u ∂y 2
+
∂2u ∂z 2
=
∂2u ∂ρ 2
+
∂2u ∂z 2
+
1 ρ2

∂2u ∂ϕ 2
+
1 ρ

∂u ∂ρ
∂2u 再用(3)式,变换 ∂ρ 2
+
∂ 2u ∂z 2
。这又可以直接利用(5)式,得
∂2u ∂ρ 2

数学物理方程 谷超豪 第四章答案

数学物理方程 谷超豪 第四章答案
(5) 因
61
(1 x) 2 u xx (1 y 2 )u yy xu x yu y 0
(1 x 2 )(1 y 2 ) 0 为椭圆形。特征方程为
(
即 解之得
dy 2 1 y 2 ) 0 dx 1 x2

dy 1 y2 i dx 1 x2
2u 2u y 2u 1 1 u 2 ( 3 ) xy x x x 2
2
因此引变换
代入化简即得 (3)
x 2u 0 u 0 ( x 0)

u u u 2 x
u xx u yy 0
60

0 y 0 0
2u y 2

2u 2
2
2u 2u 2
2u 2u 2u 2u (2 cos x) 2 (2 cos x) (2 cos x) 2 xy
代入化简得

2u
2
2 u u u ( )0 32
所以
D( , ) a11a 22 ( x 2 y 2 x 2 y 2 ) (a 212 a11a 22 )( x y y x ) 2 D( x, y )
D( , ) 因 0 ,故 与 同号,即类型不变。 D ( x, y )
(4) sgn yu xx 2u xy sgn xu yy 0 因 1 sgn x sgn y, 在坐标轴上 0 ,为双曲型;在一,三象限内 0 ,为抛物型;在二,四 象限内 0 ,为双曲型。 (5) u xx 4u xy 2u xz 4u yy u zz 0 因对应二次型为

数学物理方程 谷超豪 调和方程习题解答

数学物理方程 谷超豪 调和方程习题解答

(shny sin nx) xx = −(shny sin nx) yy 即∆(shny sin nx) = 0
故 shny sin nx为调和函数
同理,其余三个函数也是调和的
(5) shx(chx + cos y)−1和sin y(chx + cos y)−1
证: 令
u = shx(chx + cos y)−1 ∂u = chx(chx + cos y)−1 − sh2 x(chx + cos y)−2 ∂x
f
(r)
=

A1 n+
2
r −n+2
+
c1
即 n ≠ 2 ,则
f
(r)
=
c1
+
c2 r n−2
若 n = 2 ,则 即 n = 2 ,则
f ' (r) = A1 故 f (r) = c1 + A1Inr r
f (r) = c1 + c2 In 1 r
2. 证明拉普拉斯算子在球面坐标 (r,θ ,ϕ) 下,可以写成
证:令 u = ax + by + c , 显然
∂2u ∂x 2
=
0,
∂2u ∂y 2
=
0.
故 ∆u = 0 ,所以 u 为调和函数
(2) x 2 − y 2和2xy
∂2u ∂x 2
=
2,
∂2u ∂y 2
=
2, 。所以 ∆u
=
0 。u 为调和函数

v = 2xy 则
∂2v ∂x 2
=
0,
∂2v ∂y 2

r sin θ

数学物理方程_答案_谷超豪

数学物理方程_答案_谷超豪

第一章.波动方程§1 方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。

证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。

现在计算这段杆在时刻t 的相对伸长。

在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。

由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。

设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρxESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得u x s x )()(ρx ∂∂=x ESu ()若=)(x s 常量,则得22)(tu x ∂∂ρ=))((xu x E x∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为.0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。

数学物理方程第三版 谷超豪 答案

数学物理方程第三版 谷超豪 答案

x u(x,t); x x u(x x,t)
其相对伸长等于
[x

x

u(x

x,t)] [x x

u(x,t)]
x

ux (x
x, t )
令 x 0 ,取极限得在点 x 的相对伸长为 u x (x,t) 。由虎克定律,张力T (x,t) 等于
T (x,t) E(x)ux (x,t)
x0

f
(t).
3. 试证:圆锥形枢轴的纵振动方程为 E [(1 x )2 u ] (1 x )2 2u
x h x
h t 2
其中 h 为圆锥的高(如图 1) 证:如图,不妨设枢轴底面的半径为 1,则 x
点处截面的半径 l 为: l 1 x h
所以截面积 s(x) (1 x )2 。利用第 1 题,得 h
数学物理方程答案
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
u(0,t) 0,u(l,t) 0.
(2)若
x

l
为自由端,则杆在
x

l
的张力 T
(l, t )

E(x)
u x
|
xl
等于零,因此相应
的边界条件为
u x
|
xl
=0
同理,若 x 0为自由端,则相应的边界条件为

h x 2u 2v
t 2 t 2
代入原方程,得
h x 2v 1 h x 2v
x 2 a 2
t 2

2v 1 2v
x 2 a 2 t 2
由波动方程通解表达式得

数学物理方程谷超豪版第二章课后规范标准答案

数学物理方程谷超豪版第二章课后规范标准答案

,.第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-=又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。

解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。

记杆的截面面积42l π为S 。

由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kts xu k t s xukdQ xx xx ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。

由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l k xu k t u c --∂∂=∂∂ρ 或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。

解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。

数学物理方程第二版(谷超豪)前三章习题答案

数学物理方程第二版(谷超豪)前三章习题答案
即得所证。
1
l 1
x h
所以截面积 s( x) (1 ) 。利用第 1 题,得
2
x h
证:函数 u ( x, y, t )
1 t x y
2 2 2
在锥 t x y >0 内对变量 x, y, t 有
2 2 2
( x) (1 ) 2
若 E ( x) E 为常量,则得
代入原方程,得
x sx
若 s( x) 常数,则得
2u u u . ES b x s x 2 t x x t

2v 1 2v h x 2 2 h x 2 x a t 2v 1 2v x 2 a 2 t 2
于是得运动方程
( x)s( x) x utt ( x, t ) ESu x ( x x) | x x ESu x ( x) | x
( x)s( x)utt ( ESu x ) x

利用微分中值定理,消去 x ,再令 x 0 得
u ∣ x 0 k[u(0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x E
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
u(0, t ) 0, u(l , t ) 0.
(2)若 x l 为自由端,则杆在 x l 的张力 T (l , t ) E ( x) 界条件为
u u x E t t x x
1 F x Gx hx 1 x aF / x aG / x hx
x
(1)

数学物理方程第二版(谷超豪)前三章习题答案

数学物理方程第二版(谷超豪)前三章习题答案

即对任何 x, G(x) C 0 又
1 1 x C G(x)= ( x) ( )d x 2 2a 0 2a
x 2 ]的影响区域以外不发生变化;
(2) 在 x 轴区间[ x1 , x 2 ]上所给的初始条件唯一地确定区间[ x1 , x2 ]的决定区 域中解的数值。 证: (1) 非齐次方程初值问题的解为 u(x,t)= [ ( x at ) ( x at )]
其中 ( x) 表示 T ( x) 方向与 x 轴的夹角 又 于是得运动方程
同理
2x 2 y 2 5 2u 2 2 2 2 2 t x y t x 2 2 y 2 2 y
t x
2 5 2 2 2 y t

u sin tg x.
代入原方程,得
x sx
若 s( x) 常数,则得
2u u u . ES b x s x 2 t x x t

2v 1 2v h x 2 2 h x 2 x a t 2v 1 2v x 2 a 2 t 2
由 (1), (2) 两式解出
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
1 1 h d c F x h x x 2 2a x 2
o
x
t 0 : u x ,
解:令 h x u v 则
u x . t
u | x l =0 x
u | x l 等于零,因此相应的边 x
同理,若 x 0 为自由端,则相应的边界条件为
(3)若 x l 端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移 由函数 v(t ) 给出,则在 x l 端支承的伸长为 u(l , t ) v(t ) 。由虎克定律有

数学物理方程谷超豪版第二章课后答案.doc

数学物理方程谷超豪版第二章课后答案.doc

第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。

解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。

记杆的截面面积 l 2为 S 。

t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。

由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。

解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。

电子科大 数理方程(谷超豪)作业3

电子科大 数理方程(谷超豪)作业3

d .
由于 sinx 有界,故上述的积分是收敛的。令 ( x ),

1 ,则 4a 2 t
u( x , t )
1 2a t



sin( x )e d ,

2
其中 e
2
sin 是奇函数,所以 e sin d 0 。由于 e i cos i sin ,且 sin 为
2
4 a 2t
]d
2
4 a 2t d
2a
[ ( ) ( )]e t
要此式成立,只需
( ) ( )
即 ( ) 作奇开拓,由此得解公式为
u( x , t )
1 2a
( )[e t
0


( x ) 2 4 a2t
e

( x ) 2 4 a2t
0 l 0 0 l l l
l
2 ut ( utt a 2 uxx )dx 2a 2 ux ut |
0
l
0
因为弦的两端固定,即 u |x 0 0, u |x l 0, 所以 ut |x 0 0, ut |x l 0. 由于 c>0, 有
dE ( t ) 2 ut ( utt a 2 uxx )dx dt 0 2c ut2 dx 0.

P60,5. (1)求解热传导方程 ut a uxx 的柯西问题,已知: u |t 0 sin x ;
2
2)用延拓法求解半有界直线上热传导方程 ut a uxx ,假设
2
u ( x,0) ( x) (0 x ) u (0, t ) 0

数学物理方程谷超豪版第二章课后答案

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。

解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。

记杆的截面面积42l π为S 。

由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kt s xu kt s xukdQ xx x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。

由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lk t x l u u k dQ ∆∆--=∆∆--=111124π 又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为 ()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3 由热量守恒原理得:()t x s u u lk t x s x ukt x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ 消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。

解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。

数学物理方程(谷超豪)-第三、四章 课后习题答案

数学物理方程(谷超豪)-第三、四章 课后习题答案

第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。

证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。

数学物理方程(谷超豪)-第三、四章 课后习题答案

数学物理方程(谷超豪)-第三、四章 课后习题答案

第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。

证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.用分离变量法求下列问题的解:
(1)
解:边界条件齐次的且是第一类的,令
得固有函数 ,且

于是
今由始值确定常数 及 ,由始值得
所以 当
因此所求解为
(2)
解:边界条件齐次的,令
得: (1)
及 。
求问题(1)的非平凡解,分以下三种情形讨论。
时,方程的通解为
由 得
由பைடு நூலகம்得
解以上方程组,得 , ,故 时得不到非零解。
解:波动方程的通解为
u=F(x-at)+G(x+at)
其中F,G由初始条件 与 决定。初值问题的解仅由右传播组成,必须且只须对
于任何 有G(x+at) 常数.
即对任何x, G(x) C
又G(x)=
所以 应满足
(常数)
或 (x)+ =0
3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)
解:u(x,t)=F(x-at)+G(x+at)
由于 是任意函数,故 的系数必需恒为零。即
于是得
所以
代入以上方程组中最后一个方程,得


最后得到
6.利用波的反射法求解一端固定并伸长到无穷远处的弦振动问题
解:满足方程及初始条件的解,由达朗贝尔公式给出:

由题意知 仅在 上给出,为利用达朗贝尔解,必须将 开拓到 上,为此利用边值条件,得

因此对任何 必须有
∣ 其中
特别地,若支承固定于一定点上,则 得边界条件
∣ 。
同理,若 端固定在弹性支承上,则得边界条件

即 ∣
3. 试证:圆锥形枢轴的纵振动方程为
其中 为圆锥的高(如图1)
证:如图,不妨设枢轴底面的半径为1,则
点处截面的半径 为:
所以截面积 。利用第1题,得
若 为常量,则得
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
运动方程为:
利用微分中值定理,消去 ,再令 得
若 常数,则得

§2达朗贝尔公式、波的传抪
1.证明方程
的通解可以写成
其中F,G为任意的单变量可微函数,并由此求解它的初值问题:
解:令 则

代入原方程,得

由波动方程通解表达式得
所以
为原方程的通解。
由初始条件得
所以
由 两式解出
所以
+
即为初值问题的解散。
2.问初始条件 与 满足怎样的条件时,齐次波动方程初值问题的解仅由右传播波组成?
即 必须接奇函数开拓到 上,记开拓后的函数为 ;
所以

7.求方程 形如 的解(称为球面波)其中 。
解:
`
代入原方程,得

令 ,则
代入方程,得?v满足
故得通解
所以
8.求解波动方程的初值问题
解:由非齐次方程初值问题解的公式得
=
=
=
=
即 为所求的解。
9.求解波动方程的初值问题。
解:
=
=
=
=
+
=
+
所以
?§3混合问题的分离变量法
解:如图2,设弦长为 ,弦的线密度为 ,则 点处的张力 为
且 的方向总是沿着弦在 点处的切线方向。仍以 表示弦上各点在时刻 沿垂直于 轴方向的位移,取弦段 则弦段两端张力在 轴方向的投影分别为
其中 表示 方向与 轴的夹角

于是得运动方程
∣ ∣
利用微分中值定理,消去 ,再令 得

5. 验证 在锥 >0中都满足波动方程
令x-at=0得 =F(0)+G(2x)
令x+at=0得 =F(2x)+G(0)
所以F(x)= -G(0).
G(x)= -F(0).
且F(0)+G(0)=
所以u(x,t)= + -
即为古尔沙问题的解。
4.对非齐次波动方程的初值问题
证明:
(1)如果初始条件在x轴的区间[x ,x ]上发生变化,那末对应的解在区间[ ,
]的影响区域以外不发生变化;
(2)在x轴区间[ ]上所给的初始条件唯一地确定区间[ ]的决定区
域中解的数值。
证:(1)非齐次方程初值问题的解为
u(x,t)=
+
当初始条件发生变化时,仅仅引起以上表达式的前两项发生变化,即仅仅影晌到相应齐
次方程初值的解。
当 在[ ]上发生变化,若对任何t>0,有x+at<x 或x-at>x ,则区间[x-at,x+at]整个落在区间[ ]之外,由解的表达式知u(x,t)不发生变化,即对t>0,当x<x -at或x>x +at,也就是(x,t)落在区间[ ]的影响域
之外,解u(x,t)不发生变化。(1)得证。
(2).区间[ ]的决定区域为
在其中任给(x,t),则
故区间[x-at,x+at]完全落在区间[ ]中。因此[ ]上所给的初绐
条件 代入达朗贝尔公式唯一地确定出u(x,t)的数值。
5.若电报方程
具体形如
的解(称为阻碍尼波),问此时 之间应成立什么关系?

代入方程,得
解:(1)杆的两端被固定在 两点则相应的边界条件为
(2)若 为自由端,则杆在 的张力 | 等于零,因此相应的边界条件为 | =0
同理,若 为自由端,则相应的边界条件为 ∣
(3)若 端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数 给出,则在 端支承的伸长为 。由虎克定律有

其中 为支承的刚度系数。由此得边界条件
其相对伸长等于
令 ,取极限得在点 的相对伸长为 。由虎克定律,张力 等于
其中 是在点 的杨氏模量。
设杆的横截面面积为 则作用在杆段 两端的力分别为
于是得运动方程
利用微分中值定理,消去 ,再令 得
若 常量,则得
=
即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由, (3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
证:函数 在锥 >0内对变量 有
二阶连续偏导数。且
同理
所以
即得所证。
6.在单性杆纵振动时,若考虑摩阻的影响,并设摩阻力密度涵数(即单位质量所受的摩阻力)
与杆件在该点的速度大小成正比(比例系数设为b),但方向相反,试导出这时位移函数所满足的微分方程.
解:利用第1题的推导,由题意知此时尚须考虑杆段 上所受的摩阻力.由题设,单位质量所受摩阻力为 ,故 上所受摩阻力为
时,方程的通解为
由边值 得 ,再由 得 ,仍得不到非零解。
时,方程的通解为
由 得 ,再由 得
为了使 ,必须 ,于是
且相应地得到
第一章.波动方程
§1方程的导出。定解条件
1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x点处的点在时刻t离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 满足方程
其中 为杆的密度, 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 与 。现在计算这段杆在时刻 的相对伸长。在时刻 这段杆两端的坐标分别为:
相关文档
最新文档