02年考研数学真题二答案
[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc
![[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc](https://img.taocdn.com/s3/m/6c45129fa300a6c30c229fb5.png)
[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1 (02年)设y=y(x)是二阶常系数微分方程y"+py'+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时.函数的极限.(A)不存在(B)等于1(C)等于2(D)等于32 (03年)已知是微分方程的表达式为3 (04年)微分方程y"+y=x2+1+sinx的特解形式可设为(A)y*=ax2+bx+c+x(Asinx+Bcosx).(B)y*=x(ax2+bx+c+Asinx+Bcosx).(C)y*=(ax2+bx+c+Asinx.(D)y*=ax2+bx+c+Acosx.4 (06年)函数y=C1e x+C2e-2x+xe x满足的一个微分方程是(A)y"一y’一2y=3xe x.(B)y"-y’一2y=3e x.(C)y”+y’一2y=3xe x.(D)y"+y'-2y=3e x.5 (08年)在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是(A)y"'+y"-4y’-4y=0.(B)y"'+y"+4y’+4y=0.(C)y"'一y”一4y’+4y=0.(D)y"'-y"+4y’一4y=0.6 (10年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则7 (11年)微分方程y"一λ2y=eλx+e-λx(λ>0)的特解形式为(A)a(eλx+e-λx).(B)ax(eλx+e-λx).(C)x(aeλx+be-λx).(D)x2(aeλx+be-λx).8 (17年)微分方程y”一4y’+8y=r2x(1+cos2x)的特解可设为y’=(A)Ae2x+e2x(Bcos2x+Csin2x).(B)Axe2x+e2x(Bcos2x+Csin2x).(C)Ae2x+xe2x(Bcos2x+Csin2x).(D)Axe2x+xe2x(Bcos2x+Csin2x).二、填空题9 (04年)微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为_______.10 (05年)微分方程xy’+2y=3xlnx满足y(1)=的解为______.11 (06年)微分方程的通解是_______.12 (07年)二阶常系数非齐次线性微分方程y"一4y’+3y=2e2x的通解为y=________.13 (08年)微分方程(y+x2e-x)dx—xdy=0的通解是y=______.14 (10年)3阶常系数线性齐次微分方程y"'一2y"+y’一2y=0的通解为y=_______.15 (11年)微分方程y’+y=e-x cosx满足条件y(0)=0的解为y=________.16 (12年)微分方程ydx+(x一3y2)dy=0满足条件y|x=1=1的解为y=______.17 (13年)已知y1=e3x一xe3x,y2=e x一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y'|x=0=1的解为y=______.18 (15年)设函数y=y(x)是微分方程y"+y'-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=______.19 (16年)以y=x2一e x和y=x2为特解的一阶非齐次线性微分方程为__________.三、解答题解答应写出文字说明、证明过程或演算步骤。
考研数学二(填空题)模拟试卷50(题后含答案及解析)

考研数学二(填空题)模拟试卷50(题后含答案及解析) 题型有:1.1.设=______正确答案:解析:知识模块:函数、极限、连续2.求极限=_______.正确答案:1 涉及知识点:函数、极限、连续3.=______正确答案:解析:知识模块:函数、极限、连续4.设A,B为3阶方阵,A可相似于对角矩阵,且A2-A=D,B2+B=E,r(AB)=1.则|A+2E|=_________.正确答案:12解析:本题考查求抽象矩阵的特征值和由矩阵的秩确定特征值以及行列式与其特征值的关系.由A2—A=D知A的特征值为1,0,再由B2+E=E知B可逆,从而由r(AB)=1知r(A)=1,又A可对角化,所以A的特征值为1,0,0,因此A+2E的特征值为3,2,2,故|A+2E|=3×2×2=12.知识模块:行列式5.对充分大的一切x,给出以下5个函数:100x,log10x100,e10x,,则其中最大的是_____________.正确答案:解析:当x充分大时,有重要关系:eαx>eβ>lnγx,其中α,β,γ>0,故本题填.知识模块:函数、极限、连续6.=__________。
正确答案:secx一tanx+x+C解析:知识模块:一元函数积分学7.设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,2γ1,3γ2,γ3|=21,则|A+B|=________.正确答案:180解析:因A+B=(α+β,3γ1,4γ2,2γ3),故|A+B|=|α+β,3γ1,4γ2,2γ3|=24|α,γ1,γ2,γ3|+2|β,γ1,γ2,γ3|=24|A|+4|B|=180.知识模块:行列式8.设=_______.正确答案:12解析:由题设及现利用等价无穷小因子替换知识模块:极限、连续与求极限的方法9.已知=9,则a=______.正确答案:ln3解析:知识模块:极限、连续与求极限的方法10.已知曲线y=x3-3a2x+b与x轴相切,则b2________.正确答案:4a6;涉及知识点:一元函数微分学11.设f′(a)存在,则=_______.正确答案:4f′(a)解析:知识模块:导数与微分12.设=___________.正确答案:0解析:因为知识模块:一元函数微分学13.已知矩阵A=有两个线性无关的特征向量,则a=_________。
考研数学模拟试题数学二

1
1 y2
( B ) 2 dy 0
1 y2 f ( x, y )dx
1
1 y2
( D) 2 dy
f ( x, y)dx
0
0
f ( x, y)dxdy
x2 y2 1
2
f ( x, y)dxdy
x2 y 2 1, y 0
1
2 dy 0
1 y2
1 y2 f (x, y)dx .
4.微分方程 y 2 y x e2x 的特解 y* 形式为() .
mg kv2, dv dt
kv 2
g
,
m
记 a2
g,b2
k dv
,
m
积分得
1
bv arctan
t
ab
a
a2
b2 v2 ,
dv a 2 b2 v2
C , t 0 时, v v0 ,故 C
dt ,
1 arctan bv0 ,
ab
a
1
bv
arctan
ab
a
t 1 arctan bv0 ,
ab
a
令 v 0 ,得上升到最高点的时间为 t1 1 arctan bv0
.
zy
解 答案为 xf3 x 2 yf32 x 2 yzf33 . u xyf 3 z 2u z y xf3 xy( f 32 x f33 xz) xf3
x2 yf32
x 2 yzf33
yx
x
11.设微分方程 y
( ) 的通解为 y
,则 ( x)
.
x
y
ln Cx
解 答案为
1
x
x2 . 将 y
代入微分方程,得
2002数学二--考研数学真题详解

r (α1,α2,α3, k β1 + β2 )=r(α1,α2,α3, β2 ) = 4,
故 α1,α2,α3, k β1 + β2 线性无关.
【详解 2】
取 k = 0,由条件知向量组α1,α2,α3 线性无关,α1,α2,α3, β1 线性相关,所以应排
除(B)、(C).
取
k
=
1,因
β1可由α1,α
即
f '(1) = 1 = 0.5.
2
(2)设函数 f (x) 连续,则下列函数中,必为偶函数的是
( ) ∫ (A)
x
f
t 2 dt
0
x
(C)∫0
t
⎡⎣
f
(t)
−
f
(−t )⎤⎦dt
∫ (B) x f 2 (t )dt 0
x
(D)∫0 t
⎡⎣
f
(t)
+
f
(−t )⎤⎦dt
【】
∫ 【详解】 F (x) x f (t )dt 的奇偶性与 f (x ) 的奇偶性的关系是:若 f (x )为偶函数,则 F(x) 0
1π 2 cos dx
0
2
02
1
= 2 2 sin π x = 2 2
π2
π
0
⎡ 0 −2 −2⎤
(4)
矩阵
⎢ ⎢
2
2 −2⎥⎥ 的非零特征值是________.
⎢⎣−2 −2 2 ⎥⎦
【答】 4 【详解】 因为
⎡ λ −2 −2 ⎤ λ 2 2
λE − A Hale Waihona Puke ⎢⎢−2 λ − 2−2
⎥ ⎥
=
考研数学二(填空题)高频考点模拟试卷70(题后含答案及解析)

考研数学二(填空题)高频考点模拟试卷70(题后含答案及解析) 题型有:1.1.设矩阵A=(aij)3×3,满足A*=AT,其中A*是A的伴随矩阵,AT是A 的转置矩阵,若a11,a12,a13是3个相等的正数,则a13=_________.正确答案:解析:本题考查行列式按行(列)展开定理、矩阵与其伴随矩阵的行列式的关系.要求考生应用行列式的性质,展开定理、矩阵与其伴随矩阵的行列式的关系计算行列式.由|AT|=|A*|和|A*|=|A|3-1=|A|2,得|A|2=|A|,即|A|(|A|—1)=0,从而|A|=0或|A|=1.将|A|按第一行展开,再由A*=AT知aij=Aij,得|A|=a11A11+a12A12+a13A13=a122+a122+a132=3a112>0,于是得|A|=1,即3a112=1,故.知识模块:行列式2.设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3),B=(a1+a2+a3,a1+2a2+4a3a1+3a2+9a3).如果|A|=1,那么|B |=___________.正确答案:2 涉及知识点:行列式3.=__________。
正确答案:0解析:知识模块:一元函数积分学4.曲线直线x=2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为__________。
正确答案:解析:直接利用旋转体的体积公式可得,如图1—3—10所示,x的积分从1到2。
知识模块:一元函数积分学5.设f(x)=xex,则f(n)(x)在x=_______处取极小值_______.正确答案:-(n+1),;涉及知识点:一元函数微分学6.设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为____________.正确答案:E 涉及知识点:矩阵7.若z=f(χ,y)可微,且,则当χ≠0时,=________.正确答案:涉及知识点:多元函数微积分8.向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=________.正确答案:-2解析:r(α1,α2,α3)=2,计算秩知识模块:向量组的线性关系与秩9.设y=,则=_______.正确答案:解析:知识模块:导数与微分10.cos(2x+y)dx dy=_____,其中D:x2+y2≤r2.正确答案:1解析:由积分中值定理,存在(ξ,η)∈D,使得知识模块:高等数学11.交换积分次序,则正确答案:解析:知识模块:高等数学12.=_______正确答案:解析:因为对[-a,a]上连续的函数f(x)有∫-aaf(x)dx=∫0a[f(x)+f(-x)]dx,所以知识模块:高等数学部分13.设有摆线x=a(t一sint),y=a(1一cost)(0≤t≤2π)的第一拱L,则L绕x轴旋转一周所得旋转面的面积S=_______。
2023年考研《数学二》真题及详解【完整版】

2023年全国硕士研究生招生考试考研《数学二》真题及详解【完整版】一、选择题:1〜10小题,每小题5分,共50分。
在每小题给出的四个选项中, 合题目要求的,请将所选项前的字母填在答题纸指定位置上。
只有一个选项是最符1.曲线y = xln (e^-LA 的渐近线方程为()。
A. y=x+eB. y=x+l/eC. y=xD. y=x —1/e【试题答案】B【试题解析】由已知y = xln (e^ —\ JC 1xlnyk = lim — = lim ----X —00JQXTOO,则可得:limln e +X —00 I1=1b = lim (y-Ax) = lim XT8 ' / XToox-1扁仁上、—X=limxL|' 1、e +--------1_ l X-lyX —>00、x — l)1lim xln XToo1+limXToo所以斜渐近线方程为y=x+l/e 。
2.__,x<0函数 x/l +、2[(x + l)cosx,x > 0的原函数为(A.尸("In +— jv ) jv < 0(x + l)cos x - sin x, x > 0B.尸("In ^/1 + %2 —1, x V 0(x + l)cos x - sin x, x > 0C.In ^/1 + x 2 + x) x V 0(x + l)sin x + cos >In^|/1+%2+x1,jv V0D.F(x)=<(x+l)sin x+cos>0【试题答案】D【试题解析】当xWO时,可得:当x〉0时,可得:j f(x)ch=j(x+l)cos xdx=j(x+l)dsinx=(x+l)sin x-j sin xdx=(x+l)sin x+cos x+C2在x=O处,有:lim In@+J1+工2>G=G,lim(x+l)sin%+cos%+C2=1+C2由于原函数在(一8,+8)内连续,所以Ci=l+C2,令C2=C,则C1=1+C,故In1+%2+x1+C,x V0j/(x)dx=<(x+l)sin x+cos x+C,x>0In+x2+1,x<0令C=0,则f(x)的一个原函数为F(x)=<(x+l)sin x+cos>03.设数列{Xn},{yn}满足xi=yi=l/2,x n+i=sinx n,yn+i=y「,当n—8时()。
考研数学二(常微分方程)模拟试卷29(题后含答案及解析)

考研数学二(常微分方程)模拟试卷29(题后含答案及解析)题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )A.C1y1+C2y2+y3B.C1y1+C2y2-(C1+C2)y3C.C1y1+C2y2+(1-C1-C2)y3D.C1y1+C2y2-(1-C1-C2)y3正确答案:C解析:本题考查线性微分方程解的结构.线性微分方程的解主要是满足“叠加原理”.非齐次线性方程的通解等于其对应的齐次方程的通解再加上本身的一个特解.如果设该二阶非齐次线性微分方程的形式为y“+p(x)y ‘+q(x)y=f(x).由题意,y1,y2,y3均为其线性无关的解,则y=C1y1+C2y2+y3是y“+p(x)y‘+q(x)y=3f(x)的解,故A选项不正确.y=C1y1+C2y2-(C1+C2)y3=C1(y1-y3)+C2(y2-y3)是方程对应的齐次方程的解,故B选项不正确.y=C1y1+C2y2+(1-C1-C2)y3=C1(y1-y3)+C2(y2-y3)+y3,其中C1(y1-y2)+C2(y2-y3)为齐次方程的通解,y3为原方程的一个特解,故C选项正确.y=C1y1+C2y2-(1-C1-C2)y3=C1(y1+y3)+C2(y2+y3)-y3是y“+p(x)y ‘+q(x)y=(2C1+2C2-1)f(x)的解,综上讨论,应选C.知识模块:常微分方程2.如果函数y1(x)与y2(x)都是以下四个选项给出方程的解,设C1与C2是任意常数,则y=C1y1(x)+C2y2(x)必是( )的解A.y“+y‘+y2=0B.y“+y‘+2y=1C.D.正确答案:C解析:显然将y代入四个方程逐一验证虽可行,但效率低.选项(A)、(D)都不是线性方程,可排除.对于(B)选项,y“+y‘+2y=1,则y=C1y1+C2y2应是y“+y‘+2y=C1+C2的解,而C1,C2为任意常数,故B不正确,根据线性微分方程解的结构定理只有C是正确的.知识模块:常微分方程3.设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性方程的解,则该方程的通解是( )A.C1ex/2+C2e-x+2ex/2+e-x+exB.C1ex/2+C2e-x+2ex+e-xC.C1ex+C2e-x+3ex/2D.C1ex/2+C2e-x+2ex正确答案:A解析:由解的结构定理,知y1-y3=e-x是对应的齐次方程的解.y1-y2=ex/2-e-x 也是对应的齐次方程的解.从而Y=ex/2是齐次方程的解,且ex/2与e-x线性无关.即对应的齐次方程的通解为y=C1ex/2+C2e-x.又y*=4y1-y2-2y3=2ex/2+e-x+ex 为非齐次方程的解,综上,应选A.知识模块:常微分方程4.设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为( )A.y1(x)y‘2(x)-y‘1(x)y2(x)=0B.y1(x)y‘2(x)-y2(x)y‘1(x)≠0C.y1(x)y‘2(x)+y‘1(x)y2(x)=0D.y1(x)y‘2(x)+y2(x)y‘1(x)≠0正确答案:B解析:y1(x),y2(x)能构成该方程的通解,需y1(x)与y2(x)线性无关.由(B)知y‘2(x)/y2(x)≠y‘1(x)/y1(x),即lny2(x)≠lny1(x)+C,从而y2(x)/y1(x)不为常数,即y1(x)与y2(x)线性无关,因此应选B.知识模块:常微分方程5.微分方程y“-y=ex+x的特解形式为y*=( )A.Aex+BxB.Axex+Bx+CC.Aex+Bx+CD.Axex+Bx2+C正确答案:B解析:特征方程为r2-1=0,特征根为r1=1,r2=-1.设y“-y=ex的特解为y*1,由于λ=1为特征方程的单根,故设y*1=Axex.设y“-y=x的特解为y*2,由于λ=0不是特征方程的根,故设y*2=Bx+C,从而原方程的特解为y*=y*1+y*2,故应选B.知识模块:常微分方程6.微分方程y“+4y=cos 2x的特解可设为y*=( )A.Acos 2xB.Axcos 2xC.x(Acos 2x+Bsin 2x)D.Acos 2x+Bsin 2x正确答案:C解析:特征方程为r2+4=0,故特征根为r1,2=±2i,由于λ=2i为特征方程的根,从而y*应设为x(Acos 2x+Bsin 2x),应选C.知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
考研数学二(填空题)模拟试卷51(题后含答案及解析)

考研数学二(填空题)模拟试卷51(题后含答案及解析) 题型有:1.1.若3阶非零方阵B的每一列都是方程组的解,则λ=______,|B|=_______.正确答案:1;0解析:由条件知方程组有非零解,故其系数行列式|A|==5(λ-1)=0,故λ=1.又由条件知AB=O,若|B|≠0,则B可逆,用B-1右乘AB=O两端得A=O,这与A≠O矛盾,故|B|=0.知识模块:线性方程组2.设A,B为3阶矩阵,且|A |=3,|B |=2,|A-1+B|=2,则|A+B-1 |=_____________.正确答案:3 涉及知识点:行列式3.当x→0时,kx2与[*]是等阶无穷小,则k=___________.正确答案:3/4 涉及知识点:行列式4.设函数f(x)在(一∞,+∞)上连续,则A=______。
正确答案:解析:令函数其中g(x),h(x)分别在[a,x0],(x0,b]上是初等函数,因此连续,且f(x)在x0连续。
所以g(x0)=h(x0)。
对任意常数A,显然x≠1时,f(x)连续。
当且仅当时,f(x)在x=1连续。
因此,当时,f(x)在(一∞,+∞)上连续。
知识模块:函数、极限、连续5.已知且AXA*=B,r(X)=2,则a=_____________?正确答案:0解析:根据A可逆可知,其伴随矩阵A*也是可逆的,因此r(AXA*)=r(X)=2=r(B),因此可得|B|=0,则知识模块:矩阵6.设函数f(x)=且1+bx>0,则当f(x)在x=0处可导时,f’(0)_________正确答案:解析:利用洛必达法则,,由于f(x)在x=0处可导,则在该点处连续,就有b=f(0)=一1,再由导数的定义及洛必达法则,有知识模块:一元函数微分学7.设矩阵A与B=相似,则r(A)+r(A一2E)=_________。
正确答案:3解析:矩阵A与B相似,则A一2E与B一2E相似,而相似矩阵具有相同的秩,所以r(A)+r(A一2E)=r(B)+r(B一2E)=2+1=3。
2023考研数学二真题+详解答案解析(超清版)

2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
考研数学二真题及答案

2007年考研数学二真题一、选择题(1~10小题,每小题4分,共40分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)当x→0+时,与√x等价的无穷小量是(A)1−e−√x(B)ln1−√x(C)√1+√x−1(D)1−cos√x【答案】B。
【解析】(当x→0+)时ln1+x1−√x=[l n(1+x)−l n(1−√x)]~√xe√x~−√x √1+√x−1~1√x1−cos√x~1x几个不同阶的无穷小量的代数和,其阶数由其中阶数最低的项来决定。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)函数f(x)=(e 1x+e)tanxx(e 1x−e)在[−π,π]上的第一类间断点是x=(A)0(B)1(C)−π2(D)π2【答案】A。
【解析】A :由lim x→0−e 1x=0,lim x→0+e 1x=+∞得 lim x→0−f(x)=lim x→0−(e 1x+e)tanx x(e 1x −e)=lim x→0−e 1x+e e 1x −e ?tanx x =e−e?1=−1 lim x→0+f(x)=lim x→0+(e 1x+e)tanx x(e 1x−e)=lim x→0+e 1x+e e 1x −e?tanxx=1?1=1 所以x =0是f (x )的第一类间断点; B :lim x→1f(x)=limx→1(e 1x +e)tanxx(e 1x −e)=∞ C :lim x→−π2f(x)=limx→− π2(e 1x +e)tanx x(e 1x −e)=∞D :lim x→π2f(x)=lim x→ π2(e 1x +e)tanxx(e 1x−e)=∞所以x =1,x =± π2都是f(x)的第二类间断点。
综上所述,本题正确答案是A 。
【考点】高等数学—函数、极限、连续—函数间断点的类型 (3)如图,连续函数y =f(x)在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F (x )=∫f(t)dt x0,则下列结论正确的是 (A)F (3)=−34F(−2)(B)F (3)=54F(2)(C)F (−3)=34F(2)(D)F (−3)=−54F(−2)【答案】【解析】 四个选项中出现的F(x)在四个点上的函数值可根据定积分的几何意义确定F (3)=∫f(t)dt 30=∫f(t)dt 20+∫f(t)dt 32=π2−π8=38πF (2)=∫f(t)dt 2=π2F (−2)=∫f(t)dt −20−∫f (t )dt 0−2=−(−π2)=π2F (−3)=∫f(t)dt −30=−∫f (t )dt 0−3=−[π8−π2]=38π则F (−3)=34F(2)【方法二】由定积分几何意义知F (2)>F (3)>0,排除(B)又由f(x)的图形可知f(x)的奇函数,则F (x )=∫f(t)dt x0为偶函数,从而F (−3)=F (3)>0,F (−2)=F (2)>0显然排除(A)和(D),故选(C)。
[考研类试卷]考研数学二(线性代数)历年真题试卷汇编9.doc
![[考研类试卷]考研数学二(线性代数)历年真题试卷汇编9.doc](https://img.taocdn.com/s3/m/14be428116fc700aba68fc0d.png)
[考研类试卷]考研数学二(线性代数)历年真题试卷汇编9一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1 (11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为(A)α1,α3.(B)α1,α2.(C)α1,α2,α3.(D)α2,α3,α4.2 (15)设矩阵A=,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为3 (05分)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是(A)λ1≠0(B)λ2≠0(C)λ1=0(D)λ2=0二、填空题4 (01)设方程组有无穷多个解,则a=______.5 (02)矩阵A=的非零特征值是______.三、解答题解答应写出文字说明、证明过程或演算步骤。
6 (97)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.7 (98)已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,-1,a]T,β=[3,10,6,4],问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.8 (00)设A=αβT,B=βTα,其中βT是β的转置.求解方程 2B2A2x=A4x+B4x+y9 (01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.10 (02)已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.11 (03)已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.12 (04)设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.13 (05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.14 (06)已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.15 (07)设线性方程组与方程x1+2x2+x3=a-1 ②有公共解,求a的值及所有公共解.16 (08)设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)a n;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.17 (09)设(Ⅰ)求满足Aξ2=ξ1,Aξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.18 (10)没A=已知线性方程组Ax=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.19 (12)设A=(Ⅰ)计算行列式|A|;(Ⅱ)当实数n为何值时,方程组Ax=β有无穷多解,并求其通解.20 (13)设A=,当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.21 (14)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.22 (16)设矩阵A=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组A T Ax=A Tβ的通解.23 (17)设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2, (Ⅰ)证明r(A)=2; (Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.24 (18)已知a是常数,且矩阵A=可经初等列变换化为矩阵B=(1)求a;(2)求满足AP=B的可逆矩阵P.25 (03)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使Pr-1AP=Λ.26 (04)设矩阵A=的特征方程有一个二重根,求n的值,并讨论A是否可相似对角化.27 (06)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得Q T AQ=A.28 (07)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A 的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵b.。
国防科技大学 国防科技大 01 02年操作系统 01 02年离散数学 考研真题及答案解析

国防科技大学研究生院2001年硕士生入学考试试题考试科目:操作系统考生注意:1.答案必须写在我校统一配发的专用答题纸上2.统考生做 一、二、三、四、五;3.单独考生做一、二、三、六、七;一.(58分)回答如下问题1.(6分)假定有一个支持实时、分时和批处理的操作系统,对该系统应如何设计进程调度策略?2.(5分)什么叫线程?为什么要引进线程?3.(6分)某计算机系统设计成只有一级中断(该级中有多个中断)的中断系统,简述当中断发生时,是如何进入该中断处理程序的?4.(5分)在文件系统中为什么要引进“Open”系统调用?操作系统是如何处理的?5.(5分)假定存储器空闲块有如下结构:请你构造一串内存请求序列,对该请求序列首次满足分配算法能满足,而最佳满足分配法则不能。
6.(6分)为什么要在设备管理中引入缓冲技术?操作系统如何实现缓冲技术?7.(6分)用什么办法可以破坏死锁的循环等待条件?为什么?8.(6分)进程的状态主要有哪些?当发生状态转换时,操作系统完成哪些工作?9.(6分)在文件系统中,为什么要设立“当前目录”?操作系统如何实现改变“当前目录”?10.(7分)举例说明P、V操作为什么要用原语实现?操作系统如何实现这种原语操作? 二.(12分)设有四个进程P1,P2,P3,P4,它们到达就绪队列的时刻,运行时间及优先级如下表所示:运行时间(基本时间单位)优先级进程 到达就绪队列时间(基本时间单位)P1 0 9 1P2 1 4 2P3 2 8 3P4 3 10 4问:(1)若采用可剥夺的优先级调度算法,给出各进程的调度次序以及每个进程的等待时间。
(2)若采用时间片轮转调度算法,且时间片为2个基本时间单位,试给出各进程的调度次序及平均周围时间。
三.(8分)假设系统由相同类型的m个资源组成,有 n 个进程,每个进程至少请求一个资源。
证明:当n个进程最多需要的资源数之和小于m+n时,该系统无死锁。
四.(12分)在页式虚存系统中,一程序的页面走向(访问串)为 1,2,3,4,1,2,5,1,2,3,4,5 ,设分配给该程序的驻留集为m,试分别计算m=3和m=4时,FIFO和LRU两种算法的页故障次数。
2014-2015年考研数学二真题及答案解析

精选文档2014 年全国硕士研究生入学一致考试数学二试题一、选择题 :1 8 小题,每题 4分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x 0时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则的取值范围是 ( ) (A) (2,)(B) (1,2)(C)(1,1)(D)(0, 1)22(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C) yxsin1(D)y x 2sin1xx(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x) f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x) (B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x) g ( x) (D) 当 f ( x)0 时, f (x)g ( x)(4) x t 2 7 上对应于 t1 的点处的曲率半径是()曲线t 2 4ty 1(A)10(B)10(C) 10 10(D) 5 1050100设函数 f ( x)arctan x ,若 f ( x)xf ( ) ,则 mil2(5) 0x 2()x(A)1(B) 2(C) 1(D)1323(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 22u阶连续偏导数, 且知足x y及2u 2u0 ,则()x2y2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得精选文档(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在 D 的内部获得,最大值在D 的界限上获得0 a b 0(7)a 0 0b 队列式c d 0 ()c 0 0 d(A) (adbc) 2(B)(adbc)2(C) a 2d2b 2c 2(D) b 2 c 2a 2d 2(8) 设 1, 2,3均为 3 维向量, 则对随意常数k, l ,向量组 1 k 3 , 2 l 3 线性没关是向量组1, 2,3 线性没关的( )(A) 必需非充足条件(B) 充足非必需条件(C) 充足必需条件(D) 既非充足也非必需条件二、填空题: 914小题,每题 4 分,共 24 分 . 请将答案写在答题纸 指定地点上 .1...((9)1dx__________.x 2 2x5(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x)2( x 1),x [0, 2] ,则 f 7)(__________.(11) 设 zz(x, y) 是由方程 e2 yzx y2z7确立的函数,则dz( 1 , 1 )__________.42 2(12) 曲线 rr ( ) 的极坐标方程是 r,则 L 在点 (r , )( , ) 处的切线的直角坐标方程是 __________.2 2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度 xx 22x 1, 则该细棒的质心坐标 x__________.(14) 设二次型 fx 1 , x 2 , x 3 x 12 x 2 2 2ax 1x 3 4x 2x 3 的负惯性指数为1,则 a 的取值范围为_______.三、解答题: 15~ 23 小题 , 共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证...明过程或演算步骤 . (15)( 此题满分 10 分)精选文档x 12e t 1 t dtt1求极限 lim x2 ln 1 .x 1x(16)( 此题满分10 分)已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .(17)( 此题满分10 分)设平面地区 D x, y 1 x2 y2 4, x 0, y 0 , 计算x sin x2 y2dxdy.x yD(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,z f (e x cosy) 知足 2 z 2z (4 z e x cos y) e2x,若x2 y2f (0) 0, f ' (0) 0,求 f (u) 的表达式.(19)( 此题满分 10 分)设函数 f ( x), g (x) 的区间 [a,b] 上连续,且 f (x) 单一增添, 0 g( x) 1.证明:(I) 0 xx a, x [ a, b] , g(t )dtaa bbg(t ) dtf (x)d x f ( x)g( x)dx .(II) aa a(20)( 此题满分 11 分)设函数 f (x) x , x 0,1 ,定义函数列 f ( x) f ( x), f ( x) f ( f (x)),,1 x 12 1f n (x) f ( f n 1 (x)), ,记 S n是由曲线 y f n ( x) ,直线x 1 及 x 轴所围成平面图形的面积,求极限 lim nS n.n(21)( 此题满分 11 分)已知函数 f ( x, y) 知足 f 2( y 1) ,且 f ( y, y) ( y 1) 2 (2 y)ln y, 求曲线 f ( x, y) 0y所围成的图形绕直线y 1旋转所成的旋转体的体积.精选文档(22)( 此题满分 11 分)1 2 34 设矩阵A 0 11 1 , E 为三阶单位矩阵 . 1 23(I) 求方程组 (II) 求知足Ax 0的一个基础解系;AB E 的全部矩阵 .(23)( 此题满分 11 分)1 1 1 0 0 1 1 110 2证明 n 阶矩阵与相像 .1 1 1 0 0 n2014 年全国硕士研究生入学一致考试数学二试题答案一、选择题 :1 8 小题,每题 4 分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则 的取值范围是 ( )(A)(2, )(B) (1,2)(C)(1,1) (D) (0, 1)【答案】 B22【分析】由定义lim ln (1 2x) lim (2 x)lim 2 x 1x 0x xxx 01 0 1 .所以,故精选文档12x2当 x0 时, (1 cos x) ~ 1 是比 x 的高阶无量小,所以10,即2.2应选 B(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C)y x sin1(D) yx2sin1xx【答案】 C11x sinsin【分析】对于 C 选项: limxlim1 lim x 1 0 1 .xxx xxlim[ x sin1x] limsin 1 0 ,所以 y x sin 1存在斜渐近线 yx .xxxx x应选 C(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x)f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x)(B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x)g ( x)(D) 当 f ( x) 0 时, f (x)g ( x)【答案】 D【分析】令 F ( x) g (x) f ( x)f (0)(1 x) f (1)x f ( x) ,则F (0) F (1) 0 ,F ( x) f (0) f (1) f ( x) , F ( x)f ( x) .若 f ( x) 0 ,则 F (x) 0 , F (x) 在 [0,1] 上为凸的 .又 F(0) F (1) 0 ,所以当 x [0,1] 时, F (x) 0 ,进而 g(x)f ( x) .应选 D.(4) 曲线x t 2 7上对应于 t1 的点处的曲率半径是()y t 2 4t 1(A)10(B)10(C) 10 10(D) 5 1050100【答案】 C精选文档【分析】dy t 12t 4 3dx 2t t 1d 2 ydy ' 2t 2 12 t 1dxt 12tt 1dxky ''1,R 1 10 10y '233k121 q 2应选 C2(5) 设函数 f ( x) arctan x ,若 f (x) xf ( ) ,则 milx2x(A) 1(B) 2(C) 1(D)13 23【答案】 D【分析】因为f ( x)f ' ( )1 2 ,所以 2x f (x) x1f (x)2x f (x)x arctanx1111 x 2lim lim lim lim x22 f ( x)2 arctanx 3x 23x 0 x 0 x x 0 x x 0应选 D.(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 2 阶连续偏导数, 且知足2u2u0 ,则及y 2x 2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得 (B) u(x, y) 的最大值和最小值都在 D 的内部上获得( )2ux y()(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在D 的内部获得,最大值在D 的界限上获得精选文档【答案】 A【分析】记 A2u 2 , B2u ,C2u2 , B 0, A, C 相反数xx yy则 =AC-B2 0 , 所以 u(x, y) 在 D 内无极值,则极值在界限处获得 .应选 A0 a b 0(7) a 0 0 b ( )队列式c d 0 0c 0 0 d(A) ( ad bc )2 (B) ( ad bc)2(C) a 2d 2 b 2 c 2(D) b 2c 2a 2 d 2【答案】 B【分析】由队列式的睁开定理睁开第一列0 a b 0 a b 0 a b 0 a 0 0 b a cd 0c 0 0 b 0 cd 0 0 0 dc dc0 0 dad (ad bc) bc(ad bc)(ad bc) 2 .(8) 设 a 1 , a 2 , a 3 均为三维向量,则对随意常数 k, l , 向量组 a 1 ka 3 , a 2 la 3 线性没关是向量组a 1, a 2 ,a 3 线性没关的( )(A) 必需非充足条件 (B) 充足非必需条件(C) 充足必需条件 (D) 既非充足也非必需条件【答案】 A1 0【分析】1k32l31231 .k l1 0) 记 A1k32l3 ,B123 ,C0 1.若1,2, 3 线性无k l精选文档关,则 r ( A) r ( BC ) r (C ) 2 ,故1k3,2l 3 线性没关 .) 举反例.令30 ,则1,2 线性没关,但此时1,2, 3 却线性有关 .综上所述, 对随意常数 k ,l ,向量1k3,2l 3 线性没关是向量1, 2,3 线性没关的必要非充足条件 . 应选 A二、填空题: 914 小题 , 每题 4 分, 共 24 分 . 请将答案写在答题纸 指定地点上 ....(9)11 dx __________.x 22x5【答案】38【分析】111x 1 111x 2dxx 1 2dx arctan 2 2 x 542132 428(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x) 2( x 1), x [0, 2] ,则 f 7)(__________.【答案】 1【分析】 f ' x 2 x 1 , x0,2 且为偶函数则 f ' x 2 x 1 ,x 2,0又 fxx 2 2x c 且为奇函数,故 c=0f xx 2 2x ,x2,0又f x 的周期为 4,f7 f1 1(11) 设 zz(x, y) 是由方程 e 2 yz x y 2z7 确立的函数,则 dz1 1)__________.4( ,2 2 【答案】1(dx dy)27【分析】对 e 2 yz x y 2z方程两边同时对 x, y 求偏导4精选文档e 2 yz2y z 1 zx xe 2 yz (2z 2 y z ) 2 yz 0y y当 x11z, y时 ,22故z1 11 , z 1 11 x ( 2,2)2 y ( 2 , 2 )2故dz1 11dx (1)dy1(dx dy)2 2222( , )(12) 曲线 lim nS n 的极坐标方程是 r,则 L 在点 (r , ) ( ,) 处的切线的直角坐标方程是n2 2__________.【答案】 y2 x2【分析】由直角坐标和极坐标的关系x r cos cosy r sin,sin于是 r ,, 2 , 对应于 x, y 0,,22切线斜率 dydycos sin dy ddx dxcossindxd20,2所以切线方程为 y2x 022x即y=2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度x x 2 2x 1, 则该细棒的质心坐标 x __________.【答案】1120精选文档1x dxx【分析】质心横坐标 x1 x dx1 1 x 2x 3 x 2 10 5x dx=2x 1 dxx3 311 2x 4 2 3 x 2 1 11 xx dx= x x2x 1 dx x 0 04 3 21211x 12=115203(13) 设二次型 f x 1 , x 2 , x 3x 1 2x 22 2ax 1 x 3 4x 2 x 3 的负惯性指数是 1 ,则 a 的取值范围_________.【答案】2,2f x 1, x 2 , x 3x 12a 2 x 32 x 224x 32【分析】配方法:ax 32x 3因为二次型负惯性指数为 1,所以 4 a 20 ,故 2 a 2.三、解答题: 15~ 23 小题,共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证 ... 明过程或演算步骤 .(15)( 此题满分 10 分)x 2 1et1 t dtt1求极限 lim1 .xx 2ln 1xx1dtx1dt【分析】1t 2 (e t 1) tlim1 t 2(e t 1) tlim1 )1xx 2ln(1xx2xx1lim[ x 2 (e x 1) x]x1 tttxlime1 t lim e1 lim t1 .tt 2t 02t t 0 2t 2(16)( 此题满分 10 分)精选文档已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .【分析】由 x2 y2 y 1 y ,得( y2 1) y 1 x2①此时上边方程为变量可分别方程,解的通解为1y3y x 1 x3 c3 3由 y(2) 0 得 c 2321 x当 y (x) 0 时,x 1 ,且有:x1, y ( x)01 x 1,y ( x)0x 1, y ( x)0所以 y(x) 在x 1 处获得极小值,在x 1 处获得极大值y( 1) 0, y(1) 1即: y(x) 的极大值为1,极小值为0.(17)( 此题满分10 分)设平面地区【分析】 D对于x, y 1 x2 y2x sin x2 y2D 4, x 0, y 0 , 计算x ydxdy .Dy x 对称,知足轮换对称性,则:xsin( x2 y2 ) ysin( x2 y2 )x y dxdyx ydxdyD DIxsin( x2 y2 ) 1 x sin( x2 y2 ) ysin( x2 y2 ) x ydxdy2 x y x ydxdy D D1 sin( x2 y2 )dxdy2 D精选文档1d2rdr2sin r 21 )1r(rd cos24 11 cos r r |122 cos rdr4 11 2 1 1sin r |124 34(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,zxcosy) 知足2z 2z(4 z e xcos y) e 2x,若f (e 2y 2xf (0)0, f ' (0) 0,求 f (u) 的表达式 .【分析】由 zfe x cos y , zf (e x cos y) e xcos y, zf (e x cos y)e x sin yxy2zf (e x cos y) e x cos y e x cos y f (e x cos y) e x cos y ,x 22 zf xxxsin yf (e xcos y)xcos yy 2( e cos y)e sin ye e2z2zxcos y e 2x由2+y 24z e,代入得,xfe x cos y e 2x[4 f e x cos y e x cos y]e 2 x即f e x cos y 4 f e x cos y e x cos y ,令 e x cos y=t , 得 f t 4 f tt特点方程24 0,2得齐次方程通解y c 1e 2tc 2e 2t精选文档设特解 y * at b ,代入方程得 a1 , b 0 ,特解 y * 1 t4 1 t4则原方程通解为 y=f tc 1e 2t c 2 e 2t4由 f0, f '0 0 ,得 c 11 ,c 21, 则16 16y=f u1 e2 u 1 e 2 u 1u . (19)(10 分)16 164此题满分设函数 f ( x), g( x) 在区间 [a,b] 上连续,且 f ( x) 单一增添, 0g ( x) 1 ,证明: ( I )xxa, x [ a,b] ,g(t) dt aab bg (t )dtf ( x)d xf ( x)g( x)dx.(II )aaa【分析】( I )由积分中值定理x dt gxa ,[ a, x]g ta0 g x 1 ,0 gx ax ax t dtxaga( II )直接由 0 g x1,获得x dtx1dt = x ag t aauau( II )令 F u f x g x dxaaaF ' u f u g uf aug t dtaug t dtf x dxg ug uf uf ag t dta由( I )知 0uu aaau g t dtg t d t uaa又因为 fx 单增,所以 fuf au0 g t dtaF ' u0, F u 单一不减, F uF a取 ub ,得 F b 0 ,即( II )建立 .(20)( 此题满分 11 分)设函数 f (x)x, x 0,1 ,定义函数列1 xf 1 ( x) f ( x), f 2 ( x) f ( f 1 ( x)), , f n ( x) f ( f n 1( x)),及 x 轴所围成平面图形的面积,求极限lim nS n .n【分析】 f 1 (x)x, f 2 ( x)x, f 3 ( x)x,1 x1 2x 1 3x精选文档,记 S n 是由曲线 y f n ( x) ,直线 x 1, f n ( x)x, 1 nxxx1 1S n 1 f n ( x) dx1 dx1n ndx11nxnx111 1 111 ln(11n1dxn1dx n n 2 nx) 0nx112 ln(1 n) n nlim nS n 1lim ln(1n) 1lim ln(1x) 1 lim1 1 0 1nnnxxx1 x(21)( 此题满分 11 分)已 知 函 数 f ( x, y) 满 足f 2 (y 1 ,) 且 f ( y, y)( y 2 1 )( 2y )求yl n 曲 线,yf ( x, y) 0 所围成的图形绕直线 y1 旋转所成的旋转体的体积 .【分析】因为f 2( y 1) ,所以 f ( x, y) y 2 2 y ( x), 此中 ( x) 为待定函数 .y又因为 f ( y, y)( y 1)22 y ln y, 则 ( y) 12 y ln y ,进而f ( x, y) y 2 2y 12 x ln x ( y 1)22 x ln x .令 f ( x, y)0, 可得 ( y 1)22 x ln x ,当 y1时, x 1 或 x 2 ,进而所求的体积为V2 y 1 22 2 x ln xdx1 dx12x 2ln xd2x12x 2 22ln x(2x )12 12ln 2 (2x x2 ) 124 (22)( 此题满分11 分)精选文档2xdx22ln 2 5 2ln 25.4 41 2 3 4设矩阵A 0 1 1 1 ,E为三阶单位矩阵.1 2 0 3(I)求方程组(II)求知足【分析】Ax 0的一个基础解系;AB E 的全部矩阵 B .1 2 3 4 1 0 0 1 2 3 4 1 0 0A E 01 110 1 0 01 110 1 01 2 0 3 0 0 1 0 4 3 1 1 0 11 2 3 4 1 0 0 1 0 0 1 2 6 10 1 1 1 0 1 0 0 1 0 2 1 3 1 ,0 0 1 3 1 4 1 0 0 1 3 1 4 1(I) Ax 0 的基础解系为1,2,3,1T(II) e1T T0,0,1T 1,0,0 , e2 0,1,0 , e3Ax e1的通解为x k1 2, 1, 1,0 T 2 k1, 1 2k1 , 1 3k1, k1 TAx e2的通解为x k2 6, 3, 4,0 T6 k2 , 3 2k2 , 4T3k2 , k2Ax e3的通解为x k3T1 k3,1 2k3,1T 1,1,1,0 3k3 , k32 k1 6 k2 1 k3B 1 2k1 3 2k2 1 2k3(k1 , k2 , k3为随意常数)1 3k1 4 3k2 1 3k3k1 k2 k3(23)( 此题满分11 分)1 1 1 0 0 11 1 1 0 0 2相像 .证明 n 阶矩阵与1 1 1 0 0 n11 【分析】已知 A1 1 21 ,,B =01n则 A 的特点值为 n , 0 ( n 1重 ).A 属于n 的特点向量为 (1,1, ,1)T ; r ( A) 1 ,故 Ax 0 基础解系有 n1个线性没关的解向量,即 An=属 于0 有 n 1 个 线 性 无 关 的 特 征 向 量 ; 故 A 相 似 于 对 角 阵.B 的特点值为 n , 0 ( n 1重 ) ,同理 B 属于0 有 n 1 个线性没关的特点向量,故 B 相似于对角阵.由相像关系的传达性,A 相像于B .2015 年全国硕士研究生入学一致考试数学二试题及答案分析一、选择题:( 1~ 8 小题 , 每题 4 分,共 32 分。
考研数学二(线性代数)历年真题试卷汇编9(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为A.α1,α3.B.α1,α2.C.α1,α2,α3.D.α2,α3,α4.正确答案:D解析:首先,4元齐次线性方程组A*x=0的基础解系所含解向量的个数为4-r(A*),其中r(A*)为A*的秩,因此求r(A*)是一个关键.其次,由Ax=0的基础解系只含1个向量,即4-r(A)=1,得r(A)=3,于是由r(A*)与r(A)的关系,知r(A*)=1,因此,方程组A*x=0的基础解系所含解向量的个数为4-r(A*)=3,故选项(A)、(B)不对.再次.由(1,0,1,0)T是方程组Ax=0或x1α1+x2α2+x3α3+x4α4=0的解,知α1+α3=0,故α1与α3线性相关,于是只有选项(D)正确.知识模块:线性方程组2.(15)设矩阵A=,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为A.B.C.D.正确答案:D解析:对方程组的增广矩阵施行初等行变换(化成阶梯形):由于方程组有无穷多解,当然不能有唯一解,所以有(a-1)(a-2)=0,即a=1或a=2,此时系数矩阵的秩为2,由有解判定定理知,当且仅当a∈Ω且d∈Ω,所以选(D).知识模块:线性方程组3.(05分)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是A.λ1≠0B.λ2≠0C.λ1=0D.λ2=0正确答案:B解析:由λ1≠λ2及特征值的性质知α1,α2线性无关.显然,向量组{α1,A(α1+α2)}={α1,λ1α1+λ2α2}等价于向量组{α1,λ2α2}.当λ2≠0时,它线性无关,当λ2=0时,它线性相关,故α1,A(α1+α2)线性无关λ2≠0.知识模块:矩阵的特征值和特征向量填空题4.(01)设方程组有无穷多个解,则a=______.正确答案:-2解析:对方程组的增广矩阵作初等行变换:由此可见:(1)当a≠1且a ≠-2时,r(A)==3,方程组有唯一解;(2)当a=1时,r(A)=1,=2,方程组无解;(3)当a=-2时,r(A)==2<3,方程组有无穷多解.故当且仅当a=-2时方程组有无穷多解.知识模块:线性方程组5.(02)矩阵A=的非零特征值是______.正确答案:4解析:由A的特征方程=λ(λ-4)=λ2(λ-4)=0 知识模块:矩阵的特征值和特征向量解答题解答应写出文字说明、证明过程或演算步骤。
2002年考研数学一真题及答案详解

),
第 5 页 共 13 页
(1)【分析】
这是讨论函数 f ( x, y) 的连续性 , 可偏导性, 可微性及偏导数
的连续性之间的关系 .我们知道, f ( x, y) 的两个偏导数连续是可微的充分条件 , 若 f ( x, y) 可微则必连续,故选(A).
1 1 u 由 lim n 1 0 n 充 分 大 时 即 N , n N 时 0 , 且 n 1 un n
1 的特解是_____________. 2
2 2 2 (4)已知实二次型 f ( x1 , x 2 , x3 ) a( x1 x2 x3 ) 4 x1 x2 4 x1 x3 4 x2 x3 经正交变换
2 可化为标准型 f 6 y1 ,则 a =_____________.
公共交点且不唯一,因此应选(B). (A)表示方程组有唯一解,其充要条件是 r ( A) r ( A) 3. (C)中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行, 故 r ( A) 2 和
f X ( x ) f Y ( y ) 必为密度函数
(C) F X ( x ) + FY ( y ) 必为某一随机变量的分布函数 (D) F X ( x ) FY ( y ) 必为某一随机 变量的分布函数. 三、(本题满分 6 分) 设函数 f ( x) 在 x 0 的某邻域具有一阶连续导数 , 且 f (0) f (0) 0 , 当 h 0 时 , 若
dP dy 0, P y
积分得
ln P ln y C ', 即 P
C1 ( P 0 对应 C1 0 ); y
1 1 由 x 0 时 y 1, P y ' , 得 C1 . 于是 2 2
2016考研数学二真题及答案

2016考研数学二真题及答案【篇一:2003-2016年考研数学二真题及解析】t>一、选择题 1—8小题.每小题4分,共32分.11.当x?0时,若ln(1?2x),(1?cosx)?均是比x高阶的无穷小,则?的可能取值范围是??()(a)(2,??)(b)(1,2)(c)(,1)(d)(0,) 2.下列曲线有渐近线的是(a)y?x?sinx(b)y?x2?sinx(c)y?x?sin(d)y?x?12121x21 x【详解】对于y?x?sin,可知x??1xy1?1且lim(y?x)?lim?0,所以有斜渐近线y?xx??x??xx应该选(c)3.设函数f(x)具有二阶导数,g(x)?f(0)(1?x)?f(1)x,则在[0,1]上()(a)当f(x)?0时,f(x)?g(x)(b)当f(x)?0时,f(x)?g(x) (c)当f??(x)?0时,f(x)?g(x)(d)当f??(x)?0时,f(x)?g(x)?x?t2?7,4.曲线?上对应于t?1的点处的曲率半径是() 2?y?t?4t?1(A)(B) (C)(D)5 501005.设函数f(x)?arctanx,若f(x)?xf(?),则x?0?2x2?()(A)1(B)121(C)(D)332?2u6.设u(x,y)在平面有界闭区域d上连续,在d的内部具有二阶连续偏导数,且满足?0及?x?y?2u?2u. ?2?0,则()2?x?y(a)u(x,y)的最大值点和最小值点必定都在区域d的边界上;(b)u(x,y)的最大值点和最小值点必定都在区域d的内部;(c)u(x,y)的最大值点在区域d的内部,最小值点在区域d的边界上;(d)u(x,y)的最小值点在区域d的内部,最大值点在区域d的边界上.7.行列式0aa0b00b0cd0c00d等于22(a)(ad?bc)(b)?(ad?bc) (c)a2d2?b2c2(d)?a2d2?b2c2 8.设?1,?2,?3是三维向量,则对任意的常数k,l,向量?1?k?3,?2?l?3线性无关是向量?1,?2,?3线性无关的(a)必要而非充分条件(b)充分而非必要条件(c)充分必要条件(d)非充分非必要条件二、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)9.?1??1dx?.x2?2x?510.设f(x)为周期为4的可导奇函数,且f(x)?2(x?1),x?0,2,则f(7)?. 11.设z?z(x,y)是由方程e2yz???x?y2?z?7确定的函数,则dz|?11??.?,?4?22?12.曲线l的极坐标方程为r??,则l在点(r,?)??????,?处的切线方程为. 22??13.一根长为1的细棒位于x轴的区间0,1上,若其线密度?(x)??x2?2x?1,则该细棒的质心坐标x?.2214.设二次型f(x1,x2,x3)?x1?x2?2ax1x3?4x2x3的负惯性指数是1,则a的取值范围是.??三、解答题15.(本题满分10分)1t?求极限limx???x1(t2(e?1)?t)dt1x2ln(1?)x.16.(本题满分10分)已知函数y?y(x)满足微分方程x?yy?1?y,且y(2)?0,求y(x)的极大值和极小值. 17.(本题满分10分)22xsin(?x2?y2)dxdy 设平面区域d?(x,y)|1?x?y?4,x?0.y?0.计算??x?yd?22?18.(本题满分10分)?2z?2zx2x设函数f(u)具有二阶连续导数,z?f(ecosy)满足.若??(4z?ecosy)e?x2?y2xf(0)?0,f(0)?0,求f(u)的表达式.19.(本题满分10分)设函数f(x),g(x)在区间a.b上连续,且f(x)单调增加,0?g(x)?1,证明:(1) 0?(2)???bxag(t)dt?x?a,x??a,b?;f(x)dx??f(x)g(x)dx.ab?a??ag(t)dta20.(本题满分11分)设函数f(x)?x,x??0,1?,定义函数列 1?xf1(x)?f(x),f2(x)?f(f1(x)),?,fn(x)?f(fn?1(x)),?设sn是曲线y?fn(x),直线x?1,y?0所围图形的面积.求极限limnsn.n??21.(本题满分11分)已知函数f(x,y)满足?f?2(y?1),且f(y,y)?(y?1)2?(2?y)lny,求曲线f(x,y)?0所?y成的图形绕直线y??1旋转所成的旋转体的体积. 22.(本题满分11分)?1?23?4???设a??01?11?,e为三阶单位矩阵.?1203???(1)求方程组ax?0的一个基础解系;(2)求满足ab?e的所有矩阵.23.(本题满分11分)?1??1证明n阶矩阵????1?1?1??0?01????1?1??0?02?与?相似. ????????????1?1??0?0n??2015年全国硕士研究生入学统一考试数学(二)试题一、选择题:1?8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. ...(1)下列反常积分收敛的是()(a)???2(b) ???2lnx(c)??1dxdx(d) ?2xxlnxx2sint???2xdx xe(2) 函数f?x??lim(1?t?0x在(??,??)内()(a) 连续 (b) 有可去间断点 (c)有跳跃间断点 (d) 有无穷间断点1??xcos,x?0?x(??0,??0),若f?x?在x?0处连续则:( ) (3) 设函数f?x?????0,x?0(a)????0 (b)0?????1 (c)????2(d)0?????2(4)设函数f(x)在???,???内连续,其中二阶导数f??(x)的图形如图所示,则曲线y?f(x)的拐点的个数为()(a) 0(b) 1 (c)2(d) 3(5) 设函数f?u,v?满足f?x?y,??x2?y2,则??(a)?y??fu?1与v?1?fu?1v?1依次是 ()1111,0 (b) 0,(c)?,0 (d) 0,?22224xy?1与直线y?x,y?围成的平面区域,(6)设d是第一象限由曲线2xy?1,函数f?x,y?在d上连续,则??f?x,y?dxdy? ()d?(a)??d?341sin212sin2?f?rcos?,rsin??rdr(b)??34d?1sin2?12sin2?f?rcos?,rsin??rdr f?rcos?,rsin??dr?(c)??d??34?(d)?d?34f?rcos?,rsin??dr【篇二:2016年考研数学二真题与解析】txt>一、选择题 1—8小题.每小题4分,共32分.11.当x?0时,若ln(1?2x),(1?cosx)?均是比x高阶的无穷小,则?的可能取值范围是()(a)(2,??)(b)(1,2) (c)(,1) (d)(0,)??1212???1?【详解】ln?(1?2x)~2?x?,是?阶无穷小,(1?cosx)?~1x?是阶无穷小,由题意可知?2??1?2???1122所以?的可能取值范围是(1,2),应该选(b). 2.下列曲线有渐近线的是(a)y?x?sinx (b)y?x2?sinx(c)y?x?sin(d)y?x?1x21 x【详解】对于y?x?sin,可知x??1xy1?1且lim(y?x)?limsin?0,所以有斜渐近线y?xx??x??xx应该选(c)3.设函数f(x)具有二阶导数,g(x)?f(0)(1?x)?f(1)x,则在[0,1]上()(a)当f(x)?0时,f(x)?g(x) (b)当f(x)?0时,f(x)?g(x) (c)当f??(x)?0时,f(x)?g(x) (d)当f??(x)?0时,f(x)?g(x) 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断.显然g(x)?f(0)(1?x)?f(1)x就是联接(0,f(0)),(1,f(1))两点的直线方程.故当f??(x)?0时,曲线是凹的,也就是f(x)?g(x),应该选(d)【详解2】如果对曲线在区间[a,b]上凹凸的定义不熟悉的话,可令 f(x)?f(x)?g(x)?f(x)?f(0)(1?x)?f(1)x,则f(0)?f(1)?0,且f(x)?f(x),故当f??(x)?0时,曲线是凹的,从而f(x)?f(0)?f(1)?0,即f(x)?f(x)?g(x)?0,也就是f(x)?g(x),应该选(d)?x?t2?7,4.曲线? 上对应于t?1的点处的曲率半径是() 2?y?t?4t?1(A)(B) (C)(D)5 50100y(1?y2)32【详解】曲线在点(x,f(x))处的曲率公式k?,曲率半径r?1. k22dxdydy2t?42dy1?2t,?2t?4,所以??1?,2?本题中??3,dtdtdx2tt2tdxt?对应于t?1的点处y?3,y??1,所以k?应该选(c)5.设函数f(x)?arctanx,若f(x)?xf(?),则x?0y(1?y2)3?110,曲率半径r?1?10. k?2x2?()(A)1(B)211 (C)(D) 323【详解】注意(1)f(x)?1133x?0时,arctanx?x?x?o(x).,(2)2由于f(x)?xf(?).所以可知f(?)?1f(x)arctanxx?arctanx2,, ????xx1??2(arctanx)213x)?o(x3)1?. 3x3x?0?2x2?x?0x?arxtanx?x(arctanx)2x?0x?(x??2u6.设u(x,y)在平面有界闭区域d上连续,在d的内部具有二阶连续偏导数,且满足?0及?x?y?2u?2u. ?2?0,则()2?x?y(a)u(x,y)的最大值点和最小值点必定都在区域d的边界上;(b)u(x,y)的最大值点和最小值点必定都在区域d的内部;(c)u(x,y)的最大值点在区域d的内部,最小值点在区域d的边界上;(d)u(x,y)的最小值点在区域d的内部,最大值点在区域d的边界上.【详解】u(x,y) 在平面有界闭区域d上连续,所以u(x,y)在d内必然有最大值和最小值.并且如果在?2u?2u?2u?2u?u?u内部存在驻点(x0,y0),也就是,由??0,在这个点处a?2,c?2,b?? ?x?y?x?y?y?x?x?y条件,显然ac?b?0,显然u(x,y)不是极值点,当然也不是最值点,所以u(x,y)的最大值点和最小值点必定都在区域d的边界上.所以应该选(a).2a7.行列式0cab000bcd000d22222222(a)(ad?bc)2(b)?(ad?bc)2 (c)ad?bc (d)?ad?bc 【详解】0a0cab0a0ba0b00babab??a0d0?b0c0??ad?bc??(ad?bc)2cd0cdcdc0dc0d00d应该选(b).8.设?1,?2,?3 是三维向量,则对任意的常数k,l,向量?1?k?3,?2?l?3线性无关是向量?1,?2,?3线性无关的(a)必要而非充分条件(b)充分而非必要条件(c)充分必要条件(d)非充分非必要条件【详解】若向量?1,?2,?3线性无关,则?10???(?1?k?3,?2?l?3)?(?1,?2,?3)?01??(?1,?2,?3)k,对任意的常数k,l,矩阵k的秩都等?kl???于2,所以向量?1?k?3,?2?l?3一定线性无关.?1??0??0???????而当?1??0?,?2??1?,?3??0?时,对任意的常数k,l,向量?1?k?3,?2?l?3线性无关,但?0??0??0???????. ?1,?2,?3线性相关;故选择(a)二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)1dx? 2x?2x?511dx1x?11dx??|??????x2?2x?5???(x?1)2?42219.?1??【详解】1????3?. ??(?)??2?42?810.设f(x)为周期为4的可导奇函数,且f(x)?2(x?1),x??0,2?,则f(7)?.【详解】当x??0,2?时,f(x)??2(x?1)dx?x2?2x?c,由f(0)?0可知c?0,即f(x)?x2?2x;f(x)为周期为4奇函数,故f(7)?f(?1)?f(1)?1.11.设z?z(x,y)是由方程e2yz?x?y2?z?7确定的函数,则dz|?11??.?,?4?22?【详解】设f(x,y,z)?e2yz71?x?y2?z?,fx?1,fy?2ze2yz?2y,fz?2ye2yz?1,当x?y?42时,z?0,fyf11?z1?z1??x??,????,所以dz|?11???dx?dy.?,?22?xfz2?yfz2?22?????,?处的切线方程为 22??2.曲线l的极坐标方程为r??,则l在点(r,?)??【详解】先把曲线方程化为参数方程??x?r(?)cos???cos???,于是在??处,x?0,y?,22?y?r(?)sin???sin??2dysin???cos?2????|??|???,则l在点(r,?)??,?处的切线方程为y???(x?0),即2?dx2cos???sin?2??22?y??2x??2?.213.一根长为1的细棒位于x轴的区间?0,1?上,若其线密度?(x)??x?2x?1,则该细棒的质心坐标x?11(?x?2x?x)dx?11?00【详解】质心坐标x?1. ?1??25?0?(x)dx?0(?x?2x?1)dx3201x?(x)dx1322214.设二次型f(x1,x2,x3)?x1?x2?2ax1x3?4x2x3的负惯性指数是1,则a的取值范围是.【详解】由配方法可知2f(x1,x2,x3)?x12?x2?2ax1x3?4x2x32?(x1?ax3)2?(x2?2x3)2?(4?a2)x3由于负惯性指数为1,故必须要求4?a?0,所以a的取值范围是??2,2?.2三、解答题15.(本题满分10分)?求极限limx???x1(t(e?1)?t)dt1x2ln(1?)x.21t【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限.【详解】x????limx1(t(e?1)?t)dtx2ln(1?1)x21t??limx???x1(t(e?1)?t)dtx21t?lim(x2(e?1)?x)x??1x111??1?lim?x2(??o()?x??22x??x2xx??216.(本题满分10分)已知函数y?y(x)满足微分方程x2?y2y?1?y,且y(2)?0,求y(x)的极大值和极小值.【详解】解:把方程化为标准形式得到(1?y)2dy?1?x2,这是一个可分离变量的一阶微分方程,两边分别积分dx 可得方程通解为:1312y?y?x?x3?c,由y(2)?0得c?, 333即1312y?y?x?x3?. 333dy1?x2d2y?2x(1?y2)2?2y(1?x2)2 令;??0,得x??1,且可知2? dx1?y2dx(1?y2)3当x?1时,可解得y?1,y??1?0,函数取得极大值y?1;当x??1时,可解得y?0,y?2?0,函数取得极小值y?0. 17.(本题满分10分)【篇三:考研数二历年真题(2016-2003)】t>一、选择题 1—8小题.每小题4分,共32分.11.当x?0时,若ln?(1?2x),(1?cosx)?均是比x高阶的无穷小,则?的可能取值范围?是()(a)(2,??)(b)(1,2) (c)(,1) (d)(0,) 2.下列曲线有渐近线的是(a)y?x?sinx (b)y?x2?sinx(c)y?x?(d)y?x?12121x21 x3.设函数f(x)具有二阶导数,g(x)?f(0)(1?x)?f(1)x,则在[0,1]上()(a)当f(x)?0时,f(x)?g(x) (b)当f(x)?0时,f(x)?g(x) (c)当f??(x)?0时,f(x)?g(x) (d)当f??(x)?0时,f(x)?g(x)?x?t2?7,4.曲线? 上对应于t?1的点处的曲率半径是() 2?y?t?4t?1(A)(B) (C)(D)5 501005.设函数f(x)?arctanx,若f(x)?xf(?),则x?0?2x2?()(A)1(B)121(C)(D)332?2u6.设u(x,y)在平面有界闭区域d上连续,在d的内部具有二阶连续偏导数,且满足?0?x?y?2u?2u及. ?2?0,则()2?x?y(a)u(x,y)的最大值点和最小值点必定都在区域d的边界上;(b)u(x,y)的最大值点和最小值点必定都在区域d的内部;(c)u(x,y)的最大值点在区域d的内部,最小值点在区域d的边界上;(d)u(x,y)的最小值点在区域d的内部,最大值点在区域d的边界上.7.行列式0aa0b00b0cd0c00d等于22(a)(ad?bc)(b)?(ad?bc) (c)ad?bc (d)?ad?bc222222228.设?1,?2,?3 是三维向量,则对任意的常数k,l,向量?1?k?3,?2?l?3线性无关是向量?1,?2,?3线性无关的(a)必要而非充分条件(b)充分而非必要条件(c)充分必要条件(d)非充分非必要条件二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.?1??1dx? 2x?2x?510.设f(x)为周期为4的可导奇函数,且f(x)?2(x?1),x??0,2?,则f(7)?11.设z?z(x,y)是由方程e2yz?x?y2?z?7确定的函数,则dz|?11??.?,?4?22?12.曲线l的极坐标方程为r??,则l在点(r,?)??????,?处的切线方程为.22??213.一根长为1的细棒位于x轴的区间?0,1?上,若其线密度?(x)??x?2x?1,则该细棒的质心坐标x?.2214.设二次型f(x1,x2,x3)?x1?x2?2ax1x3?4x2x3的负惯性指数是1,则a的取值范围是.三、解答题 15.(本题满分10分)?求极限limx???x1(t(e?1)?t)dt1x2ln(1?)x.21t16.(本题满分10分)已知函数y?y(x)满足微分方程x2?y2y?1?y,且y(2)?0,求y(x)的极大值和极小值. 17.(本题满分10分)22xsin(?x?y)22dxdy 设平面区域d?(x,y)|1?x?y?4,x?0.y?0.计算??x?yd??18.(本题满分10分)?2z?2z设函数f(u)具有二阶连续导数,z?f(ecosy)满足?2?(4z?excosy)e2x.若2?x?yxf(0)?0,f(0)?0,求f(u)的表达式.19.(本题满分10分)设函数f(x),g(x)在区间?a.b?上连续,且f(x)单调增加,0?g(x)?1,证明:(1) 0?(2)?bxag(t)dt?x?a,x??a,b?;f(x)dx??f(x)g(x)dx.ab?a??ag(t)dta20.(本题满分11分)设函数f(x)?x,x??0,1?,定义函数列 1?xf1(x)?f(x),f2(x)?f(f1(x)),?,fn(x)?f(fn?1(x)),?设sn是曲线y?fn(x),直线x?1,y?0所围图形的面积.求极限limnsn.n??21.(本题满分11分)已知函数f(x,y)满足?f且f(y,y)?(y?1)2?(2?y)lny,求曲线f(x,y)?0?2(y?1),?y所成的图形绕直线y??1旋转所成的旋转体的体积. 22.(本题满分11分)?1?23?4???设a??01?11?,e为三阶单位矩阵.?1203???(1)求方程组ax?0的一个基础解系;(2)求满足ab?e的所有矩阵.23.(本题满分11分)?1??1证明n阶矩阵????1?1?1??0?01????1?1??0?02?与?相似. ????????????1?1??0?0n??2015年全国硕士研究生入学统一考试数学二试题及答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. ...1、下列反常积分中收敛的是()??(a)?2(b)???2lnx(c)xx2t???21(d)xlnx???2x xe2、函数f(x)?lim(1?t?0sint)在(??,??)内() x(a)连续(b)有可去间断点(c)有跳跃间断点 (d)有无穷间断点1???xcos?,x?0(??0,??0),若f?(x)在x?0处连续,则() 3、设函数f(x)??x?0,x?0?(a)????1 (b)0?????1 (c)????2 (d)0?????24、设函数f(x)在(??,??)连续,其二阶导函数f??(x)的图形如右图所示,则曲线y?f(x)的拐点个数为()(a)0 (b)1 (c)2 (d)35、设函数f(u,v)满足f(x?y,)?x?y,则yx22?f?f与依次是() ?uu?1?vu?1v?1v?1(a)1111,0(b)0,(c)-,0(d)0 ,- 22226、设d是第一象限中曲线2xy?1,4xy?1与直线y?x,y围成的平面区域,函数f(x,y)在d上连续,则???f(x,y)dxdy=()d(a)?d?241sin2?12sin2?f(rcos?,rsin?)dr(b)?2d?4f(rcos?,rsin?)dr?(c)?34d?1sin2?12sin2??f(rcos?,rsin?)dr(d)?3d?4f(rcos?,rsin?)dr?111??1??????14a2??d2?????分必要条件为()(a)a??,d?? (b)a??,d?? (c)a??,d?? (d) a??,d??2228、设二次型f(x1,x2,x3)在正交变换x?py下的标准形为2y1?y2?y3,其中p=(e1,e2,e3),若q?(e1,e3,?e2),则f(x1,x2,x3)在正交变换x?py下的标准形为() 222222222222(a)2y1 (b) 2y1(c) 2y1(d)2y1 ?y2?y3?y2?y3?y2?y3?y2?y3二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.。
高等数学历年考研真题十二套含答案

1. 求 lim
x ® 0
10. 设 f ( x ) = lim
n ® ¥
( n - 1 ) x , 则 f ( x ) 的间断点为 x = _________ . 04数二考研题 2 nx + 1 cos x 是等价无
05数二考研题
[
2 + e 1/ x sin x + . x 1 + e 4/ x
5. 设 f ( 0 ) = 0 , 则 f ( x ) 在点 x = 0 可导的充要条件为 : (A) lim
0 h ®
15. 设函数 y = y ( x ) 由方程 y = 1 - xe y 确定 , 则 dy dx
1
h 2
1
1 f ( - cos h ) 存在 ;
x ) g ( x ) - f ( x ) g ¢( x ) < 0 , 3. 设 f ( x ) , g ( x ) 是恒大于零的可导函数 , 且 f ¢(
则当 a < x < b 时有 ( ).
00数二考研题
a , b 的值 .
2 ln b - ln a 1 a < < 11. 设 0 < a < b , 证明不等式 2 . a + b 2 b - a ab
01数二考研题
(A) x = 0 , x = 1 都是 f ( x ) 的第一类间断点 ; (B) x = 0 , x = 1 都是 f ( x ) 的第二类间断点 ; (C) x = 0 是 f ( x ) 的第一类间断点 , x = 1 是 f ( x ) 的第二类间断点 ; (D) x = 0 是 f ( x ) 的第二类间断点 , x = 1 是 f ( x ) 的第一类间断点 . 13. lim
2002年考研数学一试题答案与解析

2002年考研数学一试题答案与解析一、(1)【分析】 原式2ln 11.ln ln ee d x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++= ① 2'''6''12'20.y y e y e y xy y ++++= ②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得20dP yPP dy +=,即0dPy P dy+=(或0P =,但其不满足初始条件01'2x y ==).分离变量得0,dP dyP y+=积分得 ln ln ',P y C +=即1C P y =(0P =对应10C =);由0x =时11,',2y P y ===得11.2C =于是1',2,2y P y d y d x y===积分得22y x C =+.又由1x y==得21,C =所求特解为 1.y x =+(4)【分析】 因为二次型Tx Ax 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,是A 的特征值.又因i ia λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=>4}.依题意,有1(){4}.2P A P X =>=而4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】由1lim 101n n un n→+∞=>⇒充分大时即,N n N ∃>时10n u >,且1lim0,n nu →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1nu 的单调性. 按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑ 1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n nn u u ∞=++∑.注意111112,11nn n n u u n n n u u n n++++=+⋅→+11n n ∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C ). (3)证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞ (当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M-≤+≤矛盾(()).f x M ≤(4)【分析】因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线. (5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ). 进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-=又由洛必达法则00()(2)(0)'()2'(2)limlim 1h h af h bf h f af h bf h h →→+-+=(2)'(0)0,a b f =+=及(0)0f '≠,则有20a b +=.综上,得2, 1.a b ==-四、【解】由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得02()(0)2()(0)lim ()2lim 2lim 2'(0) 2.2n n x f f f x f n nf f n xn→∞→∞→--====五、【分析与求解】D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥U I I⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy=+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)212xx dx e dy =⎰⎰(选择积分顺序)22112 1.x xxe dx e e ===-⎰六、【分析与求解】(1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即(,)()xy xu x y f t dt y =+⎰.⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==- 七、【证明】(1)因为幂级数3693()13!6!9!(3)!nx x x x y x n =++++++L L的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-L L ,4732''()4!7!(32)!n x x x y x x n -=+++++-L L,所以2'''12!!nx x x y y y x e n ++=+++++=L L ()x -∞<+∞. (2)与'''x y y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,21322i λ=-±.因此齐次微分方程的通解为21233(cossin )22xY e C x C x -=+.设非齐次微分方程的特解为x y Ae *=,将y *代入方程'''x y y y e ++=可得13A =,即有13x y e *=.于是,方程通解为212331(cos sin )223x x y Y y e C x C x e -*=+=++.当0x =时,有112121(0)1,23,0.3131'(0)0.223y C C C y C C ⎧==+⎪⎪⇒==⎨⎪==-++⎪⎩于是幂级数30(3)!nn x n ∞=∑的和函数为2231()cos 323xx y x e x e -=+()x -∞<+∞八、【分析与求解】(1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h h h x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,22000000(,)(2)(2).g x y y x x y ⇒=-+-(2)按题意,即求(,)g x y 求在条件22750xy xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+- 在条件22750x y xy +--=下的最大值点.,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y xy xy x y xy λλ=+-++--则有 22108(2)0,108(2)0,750.Lx y x y x L y x y x y L x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=m 若2,λ=-由①或②均得y x =,代入③式得275x =即53,5 3.x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(53,53),(53,53).M M M M ----现比较22(,)(,)558f x y g x y xyx==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ====因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为 3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0)T-再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T 是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】(1)若,A B 相似,那么存在可逆矩阵P ,使1,PAP B -=故111E B E P AP P EP P APλλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==-但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλL则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O B 也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O 即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦O 于是111()().PQA PQB ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P Xdx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二、【解】22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=-θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+- 2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得71312θ-=(7131,122θ+=>不合题意).于是θ的最大似然估计值为713ˆ.12θ-=。
2023年考研数学二真题及答案

2023年考研数学二真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlimln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦ 1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小【答案】B. 【解析】在0,2π⎛⎫⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444nnn n nn n ny y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭, 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e()a x y x C x C x -=+;②若240a b ->,则通解为2212()eeaa x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =,通解为12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t =+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf x t t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-,故(0)f ''不存在.故选C. 6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( )A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2-D.ln 2【答案】A. 【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)aa a ax f a x x x x x a a +∞+∞+∞-++===-=⎰⎰,则 2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a af a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e xf x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1) B.[1,)+∞ C.[1,2) D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e xf x x x a '=++有两个相等的实根或者没有实根,2()(42)e xf x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A B C.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B , 故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B.9. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,21121||134(7)131143141λλλλλλλ---=--=+-----A E21(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k=+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得TTTT1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-. 12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2= 2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =. 方程e 2z xz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32xz∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,20()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(l n )y x x C x =-,其中C 为任意常数. 又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭, 由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=,由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积. 【解】(1)222144sec 1d d tan sec sin t S x t t t t t ππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t t tππππ==--⎰⎰241cos 11lnln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y +⎰⎰.【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰ 32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数. (1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a a ξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a aη''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+, 其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<, 22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<, 两式相加可得212()()()()2f f f a f a a ξξ''''+-+=, 又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=, 即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=- 221020|()|()|()|()22f a x f a x ηη''''+-≤+ 220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=, 即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ. 【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E , (2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α; 1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α; 211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α, 令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭P AP Λ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002年全国硕士研究生入学统一考试数学二试题答案
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)
(1)设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,
e ,0,2arcsin e 1)(2tan x a x x x
f x x
在x =0处连续,则a =______. (2)位于曲线y =x e -x (0≤x <+∞)下方,x 轴上方的无界图形的面积是______.
(3)微分方程02='+"y yy 满足初始条件y |x =0=1,21|0=
'=x y 的特解是______. (4)++++∞→n n n n π2cos 1πcos 1[1lim =++]πcos 1n
n Λ______. (5)矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-----222222220的非零特征值是______. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)
(1)设函数f (u )可导,y =f (x 2)当自变量x 在x =-1处取得增量∆x =-0.1时,相应的函数增量∆y 的线性主部为0.1,则 f ′(1)=( )
(A )-1. (B )0.1. (C )1. (D )0.5.
(2)设函数f (x )连续,则下列函数中必为偶函数的是( )
(A )
.d )(20t t f x ⎰ (B ).d )(20t t f x ⎰
(C ).d )]()([0t t f t f t x --⎰ (D ).d )]()([0
t t f t f t x -+⎰ (3)设y =y (x )是二阶常系数微分方程x
qy py y 3e =+'+"满足初始条件=)0(y 0)0(='y 的特解,则当x →0时,函数)
()1ln(2x y x +的极限 ( ) (A )不存在. (B )等于1. (C )等于2. (D )等于3.
(4)设函数y =f (x )在(0,+∞)内有界且可导,则( )
(A )当0)(lim =+∞→x f x 时,必有.0)(lim ='+∞
→x f x (B )当)(lim x f x '+∞→存在时,必有.0)(lim ='+∞
→x f x (C )当0)(lim 0=+→x f x 时,必有.0)(lim 0
='+→x f x (D )当)(lim 0x f x '+→存在时,必有.0)(lim 0
='+→x f x
(5)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k ,必有( )
(A )α1,α2,α3,k β1+β2线性无关. (B )α1,α2,α3,k β1+β2线性相关.
(C )α1,α2,α3,β1+k β2线性无关. (D )α1,α2,α3,β1+k β2线性相关.
三、(本题满分6分)
已知曲线的极坐标方程是r =1-cos θ,求该曲线上对应于6
π=θ处的切线与法线的直角坐标方程.
四、(本题满分7分) 设⎪⎪⎩⎪⎪⎨⎧≤≤+<≤-+=,10,)
1e (e ,01,232)(22x x x x x x f x x 求函数t t f x F x d )()(1⎰-=的表达式. 五、(本题满分7分)
已知函数f (x )在(0,+∞)内可导,1)(lim ,0)(=>+∞
→x f x f x ,且满足 ,e ))
()((lim 1
10x h h x f hx x f =+→ 求f (x ).
六、(本题满分7分)
求微分方程x d y +(x -2y )d x =0的一个解y =y (x ),使得由曲线y =y (x )与直线x =1,x =2以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.
七、(本题满分7分)
某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD ,下部由二次抛物线与线段AB 所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5∶4,闸门矩形部分的高h 应为多少m (米)?
八、(本题满分8分) 设),2,1()3(,3011Λ=-=<<+n x x x x n n n ,证明数列{x n }的极限存在,并求此极限.
九、(本题满分8分) 设0<α<b ,证明不等式
⋅<--<+ab a b a b b a a 1ln ln 222 十、(本题满分8分)
设函数f (x )在x =0的某邻域内具有二阶连续导数,且f (0)≠0,f ′(0)≠0, f ″(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h →0时,λ1f (h )+λ2f (2h )+λ3f (3h )-f (0)是比h 2高阶的无穷小. 十一、(本题满分6分)
已知A ,B 为3阶矩阵,且满足2A -1B =B -4E ,其中E 是3阶单位矩阵.
(1)证明:矩阵A -2E 可逆;
(2)若⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=200021021B ,求矩阵A . 十二、(本题满分6分)
已知4阶方阵A =(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax =β的通解.。