分式的基本性质-公开课复习过程

合集下载

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。

内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。

二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。

2. 学会简化分式,并能运用简化后的分式解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。

三、教学难点与重点教学难点:分式的基本性质的理解与应用。

教学重点:分式的定义、简化分式的方法以及分式的实际应用。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件。

2. 学具:学生用书、练习本、计算器。

五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。

2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。

(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

(3)简化分式:讲解如何将分式简化,并举例说明。

3. 例题讲解结合教材例题,详细讲解分式的简化过程。

4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。

(2)小组讨论,解决实际问题,培养学生的合作意识。

5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。

2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。

八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。

重点和难点解析1. 分式的基本性质的理解与应用。

2. 简化分式的方法。

3. 实际问题的解决。

4. 板书设计。

5. 作业设计与答案。

一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

2019-2020学年中考数学 分式的基本性质复习教案(1) 新人教版.doc

2019-2020学年中考数学 分式的基本性质复习教案(1) 新人教版.doc

2019-2020学年中考数学分式的基本性质复习教案(1)新人教版分式的基本性质我们知道,分数基本性质是:分数的分子与分母都乘以(或除以)同一个不等于零的数,分数的值不变。

分数的基本性质是约分、通分和化简繁分数的理论根据。

分式也有类似的性质,就是分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

这个性质叫做分式的基本性质,用式子表示是:其中分式的基本性质是分式变号法则。

通分,约分及化简繁分式的理论依据。

就是说,分式的基本性质是分式恒等变形的理论依据。

例1 下列等式的右边是怎样从左边得到的?(1))0(22≠=c bc ac b a ; (2)yx xy x 23=. 解:(1)∵c ≠0, ∵x ≠0, ∴bc ac c b c a b a 222=⨯⨯=, ∴yx x xy x x xy x 233=÷÷=. 例2 填空:(1)()b a ab b a 2=+; (2)()y x xxy x +=+22. 解:(1)∵a ≠0, ∴()ba ab a a ab a b a ab b a 22+=⨯⨯+=+,即填a 2+ab 。

(2)∵x ≠0, ∴()x y x xx x xy x x xy x +=÷÷+=+2222,即填x 。

注意:(1)根据分式的意义,分数线代表除号,又起括号的作用。

(2)添括号法则:当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号。

课时安排:本课题约需3课时,分配如下:三、练习 练习:P 63中练习1,2。

四、小结 本节学习了分式的基本性质。

五、作业 作业:P 66中习题9.2 A 组1,2。

另:需要注意的问题1.从回忆算术里分数的基本性质再用类比的方法得出分式的基本性质:)0(,≠÷÷=⨯⨯=M MB M A B A M B M A B A . 从形式上看,分数的基本性质和分式的基本性质同乎是一样的,学生接受起来不会有什么困难,但是要学生真正理解和掌握,还需要进行更深入的分析和各种基本的训练。

分式复习课教案

分式复习课教案

分式复习课教案分式复课学案教学目标:1.理解分式的定义,掌握分式有意义的条件。

2.掌握分式的加减乘除运算及混合运算。

3.掌握分式方程的解法,会列分式方程解决实际问题。

教学重点:分式加减乘除混合运算及分式方程教学难点:列分式方程解决实际问题一、预作业1.分式的概念:1)分式的定义:一般地,A,B是两个整式,且B中含有字母,那么A/B叫做分式。

2)分式有意义的条件是B不等于0.3)分式无意义的条件是B等于0.4)分式为零的条件是A等于0,且B不等于0.2.分式的基本性质:1)分式的分子分母同乘(或除以)一个非零数,分式的值不变。

2)分子,分母的公因式,系数的约分与各因式的分离。

3)各分式的最简公分母,各分母系数的约分与各因式的分离。

3.分式的运算法则:1)乘法法则:分式乘分式,分子乘分子,分母乘分母。

2)除法法则:分式除以分式,分子乘除数,分母乘被除数。

3)分式的乘方:分式的乘方等于分子的乘方除以分母的乘方。

4)加减法则:同分母分式相加减:分子加减,分母不变。

异分母分式相加减:通分后,分子加减,分母不变。

5)分式加、减、乘、除、乘方的混合运算法则:按照运算顺序进行。

6)a/a=1,a/a·b=b,a/b·b/a=14.解分式方程的步骤例如:(m+3)/(m-2) - 2/m = (3m-1)/(m^2-2m)1)去分母,方程两边同乘(m-2)m,化成整式方程。

2)解出整式方程的解。

将整式方程的解代入原方程进行检验,若不为零,则整式方程的解就是原方程的解,若等于零,则这个解可能是原方程的解。

预交流:例1.下列代数式中,x-y是分式的有:x-y/(x^2-y^2)。

(2m+a+b)/(x-1)。

(x-1)/(x^2-9)当x满足x≠2时,分式(x+1)/(x-2)有意义。

当x=√3时,分式(x^2+1)/(x-3)的值为零,当x满足x3时,分式2x-1/(x-3)值为正,当x=3时,分式2x-1/(x-3)无意义。

分式的基本性质 优秀教案

分式的基本性质 优秀教案

分式的基本性质教学 目标知识与技能1.使学生理解分式的基本性质,并会运用分式的基本性质将分式进行变形;2.利用分式的基本性质归纳,归纳理解粉饰的变号法则,并灵活应用。

过程与方法通过对比分数和分式基本性质的异同点,渗透类比的思想方法。

情感态度与价值观通过学习中的研究、讨论、交流,提高学生的学习能力和与人合作、交流的能力。

并体会发现、成功的美。

教学重点: 正确理解分式的基本性质。

教学难点: 运用分式的基本性质,将分式进行变形。

教学方法: 启发式教学过程教学活动学生活动 教学意图 (一)引导学生复习分式的有关概念1.指定两名学生就下列各式分别回答哪些是整式、分式,请其他学生判断其答案的正误,并说明原因。

52+x , mn, 2a-3b , 32-y y ,)2)(1(92---x x x , 53-2.指定学生分别回答上列各分式何时有意义,请其他学生判断其答案的正误,并说明原因。

(二)讲解分式的基本性质1.引导学生回忆分式的意义是对照分数的意义明确的,因此继续学习分式的知识也对照着分数的知识来学习。

再使学生回忆分数的知识;约分、通分、加减、乘除法等,都是以分数的基复习与分数进与分数类比,培养学生独立获取知识的能力。

本性质为根据,从而引出继续学习分式的知识,也从学习分式的基本性质开始。

2.指定学生叙述分数的基本性质,并以21等为例说明:MM ⨯⨯==-⨯-⨯=⨯⨯=21)3(2)3(1222121 (M 表示不等于零的数)MM ⨯⨯==-⨯-⨯=⨯⨯=32)3(3)3(2232232 (M 表示不等于零的数)MB M A B A B A B A ⨯⨯==-⨯-⨯=⨯⨯= )3()3(22 上式当BA表示分数时,M 是不等于零的数;若BA表示的是分式,则M 可以表示不等于零的整式。

以“把各式中的‘×’号换成‘÷’号,还对吗?”提问,指定学生回答,订正后明确M B MA B A ÷÷=。

《分式的基本性质》教案精品 2022年数学

《分式的基本性质》教案精品 2022年数学

15.1.2 分式的根本性质一、教学目标1.使学生理解并掌握分式的根本性质及变号法那么,并能运用这些性质进行分式的恒等变形.2.通过分式的恒等变形提高学生的运算能力.3.渗透类比转化的数学思想方法.二、教学重点和难点1.重点:使学生理解并掌握分式的根本性质,这是学好本章的关键.2.难点:灵活运用分式的根本性质和变号法那么进行分式的恒等变形.三、教学方法分组讨论.四、教学手段幻灯片.五、教学过程(一)复习提问1.分式的定义?2.分数的根本性质?有什么用途?(二)新课1.类比分数的根本性质,由学生小结出分式的根本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2.加深对分式根本性质的理解:例1 以下等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c≠0?解:∵c≠0,学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)解:∵x≠0,学生口答. 解:∵z≠0,例2 填空:把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据. 练习1:化简以下分式(约分)〔1〕2a bcab〔2〕 〔3〕教师给出定义:把分式分子、分母的公因式约去,这种变形叫分式的约分.d b a 24c b a 323223-()()b a 25b a 152+-+-问:分式约分的依据是什么? 分式的根本性质在化简分式 时,小颖和小明的做法出现了分歧:小颖: 小明:你对他们俩的解法有何看法?说说看!教师指出:一般约分要彻底, 使分子、分母没有公因式.彻底约分后的分式叫最简分式.练习2〔通分〕:把各分式化成相同分母的分式叫做分式的通分.〔1〕 与 〔2〕 与 解:〔1〕最简公分母是〔2〕最简公分母是〔x-5〕〔x+5〕2222(5)2105(5)(5)25x x x x xx x x x ++==--+- 2233(5)3155(5)(5)25x x x x xx x x x --==+-+- (三)课堂小结1.分式的根本性质.2.性质中的m 可代表任何非零整式. 3.注意挖掘题目中的隐含条件.yx 20xy5222x 20x5y x 20xy 5=x41xy 5x 4xy 5y x 20xy 52=⋅=b23a 2ca ba b2-5x x2-5x x 3+c2ba22c 2bc3bc b 2bc3b 23ba aa2222=••=c2ab 22a2c a a 2)b a (ca ba b aa b b22222-=••-=-4.利用分式的根本性质将分式的分子、分母化成整系数形式,表达了数化繁为简的策略,并为分式作进一步处理提供了便利条件.第3课时多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数; 3.能正确区分单项式和多项式.(重点)一、情境导入 列代数式:(1)长方形的长与宽分别为a 、b ,那么长方形的周长是________; (2)图中阴影局部的面积为________;(3)某班有男生x 人,女生21人,那么这个班的学生一共有________人. 观察我们所列出的代数式,是我们所学过的单项式吗?假设不是,它又是什么代数式? 二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出以下各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b3,6xy +1,2x 2-x -5;整式有:x 2+y 2,-x ,a +b3,10,6xy +1,17m 2n ,2x 2-x -5,a 7. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出以下各多项式的项数和次数,并指出是几次几项式. (1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【类型三】 根据多项式的概念求字母的取值-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式. 解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6, 解得m =4,此多项式是-5x 4+104x 4-4x 4y 2.方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】 与多项式有关的探究性问题假设关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,求m 、n 的值. 解析:多项式不含二次项和一次项,那么二次项和一次项系数为0. 解:∵关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项, ∴m =0,n -1=0,那么m =0,n =1.方法总结:多项式不含哪一项,那么哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a 米,长为b 米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a 米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a 米的圆,阴影局部面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言表达中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。

15.1.2分式的基本性质(教案)

15.1.2分式的基本性质(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、基本性质和它在实际问题中的应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在完成“15.1.2分式的基本性质”这一章节的教学后,我对自己的一些教学方法和学生的反馈进行了思考。我发现,分式的概念和性质对于学生来说并不容易掌握,尤其是分式运算的法则,学生在实际操作中容易混淆和出错。
3.数学抽象能力:让学生从具体实例中抽象出分式的性质,提高数学抽象思维能力。
4.数学运算能力:掌握分式运算的法则,培养学生准确、熟练地进行分式计算的能力。
5.团队合作与交流能力:在小组讨论和问题解决过程中,培养学生与人合作、表达和倾听他人意见的能力,提高学生的沟通与协作素养。
三、教学难点与重点
1.教学重点
-分式的定义:理解分式的概念,明确分子与分母的关系,以及分式表示的数学意义。
-分式的性质:掌握分式的分子分母同时乘以(或除以)同一个非零数或分式时,分式的值不变的规律。
-分式运算的法则:熟练运用分式乘法、分式除法、分式乘除混合运算的法则进行计算。
举例解释:
-通过具体实例(如分数的表示),让学生理解分式的定义,强调分式表示的是一种比例关系。
-通过数学推导和实例演示,让学生掌握分式性质中的“不变性”,并能够运用这一性质简化分式计算。
-通过实际计算题,让学生在实践中掌握分式运算的法则,如分式乘法中,分子乘以分子,分母乘以分母等。
2.教学难点
-分式性质的运用:学生在运用分式性质时,往往难以灵活运用,特别是涉及到分式的乘除运算。
-分式运算的符号处理:学生在进行分式运算时,容易混淆乘除符号,导致计算错误。

初中数学分式的基本性质(第1课时)优质课教案设计

初中数学分式的基本性质(第1课时)优质课教案设计

分式的基本性质(1)一、学习目标1.通过问题情境,运用类比方法,理解、掌握分式基本性质;2.通过运用分式基本性质对分式进行简单恒等变形,体会分式基本性质应用价值.二、学习过程(一)回顾情境:现有甲、乙、丙3个质地均匀的圆形转盘,甲转盘被等分为3个扇形,乙转盘被等分为6个扇形,丙转盘被等分为4个扇形,每个扇形均被涂成红、蓝、绿中的一种颜色。

(1)若小明和小华两位同学分别转动甲、乙两个转盘,转盘停止转动后,哪个转盘的指针指向红色区域的可能性大?(2)若小明和小华两位同学分别转动甲、丙两个转盘,转盘停止转动后,哪个转盘的指针指向红色区域的可能性大?设计意图:通过转盘游戏,回顾分数的基本性质,让学生明白分数的基本性质是分数约分、通分的依据,进而说明分数的基本性质是分数运算的基础,为用类比的方法归纳分式基本性质及其应用价值做好铺垫。

(二)构建情境:(1)甲、乙两车分别以x (km/h )和y (km/h )的速度同时出发、匀速前进,分别写出甲、乙两车1(h )后、5(h )后和n (h )后的路程之比,你有什么发现?(2)将x (g )盐充分溶解在一个装有y (g )水的烧杯中,请用含x 、y 的代数式表示这杯盐水的含盐量.将3杯同样的盐水倒入一个大烧杯中,则大烧杯中盐水的含盐量如何表示?将n 杯同样的盐水倒入一个大烧杯中,则大烧杯中盐水的含盐量如何表示?写出你的发现.类似于分数基本性质,我们可以得出分式的基本性质.分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于0的整式,分式的值不变.A A CB BC ⨯=⨯,A A C B B C÷=÷,其中C 是不等于0的整式. 设计意图:利用学生已有的知识储备(数学模型)和生活经验,直观呈现分式的恒等变形,从已知到未知,从生活到数学,帮助学生自觉运用类比方法归纳出分式的基本性质.(三)应用分式基本性质是分式恒等变形的依据,是分式运算的基础.例1下列等式的右边是怎样从左边得到的?(1)2b aba a =;(2)32a a ab b =; (3)()022a ac c b bc=≠; (4)22222a b a b a b -+=-. 变式1:填空:(1)()12a ab =; (2)()()3044a c b bc =≠; (3)()()222a b a b a b -=--; (4)()22222a b a b a ab b -+=-+. 变式2:(《课课练》P72第8题扩)下列等式是否成立?如果不成立。

八年级数学教学设计:分式的基本性质

八年级数学教学设计:分式的基本性质

八年级数学教学设计:分式的基本性质第一课时(一)教学过程【复习提问】1.分式的定义?2.分数的基本性质?有什么用途?【新课】1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:(其中是不等于零的整式.)2.加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?(1);由学生口述分析,并反问:为什么?解:∵(2);学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)解:∵(3)学生口答.解:∵,例2 填空:(1);(2);(3);(4).把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.(1);分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?解:.(2).解:.例4 判断取何值时,等式成立?学生分组讨论后得出结果:(二)随堂练习1.当为何值时,与的值相等()A.B.C.D.2.若分式有意义,则,满足条件为( )A.B.C.D.以上答案都不对3.下列各式不正确的是( )A.B.C.D.4.若把分式的和都扩大两倍,则分式的值A.扩大两倍B.不变C.缩小两倍D.缩小四倍(三)总结、扩展1.分式的基本性质.2.性质中的可代表任何非零整式.3.注意挖掘题目中的隐含条件.4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.(四)布置作业单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

分式的基本性质教案

分式的基本性质教案

分式的基本性质优秀教案一、教学内容本节课我们将探讨《数学》教材第十五章第一节“分式的基本性质”。

具体内容包括分式的定义、分式的基本性质、分式的乘除法运算以及分式的约分。

二、教学目标1. 理解并掌握分式的定义及基本性质。

2. 学会分式的乘除法运算,并能熟练运用。

3. 能够对分式进行约分,并解释其约分原理。

三、教学难点与重点教学难点:分式的乘除法运算及约分。

教学重点:分式的定义、基本性质以及相关运算法则。

四、教具与学具准备1. 教具:PPT、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中分式的应用,如分数蛋糕、速度等,引发学生对分式的兴趣。

2. 分式的定义及性质(10分钟)讲解分式的定义,并通过例题讲解分式的基本性质。

3. 分式的乘除法运算(15分钟)介绍分式的乘除法运算规则,并进行例题讲解。

接着,布置随堂练习,让学生独立完成。

4. 分式的约分(10分钟)讲解分式约分的原理及方法,并进行例题演示。

随后,让学生进行随堂练习。

5. 小结与巩固(5分钟)6. 互动环节(10分钟)学生提问,教师解答。

针对学生在学习过程中遇到的问题进行解答。

七、作业设计1. 作业题目:2. 答案:(1)2(2)5/4(3)3/2八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对分式的定义、基本性质及运算法则有了更深入的理解,但仍有个别学生在约分环节存在困难,需要在课后进行个别辅导。

2. 拓展延伸:鼓励学生探索分式在其他数学领域的应用,如函数、不等式等,提高学生的综合运用能力。

重点和难点解析:1. 分式的定义及性质2. 分式的乘除法运算3. 分式的约分4. 互动环节5. 作业设计一、分式的定义及性质分式的定义:分式是由两个整式相除得到的表达式,其中被除数称为分子,除数称为分母。

分式的基本性质包括:1. 分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。

2024年初中数学精品教案《分式的基本性质》

2024年初中数学精品教案《分式的基本性质》

2024年初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章第一节《分式的基本性质》。

内容包括分式的概念、分式的分子与分母的关系、分式的基本性质及其应用。

二、教学目标1. 理解分式的概念,掌握分式的分子与分母的关系。

2. 掌握分式的基本性质,并能够运用这些性质进行分式的化简和运算。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:分式的基本性质的理解和应用。

教学重点:分式的概念及其分子与分母的关系。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入通过一个实际情景,让学生了解分式的概念。

例题:小明和小红相约去公园玩,他们共带了80元的零花钱。

如果小明花去一半,小红花去三分之一,那么他们各自还剩下多少钱?引导学生列出分式,并解释分式的分子与分母的含义。

2. 例题讲解讲解分式的基本性质,如分子分母同乘(除)一个数,分式的值不变等。

3. 随堂练习(1)化简分式:2/4、5/10、12/18(2)计算:3/4 + 2/3、5/6 1/2、4/5 × 2/3、6/7 ÷ 3/45. 课堂小结六、板书设计1. 分式的概念2. 分子的含义与分母的含义3. 分式的基本性质① 分子分母同乘(除)一个数,分式的值不变② 分式的分子与分母同时乘以(或除以)同一个数,分式的值不变③ 分式的乘法、除法、加法、减法法则七、作业设计1. 作业题目(1)化简分式:4/6、9/12、15/20(2)计算:2/3 + 1/4、5/8 3/4、7/8 × 6/7、4/5 ÷ 2/32. 答案(1)2/3、3/4、3/4(2)11/12、1/8、3/4、6/5八、课后反思及拓展延伸1. 反思本节课通过实践情景引入,让学生了解分式的概念,讲解分式的基本性质,并通过随堂练习巩固所学知识。

初中复习课分式教案

初中复习课分式教案

初中复习课分式教案教学目标:1. 学生能够掌握分式的定义、基本性质和运算法则;2. 学生能够灵活运用分式解决实际问题;3. 学生能够理解分式与整式的关系,并能进行相应的变形和化简。

教学内容:1. 分式的定义和基本性质;2. 分式的运算法则;3. 分式在实际问题中的应用;4. 分式与整式的关系及变形和化简。

教学过程:一、导入(5分钟)1. 复习分式的定义:分式是形如a/b的表达式,其中a和b是整式,b不为0。

2. 引导学生回顾分式的基本性质:分式的值不随分母的扩大或缩小而改变,分式的值不随分子的扩大或缩小而改变,分式的值不随分子的正负而改变。

二、分式的运算法则(15分钟)1. 复习分式的加减法:分式的加减法是将分式的分子进行相应的加减运算,分母保持不变。

2. 复习分式的乘除法:分式的乘除法是将分式的分子和分母进行相应的乘除运算。

3. 引导学生总结分式的运算法则:分式的加减法运算遵循相同的分母相加减,不同的分母先通分;分式的乘除法运算遵循分子相乘除,分母相乘除。

三、分式在实际问题中的应用(15分钟)1. 给出一个实际问题,如:一个长方形的长是宽的两倍,面积为24平方厘米,求长方形的面积。

2. 引导学生将实际问题转化为分式问题,如:设长方形的宽为x厘米,则长为2x厘米,面积为x*2x=2x^2平方厘米。

3. 引导学生运用分式解决实际问题,如:2x^2=24,解得x=6,所以长方形的宽为6厘米,长为12厘米。

四、分式与整式的关系及变形和化简(15分钟)1. 引导学生理解分式与整式的关系:分式可以看作是整式的一种特殊形式,整式可以通过乘以一个非零整数得到相应的分式。

2. 复习分式的变形和化简:分式的变形和化简是通过因式分解、约分、通分等操作实现的。

3. 给出一些分式的变形和化简题目,让学生独立完成,并进行讲解和解析。

五、总结与复习(10分钟)1. 引导学生总结本节课的重点内容:分式的定义、基本性质、运算法则、实际应用、与整式的关系及变形和化简。

2021年公开课《分式的基本性质》精品教案(市一等奖)(部优)

2021年公开课《分式的基本性质》精品教案(市一等奖)(部优)

本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。

在本节课的教学中,我始终坚持以引导为起点,以问题为主线,以能力培养为核心,遵照教师为主导,学生为主体,训练为主线的教学原则;通过师生双边活动,通过对单元的复习,使学生对本单元的知识系统化,重点知识突出化,能力培养阶梯化;在选择题目时注意了以基本题为主,少量思考性较强的题目为辅,兼顾了不同层次学生的不同要求。

本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。

由于剪的方法不同,展开图的形状也可能是不同的。

《分式的基本性质教案 》教案 (公开课获奖)

《分式的基本性质教案 》教案 (公开课获奖)

3.1 分式的基本性质(2)有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。

2、通过实例,探究出有理数除法法则。

会把有理数除法转化为有理数乘法,培养学生的化归思想。

重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。

教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。

教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。

同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。

根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。

2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。

(完整word)分式复习教案

(完整word)分式复习教案

一.教学知识回顾分式:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式 分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

最简分式:分子与分母没有公因式的分式。

分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

db c a d c b a ••=• 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.cb d acd b a d c b a ••=•=÷ 分式乘方要把分子、分母分别乘方。

分式的加减法法则:同分母分式想加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

二.教学过程/例题精讲1、对于分式122x x -+(1)当________时,分式的值为0 (2)当________时,分式的值为1 (3)当________时,分式无意义 (4)当________时,分式有意义2.化简(1)6425633224a b c a b c= (2)224488a b a b -=-(4) b a ab a --2; (5) 2242xx x ---244)4(824)6(2222-+-•-÷-+-a a a a a a a3.将下列各式通分(1)1a ,234a b ,216ab c(2)12x +,42x -(3)122x -,21(1)x - (4)1()()a b b c --,2()()b c a c --4、计算:(1)223a 2y 4y 3a⋅ (2)22122a a a a +⋅-+(3)2222335010a b a b ab a b -⋅- (4)22432a b ab ab a b -⋅-(5)2222324ab a b c cd -÷ (6)2233y xy x-÷(7)2()x y xy x xy --÷ (8)222244(4)2x xy y x y x y -+÷--5、试一试:2323a b c-() 解:原式==⋅⋅=333333)()()()()()((1)=⎪⎪⎭⎫ ⎝⎛-23y x ;(2)=⎪⎪⎭⎫ ⎝⎛-3322y x ;(3)=⎪⎭⎫ ⎝⎛41ab ; 6。

分式的基本性质 优秀课公开课教案

分式的基本性质   优秀课公开课教案

第2课时 分式的基本性质1.理解并掌握分式的基本性质和符号法则;(难点)2.理解分式的约分、通分的意义,明确分式约分的理论依据;(重点)3.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】 利用分式的基本性质对分式进行变形下列式子从左到右的变形一定正确的是( )A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x的分子、分母都乘以10得2x +1020+5x.故选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b .解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b2a ;(2)原式=-5y7x 2;(3)原式=-a +2b2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:约分及最简分式【类型一】 判定分式是否为最简分式下列分式是最简分式的是( )A.2a 2+a abB.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c =-a 25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC的中点,请判断线段BE ,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、。

分式的基本性质-精品公开课

分式的基本性质-精品公开课
1、什么是分式?
如果A,B表示两个整式,并且B中源自有字母, 那么式子A B叫做分式.
其中,A叫做分子,B叫做分母.( B 0)
一个分数的分子、分母乘(或除以)同一个 不为0的数,分数的值不变。
a 一般地,对于任意一个分数 有: b a a c a a c (c≠0) b bc b bc
ac a 4. bc b

分式性质应用
1UYBJG 例2 根据分式的性质填空:
÷x
x ( x ) 3x 3xy x y ( 1 ) 2 xy y ____ 2x 6x
3
2
2
÷x
分式性质应用1
例2 根据分式的性质填空:
1 (2) 2 ab a b
a ____
2a b ( ________ ) 2ab b b 0 2 2 a ab
2
分式性质应用2—分式变号法则
不改变分式的值,使下列分子与分母都 不含“-”号
分式的分子、分母和分式本身的 符号,同时改变其中任意两个,分式 的值不变。 一个负号任你放, zj
a a b b a a b b
其中a , b , c是数.
分式的分子与分母乘(或除以)同一个不等 于0的整式,分式的值不变.
上述性质可以用式子表示为:
A AC B B C
A AC (C≠0) B B C
其中A , B , C是整式.
zj
a a 1. 2 b b
2
×
a a 2c 2. (c 0) × b b 2c a ac 3. × b bc
a a b b a a b b

人教版八年级上册数学《分式的基本性质》分式教学说课复习课件

人教版八年级上册数学《分式的基本性质》分式教学说课复习课件
B
BC B
B C
探索新知
知识点1
分式的基本性质
示例:
分式的
基本性质
分子乘以x
分子除以b2
y
xy
2
2x 2x
ab 2 a

3
b
b
分母乘以x
分母除以
b2
探索新知
知识点1
分式的基本性质
做一做:下列各式从左到右的变形一定正确的是 ③
.
y ym
ny y
y y2
y 2y
y y -1
;③


2
2x
2 x( x 5)
2 x 2 10 x


x 5
( x 5)( x 5)
x 2 25
3x
3 x( x 5)
3 x 2 15 x


x 5
( x 5)( x 5)
x 2 25
探究新知
归纳总结
1. 通分的步骤
①确定最简公分母,②化异分母分式为同分母分式.
个不为0的数,分数的值不变.
探究新知
问题3:你能用字母的形式表示分数的基本性质吗?
a
a
a c
一般地,对于任意一个分数 b ,有 b b c ,
a
a c

(c 0)
, 其中a, b, c 是数.
b
b c
探究新知
问题4:类比分数的基本性质,你能想出分式有什么
性质吗?
分式的基本性质:
(2)所乘(或除以)的必须是同一个整式;
(3)所乘(或除以)的整式应该不等于零.
探究新知
素养考点 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①分式基本性质②约分③最简分式
2、你掌握了哪些方法?
① 单项式型②多项式型
1.判断在下列各式到中右从的左变形是:否正确
(1)n 2n(2)b bc(3)bcb m 3m a ac ac a
2.填空. ( )
⑴ xy
2xy 3
2y2
⑵ 2c 3
2ca
3(
5b
)
, a
5b
0
3化 . 简分式 168 xx : 23yy32
归纳
约分的步骤:
(1)确定分子和分母的公因式;
(2)依据分式的基本性质,分子和分母 同时除以公因式;
(3)得出整式或最简分式.
做一做
化简下列各分式:
⑴ 5 xy
20 x 2 y
y2 (3) y 2 4
-12 x2 y3 (2) 9x3 y2 ;
理解应用 分式的约分

1
)
.
24m 8m 2
分式的基本性质-公开课
想一想
1、
3 6
1 2
的依据是什么?
3 6
1 2
的依据
分数的基本性质,

3 6
的分子、分母同除以3而得到的;
2、分数的基本性质是什么?
分数的分子与分母都乘以或除以同一个不等于 零的数,分数的值不变。
3、你认为分式
a 2a
与1
2
相等吗?
n2 m n

n m
呢?
分数的基本性质是什么?需要注意的是什么?

x2
x2 1 2x
1
x1x1 x12
x1 x1
议一议
在化简5xy 时,小颖和小明分 出歧 现 . 了 20x2 y
5xy 5x 20x2 y 20x2
5xy 5xy 1
20x2y 5xy4x 4x
你对他们两人的做法有何看法?与同伴交流。 最简分式:分子和分母没有公因式的分式。 化简的结果是:最简分式或整式。
3n n4
6
2
x2
x2 9 6x
9
;
36x2 12xy6y2 .
3x3y
分析:当分子分母是多项式的时候,先进行分解因式,再约分.
解:
x29 (x3)(x3)
(2)x26x9 (x3)2
x3; x3
(3)6x2 31 x x2 3y y6y26 3xx yy2 2 (xy)2x2y.
•。
1、你学会了哪些知识?
20x2y
解:原式 5xy 1 5xyg4x 4x
我们最没有简公因分式了式!
分式的约分
把一个分式分子和分母的公因式 约去,
做一做
约分的依据:分式的基本性质.
例题 约分:
a 2 bc (1) ;
ab
⑵x2x22x11.
解:(1) a2bc ab
ab ac ab
ac
.思考
分子、分母都是单 项式时,如何找分 子、分母的公因式? 分子、分母都是多 项式时呢?
思考 &发现
分式的基本性质: 分式的分子与分母乘(或除以)同一个不等于0的整式, 分式的值不变.
用式子表示为:
A A M , A A M . B BM B BM (其中M是不等于零的整)式
应用分式的基本性质时要注意几点:
(1)分子和分母应同时做乘法或除法中的一种变换; (2)所乘(或除以)的必须是同一个整式; (3)所乘(或除以)的整式不为0.
⑴b 1 ⑵y aby (ab0),
2b 2
2x 2abx
2 .填空:
x2 xyx y x y, (x y0);
3.辨一辨
x2 (1)
y2
xy
xy
(2)(xy)2 xy xy
课题检测
1.把分式 2(a b) 中的a和b都扩大4倍,那么分式
ab
的值( C )
A.扩大为原来的4倍 C.缩小为原来的 1
初步应用
例题 填空:
(1)
x3 (
x
2
),
xy y
3x23xy xy
6x2
; (2x )
(2) a 1 b (a 2 b a ), 2 a a 2b (2a a2 bb b2 )(b 0 ).
观察 看分母如何变化,想分子如何变化;
看分子如何变化,想分母如何变化.
仿例训练
1.下列等式的右边从是左怎边样得.到的
理解应用 分式的通分
例4 通分:
(1)2a32b与aab2bc;
(2) 2x 与3x . x5 x5
分析:为通分要先确定分式的公分母.
取各个分母的所有因式的最高次幂的积作公分 母,它叫做最简公分母.
理解应用 分式的通分
解:(1)最简公分母是2a2b2c.
3 2a 2b
3bc 2a2b2c ,
ab ab 2 c
2a2 2a 2a2b2c
b.
(2)最简公分母是(x+5)(x-5).
2x 2x(x5) 2x2 10x , x5 (x5)(x5) x2 25
3x 3x(x5) x5 (x5)(x5)
3x2 x2
15x . 25
课题检测
3.利用分式的基本性质填空:
(1) 3a ( 6 a 2 )(a0); 5xy 10axy
(2)
a2 a2 4
(a
1
2)
.
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
பைடு நூலகம்
以下分式的变形是否成立?请简要说明理由.
(1)
1 2 m 2m

2 1; 2m m
(2)
1 m
aam(a0)和
a am
1 m
.
解:(1)成立.等号左边的分式的分子和分母都乘2;
等号左边的分式 的分子和分母都除以2.
解:(2)成立.
等号左边的分式 的分子和分母都乘不为0的整式a;
等号左边的分式 的分子和分母都除以不为0的整式a.
4.先化简, 再求值:
x2 16 , 其中x 2 2x 8
理解应用
利用分式的基本性质,类比分数的约分和通分, 我们对分式进行约分和通分.
分式的通分
与分数的通分类似,也可以利用分式的基 本性质,使分子和分母同乘适当的整式,不改变 分式的值,把几个异分母的分式分别化成与原来 分式相等的同分母分式,这样的分式变形叫做分 式的通分.
4
B.扩大为原来的2倍 D.不变
2.下列运算正确的是( D)
A. y y xy xy
B.
2x y 2 3x y 3
C.
x2 y2 x y x y
D.
yx x2 y2
1 x
y
想一想
最简分式:一
分数的约分
个分式的分子
把一个分数分子和分母的 最大公与约分数母没约有去公,
因式,叫做最
分式 5 x y 可以进行约分吗? 简分式.
分数的基本性质:一个分数的分 子、分母乘(或除以)同一个不 为0的数,分数的值不变.
a 一般地,对于任意一个分数 b ,有
a a·c . a a c . (c 0)
b b·c b b c
(1)分数分子和分母做乘法、除法中的同一种运算; (2)乘(或者除以)同一个数; (3)所乘(或除以)的数不为0; (4)分数值不变.
相关文档
最新文档