泛函分析习题1

合集下载

泛函分析习题

泛函分析习题

泛函分析习题泛函分析练习题⼀名词解释:1.范数与线性赋范空间2.⽆处稠密⼦集与第⼀纲集3.紧集与相对紧集4.开映射5.共轭算⼦6. 内点、内部:7. 线性算⼦、线性范函:8. ⾃然嵌⼊算⼦9. 共轭算⼦10. 内积与内积空间:11. 弱有界集:12. 紧算⼦:13. 凸集14. 有界集15. 距离16. 可分17. Cauchy 列18.⾃反空间⼆、定理叙述1、压缩映射原理2. 共鸣定理3.逆算⼦定理4. 闭图像定理5.实空间上的Hahn-Banach 延拓定理6、Baire 纲定理7、开映射定理8、Riesz 表现定理三证明题:1.若(,)x ρ是度量空间,则1d ρρ=+也使X 成为度量空间。

证明:,,x y z X ?∈显然有(1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。

(2)(,)(,)d x y d y x =(3)由1()111t f t t t ==-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,)x z x y y z d x z x z x y y z ρρρρρρ+=≤+++(,)(,)1(,)1(,)x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+故d 也是X 上的度量。

2,设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。

证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?-已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。

故有 2|(,)(,)|0n n x y x y -→即 (,)(,)n n x y x y →。

3.考虑[,]C a b 上的⾮线性积分⽅程()(,,())()ba x t k t s x s ds t λ?-=?其中[,],(,,)C a b k t s ?ω∈是[,][,]a b a b R ??上的连续函数,满⾜1212|(,,)(,,)|||k t s k t s b ωωωω-≤-证明当||λ⾜够⼩时,此⽅程存在唯⼀解0[,]x C a b ∈。

距离空间泛函分析第四章习题第一部分(1-18)

距离空间泛函分析第四章习题第一部分(1-18)

第四章习题第一部分(1-18)1. 在1中令1(x , y ) = (x y )2,2(x , y ) = | x y |1/2,,问1, 2是否为1上的距离[解] 显然1, 2满足距离空间定义中的非负性和对称性. 但1不满足三角不等式:取点x = 1, y = 0, z = 1,则1(x , z ) = 4 > 2 = 1(x , y ) + 1(y , z ),所以1不是1上的距离。

而x , y , z 1,2(x , y ) = ||||2||||||||||y z z x y z z x y z z x y x -⋅-+-+-≤-+-≤-||||)||||(2y z z x y z z x -+-=-+-==2(x , z ) +2(z , y );所以2是1上的距离.2. 设(X , )是距离空间,令1(x , y ) = n y x ),(ρ,x , y X .证明(X ,1)也是距离空间.[证明] 显然1满足距离空间定义中的非负性和对称性, 故只需证明1满足三角不等式即可.实际上x , y , z X ,n n y z z x y x y x ),(),(),(),(1ρρρρ+≤= n n n n n y z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , )是距离空间,证明| (x , z ) (y , z ) | (x , y ),x , y , z X ;| (x , y ) (z , w ) | (x , z ) + (y , w ),x , y , z , w X . [证明] x , y , z , w X ,由三角不等式有(x , y ) (x , z ) (y , z ) (x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式:| (x , y ) (z , w ) | | (x , y ) (y , z ) | + | (y , z ) (z , w ) | (x , z ) + (y , w ).4. 用Cauchy 不等式证明(| 1 | + | 1 | + ... + | n | )2 n (| 1 |2 + |1 |2 + ... + | n |2 ).[证明] 在P159中的Cauchy 不等式中令a i = | i |,b i = 1,i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ,则int(A ) = ,结论显然成立. 若A ,则x A ,r > 0使得S (x , r ) A .对y S (x , r ),令s = r d (x , y ),则s > 0,并且S (y , s ) S (x , r )A ;所以y int(A ).故S (x , r ) int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A X ,A .证明:A 是开集当且仅当A 是开球的并.[证明] 若A 是开球的并,由于开球是开集,所以A 是开集. 若A 是开集,x A ,存在r (x ) > 0,使得S (x , r (x )) A . 显然A = x A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,x X ,r > 0. [例] 设X = {a , b },定义d : X X 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1.则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ⊆,.证明:B A B A ⋃=⋃,B A B A ⋂⊆⋂. [证明] 由于A A ⊆,B B ⊆,故B A B A ⋃⊆⋃.由于A 和B 都是闭集,所以B A ⋃也是闭集,所以B A B A ⋃⊆⋃.另一方面,由B A B A ⋃⊆,,得B A B A ⋃⊆,,所以B A B A ⋃⊆⋃; 这样就证明了第一个等式.由B A B A ,⊆⋂得B A B A ,⊆⋂,所以B A B A ⋂⊆⋂。

泛函分析Rudin习题1

泛函分析Rudin习题1
i 1
t1 A t n A C ,
这蕴涵着 C co ( A) ;进一步,
CC
C co( A) .反过来的包含由 co( A) C 给出.

3.Proof. (a)设 A X 是开的, C 是 A 的凸壳,那么 A C 蕴涵着 A C .定理 1.13 说C 是 凸的,再由第 2 题就得到 C C ;进一步, C C 是开的. (b)设 E X 是有界的, B 是 X 的一个凸局部基.对每个 V B ,选取t 0 使 E tV .第 2 题指出 co( E ) tV .第 5 题因此指出 co( E ) 是有界的. (c)对 0 X 的每个邻域V ,选取 0 X 的邻域U 和 t 0 使U U V , A tU , B tU . 那么 A B tU tU tV .第 5 题因此指出 A B 是有界的. (d)是 X 中加法连续性的结果. (e)设 x A B ,那么 ( x A) B .选取 0 X 的一个邻域V 使
f (V ) ( 1 (V ))
是 Y 的开集.因此 f 是开的. 反过来的蕴涵是明显的. 这就完成了证明.

10.Proof. (a)设 dimY n , e1 , , en X 使 e1 , , en 成为 Y 的一组基.给定 0 X 的邻 域 V ,标量乘法的连续性给出一个 0 使
5 Chapter 1: Topological Vector Spaces
是 0 Y 的一个邻域. 同样的推理可以用到 (V ) 的每个点.因此 (V ) ,从而 ,是开的. (b)设 : X / N Y 是 诱导的向量空间同构.作为 N 是闭子空间的推论得到: X / N 是 一个有限维拓扑向量空间;结合定理 1.21 就得到 还是一个同胚. 再由 和第 9 题即得.

应用泛函分析习题1

应用泛函分析习题1
n
n k =1
27. 设 e1 , e2 ," en 是 n 维线性空间 R 的一个基, ∀ x = 现 在 , 对 于 给 定 的 a=
n
∑ ξk ek ∈ R n ,规定 x 的范数 || x ||= ∑ ξk 。
k =1
n
∑a e
k =1
n
k k
∈ R n ( ak ∈ R ) , 在 R n 定 义 泛 函
{
}
1 , ∀x ∈ S 求证: x
Tx − Ty < x − y ,对任意的 x, y ∈ S ,但 T 在 S 上没有不动点。
12. 试在 l 空间中给出一个无限维线性子空间 M ,但 M ≠ l . 13. 设 M 与 N 是 线 性 空 间 X 中 两 个 线 性 子 空 间 , x, y ∈ X 。 证 明 :
令 d ∞ ( x, y ) = max | ξi − ηi | 。证明 ( X , d ∞ ) 为一个完备的度量空间。 请给 X × Y 定义两 3. 设 X , Y 为两个度量空间,X × Y = {( x, y ) | x ∈ X , y ∈ Y } 为 X , Y 的 Dicard 积。 种不同的度量。 4. 试证明映射
{
}
∑ ( x, e )( y, e ), ∀x, y ∈ H 。
k =1 k k

。求证:集 26. 设 S = ek ∈ H k ∈ N 是 内 积 空 间 H 中 的 正 交 规 范 系 集 , m 为 正 整 数 ,
Bm = ek ∈ S x < m ( x, ek )
{
{
}
2
2
} 中至多含有 m −1 个元素。
n =−∞

泛函分析答案

泛函分析答案

泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对∀ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,∀ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若∀ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ⊆B ⊆A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则∀n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则∀n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则∀x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ∀k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:∃x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,∀n∈ +,∃x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =⎰[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =⎰[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得∀f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a, b] | F(x) | = max x∈[a, b] | ⎰[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.∀ε > 0,∀s, t∈[a, b],当| s-t| < ε/K时,∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(u) du.| F(s) -F(t) | = | ⎰[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:∀n∈ +,∃C n> 0,使得∀x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(⇐) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(⇒) 我们只要证明,∀n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(∀x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1), f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E⊆C(M),E中的函数一致有界并且满足下列的Hölder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(∀x∈E,∀t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由Hölder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出∆OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用Hölder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.∀x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义ϕ : X →l∞,f #ϕ ( f ) = ( f (a1), f (a2), ...).则ϕ : X →l∞是线性双射,且|| ϕ ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,ϕ : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (⎰[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (∀f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),∀x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,∀x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (⎰[a, b] | f(x) |2dx )1/2,q( f ) = (⎰[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((⎰[a, b] | f(x) |2dx )1/2 + (⎰[a, b] | g(x) |2dx )1/2)2= ⎰[a, b] | f(x) |2dx + 2(⎰[a, b] | f(x) |2dx )1/2 · (⎰[a, b] | g(x)|2dx )1/2 + ⎰[a, b] | g(x) |2dx≥⎰[a, b] | f(x)|2dx + 2 ⎰[a, b] | f(x) | · | g(x)| dx + ⎰[a, b] | g(x)|2dx= ⎰[a, b] ( | f(x) | + | g(x)| )2dx ≥⎰[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’ ) + p( g’ ) ≥p( f’ + g’ ),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ∀x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故⎰[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);⎰[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (⎰[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (⎰[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (⎰[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f∉C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ∀x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (⎰[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (⎰[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.∀f∈C[0, 1]|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2 ≤ (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (⎰[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2 + (⎰[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (⎰[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (⎰[0, ∞) e-ax | f n(x) |2dx )1/2 = (⎰[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1⨯X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1⨯X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1⨯X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1⨯X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1⨯X2中的收敛列.所以X = X1⨯X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对∀{x n}⊆X,∑n≥ 1 || x n || < +∞⇒∑n≥ 1x n 收敛.证明:(⇒) ∀{x n}⊆X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(⇐) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故∀n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为 n.求证:∀f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意∀f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对∀x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ∀x≠θ, y≠θ) ⇒x = c y ( c > 0).证明:(⇒) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(⇐) 设∀x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数ϕ : X → 1称为凸的,如果不等式ϕ( λ x + (1 -λ) y ) ≤λϕ( x ) + (1 -λ)ϕ( y ) ( ∀ 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数ϕ的一个局部极小点.如果存在x∈X,使得ϕ( x ) < ϕ( x0),则∀ t ∈(0, 1),ϕ( t x + (1 -t ) x0) ≤t ϕ( x ) + (1 -t )ϕ( x0) < t ϕ( x0) + (1 -t )ϕ( x0) = ϕ( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此∀x∈X,都有ϕ( x0) ≤ϕ( x ),即x0是ϕ的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对∀c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c i e i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g ||= || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )||= || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定∃c∈(0, 1)使得∀y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,∀ε > 0,∃x1∈X0,s.t. || y–x1 || < c || y || + ε /4.∃x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.∃x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(∀n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,∀n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ∀x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但∀y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠∅,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则∀ε > 0,存在N∈ +,使得∀k > N,|| x k -x || < ε.此时,∀n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),∀z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但∀y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.∀n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:∃y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ∀x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,∀n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ∀x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]⊆Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,∀λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(∀δ> 0).而ωδ( f ) = 0(∀δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα⊆C[0, 1].∀f∈Lipα,∀x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) – f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,∀f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,∀x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) – f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) – f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此∀ε > 0,∃N∈ +,使得∀n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故∀δ > 0,ωδ( f n-f m) < εδα.即∀x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即∀δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.∀f, g∈lipα,∀λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.∀ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,∃∆ > 0,使得∀δ∈(0, ∆),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’ -x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’ ~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(⇒) 若x∈[ y ],则x~y.∀u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ⊆x + X0.反过来,∀u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ⊆ [ y ].所以[ y ] = x + X0.(⇐) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(∀[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(∀[ x ]∈X/X0 , ∀λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ∀[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域 上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,∀[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.∀[ x ]∈X/X0,∀λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.∀[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对∀y∈[ x ]有inf { || y -z || | z∈X0 } = || [ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射ϕ : X →X/X0为ϕ (x) = [ x ] = x + X0(∀x∈X ).求证ϕ是线性连续映射.证明:∀x, y∈X,∀α, β∈ ,ϕ( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = αϕ (x) + βϕ (y).|| ϕ (x) -ϕ (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = inf z∈[ x-y ] || z || ≤ || x-y ||.所以,ϕ是线性连续映射.(5) ∀[ x ]∈X/X0,求证∃y∈X,使得ϕ (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在∃y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有ϕ (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),∀k∈ +,∃y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中ϕ的连续性,在X/X0中,ϕ(s k) →ϕ(s) ( k→∞ ).而ϕ(s k) = ϕ( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ϕ( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ≅ ,其中记号“≅”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ⇔ f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.∀f, g∈X,∀α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而∀c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.∀f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,∀f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ⇔P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,∀ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设∀x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.4 设C是B空间X中的一个有界闭凸集,映射T i : C→X (i = 1, 2)适合(1) ∀x, y∈C ⇒T1x + T2y∈C;(2) T1是一个压缩映射,T2是一个紧映射.。

泛函分析习题及参考答案

泛函分析习题及参考答案

泛函分析习题及参考答案一、在2R 中定义如下三种距离:21212(,),(,)x x x y y y R ==∈,1(,)d x y =21122(,)max{,}d x y x y x y =−−,31122(,)d x y x y x y =−+−,试证:212d d ≤≤3132d d d ≤≤,2322d d d ≤≤,从而这三种距离诱导出的极限是等价的。

二、设),(y x d 为空间X 上的距离,试证:),(1),(),(~x y d x y d x y d +=也是X 上的距离。

证明:显然,0),(~≥y x d 并且y x y x d y x d =⇔=⇔=0),(0),(~。

再者,),(~),(1),(),(1),(),(~y x d y x d y x d x y d x y d x y d =+=+=;最后,由tt t +−=+1111的单调增加性及),(),(),(y z d z x d y x d +≤,可得 ),(),(1),(),(),(1),(),(),(1),(),(),(1),(),(~y z d z x d y z d y z d z x d z x d y z d z x d y z d z x d y x d y x d y x d +++++=+++≤+= ),(~),(~),(1),(),(1),(y z d z x d y z d y z d z x d z x d +=+++≤。

三、设1p ≥,1()()(,,,)i n n pn x l ξξ=∈ , ,2,1=n ,1(,,,)pi x l ξξ=∈ ,则n →∞时,1()1(,)0ppn n i i i d x x ξξ∞=⎛⎞=−→⎜⎟⎝⎠∑的充要条件为)1(n →∞时,()n i i ξξ→,1,2,i = ;)2(0ε∀>,存在0N >,使得()1pn p ii N ξε∞=+<∑对任何自然数n 成立。

泛函分析试题及答案

泛函分析试题及答案

泛函分析试题及答案一、选择题1. 在泛函分析中,以下哪个概念描述了一个函数对于输入变量的敏感程度?A. 泛函B. 导数C. 凸函数D. 可测函数答案:B. 导数2. 设X和Y是两个Banach空间,f:X→Y是一个线性算子。

以下哪个条件可以保证f是有界线性算子?A. f是可逆的B. f是连续的C. f是紧致的D. f是自共轭的答案:B. f是连续的3. 在泛函分析中,以下哪个概念描述了一个函数在每个点上的局部模式与全局模式之间的一致性?A. 可微性B. 凸性C. 全纯性D. 一致连续性答案:B. 凸性4. 设X和Y是两个赋范空间,f:X→Y是一个线性算子。

以下哪个条件可以保证f是有界线性算子?A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤C||x||B. 对于每个有界集A ⊂ X,f(A)是有界集C. f是连续的D. f是满射答案:A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤ C||x||二、填空题1. 在Hilbert空间中,内积运算满足线性性和_____________性。

答案:共轭对称性2. 设X是一个有界完备度量空间,那么X是一个____________空间。

答案:Banach空间3. 在泛函分析中,将一个函数的导数定义为其_____________。

答案:弱导数4. 设X是一个线性空间,D是X上的一个有界线性算子。

如果对于所有x和y都有⟨Dx, y⟩ = ⟨x, Dy⟩,那么D被称为______________。

答案:自伴算子三、解答题1. 请简要说明什么是范数,并给出一些范数的例子。

范数是定义在一个线性空间上的一种函数,用于衡量该空间中的向量的大小。

它满足以下三个性质:- 非负性:对于任意向量x,其范数必须大于等于0,即||x|| ≥ 0,并且当且仅当x为零向量时,范数等于0。

- 齐次性:对于任意向量x和任意实数α,有||αx|| = |α| ||x||,其中|α|表示α的绝对值。

泛函分析习题测验解答

泛函分析习题测验解答
可将 表示为如下形式:
,
再由平行四边形法则
;
.
因此
.
进而,令 可以得到
,
这里利用了 .因为 是任意的,故可将 换为
,即可得到
.
对照上述二式,即有
= .(**)
至于 时的情形,注意到从形式上看
,
利用上述已经证明了的等式(**)不难得到
= .
(iii)首先考虑 时的情形,对于 和任意实数 ,由已经证明的(**)式有
及 .
则 是 中的列紧集的充分必要条件是
(i) 在 中有界;
(ii) 是 中的有界集;
(iii) 是 中等度连续的集合.
[充分性]设 满足条件(i), (ii)和(iii).
根据 中范数的定义:对于 ,
,
容易看出,

因此只需证明 和 分别是 中的列紧集即可, 根据Arzela-Ascoli定理, 这也只需证明 和 分别在 中有界且等度连续即可. 事实上, 在 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)).还需证明 在 中的有界性和等度连续性. 记 在 中的一个界为 , 作为 中的有界集, 一个界纪为 .对于任意的 , 利用中值定理, 有

则(1) 是 的连续函数.
(2) 若 是 中的点列, 使 , 是否为Cauchy列? 为什么?
证:(1)任意取定 ,对于任意的 根据三角不等式,有
, .
对两端关于 取下确界,可以得到
, .

,
.
由此可得
.
由此容易证明 是 上的连续函数,实际上, 还满足Lipschitz常数等于1的Lipschitz条件.
.
又已经知道与
仅相差一个常数因子的三角函数系

泛函分析练习题

泛函分析练习题

列集与列紧集
例题1. 证明⎭
⎬⎫⎩⎨⎧= ,2sin 1,2cos 1,sin 1,cos 1,21t t t t A πππππ是紧距离空间。

第八章 有界线性算子和连续线性泛函
第九章 例1: , , 则 。

第十章 例2:设 是赋范线性空间, 则 上的任意线性泛函皆连续。

第十一章 内积空间和希尔伯特空间
题1: 设 是内积空间 的非空子集, 证明: , 。

题2: 设 为Hilbert 空间 的线性子空间, 若 在 上的投影 皆存在。

证明: 。

题3: 设 是Hilbert 空间 的非空子空间。

证明: 是 中包含 的最小闭子空间。

题4: 设 是希尔伯特空间 的闭子空间, , 证明: 。

题5: 设 是 内所有实值连续函数全体所构成的集合, 为 内奇连续函数全体, 是 内偶连续函数全体。

证明: 。

题6:设 是Hilbert 空间, 是其中的规范正交系, ,
证明: 函数 当且仅当 时达到极小值。

题7: 设是内积空间的规范直交系, 证明: 。

题8: 设是Hilbert空间的规范直交系, 证明: 完全成立
题9: 设是Hilbert空间的完全规范直交系, 又设, 是中的规范直交系, 且满足, 证明: 。

题10: , 证明: 。

题11: 设, 证明: 。

题12: 在, 将用格莱姆-施密特方法正交化为规范直交系。

泛函分析答案 第四章习题第一部分(1-18)

泛函分析答案  第四章习题第一部分(1-18)

第四章习题第一部分(1-18)1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。

而∀x , y , z ∈ 1,ρ2(x , y ) =||||2||||||||||y z z x y z z x y z z x y x -⋅-+-+-≤-+-≤-||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离.2. 设(X , ρ)是距离空间,令ρ1(x , y ) =ny x ),(ρ,∀x , y ∈X .证明(X , ρ1)也是距离空间.[证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上∀x , y , z ∈X ,nny z z x y x y x ),(),(),(),(1ρρρρ+≤=nnnn ny z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , ρ)是距离空间,证明| ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),∀x , y , z ∈X ;| ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),∀x , y , z , w ∈X .[证明] ∀x , y , z , w ∈X ,由三角不等式有- ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式:| ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ).4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,∀i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A ⊆ X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ∅,则int(A ) = ∅,结论显然成立. 若A ≠ ∅,则∀x ∈ A ,∃r > 0使得S (x , r ) ⊆ A .对∀y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ⊆ S (x , r ) ⊆ A ; 所以y ∈ int(A ).故S (x , r ) ⊆ int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A ⊆ X ,A ≠ ∅.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.若A 是开集,∀x ∈A ,存在r (x ) > 0,使得S (x , r (x )) ⊆ A . 显然A = ⋂x ∈A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,∀x ∈X ,r > 0. [例] 设X = {a , b },定义d : X ⨯ X → 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1. 则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ⊆,.证明:B A B A ⋃=⋃,B A B A ⋂⊆⋂. [证明] 由于A A ⊆,B B ⊆,故B A B A ⋃⊆⋃.由于A 和B 都是闭集,所以B A ⋃也是闭集,所以B A B A ⋃⊆⋃.另一方面,由B A B A ⋃⊆,,得B A B A ⋃⊆,,所以B A B A ⋃⊆⋃; 这样就证明了第一个等式.由B A B A ,⊆⋂得B A B A ,⊆⋂,所以B A B A ⋂⊆⋂。

《 泛函分析》期末试题

《 泛函分析》期末试题
6 (20 分) 设1 p , xn (xni ) l p (n 1), 并且范数有界, 则当 i 1, xni xi (n ) 时, 存在{ xn }的凸组合的序列{ yn }依范数收敛于 x (xi ) .
存在 xn X , xn 0 使得 Txn . 3 (15 分) 设 X 是 Banach 空间, An , A B( X ), 则 An x Ax, x X 当且仅当{ An }
有界并且存在子集合 G 使得 spanG X ,在 G 上 An x Ax. 4 (15 分) 对于内积空间 H 中的规范正交集{e1, , en}和 H 中的 x ,证明函数
n
f (1, , n ) x iei 当且仅当 i (x, ei ) ( i 1, , n) 时达到 i1
极小值。

5 (15 分) 设 H 是 Hilbet 空间,{en , n 1}是其中的规范正交系。证明级数 nen 按 n1 H 的范数收敛等价于弱收敛。
《 泛函分析》期末试题
1(20 分) 证明非ቤተ መጻሕፍቲ ባይዱ性积分方程
b
x(t) a K (t, s, x(s))ds y(t), t [a,b]
在 足够小时有唯一连续解。这里 y(t) C[a,b], K : [a,b][a,b] R R
连续并且满足
K(t, s,1) K(t, s, 2 ) L1 2 , t, s [a,b]. 2 (15 分) 设 X ,Y 是线性赋范空间,T : X Y 是线性算子, 则T 不是有界的当且仅当

泛函分析习题测验解答

泛函分析习题测验解答

泛函分析习题测验解答第一章练习题1.记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-?∈?,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么?答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =L ,定义,01,():1,1 2.n n x x f x x ?≤<=?≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈?→=?∈?因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+但()([0,2])g x C ?.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<?.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ?, 只要mE δ<, 就有|()|3Ef x dx ε<.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N m E ∞==I ,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NNf x x a b E f x E ∈?=?% 显然对于[,]x a b ∈恒有|()|f x N ≤%. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ?, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡%,x F ∈.则()g x 限制在[,]a b 即为所求, 因为: [,](,)|()()|a b f g f x g x dx ρ=-?([,]\)|()()|a b F Ff xg x dx ?=-?[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-?%[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx≤++-+-??%%[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+?\|()|0NNF E F E f x dx dx ?++?333εεεε<++=.(ii) 1 (([,]),)L a b ρ是完备的空间.2.设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2)若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+.即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =L , 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质.3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈?==?∈?显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是?.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b E mE E a b x a b E mE a a E a b x a b E mE E a b xa b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ?∈=?∈=?∈=?∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ?>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<="" l="" p="">且1([(0,)\(0,)])0i i m E S R S R +?>.对于每一个12(,,,,)i λλλλ=L L ,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈?,1,2,i =L . 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N表示具有上述性质的λ的全体. 则()A L E ∞.既然对于不同的,λμ∈{0,1}N, (不妨设1(,,,)i λλλ=L L , 1(,,,)i μμμ=L L 且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +?, 容易看出A 的势与{0,1}N的势都是连续统的势?.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++?∈=?∈?=?∈?=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤?=?<≤?显然[,]K L a b ∞, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=- 1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==L , 且11(,)3kk S f K ∞=?U . 但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4.设([,])kC a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ?是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =L , ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x ?→??→,,0,1,,n i n →∞=L , 其中“??→??→”表示是一致收敛. 如果我们记0()()f x f x =利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''===L (*)例如, 因为1()()n f x f x ?→??→', 故 1()()xxn aaf t dt f t dt ??→??→'?, 即1()()()xn n af x f a f t dt ??→??→-?, 又0()()n f x f x ?→??→及0()()nf a f a ??→??→, 故 001()()()xaf x f a f t dt -=?.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间.(2)证略.7.证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ?是完备的. 记E 中的一组基为:12,,,n v v v L .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =L .(*)首先定义一个映射:nf ?→?为: 对于任意的12(,,,)n x x x L n ∈?,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v L L .则对于任意的,x y E ∈(1122n n y y y y =+++v v v L )有1122||||(,,,)n n x y f x y x y x y -=---L 111||||||||||||n n n x y x y ≤-?++-?v v L2222111()()||||||||n n n x y x y ≤-++-?++v v L L .由此容易知道f 是n R 上的连续函数. 记1B ?是nR 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =?==∑L . 则对于任意的11(,,)n x x B ∈?L , 有1(,,)0n f x x >L .(事实上, 若有1(,,)0n f x x =L 则111(,,)||||0n n n f x x x x =++=v v L L ,因此110n n x x ++=v v L , 但12,,,n v v v L 线性无关, 故必有120n x x x ====L , 此与11(,,)n x x B ∈?L 相矛盾. )注意到1B ?是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 不失一般性, 可设0x ≠因此, 12,,,n x x x L 不全为零, 注意到111222111,,,n n n n k k k k k k x x x y B x x x ===?? ?=∈? ? ??∑∑∑L , 故111222211111222111()1,,,,nn nnnkkkk k k n n n n k k k k k k x x x f y xxxx x x f K x x x ======+++=?? ?=≥ ? ??∑∑∑∑∑∑v v v L L或2112211||||nn n kk x x x x xK==+++≥∑v v v L .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v L ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =L , 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =L ).记(0)()(0)(0)1122k n n xx x x =+++v v v L , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ?是完备的.9.设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系:为0x y x y X ?-∈:. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ?→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =L , 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ?且||||0k y x →-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y取遍0X 中的所。

泛函分析部分课后习题答案

泛函分析部分课后习题答案
n
T : R n E ,对于 1 , 2 n R n , 。
下证 T 为同构映射。 显 然 T 为 单 射 , 容 易 证 T 也 为 满 射 。 事 实 上 , 对 于 x E , 令
n
ci x, ei R, i 1, 2, n ,必有 T c1 , c2 cn ci ei x 。
f x 为
n
Cauchy 列 , 则 f n x , f n1 x 0 n , 由
f ni x f ni1 x f n , f n 1 0 n 知 f ni x 也为 Cauchy 列。由 Cauchy
由于时间和能力有限,只完成了部分习题,仅供参考,有错误的请指出,大家共同进步!——陈建军
习题 1 1、解: C a,b 按 是非完备的。
n1
令函数列 Pn x
i 0
b

xi ,显然 Pn C a,b ,且有 2i
b
Pn , Pn1 Pn1 Pn dx
T x1 , x2 , xn 0, x1 , x2 , xn 1 , S x1 , x2 , xn 0, x2 , xn 。易证 T,S 为线性算
子。取点 1,0, 0 R n ,显然有 TS 1, 0, 0 T 0,0, 0 0, 0, 0 ,
n k 1
fi x f ek ,显然 f X 且 fi i 1 为 X 的基。令 T : X X ,使得
f f e1 , f e2 , f en ,易证 T 为双射。命题得证。

泛函分析答案泛函分析解答(20200916132101)

泛函分析答案泛函分析解答(20200916132101)

第五章习题第一部分01-151. M为线性空间X的子集,证明span( M )是包含M的最小线性子空间. [证明]显然span( M)是X的线性子空间.设N是X的线性子空间,且M N.则由span( M )的定义,可直接验证span( M ) N.所以span( M )是包含M的最小线性子空间.2. 设B为线性空间X的子集,证明nconv( B) = { a i x i| a i 0,i 1n[证明]设 A = { a i Xj a i 0,i 1na i= 1, x i B, n为自然数}.i 1na i = 1, x i B, n为自然数}.首先容易i 1看出A为包含B的凸集,设F也是包含B的凸集,则显然有A F,故A为包含B的最小凸集.3. 证明[a, b]上的多项式全体P[a, b]是无限维线性空间,而E = {1, t, t ,…,t n,…} 是它的一个基底.[证明]首先可以直接证明P[a, b]按通常的函数加法和数乘构成线性空间,而P [a, b]中的任一个元素皆可由E中有限个元素的线性组合表示.设C0, C1, C2, ..., C m是m+ 1 个实数,其中C m 0,m 1 .m若C n t n= 0,由代数学基本定理知C o = C1 = C2 = ... = C m = 0,n 0所以E中任意有限个元素线性无关,故P[a, b]是无限维线性空间,而E是它的一个基底。

2 24. 在中对任意的x = ( X1, X2),定义|| x || 1 = | X1 | + | X2 |,|| x|| 2 = ( X12 + X22)1/2,|| x || = max{ | x 1 |, | X2 | }.证明它们都是2中的范数,并画出各自单位球的图形.[证明]证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X为线性赋范空间,L为它的线性子空间。

证明cl( L)也是X的线性子空间. [证明] x, y cl( L), a ,存在L中的序列{ X n}, { y n}使得X nx ,y n y.从而x + y = lim X n + lim y = lim ( X n + y n) cl( L),a x = a lim X n = lim(a X n ) cl( L).所以cl( L)是X的线性子空间.[注]这里cl( L)表示子集L的闭包.6. 设X为完备的线性赋范空间,M为它的闭线性子空间,X0 M.证明:L = { a X0 + y | y Ma }也是X的闭线性子空间.[证明]若a, b ,y, z M 使得ax°+ y = bx°+ z,则(a b) X0 = z y M,得到a = b,y = z;即L中元素的表示是唯一的.若L中的序列{ a n X0 + y n }收敛于X中某点z,则序列{ a n X0 + y n }为有界序列.由于M闭,x o M,故存在r > 0,使得|| x o y || r, y M.则当a n 0时有| a n I = | a n I • r • (1/ r) | a n | • || x o + y n/a n || • (1/ r ) = ||a n x o + y n || • (1/ r),所以数列{ a n }有界,故存在{ a n }的子列{ a n(k)}使得a n(k) a .这时y n( q = ( a n x o + y n) a. X o z a x o M.所以z L,所以L 闭.[注]在此题的证明过程中,并未用到“ X为完备的”这一条件.7. 证明:a.在2中,|| ?|| 1, || ?|| 2与|| ?|| 都是等价范数;b. || ?|| i与|| ?|| 2是等价范数的充要条件是:X中任意序列在两个范数下有相同的收敛性. [证明]a.显然|| x || || x || 2 || x || 1 2|| x || ,所以|| ?|| 1,|| ?|| 2与|| ?||都是等价范数.b.必要性是显然的,下面证明充分性.首先inf {|| x || 21|| x || 1 = 1} O .若inf {|| x || 2| || x || 1 = 1} = 0,则存在X中序列{ X n},使得|| x n || 1 = 1, || X n || 20 .而任意序列在两个范数下有相同的收敛性,从而|| x n || 1 0 .这矛盾说明inf {|| x || 21 || x || 1 = 1} = a > 0 .对x X,当x 0 时,|| ( x/|| x || 1) || 1 = 1,所以|| ( x川x || 1) || 2a.故x X有 a || x || 1 || x || 2.类似地可以证明存在b > 0使得b || x || 2 || x || 1, x X.所以两个范数等价.8. 证明:Banach空间m不是可分的.[证明见教科书p187,例3.5]9. 证明:c是可分的Banach空间.[证明见第4章习题16]10. 设X, Y为线性赋范空间,T B(X, Y).证明T的零空间N(T) = { x X | Tx =0 }是X的闭线性子空间.[证明]显然N(T) = { x X | Tx = 0 }是X的线性子空间.对x N(T)c, Tx 0,由于T是连续的,存在x的邻域U使得u U有Tu 0,从而U NT/ .故N(T)c是开集,N[T)是X的闭子空间.11.设无穷矩阵(a i j ) , ( i , j = =1,2,...) 满足supij|a0 |1,定义算子T :m m如下:y = Tx, ijaij j,其中x =(1i ), y = :( i ) m.证明:T是有界线性算子,并且||T || sup |a j |。

泛函分析作业题答案(改)

泛函分析作业题答案(改)

泛函分析作业题答案(改)P46:第⼀章习题:1.验证(),()d m 满⾜距离定义。

解:设{}i x ξ=,{}i y η=属于X ,α是数,()1,sup .j j j d x y ξη≥=-(1)对j ?,有0j j ξη-≥,所以1sup j j j ξη≥-,(),0d x y ≥,且1sup 00j j j j j j j ξηξηξη≥-=?-=?=,即(),0d x y =当且仅当.x y =(2) ()()11,sup sup ,j j j j j j d x y d y x ξηηξ≥≥=-=-=;(3)设{}i z ζ=()()1111,sup sup ()()sup sup ,(,)j j j j j j j j j j j j j j d x z d x y d y z ξζηξξζηξξζ≥≥≥≥=-≤-+-≤-+-=+综上(1),(2),(3),(),d 满⾜距离定义。

3.试证明:在空间()s 中的收敛等价于坐标收敛。

证:设{}()(),1,2,n n j x s n ξ=∈=,{}()(0)0j x s ξ=∈,()?若0n x x →,则必有()(0)lim ,1,2,n j j n j ξξ→∞==,否则,j N +∈,00ε>,与正整数列的⼦序列{}1k k n ∞=,使()因为()1tf t t=+是单调递增,所以()()(0)00()(0)11,,1,2,2211k k k n j j n j j n j j d x x k ξξεεξξ-≥?≥?=++-,这与()0,0k n d x x →⽭盾,故()s 中的收敛可推出坐标收敛。

()?若()(0)lim ,1,2,n j j n j ξξ→∞==,则对j ?,0ε?>,0N N +∈,0n N ?>,1,2,,2,,则存在故命题得证。

4.证明:空间()c 是可分的。

证:令0s 表⽰所有形如12{,,,,,,}m m m r r r r r 的元素的集合,m 为任意正整数,(1,2,)j r j m =是任意的有理数,所以0s 可数。

泛函分析习题参考答案

泛函分析习题参考答案

泛函分析习题参考答案一、设),(y x d 为空间X 上的距离,试证:),(1),(),(~x y d x y d x y d +=也是X 上的距离。

证明:显然,0),(~≥y x d 并且y x y x d y x d =⇔=⇔=0),(0),(~。

再者,),(~),(1),(),(1),(),(~y x d y x d y x d x y d x y d x y d =+=+=;最后,由tt t +-=+1111的单调增加性及),(),(),(y z d z x d y x d +≤,可得 ),(),(1),(),(),(1),(),(),(1),(),(),(1),(),(~y z d z x d y z d y z d z x d z x d y z d z x d y z d z x d y x d y x d y x d +++++=+++≤+=),(~),(~),(1),(),(1),(y z d z x d y z d y z d z x d z x d +=+++≤。

二、设1p ≥,1()()(,,,)i n n p n x l ξξ=∈, ,2,1=n ,1(,,,)pi x l ξξ=∈,则n →∞时,1()1(,)0pp n n i i i d x x ξξ∞=⎛⎫=-→ ⎪⎝⎭∑的充要条件为)1(n →∞时,()n i i ξξ→,1,2,i =;)2(0ε∀>,存在0N >,使得()1pn i i N ξε∞=+<∑对任何自然数n 成立。

必要性证明:由1()1(,)0ppn n i i i d x x ξξ∞=⎛⎫=-→ ⎪⎝⎭∑可知,()n i i ξξ→,1,2,i =。

由1(,,,)pi x lξξ=∈可知,ε∀>,存在10N >,使得11(2ppi i N εξ∞=+<∑,并且1n N >时,()1(2p n p i i i εξξ∞=-<∑。

泛函分析试题及答案

泛函分析试题及答案

泛函分析试题及答案### 泛函分析试题及答案#### 一、选择题(每题5分,共20分)1. 泛函分析中,下列哪个概念不是线性空间的概念?A. 线性组合B. 线性映射C. 线性泛函D. 非线性变换答案:D2. 在Banach空间中,以下哪个条件不是完备性的必要条件?A. 空间中的每个Cauchy序列都收敛于空间内B. 空间是完备的C. 空间中存在一个完备的度量D. 空间中的每个有界序列都有一个收敛的子序列答案:C3. 泛函分析中,Hilbert空间的完备性是相对于哪种范数?A. 欧几里得范数B. 赋范范数C. 内积诱导的范数D. 以上都是答案:C4. 下列哪个定理不是泛函分析中的基本定理?A. Hahn-Banach定理B. Riesz表示定理C. 闭图定理D. 微积分基本定理答案:D#### 二、填空题(每题5分,共20分)1. 线性泛函在定义域上的连续性等价于其在定义域的原点处的连续性,这是基于泛函分析中的________定理。

答案:Hahn-Banach2. 在Hilbert空间中,任意两个向量的内积满足平行四边形法则,即对于任意向量\( u \)和\( v \),有\( \|u+v\|^2 + \|u-v\|^2 =2(\|u\|^2 + \|v\|^2) \),这是基于________定理。

答案:平行四边形3. 线性算子的谱半径公式为\( r(T) = \lim_{n \to \infty}\|T^n\|^{1/n} \),其中\( T \)是Banach空间上的有界线性算子,这是基于________定理。

答案:Gelfand公式4. 在泛函分析中,紧算子的定义是:如果对于空间中的每一个有界序列,其在算子下的像序列都有一个收敛的子序列,则称该算子为紧算子,这是基于________定理。

答案:Arzelà-Ascoli#### 三、简答题(每题15分,共30分)1. 简述Riesz表示定理的内容及其在泛函分析中的意义。

刘炳初泛函分析部分习题解答

刘炳初泛函分析部分习题解答
d xn , xm .
(1)
由 rn 0 , n 知, 对上述 0, N 2 , 当 n N 2 时有 rn . 而当 m n 时,
som , rm son , rn ,从而 xm son , rn , 有
d xn , xm rn .
y A
X 上的连续函数.
证 方法一 证 f x 是 X 上的连续函数 . xn X , x0 X 且 xn x0 ,
n . 只须证明 f xn f x0 , n . 一方面
f xn inf d xn , y
yA
inf d x n ,x 0 d x 0 ,y
部分习题解答
习题一(P34) (6)证明在距离空间中,如果一个半径为 7 的开球包含在一个半径为 3 的开球 中,则两个球重合. 证 设 s0,7 s0,3 X , d ,下证: s0,7 s0,3 . 假设 s0,7 s0,3 , 则至少存在一点 x s0,3 . 但 x s 0,7 ,故有 d x,0 7 . 由三角不等式
F1 x inf d x ,y , F2 x inf d x, y ,
y F1
yF2
f x
F1 x , F1 x F2 x
x F F
1 2
由 12 知 F1 x , F2 x 连续,且 F1 F2 . 所以
2
则 A D 为 D 的稠密子集,而且 A D 在 D 中可列. 故 D 可分. 反之若 X , d 不可分,子空间也有可能可分. 例如 l 表示有界实数列全体, l 不 可分, 设 xn 为 l 中的 Cauchy 列. 由于 l 完备, 故 x n x0 , n , 其中 x0 l . 记A xn ,B x n x 0 . 易见 B X , A 可列且 A 在 B 中稠. 故 B 可分. (12)设 X , d 是距离空间, A X ,令 f x inf f x ,y , x X . 证明 f x 是

泛函分析答案泛函分析解答(张恭庆)

泛函分析答案泛函分析解答(张恭庆)

泛函分析答案泛函分析解答(张恭庆)第五章习题第一部分01-151. M 为线性空间X 的子集,证明span( M )是包含M 的最小线性子空间.[证明] 显然span( M )是X 的线性子空间.设N 是X 的线性子空间,且M ? N .则由span( M )的定义,可直接验证span( M ) ? N .所以span( M )是包含M 的最小线性子空间.2. 设B 为线性空间X 的子集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为自然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为自然数}.首先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ? F ,故A 为包含B 的最小凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是无限维线性空间,而E = {1, t , t 2, ..., t n , ...}是它的一个基底.[证明] 首先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间,而P [a , b ]中的任一个元素皆可由E 中有限个元素的线性组合表示.设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1.若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性无关,故P [a , b ]是无限维线性空间,而E 是它的一个基底。

4. 在 2中对任意的x = (x 1, x 2)∈ 2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是 2中的范数,并画出各自单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性子空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性与非线性泛函分析◇
- 1 -
习题1
1.(张燕石淼)设在全体实数R 上,定义两个二元映射2(,)()x y x y ρ=-和
(2) (,)d x y ,证明(1)(,)ρR 不是度量空间;(2)(,)d R 是度量空间.
2.(范彦勤孙文静)设X ρ(,)为度量空间,:f ∞→∞[0,+][0,+]为严格单调函数,且满足,x y f ∀∈∞[0,+],(0)=0,()()()f x y f x f y +≤+,令(,)((,))d x y f x y ρ=,证明X d (,)为度量空间.
3. (武亚静张丹)设X d (,)为度量空间,证明,,,x y z w X ∀∈有
(,)(,)(,)(,)d x z d y w d x y d z w -≤+.
4.(崔伶俐杨冰)设全体实数列组成的集合为{}123(,,,....,...)|,1,2,...n i X x x x x x R i =∈=,对于123(,,,....,...)n x x x x x =及12(,,...,...)n y y y y =∈X ,定义11(,)12k k
k
k k k
x y d x y x y ∞
=-=+-∑
.证明 X d (,)为度量空间.
5.设()X n 为0和1组成的n 维有序数组,例如(3){000,001,010,011,100,101,110,111}X =,对于任意的,()x y X n ∈,定义(,)d x y 为x 和y 中取值不同的个数,例如在(3)X 中,(110,111)1d =,(010,010)0d =(010,101)3d =.证明((),)X n d 为度量空间.
6.(苏艳丁亚男)设X d (,)为度量空间, A X ⊂且A ≠φ.证明A 是开集当且仅当A 为开球的并.
7.(张振山赵扬扬)设X d (,)和Y ρ(,)是两个度量空间.那么映射:f X Y →是连续映射当且仅当Y 的任意闭子集F 的原象1()f F -是X 中的闭集.
8.(王林何超)设{}n x 与{}n y 是度量空间X d (,)的两个Cauchy 列.证明(),n n n a d x y =是收敛列.
9.(李敬华孙良帅)设X d (,)和Y ρ(,)是两个度量空间,在X Y ⨯上定义度量
112212121
((,),(,)){[(,)][(,)]}p p p x y x y d x x d y y γ=+,其中1122(,),(,)x y x y X Y ∈⨯,1p ≥为正数.证明
X Y ⨯是完备空间当且仅当X d (,)和Y ρ(,)均是完备空间.
10.(李秀峰钱慧敏)设X d (,)是完备的度量空间,{}11n G x G ∈是X 中的一列稠密的开子集,
证明
1
n n G ∞
=也是X 中的稠密子集.
11.(王胜训闫小艳)设n A ⊂R ,证明A 是列紧集当且仅当A 是有界集. 12 (冯岩盛谢星星)设X d (,)为度量空间,A X ⊆且A φ≠.证明 (1){|,(,)}x x X d x A ε∈<是X 的开集.
(2){|,(,)}x x X d x A ε∈≤是X 的闭集,其中0ε>.
第一章 习题
- 2 - 13.(李小伟周新慧)设[,]B a b 为定义在[],a b 上的所有有界函数,若(),()[,]x t y t B a b ∈,定义
[]
()(),(,)sup t a b d x y x t y t ∞∈=-,求证d ∞为[,]B a b 的度量及[,]C a b 为[,]B a b 的闭集.
14.(陈明徕孙潇洋)设(),x d 为度量空间,A X ⊂且A φ≠.若A 为紧集,则存在00,x y A ∈使得00()(,)diam A d x y =.其中,()
sup{(,)}x y A
diam A d x y ∈.
15.(张秀芳张银利)设(,)X d 为度(,)X d 量空间,令(,)
(,)1(,)
d x y x y d x y ρ=+,证明(,)X d 为完备
度量空间当且仅当(,)X ρ为完备度量空间.
16.(常铮岳晓鹏)设,,x y z ∈+Z ,定义11
(,)d x y x y
=-,证明d 为+Z 上的度量,(,)d +Z 不为完备度量空间,+Z 表示正整数集.
17.(王文生李科莹)设(,)X d 为度量空间,A X ⊂且A φ≠,定义(,)inf{(,)}y A
d x A d x y ∈.证明
,x y X ∀∈有|(,)(,)|(,)d x A d y A d x y -≤.
18.设(,)X d 为完备的度量空间,点列{}n x X ⊂,如果0ε∀>,存在X 的一个基本列{}n y ,使得(,)n n d x y ε<.证明{}n x 收敛.
19.设(,)X d 为为紧的度量空间,{}n A 为X 的一列非空闭子集,且
1231n n A A A A A +⊃⊃⊃
⊃⊃⊃
证明
1
n n A φ∞
=≠.
20.设(,)X d 为完备的度量空间,映射 设(,)X d ,(,)Y ρ为两个度量空间,:f X Y →为单射,证明f 是连续映射的充要条件是f 把X 中的任一紧集映成Y 中的紧集.
21.设,X Y 均为度量空间,:f X Y →为连续映射,若A 是X 的稠密子集,则()f A 是()f X 的稠密子集.
22.设12,F F 都是度量空间(,)X d 中的紧集,则必存在0102,x F y F ∈∈,使得00(,)d x y 12(,)d F F =,其中1212(,)inf{(,),}d F F d x y x F y F =∈∈称为1F 与2F 的距离.
23.设12,F F 是度量空间(,)X d 中的两个子集,其中1F 是紧集,2F 是闭集,若12(,)0d F F =则必存在01
2x F F ∈.
24.设(,)X d 为完备的度量空间,映射:A X X →满足:,x y X ∀∈且x y ≠有
(,)(,)d Ax Ay d x y <
若知A 有不动点,那么此不动点是惟一的.
25.设M 是(,)n d R 中的有界闭子集,,x y M ∀∈且x y ≠,映射:A M M →满足(,)(,)d Ax Ay d x y <,证明A 在M 中存在惟一的不动点.
26.证明有界数列空间l ∞是完备的度量空间.(距离的定义:(,)sup ||i i i
d x y x y =-)
线性与非线性泛函分析◇
- 3 -
27.证明在n 维欧氏空间n R 中点列收敛等价于按坐标收敛.即如果
()()
()
12(,,
,)i i i i n x x x x =,其中(1,2,
,,)i n =,及(0)(0)
(0)
012
(,,,)n x x x x =,那么0()
i x x i →→∞(1
2
()(0)2
01
(,)||0()n
i i j j j d x x x x i =⎛⎫=-→→∞ ⎪⎝

∑等价于()(0)0()(1,2,
,)i j j x x i j n -→→∞=.。

相关文档
最新文档