2018-2019学年浙江省温州市八年级(下)期末数学试卷

合集下载

2018-2019学年浙教版浙江省宁波市鄞州区八年级第二学期期中数学试卷 含解析

2018-2019学年浙教版浙江省宁波市鄞州区八年级第二学期期中数学试卷 含解析

2018-2019学年八年级第二学期期中数学试卷一、选择题1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.3.如图,在平行四边形ABCD中,AE平分∠DAB,∠AED=26°,则∠C的度数为()A.26°B.42°C.52°D.56°4.若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k≤1 C.k>﹣1 D.k>15.用配方法解下列方程时,配方错误的是()A.2x2﹣7x﹣4=0化为(x﹣)2=B.2t2﹣4t+2=0化为(t﹣1)2=0C.4y2+4y﹣1=0化为(y+)2=D.x2﹣x﹣4=0化为(x﹣)2=6.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°7.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数8.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°9.如图,矩形ABCD中,DE平分∠ADC交BC于点E,将一块三角板的直角顶点放在E点处,并使它的一条直角边过点A,另一条直角边交CD于M点.若点M为CD中点,BC=6,则BE的长为()A.2 B.C.D.310.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.D.二、填空题(每小题3分,共24分)11.若二次根式有意义,则x的取值范围是.12.如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为.13.m是方程x2+x﹣1=0的根,则式子m2+m+2018的值为.14.若一组数据1,2,x,4的众数是1,则这组数据的方差为.15.已知+=x,则x的值是.16.如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,且DE=CE,若AB=,则DE=.17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B、C、G在同一直线上,M是线段AE的中点,连接MF,则MF的长为.三、解答题(共46分)19.计算下列各式:(1)3×﹣÷(2)20.解方程:(1)x2﹣4x﹣3=0;(2)(x﹣3)2=(2x﹣1)(x+3).21.为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?22.如图,在4×6的方格纸中,ABC三点都在格点上,连结AB,按要求画一个以A,B,C 为其中三个顶点的格点四边形.(1)以AB为边作一个对角线垂直且相等的四边形,在图甲中画出图形.(2)以AB为对角线作一个有一组邻边垂直且相等的四边形,在图乙中画出图形.23.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?24.如图,在正方形ABCD中,动点P在射线CB上(与B、C不重合),连结AP,过D作DF∥AP交直线BC于点F,过F作FE⊥直线BD于点E,连结AE、PE.(1)如图1,当点P在线段CB上时①求证:△ABP≌△DCF;②点P在运动过程中,探究:△AEP的形状是否发生变化,若不变,请判断△AEP的形状,并说明理由;(2)如图2,当点P在CB的延长线上时①(1)中的结论②是否成立?不必说明理由;②若正方形ABCD的边长为1,设BP=x,当x为何值时,DF平分∠BDC?参考答案一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式的定义判断即可.解:A、=5,不合题意;B、为最简二次根式,符合题意;C、=,不合题意;D、=2,不合题意,故选:B.2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:B.3.如图,在平行四边形ABCD中,AE平分∠DAB,∠AED=26°,则∠C的度数为()A.26°B.42°C.52°D.56°【分析】由平行四边形的性质可求得∠EAB=∠AED,再结合角平分线的定义可求得∠DAB,再利用平行四边形的性质可求得答案.解:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠DEA=∠BAE=26°,∵AE平分∠DAB,∴∠DAB=2∠BAE=52°,∵四边形ABCD为平行四边形,∴∠C=∠BAD=52°,故选:C.4.若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k≤1 C.k>﹣1 D.k>1【分析】当△>0时,方程有两个不相等的两个实数根,据此求出k的取值范围即可.解:∵关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴(﹣2)2﹣4×1×k>0,∴4﹣4k>0,解得k<1,∴k的取值范围是:k<1.故选:A.5.用配方法解下列方程时,配方错误的是()A.2x2﹣7x﹣4=0化为(x﹣)2=B.2t2﹣4t+2=0化为(t﹣1)2=0C.4y2+4y﹣1=0化为(y+)2=D.x2﹣x﹣4=0化为(x﹣)2=【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方即可得到结论.解:A、2x2﹣7x﹣4=0化为(x﹣)2=,故本选项错误;B、2t2﹣4t+2=0化为(t﹣1)2=0,故本选项错误;C、4y2+4y﹣1=0化为(y+)2=,故本选项错误;D、x2﹣x﹣4=0化为(x﹣)2=,故本选项正确;故选:D.6.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°【分析】由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.7.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数【分析】根据中位数的意义分析.解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.8.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.9.如图,矩形ABCD中,DE平分∠ADC交BC于点E,将一块三角板的直角顶点放在E点处,并使它的一条直角边过点A,另一条直角边交CD于M点.若点M为CD中点,BC=6,则BE的长为()A.2 B.C.D.3【分析】作出△CDE是等腰直角三角形,得出CE=CD=AB=2CM,作出∠BAE=∠CEM,由ASA证明△ABE≌△ECM,得出BE=CM=CD=CE,由BC=6,即可得出BE的长.解:∵四边形ABCD是矩形,∴∠B=∠C=∠ADC=90°,AB=CD,∴∠BAE+∠AEB=90°,∵DE平分∠ADC,∴∠CDE=45°,∴△CDE是等腰直角三角形,∴CE=CD=AB,∵M为CD中点,∴AB=CD=2CM,∵∠AEM=90°,∴∠AEB+∠CEM=90°,∴∠BAE=∠CEM,在△ABE和△ECM中,,∴△ABE≌△ECM(ASA),∴BE=CM=CD=CE,∵BC=6,∴BE+2BE=6,∴BE=2;故选:A.10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.D.【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,利用整体代入的思想解决问题,进而可求出该矩形的面积.解:设小正方形的边长为x,∵a=3,b=4,∴AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24,故选:B.二、填空题(每小题3分,共24分)11.若二次根式有意义,则x的取值范围是x≥﹣1 .【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.解:由题意得:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.12.如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为1800°.【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数,然后利用多边形的内角和公式计算内角和即可.解:∵一个多边形的每个外角都是30°,∴n=360°÷30°=12,则内角和为:(12﹣2)•180°=1800°.故答案为:1800°.13.m是方程x2+x﹣1=0的根,则式子m2+m+2018的值为2019 .【分析】利用一元二次方程解的定义得到m2+m=1,然后利用整体代入的方法计算m2+m+2018的值.解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,即m2+m=1,∴m2+m+2018=1+2018=2019.故答案为2019.14.若一组数据1,2,x,4的众数是1,则这组数据的方差为 1.5 .【分析】根据众数的定义先求出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.解:∵数据1,2,x,4的众数是1,∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1.5;故答案为:1.5.15.已知+=x,则x的值是7 .【分析】首先得出x的取值范围,进而化简求出即可.解:∵有意义,∴x≥3,∴+=x可化简为:x﹣2+=x,解得:x=7.故答案为:7.16.如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,且DE=CE,若AB=,则DE= 1 .【分析】根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC,从而可求∠EBC=30°,在Rt△BCE中可求EC值,由DE=EC可求DE的长.解:∵四边形ABCD是菱形,∴CD=BC=AB=,∴∠EDC=∠EBC.∵DE=CE,∴∠EDC=∠ECD.∴∠BEC=2∠EDC=2∠EBC,在Rt△BCE中,∠EBC+∠BEC=90°,∴∠EBC=30°.∴BC=EC,∴EC==1.∴DE=EC=1;故答案为:1.17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE 中求AE.解:设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=.故答案为:.18.如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B、C、G在同一直线上,M是线段AE的中点,连接MF,则MF的长为.【分析】通过作辅助线可得△ADM≌△ENM,得出FN=1,进而可求解其结论.解:连接DM并延长交EF于N,如图,则△ADM≌△ENM,∴FN=1,则FM是等腰直角△DFN的底边上的高,所以FM=.故答案为:.三、解答题(共46分)19.计算下列各式:(1)3×﹣÷(2)【分析】(1)根据二次根式的混合计算解答即可;(2)根据二次根式的混合计算解答即可.解:(1)3×﹣÷=(2)20.解方程:(1)x2﹣4x﹣3=0;(2)(x﹣3)2=(2x﹣1)(x+3).【分析】(1)把常数项﹣3移项后,在左右两边同时加上4配方求解.(2)原式整理成x2+11x﹣12=0,然后利用因式分解法解方程.解:(1)x2﹣4x﹣3=0,x2﹣4x=3,x2﹣4x+4=3+4(x﹣2)2=7∴x﹣2=或x﹣2=﹣,∴x1=2+,x2=2﹣;(2)整理得:x2+11x﹣12=0,(x+12)(x﹣1)=0,x+12=0或x﹣1=0,∴x1=﹣12,x2=1.21.为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?【分析】(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;(2)根据平均数、中位数、众的定义分别求解即可;(3)根据样本估计总体得出答案即可.解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;答:这100个样本数据的平均数,众数和中位数分别是11.6,11,11;(3)样本中不超过12吨的有20+40+10=70(户),答:黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).22.如图,在4×6的方格纸中,ABC三点都在格点上,连结AB,按要求画一个以A,B,C 为其中三个顶点的格点四边形.(1)以AB为边作一个对角线垂直且相等的四边形,在图甲中画出图形.(2)以AB为对角线作一个有一组邻边垂直且相等的四边形,在图乙中画出图形.【分析】(1)以AB为边作一个四边形,由勾股定理求出AD=BC即可;(2)以AB为对角线作一个四边形,由勾股定理求出AC=CD即可.解:(1)如图甲所示:(2)如图乙所示:23.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x);三月份的销售量为:256(1+x)(1+x),又知三月份的销售量为:400元,由此等量关系列出方程求出x的值,即求出了平均增长率;(2)利用销量×每件商品的利润=4250求出即可.解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.24.如图,在正方形ABCD中,动点P在射线CB上(与B、C不重合),连结AP,过D作DF∥AP交直线BC于点F,过F作FE⊥直线BD于点E,连结AE、PE.(1)如图1,当点P在线段CB上时①求证:△ABP≌△DCF;②点P在运动过程中,探究:△AEP的形状是否发生变化,若不变,请判断△AEP的形状,并说明理由;(2)如图2,当点P在CB的延长线上时①(1)中的结论②是否成立?不必说明理由;②若正方形ABCD的边长为1,设BP=x,当x为何值时,DF平分∠BDC?【分析】(1)①根据正方形的性质得到AB=DC,∠ABC=∠DCF=90°,利用AAS定理证明△ABP≌△DCF;②证明△ABE≌△CBE,得到AE=CE,∠AEB=∠CEB,证明△EBP≌△EFC,根据全等三角形的性质证明;(2)①利用与(1)相似的方法解答;②根据角平分线的性质列出方程,解方程即可.【解答】(1)①证明:∵四边形ABCD是正方形,∴AB=DC,∠ABC=∠DCF=90°,∵DF∥AP,∴∠APB=∠DFC,在△ABP和△DCF中,,∴△ABP≌△DCF;②△AEP的形状不发生变化,△AEP是等腰直角三角形,理由:连结CE,在△ABE和△CBE中,,∴△ABE≌△CBE,∴AE=CE,∠AEB=∠CEB,∵FE⊥BD,∠EBF=45°,∴EB=EF,∠EBF=∠EFB=45°∵△ABP≌△DCF,∴BP=FC,∴△EBP≌△EFC,∴EP=EC,∠BEP=∠FEC,∴AE=EP,∠AEB+∠BEP=∠BEC+∠CEF=90°,∴△AEP是等腰直角三角形;(2)①(1)中的结论②成立,证明方法与(1)相同;②若DF平分∠BDC,则EF=CF,∵CF=BP=x,∴BF=1﹣x,∵△BEF是等腰直角三角形∴BF=EF,∴1﹣x=x,解得x=﹣1,∴当x=﹣1时,DF平分∠BDC.。

2024温州市八年级(下)月考数学试卷(3月份)(原卷版)

2024温州市八年级(下)月考数学试卷(3月份)(原卷版)

2024学年温州市八年级(下)(3月份)月考数学试卷浑诛茉固ⅹ笲1-3竦¬滧刌100刌一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项最符合题目要求。

A.0t>B.1t≥−C.1t≥t>D.12.若1x=是关于x的一元二次方程290++=的一个根,则m的值为()x mxA.10−B.9−C.10 D.93.为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是()时间/小时7 8 9 10人数 3 7 6 4A.8,8 B.8,8.5 C.9,8.5 D.9,95.关于x的一元二次方程2210+−=的根的情况是()x axA.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与a的取值有关6.用配方法解方程241+=,变形后的结果正确的是()x xA.()223x+=B.()243x+=D.()245x+=x+=C.()2257.下列各组的两个根式,是同类二次根式的是()A.2006 B.2005 C.2004 D.20039.三国时期的数学家赵爽在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法,以方程22350x x +−=即(2)35x x +=为例说明,记载的方法是:构造如下图,大正方形的面积是()22x x ++.同时它又等于四个矩形的面积加上中间小正方形的面积,即24352×+,因此5x =.则在下面四个构图中(网格中每个小正方形边长为1个单位),能正确说明方程:260x x −−=解法的构图是( )A .B .C .D .10.一元二次方程2310x x ++=的两个根为12,x x ,则21124x x x ++的值为( )A .2B .2−C .4D .4−二、填空题:本大题有8个小题,每小题3分,共24分。

17.将正方形板材①、②、③如图放置,已知正方形①、②的边长分别是16cm 、24cm ,若线段PQ 恰好分这三个正方形成面积相等的两部分,则正方形③的边长为 cm .第17题 第18题18.如图,在平面直角坐标系中,点()8,8A −,点()2,0B −,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1个单位长度每秒,设点P 运动时间为t 秒,当ABP 是等腰三角形时,t 的值为 .三、解答题:本题有6小题,共46分.解答应写出文字说明、证明过程或演算步骤.21.(6分)为了解八年级学生的阅读情况,小华设计调查问卷,用随机抽样的方式调查了部分学生,并对相关数据进行了收集、整理、描述和分析.下面是其中的部分信息:a.将学生每天阅读时长数据分组整理,绘制了如下两幅不完整的统计图表八年级学生每天阅读时长情况统计表八年级学生每天阅读时长情况扇形统计图b.平均每天阅读时长在6090≤<的具体数据如下:x60606668696970707273737380838485根据以上信息,回答下列问题:(1)n=_______,图中m=_______;(2)A组这部分扇形的圆心角是_______°;(3)平均每天阅读时长在6090≤<这组具体数据的中位数是_______;x(4)若该校八年级共有学生500人,根据调查结果估计平均每天阅读时长少于半小时的学生约有_______人.22.(8分)2024年龙年春晚吉祥物形象“龙辰辰”正式发布亮相,作为中华民族重要的精神象征和文化符号,千百年来,龙的形象贯穿文学、艺术、民俗、服饰、绘画等各个领域,也呈现了吉祥如意、平安幸福的美好寓意.现某商店推出销售吉祥物活动,已知吉祥物每件的进货价为30元,经市场调研发现,当该吉祥物的销售单价为40元时,每天可销售300件;当销售单价每增加2元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若“龙辰辰”吉祥物的销售单价为46元,则当天销售量为件;(2)该吉祥物的当天利润有可能达到6200元吗?若能,请求出此时的销售单价;若不能,请说明理由.的面积分别是6和12,求四。

最新浙江省2022-2022年八年级下期末数学试卷含答案解析

最新浙江省2022-2022年八年级下期末数学试卷含答案解析

八年级(下)期末数学试卷一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠12.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=33.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm28.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是分.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.21.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B 两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2022-2022学年河南省周口市周口港区八年级(下)期末数学试卷参考答案与试题解析一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵代数式+有意义,∴,解得x≥0且x≠1.故选D.【点评】本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.2.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=3【考点】二次根式的混合运算.【专题】探究型.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵ +不能合并,故选项A错误;∵4﹣3=4﹣6,故选项B错误;∵2×3=18,故选项C错误;∵÷=3,故选项D正确;故选D.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.【考点】一次函数的图象.【分析】根据y=kx+b,k<0时,y随x的增大而减小,可得答案.【解答】解:由y=ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,故B正确.故选:B.【点评】本题考查了一次函数图象,利用一次函数的性质是解题关键.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条【考点】线段垂直平分线的性质;正弦定理与余弦定理;角平分线的性质.【分析】由角平分线的性质可得AD=DE,∠ABD=∠DBE,由垂直平分线性质可得BD=DC,∠DBE=∠DCE,已知AD,则结合这些信息可以求得AB,BE,CE的长.【解答】解:∵DE是BC的垂直平分线,∴BD=DC,BE=EC,∠DBE=∠DCE,DE⊥BC,∵∠ABC的平分线BD交AC于点D,∴∠ABD=∠DBE,∵AD⊥AB,DE⊥BE,∴DE=AD=2,∵∠BAC=90°,∴∠DBE=∠DCE=∠ABD=30°,∴AB=AD•tan30°=2.在Rt△ABD和Rt△EBD中,∴△ABD≌△EBD(AAS),即AB=BE,∴AB=BE=EC=2.即图中长为2的线段有3条.故选:C.【点评】此题主要考查了角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±1【考点】分式的值为零的条件;合并同类项;单项式;分式有意义的条件.【分析】根据合并同类项的法则、单项式的定义、分式有意义的条件和分式的值为零的条件进行计算.【解答】解:A、原式=2a2b,故本选项错误;B、﹣x2是单项式,且系数是﹣1,故本选项正确;C、使式子有意义的x的取值范围是a≠﹣1,故本选项错误;D、若分式的值等于0,则a=±1且a+1≠0,即a=1,故本选项错误;故选:B.【点评】本题考查了分式有意义的条件,分式的值是零的条件,合并同类项以及单项式的定义.属于基础题,难度不大.6.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°【考点】直角三角形斜边上的中线;轴对称的性质.【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E 恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CE D=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm2【考点】正方形的性质.【分析】由图形的特点可知,每个阴影部分的面积都等于正方形面积的,据此解题.【解答】解:由正方形的性质可知,每个阴影部分的面积都等于正方形面积的,故图中四块阴影部分的面积和为一个正方形的面积,即22=4cm2.故选:B.【点评】本题主要考查了正方形的特性及面积公式,解答本题的关键是发现每个阴影部分的面积都等于正方形面积的.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是3﹣2.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=﹣2+2=3﹣2.故答案为:3﹣2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为 4.8cm .【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.【考点】一次函数图象与系数的关系.【分析】将A(1,0)和B(0,2)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将A(1,0)和B(0,2)代入一次函数y=kx+b中得:,解得:,∴一次函数解析式为y=﹣2x+2不经过第三象限.故答案为:三.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为 5 .【考点】三角形中位线定理.【分析】由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.【解答】解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是90 分.【考点】加权平均数.【分析】先计算孔明数学得分的折算后的分值,然后用综合得分﹣数学得分的折算后的得分,计算出的结果除以40%即可.【解答】解:(93﹣95×60%)÷40%=(93﹣57)÷40%=36÷40%=90.故答案为:90.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.【考点】勾股定理;矩形的判定与性质.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=5,∴∠ABC=30°,BC=AC×tan60°=5,∵AB∥CF,∴BM=BC×sin30°=5×=,CM=BC×cos30°=,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=,∴CD=CM﹣MD=﹣.故答案为:﹣.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 3 .【考点】三角形中位线定理;勾股定理.【专题】压轴题;动点型.【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.【考点】二次根式的混合运算;零指数幂.【分析】(1)根据二次根式的除法、乘法以及合并同类项可以解答本题;(2)根据平方差公式和零指数幂可以解答本题.【解答】解:(1)÷﹣×+=﹣+2=4+;(2)(+1)(﹣1)+﹣()0=3﹣1+2﹣1=1+2.【点评】本题考查二次根式的混合运算、零指数幂,解题的关键是明确二次根式的混合运算的计算方法.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?【考点】矩形的判定与性质.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【解答】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点评】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【考点】中位数;条形统计图;算术平均数;众数;方差.【专题】图表型.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),.【点评】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【考点】勾股定理的应用.【分析】(1)作AD⊥ON于D,求出AD的长即可解决问题.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,求出BC的长,利用时间=计算即可.【解答】解:(1)作AD⊥ON于D,∵∠MON=30°,AO=80m,∴AD=OA=40m,即对学校A的噪声影响最大时卡车P与学校A的距离40m.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.【点评】本题考查勾股定理的应用、圆的有关知识,解题的关键是理解题意,学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】勾股定理;等边三角形的判定与性质.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.21.(10分)(2022•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【考点】一次函数的应用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60 千米/时,t= 3 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【考点】一次函数的应用.【专题】压轴题;推理填空题.【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【解答】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60﹣1﹣1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①(480﹣60﹣120)÷(120+60)+1 =300÷180+1==(小时)②当甲车停留在C地时,(480﹣360+120)÷60=240÷6=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.故答案为:60、3.【点评】(1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= 2 ;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【考点】三角形综合题.【分析】(1)①在Rt△ABC中,可求得AB,由PB=AB﹣PA可求得PB,过C作CD⊥AB于点D,则可求得CD=AD=DB,可求得PD的长,在Rt△PCD中可求得PC的长;②把AP2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PQ2三者之间的数量关系;(2)过C作CD⊥AB于点D,由(1)中②的方法,可证得结论;(3)分点P在线段AB上和线段BA的延长线上,分别利用=可找到PA和CD的关系,从而可找到PD和CD的关系,在Rt△CPD和Rt△ACD中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得的值.【解答】解:(1)①∵△ABC是等腰直角三角形,AC=1+,∴AB===+,∵PA=,∴PB=AB﹣PA=,如图1,过C作CD⊥AB于点D,则AD=CD=AB=,∴PD=AD﹣PA=,在Rt△PCD中,PC==2,故答案为:;2;②PA2+PB2=PQ2,证明如下:如图1,∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA2=(AD﹣PD)2=(CD﹣PD)2=CD2﹣2CD•PD+PD2,PB2=(BD+PD)2=(CD+PD)2=CD2﹣2CD•PD+PD2,∴PA2+PB2=2CD2+2PD2=2(CD2+PD2),在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,∴PA2+PB2=2PC2,∵△CPQ为等腰直角三角形,且∠PCQ=90°,∴2PC2=PQ2,∴PA2+PB2=PQ2,故答案为:PA2+PB2=PQ2;(2)证明:如图2,过C作CD⊥AB于点D,。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2019-2020学年浙江省温州市瑞安市六校联盟八年级下学期期中数学试卷 (解析版)

2019-2020学年浙江省温州市瑞安市六校联盟八年级下学期期中数学试卷 (解析版)

2019-2020学年浙江省温州市瑞安市六校联盟八年级第二学期期中数学试卷一、选择题1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△FA'B'中,FB'2=FA'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).。

2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)

2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)

2019-2020学年浙江省温州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式√x−3中x的取值范围是()A. x≥0B. 3C. x≥3D. x≤−32.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.方程x2=9x的解为()A. x=0B. x=9C. x1=0,x2=9D. x1=3,x2=−34.下列二次根式中,是最简二次根式的是()A. √8B. √10C. √16D. √275.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.27m.方差分别是S甲2=0.60,S乙2=0.62,S丙2=0.57,S丁2=0.49,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2中,∠BAC的大小是()A. 72°B. 36°C. 30°D. 54°7.如图,▱ABCD的对角线相交于点O,下列条件中能判定这个平行四边形是矩形的是()A. AC=BDB. AB=BCC. ∠BAC=∠CADD. AC⊥BD8.用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设()A. √a2≠aB. a≤0C. a<0D. a>09.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A. 500(1+x)2=740B. 500(1+2x)=740C. 500(1+x)=740D. 500(1−x)2=74010.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF 的最小值为()A. 4B. 4.8C. 5D. 6二、填空题(本大题共8小题,共24.0分)11.计算:√6÷√2=______.12.已知x=1是方程x2+ax+2=0的一个根,则a的值为______ .13.在某市举办的垂钓比赛上,7名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,7,9,则这组数据的众数是______ .14.若关于x的一元二次方程kx2−5x+4=0有两个相等的实数根,则k的值为______ .15.如图,河坝横断面迎水坡AB的坡比是1:√3(坡比是斜坡AB两点之间的高度差BC与水平距离AC之比),坝高BC=2m,则坡面AB的长度是______m.16.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=7,则EF的长为______ .17.七巧板又称“智慧板”,是我们古代祖先的一项卓越创造.小华利用七巧板(如图1)拼出一个房子模型(如图2),已知图1中正方形ABCD的边长为4cm,则图2中六边形EFGHIJ的周长是______ cm.18.如图1,在菱形ABCD中,动点P从点C出发,沿C−A−D运动至终点D.设点P的运动路程为x(cm),△BCP的面积为y(cm2).若y与x的函数图象如图2所示,则图中a的值为______ .三、解答题(本大题共6小题,共46.0分)19.计算与解方程:(1)计算(4+√32)×2−8;(2)解方程x2−4x+1=0.20.如图,在所给的8×8方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.21.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,某高校为了解本校学生出行使用共享单车的情况,随机调查了某天50名出行学生使用共享单车的情况,并整理成如下统计表.使用次数(012345次)人数(名)12144884(1)这50名出行学生使用共享单车次数的中位数是______ 次.(2)这50名出行学生平均每人使用共享单车多少次?(3)若该校某天有1100名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?22.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,AE=CF,连接BF、AF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,DE=4.则AF长为______ .23.瑞安城市规划展览馆位于瑞样新区瑞祥公园内,是温州目前规模最大的城市规划展览馆.为了让参观的人方便停车,城市规划展览馆利用一块矩形空地建了一个停车场,其布局如图所示,已知停车场的长为58米,宽为22米,阴影部分为停车位,其余部分是等宽的通道,已知停车位的面积为700平方米.(1)求通道的宽是多少米?(2)该停车场共有车位70个,据调查分析,当每个车位的月租金为300元时,可全部租出:当每个车位的月租金每上涨10元,就会少租出1个车位,那么停车场的月租金收入最大为______ 元?(请直接写出答案)24.如图1,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y=2x−4经过线段OA的中点D,与y轴交于点G,E是射线CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)求点B的坐标是(______ ,______ ).(2)如图2,当点F落在线段BA的延长线上时,求证:四边形BEGF为菱形.(3)在点E的整个运动过程中,①当S△BEG=58S正方形OABC时,求线段CE的长.②N为平面内任意一点,当B,E,F,N四点构成的四边形为矩形时,则m的值为______ .(请直接写出答案)答案和解析1.【答案】C【解析】解:由题意知x−3≥0,解得:x≥3,故选:C.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】C【解析】解:移项,得x2−9x=0,x(x−9)=0,即x=0或x−9=0∴x1=0,x2=9.故选:C.方程x2=9x移项,得x2−9x=0,再运用因式分解法求出方程的解,选出正确的答案.此类问题也可以根据方程的解的定义,把四个选项分别代入原方程进行检验得出正确的解.4.【答案】B【解析】解:A 、√8=√4×2=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;B 、√10是最简二次根式;C 、√16=4,被开方数中含能开得尽方的因数,不是最简二次根式;D 、√27=√9×3=3√3,被开方数中含能开得尽方的因数,不是最简二次根式; 故选:B .根据最简二次根式的概念判断.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.【答案】D【解析】解:∵S 甲2=0.60,S 乙2=0.62,S 丙2=0.57,S 丁2=0.49, ∴S 丁2<S 丙2<S 甲2<S 乙2,∴这四名同学跳高成绩最稳定的是丁, 故选:D .根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【答案】B【解析】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形,∴∠BAC =∠BCA =36°. 故选:B .利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n −2).7.【答案】A【解析】解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形;故选项A符合题意;B、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB//CD,∴∠BAC=∠ACD,∵∠BAC=∠CAD,∴∠ACD=∠CAD,∴AD=CD,∴平行四边形ABCD是菱形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D不符合题意;故选:A.根据矩形的判定方法和菱形的判定方法分别对各个选项进行判断,即可得出结论.本题考查矩形的判定、菱形的判定、平行四边形的性质、等腰三角形的判定等知识;熟练掌握矩形和菱形的判定方法是解题的关键,属于中考常考题型.8.【答案】C【解析】解:用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设a<0.故选:C.用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出矛盾;由矛盾判定假设不正确,从而肯定命题的结论正确.考查了反证法,反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”9.【答案】A【解析】解:设快递量平均每年增长率为x,依题意,得:500(1+x)2=740.故选:A.设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】B【解析】解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=12BD=8,OC=12AC=6,∴BC=√OB2+OC2=√64+36=10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=12OB×OC=12BC×OP,∴OP=6×810=4.8,∴EF的最小值为4.8,故选:B.由菱形的性质可得AC⊥BD,BO=12BD=8,OC=12AC=6,由勾股定理可求BC的长,可证四边形OEPF是矩形,可得EF=OP,OP⊥BC时,OP有最小值,由面积法可求解.本题考查了菱形的性质,矩形的判定和性质,勾股定理,掌握菱形的性质是本题的关键.11.【答案】√3【解析】解:√6÷√2=√6÷2=√3,故答案为:√3.根据二次根式的除法法则:√a√b =√ab(a≥0,b>0)进行计算即可.此题主要考查了二次根式的除法,关键是掌握计算法则.12.【答案】−3【解析】解:∵x=1是方程x2+ax+2=0的一个根,∴1+a+2=0,∴a=−3.故答案为:−3.把x=1代入方程得到关于a的方程,解方程即可.本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.【答案】10【解析】解:这组数据中数字10出现2次,次数最多,所以这组数据的众数是10,故答案为:10.根据众数的概念求解可得.本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.14.【答案】2516【解析】解:根据题意得k≠0且△=(−5)2−4k×4=0,.解得k=2516.故答案为2516根据判别式的意义得到△=(−5)2−4k×4=0,本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】4【解析】解:∵坡AB的坡比是1:√3,坝高BC=2m,∴AC=2√3,由勾股定理得,AB=√BC2+AC2=4(m),故答案为:4.根据坡度的概念求出AC,根据勾股定理求出AB.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度的概念是解题的关键.16.【答案】1.5【解析】解:∵DE为△ABC的中位线,BC=3.5,∴DE=12在Rt△AFB中,∠AFB=90°,D是AB的中点,∴DF=1AB=2,2∴EF=DE−DF=1.5,故答案为:1.5.根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,结合图形计算,得到答案.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】8√2+4.【解析】解:在图2中加上节点K:观察图1和图2可知:EK=EF=FL=HG=12BD,JI=KH=LG=12EK=14BD,EJ=IH,∵正方形ABCD的边长为4CM,∴BD=√42+42=4√2,FL=EF=HG=12×4√2=2√2,JI=KH=LG=12EK=14×4√2=√2,则EJ=IH=2,∴六边形EFGKIJ的周长为:EJ+JI+IH+HG+(LG+FL)+EF,=2+√2+2+2√2+√2+2√2+2√2,=8√2+4,故答案为:8√2+4.七巧板由正方形分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形组成),再根据图形的特点,由正方形的性质和勾股定理求出各板块的边长,即可求出图2中六边形的周长.本题考查七巧板的识图以及正方形的性质和勾股定理,数形结合是解决本题的关键.18.【答案】2512【解析】解:从图2知,AC=5,AD=2a,当点P在点A时,此时,y=4a=S△BCP=S△ABC,此时,AB=BC=AD=2a,即△ABC为等腰三角形,过点B作BH⊥AC于点H,则CH=AH=12AC=52,在△ABC中,S△ABC=12AC×BH=12×5×BH=4a,解得BH=8a5,在Rt△HBC中,BC2=BH2+CH2,即(2a)2=(8a5)2+(52)2,解得a=±2512(舍去负值),故答案为2512.从图2知,AC=5,AD=2a,在△ABC中利用S△ABC=12AC×BH=12×5×BH=4a,求得BH=8a5,最后在Rt△HBC中,利用勾股定理即可求解.本题考查的是动点图象问题,涉及到三角形的面积公式、菱形和等腰三角形的性质,勾股定理的运用等,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.【答案】解:(1)原式=(4+4√2)×2−8=8+8√2−8=8√2;(2)∵x2−4x=−1,∴x2−4x+4=−1+4,即(x−2)2=3,则x−2=±√3,∴x=2±√3,即x1=2+√3,x2=2−√3.【解析】(1)先化简二次根式,再计算乘法,最后计算加减可得;(2)利用配方法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】解:(1)如图,矩形ABCD即为所求.(2)如图,正方形ADBC即为所求.【解析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计,矩形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】1=1(次),【解析】解:(1)这50名出行学生使用共享单车次数的中位数是1+12故答案为:1;×(0×12+1×14+2×4+3×8+ (2)这50名出行学生平均每人使用共享单车1504×8+5×4)=1.96(次);=440(人).(3)估计这天使用共享单车次数在3次以上(含3次)的学生有1100×8+8+450(1)根据中位数的概念求解可得;(2)利用加权平均数的概念列式计算可得;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生人数占被调查人数的比例.本题考查了中位数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.22.【答案】4√5【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴DF//BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)解:∵AB//CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD=√32+42=5,∴DF=5,∵四边形DEBF是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴AF=√AB2+BF2=√82+42=4√5;故答案为:4√5.(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD=5,由矩形的性质得BE=DF=5,BF=DE=4,则AB=AE+BE=8,由勾股定理即可解决问题.本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、等腰三角形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.23.【答案】25000【解析】解:(1)设通道的宽为x米,根据题意得:(58−2x)(22−2x)=700,解得:x=36(舍去)或x=4,答:甬道的宽为4米;(2)设月租金上涨a元,设停车场的月租金收入为w元,根据题意得:w=(300+a)(70−110a)=−110(a−700)(a+300),∵−110<0,故w有最大值,当a=12(700−300)=200(元)时,w的最大值为25000(元),故答案为25000.(1)设通道的宽为x米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a元,则租出的车位数量是(70−110a)个,根据“月租金=每个车位的月租金×车位数”列出函数表达式,进而求解.本题考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,进而求解.24.【答案】4 4 83【解析】解:(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即正方形的边长为4,故点B(4,4),故答案为4,4;(2)如题干图2,∵点E、点F关于直线DG对称,∴BE=BF,EG=GF,而BG=BG,∴△BGE≌△BGF(SSS),∴∠EBG=∠FBG,∵BF//EG,∴∠GBF=∠EGB,∴∠EBG=∠EGB,∴BE=GE,∵BE=BF,EG=GF,∴EB=BF=FG=GE,∴四边形BEGF为菱形;(3)①∵S△BEG=58S正方形OABC,∴12×GE×BC=58×4×4,即12×|m+4|×4=10,解得m=1或−9,故CE=3或13;②如下图,当B,E,F,N四点构成的四边形为矩形时,∵BE=BF,则该矩形为正方形,则∠EBF为直角,故点F作x轴的平行线交BA的延长线于点T,∵∠CBE+∠EBA=90°,∠EBA+∠FBA=90°,∴∠CBE=∠FBA,∵∠BCE=∠BTF=90°,BE=BF,∴△BCE≌△BTF(AAS),∴CE=TF=4−m,BT=BC,故点A、T重合,则点F在x轴上,则AF=CE=4−m,故点F(8−m,0),∵GE=GF,∴(m+4)2=(8−m)2+(−4)2,解得:m=83,故答案为83.(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即可求解;(2)证明△BGE≌△BGF(SSS),则可证∠EBG=∠EGB,则BE=GE,进而求解;(3)①S△BEG=58S正方形OABC,即12×GE×BC=58×4×4,则12×|m+4|×4=10,即可求解;②当B,E,F,N四点构成的四边形为矩形时,则该矩形为正方形,然后证明△BCE≌△BGF(AAS),得到F(8−m,0),再利用GE=GF,即可求解.本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形全等等,其中(3)①,要注意分类求解,避免遗漏.。

2018年浙江省温州市中考数学试卷-答案

2018年浙江省温州市中考数学试卷-答案

浙江省温州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D,2,0,,其中负数是:.1-1-【考点】实数2.【答案】B【解析】从正面看是三个台阶,【考点】简单组合体的三视图3.【答案】C【解析】,628a a a = 【考点】同底数幂的乘法4.【答案】C【解析】将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C .【考点】中位数5.【答案】D【考点】概率公式 【解析】袋子中共有10个小球,其中白球有2个,摸出一个球是白球的概率是, ∴21105=6.【答案】A【解析】解:由题意,得 ,20x -=解得,.2x =经检验,当时,. 2x =205x x -=+故选:A .【考点】分式的值为零的条件7.【答案】C【解析】因为点与点对应,点,点,A O (1,0)A -(0,0)O 所以图形向右平移1个单位长度,所以点的对应点的坐标为,即,B B '(0+【考点】坐标与图形变化——平移8.【答案】A【解析】解:设49座客车辆,37座客车辆,根据题意可列出方程组. x y 104937466x y x y +=⎧⎨+=⎩【考点】由实际问题抽象出二元一次方程组9.【答案】B【解析】点,在反比例函数的图象上,点,的横坐标分别为1,2, A B 1(0)y x x=>A B 点的坐标为,点的坐标为, ∴A (1,1)B 1(2,)2轴,AC BD y ∥∥点,的横坐标分别为1,2,∴C D 点,在反比例函数的图象上, C D (0)k y k x=>点的坐标为,点的坐标为, ∴C (1,)k D (2,)2k ,, 1AC k ∴=-11222k k BD -=-=,, 11(1)122OAC k S k -∴=-⨯=△111(21)224ABD k k S --=⨯-= △与的面积之和为, OAC △ABD △32, ∴113242k k --+=解得:.3k =【考点】反比例函数系数的几何意义,反比例函数图象上点的坐标特征k 10.【答案】B【解析】设小正方形的边长为,x,,3a = 4b =,347AB ∴=+=在中,,Rt ABC △222AC BC AB +=即,222(3)(4)7x x +++=整理得,,27120x x +-=解得或(舍去), x =x =该矩形的面积, ∴4)24==【考点】数学常识,勾股定理的证明第Ⅱ卷二、填空题11.【答案】(5)a a -【解析】.25(5)a a a a -=-【考点】因式分解——提公因式法12.【答案】6【解析】设半径为,r , 602180r ππ= 解得:,6r =【考点】弧长的计算13.【答案】3 【解析】根据题意知, 13272337x ++++++=解得:,3x =则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【考点】算术平均数,众数14.【答案】 4x >【解析】解:, 20262x x ->⎧⎨->⎩①②解①得,2x >解②得.4x >故不等式组的解集是.4x >【考点】解一元一次不等式组15.【答案】【解析】延长交于,如图,DE OA F当时,,则, 0x =44y =+=(0,4)B当时,,解得,, 0y =40x +=x =A 0)在中,, Rt AOB △tan OBA ∠=,60OBA ∴∠=︒是的中点,C OB ,2OC CB ∴==四边形是菱形,OEDC ,,2CD BC DE CE ∴====CD OE ∥为等边三角形,BCD ∴△,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒, 112EF OE ∴==的面积. OAE △112=⨯=故答案为.【考点】一次函数图象上点的坐标特征,菱形的性质16.【答案】8【解析】设两个正六边形的中心为,连接,,过作,, O OP OB O OG PM ⊥OH AB ⊥由题意得:,60MNP NMP MPN ∠=∠=∠=︒, 2,即, ∴PM =, 2MPN S ∴=△,且为正六边形的中心,OG PM ⊥ O,, 12PG PM ∴==72OG PM ==在中,根据勾股定理得:, Rt OPG △7OP cm ==设,OB xcm =,且为正六边形的中心,OH AB ⊥ O,, 12BH x ∴=OH =, 1(5)2PH x cm ∴=-在中,根据勾股定理得:, Rt PHO △2221)(5)492OP x =+-=解得:(负值舍去),8x =则该圆的半径为.8cm 故答案为:8。

冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析

冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析

冀教版2018-2019学年八年级第二学期期末数学试卷一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。

请把最符合题意的选项序号填在题后的括号内)1.(2分)函数y=中,自变量x的取值范围是()A.x>2 B.x≥2C.x>﹣3 D.x≥﹣32.(2分)如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15°B.30°C.45°D.60°3.(2分)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个4.(2分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)5.(2分)菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角6.(2分)如图,一次函数y=(m﹣1)x﹣3+m的图象分别于x轴、y轴的负半轴相交于点A、B,则m的取值范围是()A.m>3 B.m<3 C.m>1 D.m<17.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.88.(2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>39.(2分)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A. B. C. D.10.(2分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.10911.(2分)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.9612.(2分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4.5小时B.4.75小时C.5小时D.5小时二、认真填一填(每空3分,共30分,请把正确答案填在题后的横线上)13.(3分)如图是一次函数y=kx+b的图象,则方程kx+b=0的解为.14.(3分)如果点P1(﹣3,y1)、P2(﹣2,y2)在一次函数y=2x+b的图象上,则y1y2.(填“>”,“<”或“=”)15.(3分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=.16.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.17.(3分)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费元.18.(3分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)19.(3分)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.20.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.21.(3分)在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是.22.(3分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.三、解答题(本大题共66分)23.(9分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?24.(10分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?25.(11分)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF 交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC 就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC 上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.26.(12分)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?27.(12分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.28.(12分)在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?(3)说明哪种方案运费最少?最少运费是多少万元?参考答案与试题解析一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。

2021-2022学年浙江省温州市八年级(下)期末数学试题及答案解析

2021-2022学年浙江省温州市八年级(下)期末数学试题及答案解析

2021-2022学年浙江省温州市八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若二次根式√a−3有意义,则a的取值范围是( )A. a≥0B. a>3C. a≥3D. a<32. 在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A. (2,3)B. −(3,2)C. (3,−2)D. (−3,−2)3. 下列选项中,化简正确的是( )A. √(−1)2=−1B. (√6)2=6C. √92=32D. √8=44. 技术员分别从甲、乙两块小麦地中随机抽取10株苗,测得苗高的平均数相同,方差分别为S甲2=12(cm2),S乙2=a(cm2),检测结果是乙地小麦长得比较整齐,则a的值可以是( )A. 8B. 12C. 15D. 245. 用配方法解方程x2−2x−8=0,下列配方结果正确的是( )A. (x+1)2=9B. (x+1)2=7C. (x−1)2=9D. (x−1)2=76. 用反证法证明“在△ABC中,若AB=AC,则∠B<90°”时,应假设( )A. ∠B≠90°B. ∠B=90°C. ∠B>90°D. ∠B≥90°7. 在▱ABCD中,∠A+∠B+∠C=210°,则∠B的度数是( )A. 150°B. 110°C. 70°D. 30°8. 温州某镇居民人均可支配收入逐年增长,从2019年的5.2万元增长到2021年的6万元.设这两年该镇居民人均可支配收入的年平均增长率为x,根据题意可以列方程为( )A. 5.2(1+2x)=6B. 5.2(1+x)2=6C. 5.2(1+x)=6D. 5.2(1+x2)=69. 已知反比例函数y=5x,若x≥5,则函数y有( )A. 最大值1B. 最小值1C. 最大值0D. 最小值010. 如图,在矩形ABCD中,点E,F在对角线AC的两侧,且到所在三角形三边的距离都等于1.若AC=5,则EF的长为( )A. 52B. √5C. 125D. 2√2二、填空题(本大题共8小题,共24.0分)11. 已知一组数据2,1,x,6的平均数是4,则x的值为______.12. 如图,人字梯保险杠两端点D,E分别是梯柱AB,AC的中点,梯子打开时DE=38cm,此时梯脚的距离BC长为______cm.13. 已知一个多边形的内角和等于900°,则这个多边形的边数是______.14. 关于x的方程x2−10x+m=0有两个相等的实数根,则m的值是______.15. 如图,在菱形ABCD中,AC=6,BD=4,则AB=______.16. 如图,O是正方形ABCD对角线交点,E是线段AO上一点.若AB=1,∠BED=135°,则AE的长为______.17. 如图,点A,B依次在反比例函数y =k(常数k>0,x>0)的图象上,AC,BD分别垂直xx轴于点C,D,AE⊥y轴于点E,BF⊥AC于点F.若OC=CD,阴影部分面积为6,则k的值为______.18. 图1是一款上肢牵引器材,该器材示意图如图2所示,器材支架OG⊥地面、转动架A−O−B的夹角∠AOB=90°,转动臂OA=OB=50cm,牵引绳AC=BD=34cm,且竖直向下,未使用时点A,B在同一水平线上.当器材在如图3状态时,点A,D在同一水平线上,此时,点A到OG的距离为______cm,对比未使用时,点C下降的高度为______cm.三、解答题(本大题共6小题,共46.0分。

2018-2019学年八年级(下)期中数学试卷1 解析版

2018-2019学年八年级(下)期中数学试卷1  解析版

2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。

-2018学年浙江省杭州市经济开发区八年级(下)期末数学试卷

-2018学年浙江省杭州市经济开发区八年级(下)期末数学试卷

2017-2018学年浙江省杭州市经济开发区八年级(下)期末数学试卷一.选择题(本题有10小题,每小题3分,共30分)1.(3分)要使二次根式丁嬴有意义,自变量x的取值范围是()A. x>4B. xv 4C. x>4D. x<42. (3分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是(3. (3分)用反证法证明命题:若整数系数一元二次方程ax2+bx+c= 0 (aw0)有有理根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是()A.假设a、b、c都是偶数B.假设a、b、c至多有一个是偶数C.假设a、b、c都不是偶数D.假设a、b、c至多有两个是偶数4.(3分)已知平行四边形ABCD中,/ B = 4/A,则/ C=()A.18°B.36°C.72°D.144°5.(3分)关于x的一元二次方程k/-2x+1 = 0有实数根,则k的取值范围是()A. k< - 1B. k<1C. k>—1 且kw0D. kW1 且kw0,八、一 .......................................................................................................................................................................................................................... 一—- …6.(3分)已知A (1, y1)、B (2, y2)、C ( - 3, y3)都在反比例函数y—1的图象上,则y1、y2、y3的大小关系的是()A. y2>y1>y3B. y1 >y2>y3C. y3>y2>y1D. y1 >y3>y27.(3分)用配方法解方程x2-2x- 5=0时,原方程应变形为()A. (x+1)2=6B. (x+2)2=9C. (x— 1)2=6D. (x— 2) 2 = 98.(3 分)下列命题:①在函数:y= - 2x- 1; y= 3x; y=~; y= - ; y — ? (xv 0)中,x xy随x增大而减小的有3个函数;②对角线互相垂直平分且相等的四边形是正方形;③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;二.填空题(本题有6个小题,每小题 4分,共24分)11. (4分)五边形内角和的度数是 .12. (4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中13. (4 分)如图,在?ABCD 中,AD= 2AB, CE 平分/ BCD 交 AD 边于点 E,且 AE= 3,贝"ABCDX 2、X 3的方差为S 2,则数据X 1+2, X 3+2, X 3+2的方差为S 3+2.其中是真命题的个数是 ( A. 1个B. 2个C. 3个D. 4个9. (3分)如图,在菱形 ABCD 中,AB= 4, /A=120° ,点 P, Q, K 分别为线段 BC,)CD,D. 2 :;+210. (3分)如图,矩形纸片 ABCD, AB= 3, AD=5,折叠纸片,使点 A 落在BC 边上的折痕为PQ,当点E 在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点 P 、E 处, Q 分别在AB 、AD 边上移动,则点 E 在BC 边上可移动的最大距离为()C. 4D. 5④已知数据X I 、宽为20m的矩形花园, 现要在花园中修建等宽的小道, 剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.y=2x和函数y=—的图象交于15.A、B两点,过点A作AE,x轴于点E,若4AOE的面积为4, P是坐标平面上的点,且以点B、O、E、P为顶点的四边,满足条件的P点坐标是16. (4分)如图,在菱ABCD中,边长为10, /A=60° .顺次连结菱形ABCD各边中点, 形可得四边形A1B1C1D1; 顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3c3D3;按此规律继续下去…则四边形A2B2C2D2的周长是,四边形A2019B2019c2019D2019的周长是三.解答题(本题有7小题,共66分)17.(6分)计算:(1)(-V6) 2-亚云+1(T)2⑵闻十第一布1内26.18.(8分)解方程:(1)x2 - 3x+1 = 0;(2)x (x+3) - ( 2x+6) = 0.19.(8分)某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表;姓名平均数众数方差王亮7李刚7(2)你认为谁的成绩比较稳定,为什么(3)若你是教练,你打算选谁简要说明理由.20.(10分)已知,如图,在^ ABC中,D是BC边上的一点,E是AD的中点,过点A作BC 的平行线交与BE的延长线于点F,且AF= DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.21.(10分)物美商场于今年年初以每件25元的进价购进一批商品. 当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元22.(12分)已知,如图,。

2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷

2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷

2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)若二次根式有意义,则x的取值范围为()A.x<2B.x>2C.x≤2D.x≥22.(3分)下列图形既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.74.(3分)用配方法解方程x2﹣4x=1时,原方程应变形为()A.(x﹣2)2=1B.(x+2)2=5C.(x﹣2)2=5D.(x+2)2=1 5.(3分)学习组织“超强大脑”答题赛,参赛的11名选手得分情况如表所示,那么这11名选手得分的中位数和众数分别是()分数(分)60809095人数(人)2234A.86.5和90B.80和90C.90和95D.90和906.(3分)在▱ABCD中,若∠A+∠C=80°,则∠B的度数为()A.100°B.130°C.140°D.150°7.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则m的值是()A.﹣1B.0C.1D.28.(3分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角9.(3分)如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直=3,S△BOF=5,则平行四边形ABCD的面线EF分别交AD于点E,BC于点F,S△AOE积()A.24B.32C.40D.4810.(3分)如图,在▱ABCD中,P是对角线BD上的一点,过点作EF∥AB与AD和BC 分别交于点E和点F,连接AP,CP.已知AE=4,EP=2,∠ABC=60°,则阴影部分的面积是()A.2B.4C.4D.8二、填空题(共6小题,每小题4分,共24分):11.(4分)化简=.12.(4分)一组数据1、2、3、4、5的方差是.13.(4分)公园新增设了一台滑梯,该滑梯高度AC=1米,滑梯AB的坡比是1:3,则该滑梯AB的长是米.14.(4分)已知一个正多边形的每一个外角都是30°,则这个正多边形是正边形.15.(4分)某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价元.16.(4分)如图,已知∠ACB=90°,AC=4,∠CAB=60°,D为AC的中点,E为AB上的一动点,以AD、DE为一组邻边构造▱ADEP,连接CP,则CP的最小值是.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.(8分)计算:(1);(2)﹣.18.(8分)解方程:(1)2x2﹣10x=0;(2)2(x+2)2﹣18=0.19.(6分)如图,在所给的6×6方格中,每个小正方形的边长都是1.按要求画多边形,使它的各个顶点都在方格的顶点上.(1)在图甲中画一个面积为5的平行四边形.(2)在图乙中画一个平行四边形使它的周长不是整数.20.(6分)某班进行“闪亮之星”的推选工作,经过自荐和第一轮筛选后,甲、乙两位同学进入终选.如表为甲、乙两位同学的得分情况.其中人气分的计算方法是:根据班级主科老师和同学的投票结果,老师一票记10分,同学一票记2分,两个分数相加即为人气分.学生人气分学习行规工作分分分老师票数学生票数分数甲420a859585乙22570909290(1)a=,b=;(2)经全班同学讨论决定,候选人的最终得分将根据如图所示的百分比折算后计入总分,经计算,甲同学的最终得分为87分,请你求出乙同学的最终得分,并判断哪位同学当选.21.(7分)某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.22.(11分)如图,在Rt△AOB中,点C为线段AB的中点,OB=4,∠A=30°,点P从点O出发以每秒1个单位的速度先沿OB方向运动到点B,再沿BA方向运动到终点A,设点P运动时间为t秒,以OP,OC为邻边构造▱OPDC.(1)当点P在线段OB上时,S▱OPDC=(用含t的代数式表示);(2)在整个运动过程中,当▱OPDC的面积为6时,求t的值;(3)连接OD,作点C关于直线OD的对称点C′(点C与点C′不重合),当点C′落在△AOB的边上时,求t的值(直接写出答案).2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.4.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.【点评】本题考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.【点评】本题考查了平行四边形的性质,注意掌握平行四边形的对角相等、邻角互补的性质是解题的关键.7.【点评】此题考查了一元二次方程判别式的知识.此题难度不大,注意若一元二次方程有两个相等的实数根,则可得△=0.8.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.9.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.10.【点评】本题考查了平行四边形的判定与性质、平行线的性质、三角函数定义、三角形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.二、填空题(共6小题,每小题4分,共24分):11.【点评】本题考查了根据二次根式的意义与化简,二次根式规律总结:当a≥0时,=a;当a<0时,=﹣a.12.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【点评】此题主要考查了解直角三角形的应用,正确得出BC的长是解题关键.14.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.16.【点评】本题考查了平行四边形的性质,直角三角形的性质,解决本题的关键是利用全等三角形的性质求出OP的长,也考查了垂线段最短.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【点评】本题考查了解一元二次方程,解决本题的关键是掌握解一元二次方程的方法.19.【点评】本题考查作图﹣应用与设计,平行四边形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.【点评】本题考查了加权平均数,熟记公式是解题的关键.21.【点评】考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了含30度角的直角三角形的性质,翻折的性质,等边三角形的性质和判定,平行四边形的性质,根据题意画出符合题意的图形是解题的关键.。

(沪科版)数学八年级(下)期末质量测试卷7(附答案)

(沪科版)数学八年级(下)期末质量测试卷7(附答案)

八年级(下)期末数学试卷一、选择题。

(每小题4分.共40分。

)1.下列计算正确的是()。

A.2×3=6B.3×3=3C.4×2=8D.2×6=122.如图.△ABC中.点P是AB边上的一点.过点P作PD∥BC.PE∥AC.分别交AC.BC于点D.E.连接CP.若四边形CDPE是菱形.则线段CP应满足的条件是()。

A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP3.已知a<b.化简二次根式()。

A.2a B.﹣2a C.2a D.﹣2a4.如图.在平行四边形ABCD中.AB=4.BC=6.分别以A.C为圆心.以大于的长为半径作弧.两弧相交于M.N两点.作直线MN交AD于点E.则△CDE的周长是()。

A.7B.10C.11D.125.已知关于x的一元二次方程x2﹣bx﹣2=0.则下列关于该方程根的判断中正确的是()。

A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关6.若a.b为方程x2﹣5x﹣1=0的两个实数根.则2a2+3ab+8b﹣2a的值为()。

A.﹣41B.﹣35C.39D.457.如图.▱ABCD中.EF∥AB.DE:DA=2:5.EF=4.则CD的长为()。

A.B.8C.10D.168.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根.那么k的取值范围是()。

A.k≥﹣B.k≥﹣且k≠0C.k<﹣D.k>﹣且k≠09.关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正.关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1.其中正确结论的个数是()。

A.0个B.1个C.2个D.3个10.如图.正方形ABCD中.E为BC的中点.CG⊥DE于G.BG延长交CD于点F.CG延长交BD于点H.交AB于N 下列结论:①DE=CN;②=;③S△DEC=3S△BNH;④∠BGN=45°;⑤GN+EG=BG;其中正确结论的个数有()。

2018-2019学年浙江省台州市椒江区八年级(下)期末数学试卷 (解析版)

2018-2019学年浙江省台州市椒江区八年级(下)期末数学试卷  (解析版)

2018-2019学年浙江省台州市椒江区八年级(下)期末数学试卷一.选择题(共10小题)1.下列二次根式中,最简二次根式是()A.B.C.D.2.下列各组数据作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.6,7,83.在▱ABCD中,∠A+∠C=100°,则∠B的度数是()A.50°B.40°C.140°D.130°4.与2最接近的整数是()A.4B.5C.6D.75.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.6.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数7.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD8.如图,在Rt△ABC中,∠ACB=90°,D为斜边上AB的中点,动点P从B点出发,沿B→C→A运动,如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则a的值为()A.3B.4C.6D.129.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt△ABC是“匀称三角形”,且∠C=90°,AC>BC,则AC:BC:AB为()A.:1:2B.2::C.2:1:D.无法确定10.如图,一次函数y=﹣2x+6的图象与两坐标轴分别交于A、B两点,点C是线段AB上不与点A、B重合的一点,过点C分别作CD、CE垂直x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大二.填空题(共6小题)11.二次根式中字母x的取值范围是.12.某校举行八年级课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.63m,其方差分别是s甲2=3.8,s乙2=1.4,则参赛学生身高比较整齐的班级是班.13.一次函数y=2x﹣3的图象不经过第象限.14.命题“四个角相等的四边形是矩形”的逆命题是.15.Rt△ABC中,∠C=90°,AB=10,BC=6,若AC边上存在一点P,使得P A2﹣PC2=BC2,则PB=.16.如图,在平面直角坐标系xOy中,已知正方形ABCO,A(0,4).点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为.三.解答题17.计算:(1)﹣4+;(2)(2﹣)(2+)+(﹣3)÷.18.如图,在四边形ABCD中,AB∥CD,AC,BD相交于点O,O是AC的中点,E,F分别是OA,OD的中点.求证:BC=2EF.19.如图是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点,点A,B均在格点上,请仅用无刻度的直尺在网格中画一个Rt△ABC,使点C在格点上.(不写作法,保留作图痕迹)20.如图,直线y=2x和y=ax+4相交于点A(m,3).(1)求m的值;(2)观察图象,直接写出不等式2x≤ax+4的解集为.21.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成如下统计表.数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析,解答下列问题:(1)完成表格;平均数(首)中位数(首)众数(首)活动启动之初5 4.5大赛后一个月6(2)试选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.22.在区体育局的策划下,体育馆将组织明星篮球赛,为此区体育局推出两种购票方案(设购票张数为x,购票总价为y元):方案一:提供8000元赞助后,每张票价为50元;方案二:购票不超过100张时,每张票价为120元,超过100张时,超过部分的票每张票价为60元.(1)若购买120张票时,按方案一和方案二应付的购票总价分别是、元;(2)直接写出方案一、方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一较合算?23.如图1,BD是矩形ABCD的对角线,AD=2,AB=4.将△BCD沿射线BD方向平移到△B'C'D'的位置,分别连接AB',CD,AD',BC′,如图2,若B'D'平分∠AB'C'.(1)试判断四边形AB'C'D的形状,并说明理由;(2)将四边形ABC′D'沿它的两条对角线依次剪开分别得到四个三角形,用所得到的这四个三角形拼成与四边形ABC'D'面积相等的矩形,请直接写出所有可能排成的矩形周长,并画出相应的示意图.24.在平面直角坐标系xOy中,若直线与x轴夹角为45°时,则称该直线为x轴的“相关直线“.已知点A,B的坐标分别为A(0,3),B(﹣1,0).(1)若x轴的“相关直线“y=kx+m过点A,则k=;(2)如图,以AB为边作正方形ABCD,使C、D位于第二象限.①若x轴的“相关直线”l平分正方形ABCD的面积,求l的解析式;②若x轴的“相关直线”交y轴于点M(0,b),且与正方形ABCD有公共点,请直接写出b的取值范围.2018-2019学年浙江省台州市椒江区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列二次根式中,最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义得出答案.【解答】解:A、==,不是最简二次根式,不合题意;B、=,不是最简二次根式,不合题意;C、是最简二次根式,符合题意;D、=2,不是最简二次根式,不合题意;故选:C.2.下列各组数据作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.6,7,8【分析】要判断三个数是否为直角三角形的三边长,根据勾股定理逆定理只需要判断最大的数的平方是否等于另外两个数的平方和即可.【解答】解:A、22+32≠42,不能构成直角三角形,故本选项不符合题意;B、32+42=52,能构成直角三角形,故本选项符合题意;C、42+52≠62,不能构成直角三角形,故本选项不符合题意;D、62+72≠82,不能构成直角三角形,故本选项不符合题意;故选:B.3.在▱ABCD中,∠A+∠C=100°,则∠B的度数是()A.50°B.40°C.140°D.130°【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=100°,∴∠A=50°,∴∠B=∠180°﹣∠A=130°,故选:D.4.与2最接近的整数是()A.4B.5C.6D.7【分析】根据即可得出与2最接近的整数.【解答】解:∵2.42<6<2.52,∴,∴4.8,∴与2最接近的整数是5.故选:B.5.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.【分析】根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.【解答】解:A、很明显,给自变量一个值,不是有唯一的值对应,所以不是函数,故此选项符合题意;B、是函数,故此选项不符合题意;C、是二次函数,故此选项不符合题意;D、是二次函数,故此选项不符合题意.故选:A.6.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.7.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD【分析】根据矩形的性质即可判断;【解答】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选:B.8.如图,在Rt△ABC中,∠ACB=90°,D为斜边上AB的中点,动点P从B点出发,沿B→C→A运动,如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则a的值为()A.3B.4C.6D.12【分析】根据已知条件和图象可以得到BC、AC的长度,当x=4时,点P与点C重合,此时△DPC的面积等于△ABC面积的一半,从而可以求出y的最大值,即为a的值.【解答】解:根据题意可得,BC=4,AC=7﹣4=3,当x=4时,点P与点C重合,∵∠ACB=90°,点D为AB的中点,∴S△BDP=S△ABC,∴y=××3×4=3,即a的值为3,故选:A.9.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt△ABC是“匀称三角形”,且∠C=90°,AC>BC,则AC:BC:AB为()A.:1:2B.2::C.2:1:D.无法确定【分析】作Rt△ABC的三条中线AD、BE、CF,由“匀称中线”的定义可判断“匀称中线”是BE,它是AC边上的中线,设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE =90°,根据勾股定理可求出BC、AB,则AC:BC:AB的值可求出.【解答】解:如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=AB≠BA,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC==a,在Rt△ABC中,AB==a,∴AC:BC:AB=2a:a:a=2::.故选:B.10.如图,一次函数y=﹣2x+6的图象与两坐标轴分别交于A、B两点,点C是线段AB上不与点A、B重合的一点,过点C分别作CD、CE垂直x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,﹣2m+6),根据矩形的周长公式即可得出C矩形CDOE=12﹣2m,再根据m的变化可得答案.【解答】解:设点C的坐标为(m,﹣2m+6)(0<m<3),则CE=m,CD=﹣2m+6,∴C矩形CDOE=2(CE+CD)=12﹣2m.∴当C从点A出发向点B运动时,m逐渐增大,则矩形CDOE的周长变小.故选:C.二.填空题(共6小题)11.二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.12.某校举行八年级课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.63m,其方差分别是s甲2=3.8,s乙2=1.4,则参赛学生身高比较整齐的班级是乙班.【分析】根据方差的意义求解可得.【解答】解:∵s甲2=3.8,s乙2=1.4,∴s乙2<s甲2,∴参赛学生身高比较整齐的班级是乙班,故答案为:乙.13.一次函数y=2x﹣3的图象不经过第二象限.【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【解答】解:∵一次函数y=2x﹣3中,k=2>0,∴此函数图象经过一、三象限,∵b=﹣3<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故答案为:二.14.命题“四个角相等的四边形是矩形”的逆命题是矩形的四个角相等.【分析】根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“四个角相等的四边形是矩形”的逆命题是矩形的四个角相等,故答案为:矩形的四个角相等.15.Rt△ABC中,∠C=90°,AB=10,BC=6,若AC边上存在一点P,使得P A2﹣PC2=BC2,则PB=.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,AB=10,BC=6,∴AC===8;∵P A2﹣PC2=BC2,即(8﹣PC)2﹣PC2=62,解得PC=,在Rt△PBC中,PB===.故答案为:.16.如图,在平面直角坐标系xOy中,已知正方形ABCO,A(0,4).点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为2.【分析】如图,作EH⊥x轴于H,连接CE.利用全等三角形的性质证明∠ECH=45°,推出点E在∠BCH的角平分线所在直线上运动,作OE′⊥CE,求出OE′的长即可解决问题;【解答】解:如图,作EH⊥x轴于H,连接CE.∵∠AOD=∠ADE=∠EHD=90°,∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ADO=∠DEH,∵AD=DE,∴△ADO≌△DEH(AAS),∴OA=DH=OC,OD=EH,∴OD=CH=EH,∴∠ECH=45°,∴点E在∠BCH的角平分线所在直线上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,∵OC=4,∴OE'=2,∴OE的最小值为2,故答案为:2.三.解答题17.计算:(1)﹣4+;(2)(2﹣)(2+)+(﹣3)÷.【考点】4F:平方差公式;79:二次根式的混合运算.【专题】514:二次根式;66:运算能力.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和二次根式的除法法则运算.【解答】解:(1)原式=2﹣2+2=2;(2)原式=4﹣3+﹣3=1+3﹣3=4﹣3.18.如图,在四边形ABCD中,AB∥CD,AC,BD相交于点O,O是AC的中点,E,F分别是OA,OD的中点.求证:BC=2EF.【考点】KD:全等三角形的判定与性质;KX:三角形中位线定理.【专题】553:图形的全等;64:几何直观.【分析】根据全等三角形的判定和性质得出AB=CD,进而利用平行四边形的判定和性质解答即可.【解答】证明:∵AB∥CD,∴∠BAO=∠DCO,∵O是AC的中点,∴OA=OC,在△ABO与△CDO中,∴△ABO≌△CDO(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴AD=BC,∵E,F分别是OA,OD的中点,∴AD=2EF,∴BC=2EF.19.如图是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点,点A,B均在格点上,请仅用无刻度的直尺在网格中画一个Rt△ABC,使点C在格点上.(不写作法,保留作图痕迹)【考点】KQ:勾股定理;KS:勾股定理的逆定理;L8:菱形的性质;N4:作图—应用与设计作图.【专题】13:作图题;69:应用意识.【分析】利用菱形的对角线互相垂直解决问题即可.【解答】解:如图,△ABC即为所求.20.如图,直线y=2x和y=ax+4相交于点A(m,3).(1)求m的值;(2)观察图象,直接写出不等式2x≤ax+4的解集为x≤.【考点】FD:一次函数与一元一次不等式;FF:两条直线相交或平行问题.【专题】538:用函数的观点看方程(组)或不等式;69:应用意识.【分析】(1)把A(m,3)代入y=2x,即可求得m的值;(2)以交点为分界,结合图象写出不等式2x≤ax+4的解集即可.【解答】解:(1)把A(m,3)代入y=2x,得2m=3,解得m=;(2)由图象得,不等式2x≤ax+4的解集为x≤.故答案为x≤.21.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成如下统计表.数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析,解答下列问题:(1)完成表格;平均数(首)中位数(首)众数(首)活动启动之初5 4.546大赛后一个月66(2)试选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数;WA:统计量的选择.【专题】541:数据的收集与整理;65:数据分析观念.【分析】(1)根据统计图中的数据可以求得这组数据的中位数,平均数和众数;(2)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)活动启动之初这组数据的众数是4(首),大赛后一个月后这组数据的中位数是:(6+6)÷2=6(首),大赛后一个月后这组数据的平均数是:=6(首),故答案为:4;6;6;(2)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.22.在区体育局的策划下,体育馆将组织明星篮球赛,为此区体育局推出两种购票方案(设购票张数为x,购票总价为y元):方案一:提供8000元赞助后,每张票价为50元;方案二:购票不超过100张时,每张票价为120元,超过100张时,超过部分的票每张票价为60元.(1)若购买120张票时,按方案一和方案二应付的购票总价分别是14000元、13200元;(2)直接写出方案一、方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一较合算?【考点】C9:一元一次不等式的应用;FH:一次函数的应用.【专题】524:一元一次不等式(组)及应用;533:一次函数及其应用;66:运算能力;69:应用意识.【分析】(1)根据题意,可以分别计算出购买120张票时,按方案一和方案二应付的购票总价;(2)根据题意,可以写出方案一、方案二中y与x的函数关系式;(3)根据题意,令(2)中函数关系式中的方案一的函数值小于方案二中的函数值,然后即可得到x的取值范围,再根据x为整数,即可得到至少买多少张票时选择方案一较合算.【解答】解:(1)当购买120张票时,方案一的购票总价是:8000+120×50=8000+6000=14000(元),方案二的购票总价是:100×120+(120﹣100)×60=13200(元),故答案为:14000元,13200;(2)由题意可得,方案一中y与x的函数关系式是y=8000+50x,方案二中y与x的函数关系式是y=;(3)令8000+50x<60x+6000,解得,x>200,答:至少购买201张票时选择方案一较合算.23.如图1,BD是矩形ABCD的对角线,AD=2,AB=4.将△BCD沿射线BD方向平移到△B'C'D'的位置,分别连接AB',CD,AD',BC′,如图2,若B'D'平分∠AB'C'.(1)试判断四边形AB'C'D的形状,并说明理由;(2)将四边形ABC′D'沿它的两条对角线依次剪开分别得到四个三角形,用所得到的这四个三角形拼成与四边形ABC'D'面积相等的矩形,请直接写出所有可能排成的矩形周长,并画出相应的示意图.【考点】KF:角平分线的性质;LB:矩形的性质;PC:图形的剪拼.【专题】13:作图题;556:矩形菱形正方形;558:平移、旋转与对称;67:推理能力.【分析】(1)由平移得到B'C'=BC=AD,∠D'B'C'=∠ADB=60°,推出四边形AB'C'D 是平行四边形,根据角平分线的定义得到∠DB′C′=∠AB′D,求得AD=AB′,于是得到结论;(2)根据两种不同的拼法,分别求得可能拼成的矩形周长.【解答】解:(1)∵由平移可得,B'C'=BC=AD,∠D'B'C'=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'D'平分∠AB'C',∴∠DB′C′=∠AB′D,∴∠ADB′=∠AB′D,∴AD=AB′,∴四边形AB'C'D是菱形;(2)∵AD=2,AB=4,∴BD=2,连接AC′交B′D′于O,∴AO==,BO==,∴将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为8或.24.在平面直角坐标系xOy中,若直线与x轴夹角为45°时,则称该直线为x轴的“相关直线“.已知点A,B的坐标分别为A(0,3),B(﹣1,0).(1)若x轴的“相关直线“y=kx+m过点A,则k=±1;(2)如图,以AB为边作正方形ABCD,使C、D位于第二象限.①若x轴的“相关直线”l平分正方形ABCD的面积,求l的解析式;②若x轴的“相关直线”交y轴于点M(0,b),且与正方形ABCD有公共点,请直接写出b的取值范围.【考点】FI:一次函数综合题.【专题】533:一次函数及其应用;553:图形的全等;554:等腰三角形与直角三角形;556:矩形菱形正方形;69:应用意识.【分析】(1)分两种情况讨论,先求出直线y=kx+m与x轴的交点坐标,代入解析式可求k的值;(2)①过点C作CH⊥x轴,垂足为H,连接AC,BD交于点N,由“AAS”可证△ABO ≌△BCH,可得CH=BO=1,AO=BH=3,可得点C坐标,可求点N坐标,设x轴的“相关直线”l的解析式为:y=x+n或y=﹣x+n,将点N坐标代入可求解;②分两种情况讨论,将特殊点坐标代入解析式可求b的值,即可求b的取值范围.【解答】解:(1)∵A(0,3),B(﹣1,0),∴AO=3,BO=1,∵y=kx+m是x轴的“相关直线,∴直线y=kx+m与x轴夹角为45°,如图1,当直线y=kx+m与x轴交于正半轴,交点为F,∴∠AFO=45°,∴∠AFO=∠F AO=45°,∴OA=OF=3,∴点F(3,0),由题意可得:,解得:k=﹣1,当直线y=kx+m与x轴交于负半轴,交点为E,∴∠AEO=45°,∴∠AEO=∠EAO=45°,∴OA=OE=3,∴点E(﹣3,0),由题意可得:,∴k=﹣1,综上所述:k=±1,故答案为:±1;(2)如图2,过点C作CH⊥x轴,垂足为H,连接AC,BD交于点N,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,AN=CN,∴∠ABO+∠CBH=90°,又∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,又∵∠CHB=∠AOB=90°,∴△ABO≌△BCH(AAS),∴CH=BO=1,AO=BH=3,∴点C(﹣4,1),∵点N是AC的中点,∴点N(﹣2,2),设x轴的“相关直线”l的解析式为:y=x+n或y=﹣x+n,∵x轴的“相关直线”l平分正方形ABCD的面积,∴x轴的“相关直线”l过点N,∴2=﹣2+n或2=2+n,∴n=4或0,∴l的解析式为;y=x+4或y=﹣x;(3)∵x轴的“相关直线”交y轴于点M(0,b),∴设x轴的“相关直线”的解析式为:y=x+b或y=﹣x+b,∵点C(﹣4,1),A(0,3),B(﹣1,0),∴点D(﹣3,4),如图,当x轴的“相关直线”的解析式为:y=x+b,∵y=x+b与正方形ABCD有公共点,∴y=x+b与正方形ABCD至少有一个交点,∴当y=x+b过点D时,则4=﹣3+b,∴b=7,∴当y=x+b过点B时,则0=﹣1+b,∴b=1,∴1≤b≤7;当x轴的“相关直线”的解析式为:y=﹣x+b,∵y=﹣x+b与正方形ABCD有公共点,∴y=﹣x+b与正方形ABCD至少有一个交点,∴当y=﹣x+b过点A时,则3=0+b,∴b=3,∴当y=﹣x+b过点C时,则1=4+b,∴b=﹣3,∴﹣3≤b≤3;综上所述:当x轴的“相关直线”的比例系数为1时,1≤b≤7;当x轴的“相关直线”的比例系数为﹣1时,﹣3≤b≤3.。

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。

2019-2020学年浙江省温州市瑞安市八年级下学期期中数学试卷 (解析版)

2019-2020学年浙江省温州市瑞安市八年级下学期期中数学试卷 (解析版)

2019-2020学年浙江省温州市瑞安市八年级第二学期期中数学试卷一、选择题1.下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.42.下列化简结果正确的是()A.==B.+=C.==x D.3﹣2=13.一元二次方程3x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实根数C.只有一个实数根D.没有实数根4.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.AB=AD C.∠A≠∠C D.∠A+∠B=180°5.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=3 6.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2﹣9x+20=0D.x2+9x+20=0 7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=1828.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是矩形9.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为()cm.A.14B.16C.12或14D.14或1610.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,F是对角线AC上的一个动点,则FE+FB的最小值是()A.1B.C.2D.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.要使二次根式有意义,那么x的取值范围是.12.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为.13.已知菱形ABCD的两条对角线的长分别是x2﹣6x+8=0的两个根,则菱形ABCD的面积是.14.若一组数据2、3、x、4、5的平均数是4,则这组数据的方差为.15.如图,某小区规划在一个长30m、宽20m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成m.16.如图,在矩形ABCD中,AD=2,AB=4,点E是线段AD的中点,点F是线段AB内一点.连结EF,把△AEF沿EF折叠,当点A的对应点A′落在矩形ABCD 的对角线上时,AF的长为.三、解答题:共52分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)+×﹣;(2)﹣(2+)(2﹣).18.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.19.如图,在5×5的正方形网格中,每个小正方形的边长都是1,点A,B,C,D,E是五个格点,请在所给的网格中按下列要求画出图形.(1)从所给的五个格点中选出其中四个作为顶点做一个平行四边形.(2)过剩余一个点做一条直线l,使得直线l平分(1)小题中所做的平行四边形的面积.20.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况候选人A B C D E 模拟说题比赛成8375908590绩(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.C E平时成绩9585任课老师打分809021.如图,在▱ABCD中,点E,F分别在边BC和边AD上,且AF=CE,EF与对角线BD相交于点O.连接EF,BD.(1)求证:EF和BD互相平分.(2)若EF⊥BD,△ABF的周长为10,则▱ABCD的周长为多少?22.2019年12月以来,发现一种急性呼吸道病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.(1)在初期,有1人感染了,经过两轮传染后共有144人感染了(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?23.如图,在平面直角坐标系中,把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,OB′与CD相交于点E,BC=4,对角线OC所在直线的函数表达式为y=2x.(1)求证:△ODE≌△CB′E;(2)请写出CE的长和B′的坐标;(3)F是直线OC上一个动点,点G是矩形OBCD边上一点(包括顶点).是否存在点G使得G,F,B′,C所组成的四边形是平行四边形?如果不存在,请说明理由;如果存在,直接请求出F的坐标.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.4【分析】结合车标图案,根据轴对称图形与中心对称图形的概念求解.解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误;第二个图形,是轴对称图形,不是中心对称图形,故选项错误;第三个图形,是轴对称图形,不是中心对称图形,故选项错误;第四、五个是中心对称图形而不是轴对称图形,故选项正确.故选:B.2.下列化简结果正确的是()A.==B.+=C.==x D.3﹣2=1【分析】直接利用二次根式的加减运算法则以及二次根式的性质分别化简得出答案.解:A、==,故此选项正确;B、+,不是同类二次根式,无法计算,故此选项错误;C、==,故此选项错误;D、3﹣2,不是同类二次根式,无法计算,故此选项错误.故选:A.3.一元二次方程3x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实根数C.只有一个实数根D.没有实数根【分析】计算出判别式△=b2﹣4ac的值即可作出判断.解:∵a=3,b=﹣2,c=1,∴△=(﹣2)2﹣4×3×1=﹣4<0,∴方程没有实数根,故选:D.4.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.AB=AD C.∠A≠∠C D.∠A+∠B=180°【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,可得对角相等,邻角互补,继而求得答案.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,AD∥BC,∠A=∠C,∴∠A+∠B=180°.故一定正确的是D.故选:D.5.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=3【分析】直接利用选项中数据代入求出答案.解:当a=3,b=﹣2时,a2>b2,则a>b,故原命题是真命题;当a=2,b=1时,a2>b2,则a>b,故原命题是真命题;当a=﹣3,b=2时,a2>b2,则a<b,故原命题是假命题,符合题意;当a=﹣2,b=3时,a2<b2,则a<b,故原命题是真命题.故选:C.6.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2﹣9x+20=0D.x2+9x+20=0【分析】将已知数据从小到大顺序排列:2,3,4,4,5,5,5;根据众数和中位数的定义求出众数和中位数,再根据根与系数的关系造出方程即可.共7解:将已知数据从小到大顺序排列,得:2,3,4,4,5,5,5;共7个数据,处于中间的数据是第4个数据4,出现最多的数据是5,因此,这组数据的中位数是4,众数是5,以4,5为根的一元二次方程是x2﹣9x+20=0,故选:C.7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.8.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是矩形【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.解:A、对角线相等的四边形是矩形,是假命题,故此选项不合题意;B、对角线互相垂直的四边形是菱形,是假命题,故此选项不合题意;C、对角线互相平分的四边形是平行四边形,是真命题,故此选项符合题意;D、对角线互相垂直平分的四边形是矩形,是假命题,故此选项不合题意;故选:C.9.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为()cm.A.14B.16C.12或14D.14或16【分析】根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE 为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,BC=BE+CE=5cm,则平行四边形的周长=2(2+5)=14(cm);②当AB=BE=3cm时,CE=2cm,BC=BE+CE=5cm,则平行四边形的周长=2(3+5)=16(cm);故选:D.10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,F是对角线AC上的一个动点,则FE+FB的最小值是()A.1B.C.2D.【分析】连接BD,则AC垂直平分BD,FD=FB,当D,F,E在同一直线上时,FE+FB 的最小值等于DE的长,再根据△ABD是等边三角形,即可得到AE的长,进而得到FE+FB的最小值是.解:如图所示,连接BD,则AC垂直平分BD,FD=FB,∴FE+FB=FE+FD,∴当D,F,E在同一直线上时,FE+FD的最小值等于DE的长,∵AD=AB,∠BAD=60°,∴△ABD是等边三角形,又∵E是AB的中点,∴DE⊥AB,AE=1,∴Rt△ADE中,DE===,∴FE+FB的最小值是,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.要使二次根式有意义,那么x的取值范围是x<2.【分析】根据使二次根式有意义的条件可得2﹣x≥0,使分式有意义的条件可得2﹣x≠0,故2﹣x>0,再解不等式即可.解:根据题意可得:2﹣x>0,解得:x<2,故答案为:x<2.12.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为12.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.解:这个正多边形的边数:360°÷30°=12,故答案为:12.13.已知菱形ABCD的两条对角线的长分别是x2﹣6x+8=0的两个根,则菱形ABCD的面积是4.【分析】根据菱形的面积公式以及跟与系数的关系即可求出答案.解:设菱形的两条对角线长度为a、b,∴S菱形ABCD=ab,由根与系数的关系可知:ab=8,∴S菱形ABCD=4,故答案为:4.14.若一组数据2、3、x、4、5的平均数是4,则这组数据的方差为2.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.解:∵数据2、3、x、4、5的平均数是4,∴(2+3+x+4+5)÷5=4,∴x=6,∴这组数据的方差=[(2﹣4)2+(3﹣4)2+(6﹣4)2+(4﹣4)2+(5﹣4)2]=2;故答案为:2.15.如图,某小区规划在一个长30m、宽20m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成2m.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,解得x=2或x=﹣33(舍去).答:通道应设计成2米.故答案为:2.16.如图,在矩形ABCD中,AD=2,AB=4,点E是线段AD的中点,点F是线段AB内一点.连结EF,把△AEF沿EF折叠,当点A的对应点A′落在矩形ABCD的对角线上时,AF的长为或.【分析】分点A′落在对角线BD上和点A′落在对角线AC上两种情况分别进行讨论,由折叠的性质即可得出AF的长.解:分两种情况:①当点A′落在对角线BD上时,连接AA′,如图1所示:∵将矩形沿EF折叠,点A的对应点为点A′,且点A'恰好落在矩形的对角线上,∴AA′⊥EF,∵点E为线段AD的中点,∴AE=ED=EA′,∴∠AA′D=90°,即AA′⊥BD,∴EF∥BD,∴点F是AB的中点,∵AB=4,∴AF=2.②当点A′落在对角线AC上时,如图2所示,同理可知AA'⊥EF,∴∠AHE=90°,∴∠AEH+∠EAH=90°,∵∠EAH+∠ACD=90°,∴∠AEH=∠ACD,∴tan∠AEF==tan∠ACD=,∴,∴AF=.∴综合以上可得AF的长为2或.故答案为:2或.三、解答题:共52分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)+×﹣;(2)﹣(2+)(2﹣).【分析】(1)先利用二次根式的乘法法则运算,然后化简后合并即可;(2)利用二次根式的性质和平方差公式计算.解:(1)原式=3+﹣=3+﹣=3;(2)原式=3﹣(4﹣3)=3﹣1=2.18.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.【分析】(1)根据因式分解法节即可求出答案.(2)根据因式分解法即可求出答案.解:(1)∵x2﹣10x+16=0,∴(x﹣2)(x﹣8)=0,∴x=2或x=8.(2)∵2x(x﹣1)=x﹣1,∴(x﹣1)(2x﹣1)=0,∴x=1或x=.19.如图,在5×5的正方形网格中,每个小正方形的边长都是1,点A,B,C,D,E是五个格点,请在所给的网格中按下列要求画出图形.(1)从所给的五个格点中选出其中四个作为顶点做一个平行四边形.(2)过剩余一个点做一条直线l,使得直线l平分(1)小题中所做的平行四边形的面积.【分析】(1)直接利用平行四边形性质得出顶点位置;(2)直接利用平行四边形对角线平分面积进而得出答案.解:(1)如图所示:四边形ABDE即为所求;(2)如图所示:直线l即为所求.20.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况候选人A B C D E 模拟说题比赛成8375908590绩(1)5名候选人模拟说题比赛成绩的中位数是85;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.C E平时成绩9585任课老师打分8090【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:=88(分),又∵E的平均成绩是:=89(分),∴88<89,∴最终候选人E将参加说题比赛.21.如图,在▱ABCD中,点E,F分别在边BC和边AD上,且AF=CE,EF与对角线BD相交于点O.连接EF,BD.(1)求证:EF和BD互相平分.(2)若EF⊥BD,△ABF的周长为10,则▱ABCD的周长为多少?【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,求得DF=BE,DF∥BE,根据平行四边形的性质得到结论;(2)根据菱形的判定定理得到四边形FBED是菱形,求得BF=DF,于是得到结论.解:(1)在▱ABCD中,AD=BC,AD∥BC,∵AF=CE,∴AD﹣AF=BC﹣CE,∴DF=BE,DF∥BE,∴四边形FBED是平行四边形,∴EF和BD互相平分;(2)在▱FBED中,∵EF⊥BD,∴四边形FBED是菱形,∴BF=DF,∵△ABF的周长为10,∴AB+AF+BF=10,∴AB+AF+DF=10,即AB+AD=10,∴▱ABCD的周长为10×2=20.22.2019年12月以来,发现一种急性呼吸道病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.(1)在初期,有1人感染了,经过两轮传染后共有144人感染了(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?【分析】(1)设每轮传染中平均一个人传染了x人,根据1人感染经过两轮传染后共有144人感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小玲应该将售价定为y元,则每天可以卖出(80+10×)斤,根据总利润=每斤的利润×销售数量,即可得出关于y的一元二次方程,解之取其较小值即可得出结论.解:(1)设每轮传染中平均一个人传染了x人,依题意,得:1+x+x(1+x)=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮传染中平均一个人传染了11人.(2)设小玲应该将售价定为y元,则每天可以卖出(80+10×)斤,依题意,得:(y﹣4)(80+10×)=100,整理,得:y2﹣14y+45=0,解得:y1=5,y2=9(不合题意,舍去).答:小玲应该将售价定为5元.23.如图,在平面直角坐标系中,把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,OB′与CD相交于点E,BC=4,对角线OC所在直线的函数表达式为y=2x.(1)求证:△ODE≌△CB′E;(2)请写出CE的长和B′的坐标;(3)F是直线OC上一个动点,点G是矩形OBCD边上一点(包括顶点).是否存在点G使得G,F,B′,C所组成的四边形是平行四边形?如果不存在,请说明理由;如果存在,直接请求出F的坐标.【分析】(1)得出BC=B'C;∠B=∠B'=90°,OD=B'C,根据AAS可证明结论;(2)设CE=x,可得OE=x,则DE=8﹣x;得出42+(8﹣x)2=x2,解方程得x=5,即求出CE,过点B'作B'H⊥CE,可求出B'H=2.4,HE=1.8,则答案可求出;(3)连接B'D,证明OC∥B'D,分三种情况画出图形:①如图2,若以CG为对角线,点G与点D重合,②如图3,若以CF为对角线,点G与点B重合,③如图4,若以CB'为对角线,点G与点D重合,由平移规律及平行四边形的性质分别求出点F的坐标即可.解:(1)∵四边形OBCD是矩形,∴BC=OD;∠B=∠D=90°,∵把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,∴BC=B'C;∠B=∠B'=90°,∴OD=B'C,又∵∠OED=∠B'EC,∴△ODE≌△CB'E(AAS);(2)∵BC=4,对角线OC所在直线的函数表达式为y=2x.∴x=4,y=8,∴OD=BC=4,CD=OB=8,∵△ODE≌△CB'E,∴CE=OE,设CE=x,可得OE=x,则DE=8﹣x;∵∠ODE=90°,∴OD2+DE2=OE2,∴42+(8﹣x)2=x2,解得x=5,∴CE=5,∴DO=B'C=4,DE=B'E=3,过点B'作B'H⊥CE,∵S△CB'E=CE×B'H=CB'×B'E,∴B'H×5=3×4,∴B'H=2.4,HE=1.8,∴B'的坐标为(6.4,4.8).(3)连接B'D,∵CE=OE,B'E=DE,∴∠OCE=∠COE,∠EDB'=∠EB'D,又∵∠OEC=∠EDB',∴∠OCE=∠EDB',∴OC∥B'D,分三种情况画出图形:①如图2,若以CG为对角线,点G与点D重合,∵B'(6.4,4.8),C(4,8),D(4,0),∴F(4﹣2.4,0+3.2),即F(1.6,3.2).②如图3,若以CF为对角线,点G与点B重合,∵C(4,8),B'(6.4,4.8),B(0,8),∴F(0+2.4,8﹣3.2),即F(2.4,4.8).③如图4,若以CB'为对角线,点G与点D重合,∵D(4,0),B'(6.4,4.8),C(4,8),∴F(4+2.4,8+4.8),即F(6.4,12.8).。

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年浙江省温州市八年级(下)期末数学试卷一、选择題(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(3分)在直角坐标系中,若点Q与点P(2,3)关于原点对称,则点Q的坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣3,﹣2)2.(3分)下列选项中的图形,不属于中心对称图形的是()A.B.C.D.3.(3分)如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于()、A.110°B.115°C.120°D.125°4.(3分)下列选项中的计算,正确的是()A.=±3 B.2C.=﹣5 D.=5.(3分)如图,五边形ABCDE的每一个内角都相等,则外角∠CBF等于()A.60°B.72°C.80°D.108°6.(3分)人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程()…A.100(1+x)=196 B.100(1+2x)=196C.100(1+x2)=196 D.100(1+x)2=1967.(3分)若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10 B.﹣9 C.9 D.108.(3分)已知点(﹣2,y1),(﹣1,y2),(4,y3)在函数y=的图象上,则()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 9.(3分)如图,架在消防车上的云梯AB长为10m,∠ADB=90°,AD=2BD,云梯底部离地面的距离BC为2m,则云梯的顶端离地面的距离AE为())A.(2+2)m B.(4+2)m C.(5+2)m D.7m10.(3分)《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6B.3﹣3C.3﹣2D.3﹣二、填空题(共8小题,每小题3分,满分24分)11.(3分)要使二次根式有意义,则x的取值范围是.12.(3分)用反证法证明“如果|a|>a,那么a<0.”是真命题时,第一步应先假设.13.(3分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为.'14.(3分)为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示,若S甲2和S乙2分别表示甲、乙两块地苗高数据的方差,则S甲2S乙2(填“>”“<”或“=”)15.(3分)如图,在▱ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.16.(3分)用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是.17.(3分)如图,将菱形纸片ABCD折叠,使点C,D的对应点C′,D′都落在直线AB 上,折痕为EF.若EF=6,AC′=8,则阴影部分(四边形ED′BF)的面积为.18.(3分)如图,点A,B分别在x轴、y轴上,点O关于AB的对称点C在第一象限,将△ABC沿x轴正方向平移k个单位得到△DEF(点B与E是对应点),点F落在双曲线y =上,连结BE交该双曲线于点G.若∠BAO=60°,OA=2GE,则k的值为.:三、解答题(本题有6小题,共46分,解答时需要写出必要的文字说明、演算步骤或证明过程)19.(8分)(1)计算:÷(2)解方程:(x+2)2=920.(6分)如图,在正方形方格纸中,线段AB的两个端点和点P都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以AB为边的平行四边形,使点P落在AB的对边上(不包括端点);(2)在图乙中画一个以AB为对角线的菱形,使点P落在菱形的内部(不包括边界)(注:图甲、图乙在答卷纸上).—21.(6分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:捐款金(元)203050A801002816x47:人数(人)根据表中提供的信息回答下列问题:、(1)x的值为,捐款金额的众数为元,中位数为元;(2)已知全班平均每人捐款57元,求a的值.22.(8分)如图,矩形ABCD 的边BC在x轴上,点A(a,4)和D分别在反比例函数y=﹣和y=(m>0)的图象上.(1)当AB=BC时,求m的值;(2)连结OA,OD.当OD平分∠AOC时,求△AOD的周长.23.(8分)阳光小区附近有一块长100m,宽80m的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度7倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图1所示,设步道的宽为a(m).(1)求步道的宽;(2)为了方便市民进行跑步健身,现按如图2所示方案增建塑胶跑道.已知塑胶跑道的宽为1m,长方形区域甲的面积比长方形区域乙大441m2,且区域丙为正方形,求塑胶跑道的总面积.24.(10分)如图,点C在线段AB上,过点C作CD⊥AB,点E,F分别是AD,CD的中点连结EF并延长EF至点G,使得FG=CB,连结CE,GB,过点B作BH∥CE交线段EG于点H(1)求证:四边形FCBG是矩形;(2)已知AB=10,=,①当四边形ECBH是菱形时,求EG的长;②连结CH,DH,记△DEH的面积为S1,△CBH的面积为S2.若EG=2FH,求S1+S2的值.》2018-2019学年浙江省温州市八年级(下)期末数学试卷参考答案与试题解析一、选择題(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(3分)在直角坐标系中,若点Q与点P(2,3)关于原点对称,则点Q的坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣3,﹣2)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:∵点Q与点P(2,3)关于原点对称,<∴点Q的坐标是:(﹣2,﹣3).故选:C.【点评】此题主要考查了关于原点对称点的性质,正确掌握关于原点对称点的性质是解题关键.2.(3分)下列选项中的图形,不属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断.【解答】解:A、属于中心对称图形;—B、不属于中心对称图形;C、属于中心对称图形;D、属于中心对称图形;,故选:B.【点评】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.(3分)如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于()A.110°B.115°C.120°D.125°。

【分析】根据矩形的性质可得∠BAO=∠ABO=55°,再依据三角形外角性质可知∠AOD =∠BAO+∠ABO=55°+55°=110°.【解答】解:∵四边形ABCD是矩形,∴OA=OB.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选:A.【点评】本题主要考查了矩形的性质,矩形中对角线互相平分且分成的四条线段都相等.4.(3分)下列选项中的计算,正确的是()、A.=±3B.2C.=﹣5D.=【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=3,故此选项错误;B、2﹣=,故此选项错误;C、=5,故此选项错误;D、=,正确.故选:D.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.—5.(3分)如图,五边形ABCDE的每一个内角都相等,则外角∠CBF等于()A.60°B.72°C.80°D.108°【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【解答】解:360°÷5=72°.故外角∠CBF等于72°.故选:B.【点评】考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.,6.(3分)人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程()A.100(1+x)=196B.100(1+2x)=196C.100(1+x2)=196D.100(1+x)2=196【分析】设月平均增长率为x,根据三月及五月的销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长率为x,根据题意得:100(1+x)2=196.故选:D.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.^7.(3分)若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.10【分析】根据方程无实数根得出关于a的不等式,求出不等式的解集,再进行判断即可.【解答】解:∵关于x的方程x2+6x﹣a=0无实数根,∴△=62﹣4×1×(﹣a)<0,解得:a<﹣9,∴只有选项A符合,故选:A.[【点评】本题考查了解一元一次不等式和根的判别式,能根据判别式的内容和已知得出关于a的不等式是解此题的关键.8.(3分)已知点(﹣2,y1),(﹣1,y2),(4,y3)在函数y=的图象上,则()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1【分析】根据反比例函数图象和性质,在每个象限内,y随x的增大而减小,(﹣2,y1),(﹣1,y2)在同一象限,可直接判断,而(4,y3)在第一象限,综合起来可对y1,y2,y3.也可以代入求出y1、y2、y3,再比较也可.【解答】解:∵反比例函数y=的图象位于第一、三象限,∴在每个象限内y随x的增大而减小,∵点(﹣2,y1),(﹣1,y2)都在第三象限,﹣2<﹣1,、∴y2<y1<0,∵点(4,y3)在第一象限反比例函数图象上的点,∴y3>0,因此:y2<y1<y3.故选:A.【点评】考查反比例函数图象和性质,根据函数的增减性和点所在的象限做出判断,用图象法更直观.9.(3分)如图,架在消防车上的云梯AB长为10m,∠ADB=90°,AD=2BD,云梯底部离地面的距离BC为2m,则云梯的顶端离地面的距离AE为()…A.(2+2)m B.(4+2)m C.(5+2)m D.7m【分析】设AD=x米,由AD:BD的比值以及AB的长,利用勾股定理可建立方程,求出AD的长再加DE即BC的长,即可求出云梯的顶端离地面距离AE的大小.【解答】解:设AD=x米,∴BD=0.5x,∵AB长为10m,∴AD2+BD2=152,∴x2+0.25x2=100,解得:x=4米,>∴AE=AD+DE=(4+2)米,∴云梯顶端离地面的距离AE为(4+2)米.故选:B.【点评】本题考查了解直角三角形的应用,解题的关键是构造出直角三角形,将实际问题抽象成纯数学问题,难度不大.10.(3分)《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6B.3﹣3C.3﹣2D.3﹣【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.@【解答】解:x2+6x+m=0,x2+6x=﹣m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x 的矩形,得到大正方形的面积为36+()2×4=36+9=45,则该方程的正数解为﹣3=3﹣3.故选:B.|【点评】此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.二、填空题(共8小题,每小题3分,满分24分)11.(3分)要使二次根式有意义,则x的取值范围是x≥2.【分析】根据被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.`12.(3分)用反证法证明“如果|a|>a,那么a<0.”是真命题时,第一步应先假设a≥0.【分析】直接利用反证法的步骤,即可得出答案.【解答】解:用反证法证明“如果|a|>a,那么a<0.”是真命题时,第一步应先假设:a ≥0.故答案为:a≥0.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.13.(3分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为y=.【分析】根据题意先求出需向水池中注水量,再根据时间、速度和总量之间的关系列出函数关系式即可.【解答】解:∵水池容积为300m3,原有水100m3,;∴还需向水池中注水300﹣100=200m3,∵向水池中注水的速度是xm3/min,∴y关于x的函数表达式为y=;故答案为:y=.【点评】本题考查的是函数关系式,根据题意列出反比例函数的关系式是解答此题的关键.14.(3分)为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示,若S甲2和S乙2分别表示甲、乙两块地苗高数据的方差,则S甲2<S乙2(填“>”“<”或“=”)【分析】根据统计图中的数据的离散程度,发现甲的离散程度显然要小于乙,因此S甲2<S乙2*【解答】解:从整体上看,甲的10株麦苗比较集中,整齐,而乙的则显得分散,乙的离散程度较大,因此乙的方差也大,故答案为:<【点评】考查方差的意义,方差是用来反映一组数据的离散程度的统计量,方差越小,越整齐越稳定,离散程度小,反之就越大,通过观察直接得出结果,无需计算,也是数学中估算的应用.15.(3分)如图,在▱ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.16.(3分)用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是16.【分析】根据配方法可以将题目中的方程变形,然后根据题意即可得到m和n的值,从而可以求得m+n的值.【解答】解:∵x2﹣mx=1,$∴(x﹣)2=1+,∵一元二次方程x2﹣mx=1配方成(x﹣3)2=n,∴,得,∴m+n=6+10=16,故答案为:16.【点评】本题考查解一元二次方程﹣配方法,解答本题的关键是明确解一元二次方程的方法.17.(3分)如图,将菱形纸片ABCD折叠,使点C,D的对应点C′,D′都落在直线AB 上,折痕为EF.若EF=6,AC′=8,则阴影部分(四边形ED′BF)的面积为10.·【分析】根据折叠得和菱形的性质可得EF=AB=C′D′=6,要求阴影部分的面积,求出EF、D′B、EM即可,根据当时的性质可证AD′=BC′,同时可得到△EAD′是等腰三角形,进而求出AM,EM,再利用梯形的面积公式求出面积即可.【解答】解:∵ABCD是菱形,∴AB=BC=CD=DA=EF=6,由折叠得,ED=ED′,FC=FC′,CD=C′D′=6∵折叠后DC落在直线AC上,∴EF∥CD、E、F是AD、BC的中点,∵AD′+D′B=D′B+BC′∴AD′=BC′、∵AB=C′D′=6,AC′=8,∴AD′=BC′=2,D′B=4,过E作EM⊥AB,垂足为M,则AM=MD′=1,在Rt△AEM中,由勾股定理得:EM==2,S阴影部分=(D′B+EF)•EM=(4+6)×=10,故答案为:10.【点评】考查菱形的性质、轴对称的性质、等腰三角形的性质和判定以及勾股定理等知识,由折叠就可以得到相等的边和角,进而将问题转化另一个图形中,再根据图形的性质求出相关的结论是常用的方法.!18.(3分)如图,点A,B分别在x轴、y轴上,点O关于AB的对称点C在第一象限,将△ABC沿x轴正方向平移k个单位得到△DEF(点B与E是对应点),点F落在双曲线y =上,连结BE交该双曲线于点G.若∠BAO=60°,OA=2GE,则k的值为.【分析】设OA=m,解直角三角形求得OB=m,C(m,m),根据题意得出F (k+m,m),G(k﹣m,m),根据反比例函数系数k的几何意义得出k+m)•m=(k﹣m)•m,整理得m=k,得出F(k,k),代入解析式即可求得k的值.【解答】解:作CM⊥x轴于M,设OA=m,∵∠BAO=60°,∴OB=OA=m,∵点O、C关于AB的对称,@∴∠BAC=∠BAO=60°,AC=OA=m,∴∠CAM=60°,∴AM=AC=m,CM=AC=m,∴C(m,m),∵将△ABC沿x轴正方向平移k个单位得到△DEF,∴F(k+m,m),∴OA=2GE,∴GE=m,'∴G(k﹣m,m),∵G、F在双曲线y=上,∴(k+m)•m=(k﹣m)•m,整理得m=k,∴F(k,k),∴k•k=k,解得k=,故答案为.…【点评】本题考查了反比例函数系数k的几何意义,平移的性质,表示出F、G的坐标是解题的关键.三、解答题(本题有6小题,共46分,解答时需要写出必要的文字说明、演算步骤或证明过程)19.(8分)(1)计算:÷(2)解方程:(x+2)2=9【分析】(1)先进行二次根式的除法运算,然后化简后合并即可;(2)利用直接开平方法解方程.【解答】解:(1)原式=3﹣=3﹣2】=;(2)x+2=±3,所以x1=1,x2=﹣5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(6分)如图,在正方形方格纸中,线段AB的两个端点和点P都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以AB为边的平行四边形,使点P落在AB的对边上(不包括端点);(2)在图乙中画一个以AB为对角线的菱形,使点P落在菱形的内部(不包括边界)(注:图甲、图乙在答卷纸上)./【分析】(1)利用数形结合的思想画出满足条件的平行四边形即可.(2)利用数形结合的思想画出满足条件的菱形即可.【解答】解:(1)满足条件的平行四边形ABCD如图所示.(2)满足条件的菱形AEBF如图所示.【点评】本题考查作图﹣应用与设计,平行四边形的判定和性质,菱形的判定的和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.(6分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:203050A80100 $捐款金(元)人数(人):816x472根据表中提供的信息回答下列问题:(1)x的值为3,捐款金额的众数为50元,中位数为50元;;(2)已知全班平均每人捐款57元,求a的值.【分析】(1)从40人减去已知的人数即得x的值,根据中位数、众数的意义分别求出即可,(2)根据全班平均每人捐款57元,全班40人,可求出全班的捐款总数,减去已知的捐款数即得x人的捐款数,进而求出A的值,【解答】解:(1)x=40﹣2﹣8﹣16﹣4﹣7=3,捐款数共有40个数,处在第20、21位的两个数都是50元,因此中位数是50元,捐款50元的有16人,50元出现次数最多,因此众数是50元,故答案为:3,50,50,(2)由题意得:20×2+30×8+50×16+3a+80×4+100×7=57×40,解得:a=60,答:a的值为60元.》【点评】考查平均数、中位数、众数的意义及求法,理解平均数、中位数、众数的意义是前提,掌握计算方法是关键.22.(8分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比例函数y =﹣和y=(m>0)的图象上.(1)当AB=BC时,求m的值;(2)连结OA,OD.当OD平分∠AOC时,求△AOD的周长.【分析】(1)利用反比例函数图象上点的坐标特征可求出点A的坐标及OB的长,由矩形的性质结合AB=BC,可得出CD,OC的长,进而可得出点D的坐标,再利用反比例函数图象上点的坐标特征可求出m的值;(2)在Rt△ABO中,利用勾股定理可求出OA的长,由角平分线的定义结合平行线的性质可得出∠ADO=∠AOD,进而可得出DA=OA=5,结合OC=DA﹣OB可求出OC的长,在Rt△OCD中,利用勾股定理可求出OD的长,再利用三角形的周长公式可求出△AOD的周长.【解答】解:(1)当y=4时,﹣=4,解得:a=﹣3,.∴OB=3,点A的坐标为(﹣3,4).∵四边形ABCD为矩形,AB=BC,∴AB=BC=CD=4,∴OC=BC﹣OB=1,∴点D的坐标为(1,4).∵点D(1,4)在反比例函数y=(m>0)的图象上,∴m=1×4=4.(2)在Rt△ABO中,AB=4,OB=3,·∴OA==5.∵OD平分∠AOC,∴∠AOD=∠DOC.∵AD∥BC,∴∠ADO=∠DOC,∴∠ADO=∠AOD,∴DA=OA=5,∴OC=DA﹣OB=2.】在Rt△OCD中,OC=2,CD=4,∴OD==2,∴△AOD的周长=OD+DA+AO=10+2.【点评】本题考查了反比例函数图象上点的坐标特征、矩形的性质、勾股定理、角平分线、平行线的性质以及等腰三角形的性质,解题的关键是:(1)利用矩形的性质,找出点D的坐标;(2)利用勾股定理及等腰三角形的性质,求出OA,DA,OD的长.23.(8分)阳光小区附近有一块长100m,宽80m的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度7倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图1所示,设步道的宽为a(m).(1)求步道的宽;(2)为了方便市民进行跑步健身,现按如图2所示方案增建塑胶跑道.已知塑胶跑道的宽为1m,长方形区域甲的面积比长方形区域乙大441m2,且区域丙为正方形,求塑胶跑道的总面积.—【分析】(1)根据“两条步道的总面积与正方形休闲广场的面积相等”列出方程并解答;(2)根据“长方形区域甲的面积比长方形区域乙大44m2”求得BC=EF=21m,所以再结合图形和矩形的面积公式解答.【解答】解:(1)由题意,得100a+80a﹣a2=(7a)2化简,得a2=3.6a.∵a>0.∴a=3.6.}答:步道的宽为3.6m;(2)由题意,得AB﹣DE=100﹣80+1=21(m),∴BC=EF==21(m)∴塑胶跑道的总面积为1×(100+80+21﹣2)=199(m2)【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.!24.(10分)如图,点C在线段AB上,过点C作CD⊥AB,点E,F分别是AD,CD的中点连结EF并延长EF至点G,使得FG=CB,连结CE,GB,过点B作BH∥CE交线段EG于点H(1)求证:四边形FCBG是矩形;(2)已知AB=10,=,①当四边形ECBH是菱形时,求EG的长;②连结CH,DH,记△DEH的面积为S1,△CBH的面积为S2.若EG=2FH,求S1+S2的值.【分析】(1)证明EF是△ADC的中位线,得出EF∥AC,即FG∥CB,证出四边形FCBG 是平行四边形,由CD⊥AB,即可得出四边形FCBG是矩形;(2)①由三角形中位线定理得出EF=AC,DF=DC,得出==,设EF=3x,则DF=CF=4x,AC=6x,由勾股定理得出CE==5x,由菱形的性质得出BC=CE=5x,AB=AC+CB=6x+5x=10,解得:x=,由矩形的性质得出FG=BC,即可得出结果;"②证明四边形ECBH是平行四边形,得出EH=BC,证出S1+S2=2S2,EF=HG,当点H 在线段FG上时,设EF=HG=a,得出EG=4a,AC=2EF=2a,BC=FG=3a,得出方程2a+3a=10,解得:a=2,得出S1+S2=2S2=2××3a×a=4a2=4×22=16;当点H在线段EF上时,证出四边形ECBH是平行四边形,得出EH=BC,由矩形的性质得出BC=FG=EH,设EH=FG=a,得出FH=EF+HG=2a,同理可得:AC=6a,BC=a,FC=4a,得出方程6a+a=10,解得:a=,得出S1+S2=2S2=2××a×4a=4a2=4×()2=即可.【解答】(1)证明:∵点E,F分别是AD,CD的中点,∴EF是△ADC的中位线,∴EF∥AC,即FG∥CB,∵FG=CB,∴四边形FCBG是平行四边形,∵CD⊥AB,即∠FCB=90°,∴四边形FCBG是矩形;@(2)解:①∵EF是△ADC的中位线,∴EF=AC,DF=DC,∴==,设EF=3x,则DF=CF=4x,AC=6x,∵∠EFC=90°,∴CE===5x,∵四边形ECBH是菱形,∴BC=CE=5x,AB=AC+CB=6x+5x=10,解得:x=,∵四边形FCBG是矩形,∴FG=BC,∴EG=EF+FG=EF+BC=3x+5x=8x=;②∵EH∥BC,BH∥CE,∴四边形ECBH是平行四边形,∴EH=BC,∵DF=CF,∴S△DEH=S△CBH,∴S1+S2=2S2,∵EH=BC=FG,∴EF=HG,当点H在线段FG上时,如图1所示:设EF=HG=a,∵EG=2FH,EF+HG=FH,∴EG=4a,AC=2EF=2a,BC=FG=3a,∴AB=AC+BC=2a+3a=10,解得:a=2,∵DF=CF=EF=a,∴S1+S2=2S2=2××3a×a=4a2=4×22=16;当点H在线段EF上时,如图2所示:∵EH∥BC,BH∥CE,∴四边形ECBH是平行四边形,∴EH=BC,∵四边形FCBG是矩形,∴BC=FG=EH,设EH=FG=a,∵EG=2FH,∴FH=EF+HG=2a,同理可得:AC=6a,BC=a,FC=4a,∴AB=AC+BC=6a+a=10,解得:a=,∴S1+S2=2S2=2××a×4a=4a2=4×()2=;综上所述,S1+S2的值为:16或.【点评】本题是四边形综合题目,考查了平行四边形的判定与性质、三角形中位线定理、菱形的性质、矩形的判定与性质、勾股定理等知识;本题综合性强,有一定难度,熟练掌握平行四边形和矩形的判定与性质是解题的关键.。

相关文档
最新文档