初中数学投影与视图经典测试题附答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.如图所示几何体的左视图是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据左视图是从左边看得到的图形,可得答案.
【详解】
从左边看是:
故选B.
【点睛】
本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.
15.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )
此题主要考查简单几何体的三视图,熟练画图是解题关键.
19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()
A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图
【答案】A
【解析】
画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.
【答案】C
【解析】
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】
解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,
故选C.
【点睛】
本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【解析】
【分析】
由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.
【详解】
解:从左面看可得到从左到右分别是3,1个正方形.
故选C.
【点睛】
查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
12.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.
【详解】
A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;
B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;
初中数学投影与视图经典测试题附答案
一、选择题
1.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()
A.60πcm2B.65πcm2C.90πcm2D.130πcm2
【答案】B
【解析】
【分析】
先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
则这个长方体的表面积为
故选:C.
【点睛】
本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.
3.如图,由6个小正方体搭建而成的几何体的俯视图是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.
【详解】
解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,
所以圆锥的母线长= (cm)
所以这个圆锥的侧面积= (cm2),
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
故选C.
【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.
18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据简单几何体的三视图即可求解.
【详解】
解:左视图有3列,每列小正方形数目分别为2、1、1.
故选:C.
【点睛】
【详解】
解:根据三视图的概念,俯视图是
故选C.
【点睛】
考点:三视图.
4.下面四个几何体中,俯视图是圆的几何体共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.
5.下面是一个几何体的俯视图,那么这个几何体是()
A. B. C. D.
【分析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
ቤተ መጻሕፍቲ ባይዱ【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
8.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()
A.3B.4C.5D.6
【答案】D
【解析】
【分析】
根据主视图和左视图画出可能的俯视图即可解答.
【答案】B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
7.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
【答案】D
【解析】
17.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】C
【解析】
【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.
【详解】观察几何体,可得三视图如图所示:
可知俯视图是中心对称图形,
A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大
【答案】A
【解析】
【分析】
可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.
【详解】
假设小正方形的边长是1,
主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;
A. B. C. D.
【答案】C
【解析】
试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是 ,故选C.
16.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()
20.如图所示,该几何体的俯视图是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据三视图的画法即可得到答案.
【详解】
解:从上面看是三个矩形,符合题意的是C,
故选:C.
【点睛】
此题考查简单几何体的三视图,明确三视图的画法是解题的关键.
A. B. C. D.
【答案】C
【解析】
试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
故选C
11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()
A. B. C. D.
【答案】C
【答案】B
【解析】
【分析】
根据各个选项中的几何体的俯视图即可解答.
【详解】
解:由图可知,
选项B中的图形是和题目中的俯视图看到的一样,
故选:B.
【点睛】
本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.
6.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
2.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()
A.48B.57C.66D.
【答案】C
【解析】
【分析】
先根据三视图画出长方体,再根据三视图得出 ,然后根据正方形的性质求出 的长,最后根据长方体的表面积公式即可得.
【详解】
由题意,画出长方体如图所示:
由三视图可知, ,四边形ACBD是正方形
【解析】
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
从正面看第一层是三个小正方形,第二层右边一个小正方形,
故选A.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.
10.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()
左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;
俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;
因此,主视图的面积最大.
故答案为A.
【点睛】
本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.
C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;
D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,
故选C.
【点睛】
本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.
13.如图是某个几何体的三视图,该几何体是()
A.三棱柱B.圆柱C.六棱柱D.圆锥
【详解】
由主视图和左视图得到俯视图中小正方形的个数可能为:
∴这个几何体的小正方形的个数可能是3个、4个或5个,
故选:D.
【点睛】
此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键.
9.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为( )
A. B. C. D.
【答案】A
A. B. C. D.
【答案】B
【解析】
【分析】
根据左视图是从左边看得到的图形,可得答案.
【详解】
从左边看是:
故选B.
【点睛】
本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.
15.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )
此题主要考查简单几何体的三视图,熟练画图是解题关键.
19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()
A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图
【答案】A
【解析】
画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.
【答案】C
【解析】
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】
解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,
故选C.
【点睛】
本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【解析】
【分析】
由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.
【详解】
解:从左面看可得到从左到右分别是3,1个正方形.
故选C.
【点睛】
查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
12.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.
【详解】
A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;
B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;
初中数学投影与视图经典测试题附答案
一、选择题
1.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()
A.60πcm2B.65πcm2C.90πcm2D.130πcm2
【答案】B
【解析】
【分析】
先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
则这个长方体的表面积为
故选:C.
【点睛】
本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.
3.如图,由6个小正方体搭建而成的几何体的俯视图是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.
【详解】
解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,
所以圆锥的母线长= (cm)
所以这个圆锥的侧面积= (cm2),
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
故选C.
【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.
18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据简单几何体的三视图即可求解.
【详解】
解:左视图有3列,每列小正方形数目分别为2、1、1.
故选:C.
【点睛】
【详解】
解:根据三视图的概念,俯视图是
故选C.
【点睛】
考点:三视图.
4.下面四个几何体中,俯视图是圆的几何体共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.
5.下面是一个几何体的俯视图,那么这个几何体是()
A. B. C. D.
【分析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
ቤተ መጻሕፍቲ ባይዱ【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
8.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()
A.3B.4C.5D.6
【答案】D
【解析】
【分析】
根据主视图和左视图画出可能的俯视图即可解答.
【答案】B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
7.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
【答案】D
【解析】
17.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】C
【解析】
【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.
【详解】观察几何体,可得三视图如图所示:
可知俯视图是中心对称图形,
A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大
【答案】A
【解析】
【分析】
可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.
【详解】
假设小正方形的边长是1,
主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;
A. B. C. D.
【答案】C
【解析】
试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是 ,故选C.
16.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()
20.如图所示,该几何体的俯视图是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据三视图的画法即可得到答案.
【详解】
解:从上面看是三个矩形,符合题意的是C,
故选:C.
【点睛】
此题考查简单几何体的三视图,明确三视图的画法是解题的关键.
A. B. C. D.
【答案】C
【解析】
试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
故选C
11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()
A. B. C. D.
【答案】C
【答案】B
【解析】
【分析】
根据各个选项中的几何体的俯视图即可解答.
【详解】
解:由图可知,
选项B中的图形是和题目中的俯视图看到的一样,
故选:B.
【点睛】
本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.
6.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
2.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()
A.48B.57C.66D.
【答案】C
【解析】
【分析】
先根据三视图画出长方体,再根据三视图得出 ,然后根据正方形的性质求出 的长,最后根据长方体的表面积公式即可得.
【详解】
由题意,画出长方体如图所示:
由三视图可知, ,四边形ACBD是正方形
【解析】
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
从正面看第一层是三个小正方形,第二层右边一个小正方形,
故选A.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.
10.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()
左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;
俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;
因此,主视图的面积最大.
故答案为A.
【点睛】
本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.
C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;
D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,
故选C.
【点睛】
本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.
13.如图是某个几何体的三视图,该几何体是()
A.三棱柱B.圆柱C.六棱柱D.圆锥
【详解】
由主视图和左视图得到俯视图中小正方形的个数可能为:
∴这个几何体的小正方形的个数可能是3个、4个或5个,
故选:D.
【点睛】
此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键.
9.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为( )
A. B. C. D.
【答案】A