二次函数单元测试试卷[上学期] 浙教版

合集下载

浙教版数学九年级上册第1单元 二次函数能力测试(含答案)

浙教版数学九年级上册第1单元 二次函数能力测试(含答案)

浙教版数学九年级上册第一单元二次函数能力测试一,选择题(共10小题,每小题3分,共30分)1.将抛物线y =x 2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数 关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-22. 某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为( )A.I=R 2 B. I=R 3 C. I=R 6 D. I=-R6 3..已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A.1个 B.2个 C.3个 D.4个4.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >> 5.已知反比例函数y =(b 为常数),当x >0时,y 随x 的增大而增大,则一次函数y =x +b 的图象不经过第几象限( ) A.一 B.二 C.三 D.四6.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A .3- B .3 C .6- D .97.如图,两个反比例函数1y x=和2y x =-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形P AB 的面积为( ) A ,3 B ,4 C ,92D ,5 8. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数xky =(x >0)的图象与△ABC 有公共点,则k 的取值范围是( )x yAP B DC O 1l 2l第6题 第7题A.2≤k ≤9B.2≤k ≤8C.2≤k ≤5D.5≤k ≤89.二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <110.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x ≤8)之间函数关系可以用图象表示为( )二,填空题(共6小题,每小题4分,共24分)11.下列函数:①y=2x ﹣1;②y=﹣;③y=x 2+8x ﹣2;④y=;⑤y=;⑥y=中,y 是x的反比例函数的有 .(填序号)12、已知下列函数 ①2y x = ②2y x =- ③()212y x =-+,其中,图象通过平移可以得到函数223y x x =+-的图像的有 (填写所有正确选项的序号)13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 14.如图,已知函数y=2x 和函数的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则满足条件的P 点坐标是 ______ ___ .15. 把二次函数2)1(2+-=x y 的图象绕原点旋转180°后得到的图象解析式为。

浙教版九年级上册:第一章 二次函数 单元测试(含答案)

浙教版九年级上册:第一章 二次函数 单元测试(含答案)

第1章综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C ).A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=02.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C ).A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C ).A.16m 2 B.12m 2 C.18m 2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C ).A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D ).A.abc >0B.b <a+cC.a+b+c <0D.c <2b(第5题)(第6题)(第7题)(第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为(A ).A.343 B.241 C.32D.38.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为(D ).A.m=21n B.m=41n C.m=21n 2D.m=41n 210.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为(D ).A.25 B.2 C.23 D.21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=25,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m <0,∴此种情形不合题意.∴m+n=-2+25=21.故选D.二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是y=3(x+2)2+3(只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为.(第12题)(第13题)(第14题)(第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是(-2,0).14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为y=-34x 2+38x+1.15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为y=60+x.16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25).(1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?【答案】(1)设抛物线的函数表达式为y=a (x-2)2-3,把(1,-25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略.(2)∵抛物线对称轴为直线x=2,且a>0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x-21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8).(2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点,(1)求A ,B 两点的坐标.(2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A ,B 两点的坐标分别为(0,3),(1,4).(2)∵A ,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23.(3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:地铁站A B C D E x(km)89111.513y 1(min)182222528(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min.21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A.(1)当a=21时,求点A 的坐标.(2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b <0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0).(2)∵b 2=2a ,∴a=21b 2,∴y=21b 2x 2+bx+21=21(bx+1)2.当y=0时,x=-b 1,∴A (-b 1,0).将点A (-b 1,0)代入y=x+k ,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m=22b b -.∴m=22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x -y+1)=0.当x 2+2x=0,x -y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k ≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m ≤-1.23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】(1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q ∵P 在y=41x 2-1上,∴P (m ,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH.(3)①∵M (2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m=-45.∵GN=2+m=2-45=43,∴N (2,-43).。

浙教版九年级数学上册第一章二次函数单元测试卷含答案

浙教版九年级数学上册第一章二次函数单元测试卷含答案

第一章 二次函数单元测试卷(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )A .x 1=1,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个9.已知二次函数y =ax 2+bx +c 的图象如图,①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数的图象在同一坐标系中大致是( )O O O O O y y yy y xxxxx-11A .B .C .D .二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m .14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 .16.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相 同,则此函数关系式______.17.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y =ax 2+1与双曲线y =xm的交点A 的横坐标是2,则关于x 的不等式xm+ax 2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点, 且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。

新浙教版九年级数学上册《二次函数》测试卷(附答案)

新浙教版九年级数学上册《二次函数》测试卷(附答案)

新浙教版九年级数学上册《二次函数》测试卷(附答案)二次函数测试卷(100分,90分钟)一、选择题(每题3分,共30分)1.下列函数中,y是x的二次函数的是()A。

y = (2x-1) - (2x+1)(2x-1)B。

y = x-1C。

y = 1/2D。

x-2y-2 = 2x-12.(2012,德阳,一题多解)在同一平面直角坐标系内,将函数图象沿x轴方向向右平移2个单位后再沿y轴向下平移1个单位,得到图象的顶点坐标是()A。

(-1,1)B。

(1,-2)C。

(2,-2)D。

(1,-1)3.(2012,滨州)抛物线y = -3x^2 - x + 4与坐标轴的交点个数是()A。

3B。

2C。

1D。

04.(2012,桂林)如图1,把抛物线y = x^2沿直线y=x平移2个单位后,其顶点在直线上的点A处,则平移后的抛物线表达式是()A。

y = (x+1)^2 - 1B。

y = (x+1)^2 + 1C。

y = (x-1)^2 + 1D。

y = (x-1)^2 - 15.设二次函数y = x^2 + bx + c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A。

c=3B。

c≥3C。

1≤c≤3D。

c≤36.(2013,菏泽)已知b<0,二次函数y = ax^2 + bx + a^2-1的图象为如图2所示的四个图象之一.试根据图象分析,a的值应等于()A。

-2B。

-1C。

1D。

27.(2013,内江)若抛物线y = x^2 - 2x + c与y轴的交点坐标为(0,-3),则下列说法不正确的是()A。

抛物线开口向上B。

抛物线的对称轴是直线x=1C。

当x=1时,y的最大值为-4D。

抛物线与x轴的交点坐标为(-1,0),(3,0)8.(2013,日照)如图3,已知抛物线y = -x^2 + 4x和直线y = 2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A。

数学浙教版九年级上册第1章二次函数单元检测题(解析版)

数学浙教版九年级上册第1章二次函数单元检测题(解析版)

2019-2019 学年数学浙教版九年级上册第 1 章二次函数单元检测题一、选择题(本大题共10 小题,每题 3 分,共 30 分)1.若 y=(k+2)是二次函数,且当x>0 时, y 随的增大而增大.则k=()A. ﹣3B. 2C.﹣3 或2 D. 32.将抛物线 y=2x2怎样平移可获取抛物线 y=2(x﹣4)2﹣1()A.向左平移 4 个单位,再向上平移 1 个单位B.向左平移 4 个单位,再向下平移 1 个单位C.向右平移 4 个单位,再向上平移 1 个单位D.向右平移 4 个单位,再向下平移 1 个单位3.已知抛物线 y=ax2+bx+c(a≠0)在平面直角坐标系中的地点以下图,则以下结论中,正确的选项是()A.a<0B.b>0C.a+b+c=0D.4a﹣2b+c>04.已知点( 2,y1),(5.4,y2),(1.5,y3)在抛物 y=2x 2 8x+m2的象上, y1,y2,y3大小关系是()A.y 2>y1>y3B.y2>y3>y1C.y1>y2>y3D.y3>y2>y15.若二次函数的分析式y=2x24x+3,其函数象与x 交点的状况是()A. 没有交点B. 有一个交点C. 有两个交点 D. 以上都不6.已知二次函数 y=ax2+bx+c,且 a<0,a b+c>0,必定有()A.b24ac>0B.b24ac=0C.b24ac<0D.b24ac≤07.因为被墨水染,一道数学能到以下文字:已知二次函数y=ax2+bx+c 的象点(1,0)⋯求:个二次函数的象对于直x=2称.依据有信息,中的二次函数不必定拥有的性是()A. 点( 3,0)B. 点是( 2, 2)C. 在 x 上截得的段的度是 2D. c=3a8.林书豪身高 1.91m,在某次投篮中,球的运动路线是抛物线y=x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离约为()B.4m9. 已知函数,若使y=k成立的x值恰巧有三个,则k 的值为()A.0B.1C.2D.310.如图,在平面直角坐标系中,四边形 OABC 是菱形,点 C 的坐标为(4,0),∠ AOC=60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒1 个单位长度的速度向右平移,设直线 l 与菱形 OABC 的两边分别交于点 M ,N(点 M 在点 N 的上方),若△ OMN 的面积为 S,直线 l 的运动时间为 t 秒第 3页 /共 24页(0≤t ≤4),则能大概反应S 与 t 的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,每题 3 分,共18分)11.抛物线 y= ﹣2x2+6x﹣1的极点坐标为 ________ 。

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。

浙教版九年级数学上册第一章二次函数检测题含答案

浙教版九年级数学上册第一章二次函数检测题含答案

浙教版九年级数学上册第一章二次函数检测题含答案第1章二次函数检测卷一、选择题(本大题共10小题,每小题4分,共40分) 1.下列各点不在抛物线y=x2-2图象上的是( ) A.(-1,-1) B.(2,2) C.(-2,0) D.(0,-2)2.二次函数y=(x-3)(x+2)的图象的对称轴是( ) A.x=3 B.x=-2 C.x=-12 D.x=123.抛物线y=-3x2+2x-1与坐标轴的交点个数为( )A.0个B.1个C.2个D.3个4.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,若要想获得最大利润,则销售单价x为( )A.25元B.20元C.30元D.40元5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )第5题图A.a>0B.当-1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大6.若A(-134,y1)、B(-1,y2)、C(53,y3)为二次函数y=-x2-4x+k的图象上的三点,则y1、y2、y3的大小关系是( )A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A.y=2(x+3)2+4 B.y=2(x+3)2-4C.y=2(x-3)2-4 D.y=2(x-3)2+48.若二次方程(x-a)(x-b)-2=0的两根是m,n,且a<b,m<n,则实数a,b,m,n的大小关系是( ) A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b9.(资阳中考)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:第9题图①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am +b)+b<a(m≠-1),其中正确结论的个数是( ) A.4个B.3个C.2个D.1个10.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:第10题图①无论x取何值,y2的值总是正数;②a=1;③当x =0时,y2-y1=4;④2AB=3AC;其中正确结论是( ) A.①②B.②③C.③④D.①④二、填空题(本大题共6小题,每小题5分,共30分) 11.抛物线y=49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为______.12.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与抛物线y=-x2形状相同.则这个二次函数的解析式为____ .13.某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路程s(米)与时间t(秒)间的关系式为s=10t+t2,若滑到坡底的时间为2秒,则此人下滑的高度为____米.第13题图14.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是____.第14题图15.(荆州中考)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为.16.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x …-1 0 1 3 …y …-1 3 5 3 …下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的是____.三、解答题(本大题共8小题,共80分)17.(8分)已知二次函数y=-x2+4x-3,其图象与y轴交于点B,与x轴交于A,C两点.求△ABC的周长和面积.18.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.第18题图19.(8分)在关于x,y的二元一次方程组x+2y=a,2x-y=1中.(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.20.(8分)在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).第20题图(1)求点B的坐标;(2)求过A,O,B三点的抛物线的函数表达式;(3)设点B关于抛物线的对称轴l的对称点为B′,求△AB′B的面积.21.(10分)某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运动的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?第21题图22.(12分)(衢州中考)已知二次函数y=x2+x的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1);(2)在同一直角坐标系中画出一次函数y=12x+32的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值;(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=12x+32的图象上,请说明理由.第22题图23.(12分)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个) …30 40 50 60 …销售量y(万个) … 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.(14分)如图,抛物线y=ax2+bx与x轴交于O、A两点,与直线y=x交于点B,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,过点P作y轴的平行线交射线OB于点Q,以PQ为边向右作矩形PQMN,且PN=1,设点P的横坐标为m(m>0,且m≠2).第24题图(1)求这条抛物线的解析式;(2)求矩形PQMN的周长C与m之间的函数关系式;(3)当矩形PQMN是正方形时,求m的值.活页参考答案上册第1章二次函数检测卷1.C 2.D 3.B 4.A 5.B 6.C 7.A 8.A 9.B 10.D11.612.y=-x2+3x+4或y=x2-3x-413.1214.-215.-1或2或116.①③④17.令x=0,得y=-3,故B点坐标为(0,-3),解方程-x2+4x-3=0,得x1=1,x2=3.故A、C两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=12+32=10,BC=32+32=32,OB=│-3│=3.C△ABC =AB+BC+AC=2+10+32;S△ABC=12AC•OB=12×2×3=3.18.(1)y=(x-1)2-4,即y=x2-2x-3; (2)令y=0,得x2-2x-3=0,解方程,得x1=-1,x2=3.所以二次函数图象与x轴的两个交点坐标分别为(3,0)和(-1,0).所以二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x轴的另一个交点坐标为(4,0).19.(1)a=3时,方程组为x+2y=3①,2x-y=1②;②×2得,4x-2y=2③,①+③得,5x=5,解得x =1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是x=1,y=1;(2)方程组的两个方程相加得,3x+y=a+1,所以S=a(3x+y)=a(a+1)=a2+a,所以,当a=-12×1=-12时,S有最小值.20.第20题图(1)过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C,D,则∠ACO=∠ODB=90°,∴∠AOC+∠OAC =90°.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∴∠OAC=∠BOD.又∵AO=BO,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3);(2)∵抛物线过原点,∴可设抛物线的函数表达式为y=ax2+bx.将点A(-3,1),B(1,3)的坐标代入,得9a-3b=1,a+b=3,解得a=56,b=136.∴所求抛物线的函数表达式为y=56x2+136x; (3)由(2)得,抛物线的对称轴为直线x=-1310,点B的坐标为(1,3),∴点B′的坐标为-185,3.设BB′边上的高为h,则h=3-1=2.|BB′|=1+185=235.∴S △AB′B=12BB′•h=12×235×2=235. 21.(1)根据题意可知,抛物线经过(0,209),顶点坐标为(4,4),则可设其解析式为y=a(x-4)2+4,解得a=-19.则所求抛物线的解析式为y=-19(x-4)2+4.又篮圈的坐标是(7,3),代入解析式得,y=-19(7-4)2+4=3.所以能够投中;(2)当x=1时,y=3,此时3.1>3,故乙队员能够拦截成功.22.(1)∵令y=0得:x2+x=0,解得:x1=0,x2=-1,∴抛物线与x轴的交点坐标为(0,0),(-1,0).作直线y=1,交抛物线于A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,点C 和点D的横坐标即为方程的根.根据图1可知方程的解为x1≈-1.6,x2≈0.6;(2)∵将x=0代入y=12x +32得y=32,将x=1代入得:y=2,∴直线y=12x +32经过点(0,32),(1,2).直线y=12x+32的图象如图2所示,由函数图象可知:当x<-1.5或x>1时,一次函数的值小于二次函数的值;(3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为P(-1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=12x+32的函数图象上.理由:∵把x=-1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=12x+32的函数图象上.第22题图23.(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则30a+b=5,40a+b =4,解得:a=-110,b=8.∴函数解析式为:y=-110x+8; (2)根据题意得:z =(x-20)y-40=(x-20)(-110x+8)-40=-110x2+10x-200=-110(x2-100x)-200=-110[(x-50)2-2500]-200=-110(x-50)2+50,∵-110<0,∴x =50,z最大=50.∴该公司销售这种计算器的净得利润z与销售价格x的函数解析式为z=-110x2+10x -200,销售价格定为50元/个时净得利润最大,最大值是50万元;第23题图(3)当公司要求净得利润为40万元时,即-110(x-50)2+50=40,解得:x1=40,x2=60.作函数图象的草图,通过观察函数y=-110(x-50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y =-110x+8,y随x的增大而减少,∴若还需考虑销售量尽可能大,销售价格应定为40元/个.24.(1)把A(3,0)、B(2,2)两点坐标代入y=ax2+bx,得9a+3b=0,4a+2b=2,计算得出a=-1,b=3.故抛物线所对应的函数表达式为y=-x2+3x. (2)∵点P在抛物线y=-x2+3x上,∴可以设P(m,-m2+3m),∵PQ∥y轴,∴Q(m,m).①当0<m<2时,如图1中,PQ=-m2+3m-m=-m2+2m,C=2(-m2+2m)+2=-2m2+4m+2. ②当m>2时,如图2中,PQ=m-(-m2+3m)=m2-2m,C=2(m2-2m)+2=2m2-4m+2. (3)∵矩形PQMN是正方形,∴PQ=PN=1,当0<m<2时,如图3中,-m2+2m=1,计算得出m=1.当m>2时,如图4中,m2-2m=1,计算得出m=1+2(或1-2不合题意舍弃).第24题图。

浙教版九年级数学上册 第一章 二次函数单元测试卷及答案

浙教版九年级数学上册  第一章 二次函数单元测试卷及答案

第一章二次函数姓名:_______________班级:_______________学号:_______________(总分:100分考试时间:60分钟考试难度:0.60)一、填空题(每空3分,共15分)1、二次函数的最小值是.2、如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为_________厘米。

(第2题图)(第5题图)3、将抛物线向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为。

4、自由下落物体的高度(米)与下落的时间(秒)的关系为.现有一铁球从离地面米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.5、已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使成立的的取值范围是.二、选择题(每题3分,共30分)6、正比例函数的图像经过二、四象限,则抛物线的大致图像是()7、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4(第7题图)(第8题图)8、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④.其中正确的有( )A.1个B.2个C.3个D.4个9、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b10、某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.1.6 m B.100 m C.160 m D.200 m(第10题图)(第11题图)11、如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB以相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长()A.0.4米 B. 0.16米 C. 0.2米 D.0.24米12、绿茵场上,足球运动员将球踢出,球的飞行高度(米)与前行距离(米)之间的关系为:,那么当足球落地时距离原来的位置有( )A.25米B.35米C.45米D.50米13、已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A. 有最小值,且最小值是B. 有最大值,且最大值是C. 有最大值,且最大值是D. 有最小值,且最小值是14、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米(第14题图)(第15题图)15、我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图2236所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为()A.1.5 m B.1.625 m C.1.66 m D.1.67 m三、解答题(每题11分,共55分)16、已知:在Rt△ABO中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为轴,建立如图所示平面直角坐标系,点B在第一象限内,将Rt△ABO沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P 作轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为很等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.17、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。

第1章 二次函数数学九年级上册-单元测试卷-浙教版(含答案)

第1章 二次函数数学九年级上册-单元测试卷-浙教版(含答案)

第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、在平面直角坐标系中,如果抛物线分别向上、向右平移2个单位,那么新抛物线的解析式是()A. B. C. D.2、二次函数y=x2﹣4x+3的图象如图所示,利用图象可判断方程x2﹣4x+=0较大的解所在的范围是()A.0<x<1B.1<x<2C.2<x<3D.x>33、若点在抛物线上,则下列结论正确的是()A. B. C. D.4、在同一坐标系内,一次函数y=ax+b 与二次函数 y=ax2+8x+b 的图象可能是()A. B. C. D.5、已知二次函数y=ax2+bx+c(a≠0)与x轴一个交点在﹣1,﹣2之间,对称轴为直线x=1,图象如图,给出以下结论:①b2﹣4ac>0;②abc>0;③2a﹣b=0;④9a+3b+c<0.其中结论正确的个数有()A.1B.2C.3D.46、在平面直角坐标系中,将抛物线y=x2-4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是( )A. B. C. D.7、如图,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC、BC.已知△ABC的面积为3.将抛物线向左平移h(h>0)个单位,记平移后抛物线中y随着x的增大而增大的部分为H.当直线BC与H没有公共点时,h的取值范围是()A. h>B.0<h≤C. h>2D.0<h<28、已知二次函数,当自变量x取m时对应的值大于0,当自变量x分别取m﹣1、m+1时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0 B.y1<0、y2<0 C.y1<0、y2>0 D.y1>0、y2<09、下列表达式中,y是x的二次函数的是()A. B. C. D.10、已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是()A.当x<2时,y随x增大而增大B.a-b+c<0C.拋物线过点(-4,0)D.4a+b=011、已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数12、将抛物线y=2x2向右平移2个单位,能得到的抛物线是()A.y=2(x+2)2B.y=2(x﹣2)2C.y=2x 2+2D.y=2x 2﹣213、如图,已知二次函数y=mx2-4mx+3m(m>0)的图像与x轴交于A,B两点,与y轴交于点C,连接AC、BC,若CA平分∠OCB,则m的值为( )A. B. C. D.14、已知:如图,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E分别以1个单位长度/秒和个单位长度/秒的速度从A、B两点同时出发向O点运动(运动到O点停止);过E点作EG∥OA交抛物线y=a(x﹣1)2+h(a<0)于E、G两点,交AB于点F,连结DE、BG.若抛物线的顶点M恰好在BG上且四边形ADEF是菱形,则a、h的值分别为()A.- 、B.- 、C.- 、D.- 、15、抛物线y=x2-2x-1上有点P(-1,y1)和Q (m,y2),若y1&gt;y2,则m的取值范围为( )A.m>-1B.m<-1C.-1<m<3D.-1≤m<316、二次函数的部分图象如图所示,对称轴为直线,则时,该函数的自变量的取值范围是________17、铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+ x+ ,铅球推出后最大高度是________m,铅球落地时的水平距离是________m.18、抛物线y=﹣x2﹣2x+3与x轴交点为________.19、二次函数的对称轴是________;若点A(-2,y1), B(1,y2),则y1________y2.(用>,<,=填写)20、写出一个开口向上,顶点是坐标原点的二次函数的解析式:________.21、若二次函数y=2x2﹣3的图象上有两个点A(﹣3,m)、B(2,n),则m________n (填“<”或“=”或“>”).22、当x=________时,二次函数y=x2﹣2x+6有最小值________.23、抛物线的对称轴为直线________.24、把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为________.25、已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc<0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有________.26、二次函数y=ax2+bx+c的对称轴为x=3,最小值为−2,且过(0,1),求此函数的解析式.27、如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.28、对于某一个函数,自变量x在规定的范围内,若任意取两个值x1和x2,它们的对应函数值分别为y1和y2.若x2>x1时,有y2>y1,则称该函数单调递增;若x2</sub>>x1时,有y2<y1 ,则称该函数单调递减.例如二次函数y=x 2,在x≥0时,该函数单调递增;在x≤0时,该函数单调递减.(1)二次函数:y=(x+1)2+2自变量x在哪个范围内,该函数单调递减?(2)证明:函数:y=x﹣在x>1的函数范围内,该函数单调递增.(3)若存在两个关于x的一次函数,分别记为:g=k1x+b1和h=k2x+b2,且函数g在实数范围内单调递增,函数h在实数范围内单调递减.记第三个一次函数y=g+h,则比例系数k1和k2满足何种条件时,函数y在实数范围内单调递增?29、下表给出了代数式﹣x2+bx+c与x的一些对应值:x …﹣2 ﹣1 0 1 2 3 …(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.30、已知,二次函数的图象的顶点是(4,﹣12),且过(2,0),求此二次函数的解析式.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、C5、C6、B7、C8、B9、B10、D11、D12、B13、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

浙教版九年级上册数学第一章《二次函数》单元测试(含答案)

浙教版九年级上册数学第一章《二次函数》单元测试(含答案)

浙教版九年级上册数学二次函数一、单选题1.二次函数得顶点坐标是()A.B.C.D.2.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)3.抛物线经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①;②>;③若n>m>0,则时的函数值小于时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正确的是()A.①②B.③④C.②③④D.①②③④5.飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2,则飞机着陆后滑行到停止下列,滑行的距离为()A.500米B.600米C.700米D.800米6.已知二次函数(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则D.若x<n时,都有y随着x的增大而减小,则7.已知:二次函数,其中正确的个数为()①当时,y随x的增大而减小;②若图象与x轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则 .A.1个B.2个C.3个D.4个8.二次函数的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限9.新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.10.如图,二次函数(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②>4a,③0<b<1,④当x>﹣1时,y>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.(1)求该函数的解析式,并画出它的图象;(2)如果这条直线经过点P(m,2),求m的值;(3)若O为坐标原点,求直线OP的解析式;(4)求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.。

《二次函数》2020学年浙教版九年级第一学期单元评价A卷(含答案)

《二次函数》2020学年浙教版九年级第一学期单元评价A卷(含答案)

2020学年浙教版九年级第一学期第一章《二次函数》单元评价A 卷班级: _________姓名: _________ 得分: _________一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将抛物线y = x 2 - x - 6向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则|m |的最小值为( )A.1B.2C.3D.62.若正比例函数y = mx (m ≠0),y 随x 的增大而减小,则它和二次函数y = mx 2 + m 的图象大致是( )3.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价( )A.5元B.10元C.15元D.20元4.若直线y = ax + b (ab ≠0)不过第三象限,则抛物线y = ax 2 + bx 的顶点所在的象限是( )A.一B.二C.三D.四5.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y = x 2 + 5x + 6,则原抛物线的解析式是( ) A.y = - 411)25(2--x B.y = -(x+5)2 - 11 4 C.y = - 2)25(-x - 1 4 D.y = - 2)25(+x + 1 4 6.二次函数y = mx 2 - 4x + 1有最小值 - 3,则m 等于( )A.1B. - 1C.±1D. 1 27.设一元二次方程(x - 1)(x - 2) = m (m > 0)的两实根分别为 a ,β,且 a < β,则 a ,β满足( )A.1 < a < β < 2B.1 < a < 2 < βC.a < 1 <β < 2D.a < 1且β > 28.抛物线y = ax 2 + bx + c 的顶点为D ( - 1,2),与x 轴的一个交点A 在点( - 3,0)和( - 2,0)之间,其部分图象如图,则以下结论:①b 2 - 4ac < 0;②a + b + c < 0;③c - a = 2;④方程ax 2 + bx + c - 2 = 0有两个相等的实数根.其中正确结论的个数为( )A.1个B.2个C.3个D.4个9.设函数y = x 2 + 2kx + k - 1(k 为常数),下列说法正确的是( )A.对任意实数k,函数与x轴都没有交点B.存在实数n,满足当x≥n时,函数y的值都随x的增大而减小C.k取不同的值时,二次函数y的顶点始终在同一条直线上D.对任意实数k,抛物线y = x2 + 2kx + k - 1都必定经过唯一定点10.二次函数y = ax2 + bx + c(a≠0)的图象如图所示,若|ax2 + bx + c| = k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k < - 3B.k > - 3C.k < 3D.k > 3二、填空题(每小题4分,共24分)11.抛物线y = 12 x2 + x -32 的最低点坐标是_________ ,当x _________ 时,y随x的增大而增大.12.抛物线y = x2 + 3x - 4与y轴的交点坐标是_________ ,与x轴的交点坐标是_________ .13.已知抛物线y = ax2 + x + c与x轴交点的横坐标为- 1,则a + c = _________ .14.如图的一座拱桥,当水面宽AB为12 m时,桥洞顶部离水面4 m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y = - 19 (x-6)2 + 4,则选取点B为坐标原点时的抛物线解析式是_________ .15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室总占地面积最大为_________ m216.已知二次函数y = ax2 + bx + c(a≠0)的图象如图所示,有下列5个结论:①c = 0;②该抛物线的对称轴是直线x = - 1;③当x = 1时,y = 2a;④am2 + bm + a > 0(m≠ - 1);⑤设A(100,y1),B (- 100,y2)在该抛物线上,则y1 > y2.其中正确的结论有_________ .(写出所有正确结论的序号)三、解答题(共66分)17.(6分)根据下列条件,求二次函数的关系式:(1)抛物线经过点(0,3),(1,0),(3,0);(2)抛物线顶点坐标是(- 1,- 2),且经过点(1,10).18.(8分)已知二次函数y = x2 + bx - 1的图象经过点(3,2).(1)求这个二次函数的关系式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x > 0时,求使y≥2的x的取值范围.19.(8分)如图,抛物线y = x2 + bx + c经过坐标原点,并与x轴交于点A(2,0)(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB = 3,求点B的坐标.20.(10分)如图,在直角坐标系xOy中,二次函数y = x2 +(2k - 1)x + k + 1的图象与x轴相交于O,A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.21.(10分)有一种螃蟹,从海上捕获后不放养,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活蟹1000 kg放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部售出,售价是每千克20元.(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额Q元,写出Q关于x的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润= 销售总额一收购成本一费用)?最大利润是多少?22.(12分)在平面直角坐标系中,O为原点,直线y = - 2x - 1与y轴交于点A,与直线y = - x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为点Q.当四边形PBQC为菱形时,求点P的坐标.23.(12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y = a(x-3)2 + k①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4 × 2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.。

20212022学年浙教版九年级上册数学第1章二次函数单元测试卷含答案.docx

20212022学年浙教版九年级上册数学第1章二次函数单元测试卷含答案.docx

2021-2022学年浙教新版九年级上数学《二次函数》单元测试卷选择题1.若函数y=(,疟+巾)..^-2^1是二次函数,那么m的值是()A. 2B. - 1 或3C. 3D. -1±^22.函数y—ax2+bx+c(ci, b, c是常数)是二次函数的条件是()A.。

乂0, Z?尹0,。

乂0B. a<0, 乂0,。

乂0C. 3>0, Z?乂0, c乂0D. 617^03.二次函数y=ax1+bx+c的图象如图所示,根据图象可得a, b, c与0的大小关系是()A. a>0, b<0, cVOB. a>0, b>0, c>0C. a<0, b<0, c<0D. a<0, b>0, c<04.二次函数y= - (x- 2) 2 - 3的图象的顶点坐标是( )A. (2, 3)B. (2, - 3)C. ( -2, 3)D. (-2, -3)5.如图,当沥>0时,函数y=ax1与函数y=bx+a的图象大致是()6.若二次函数y= (m+1)x2 - iwc+m2 - 2m- 3的图象经过原点,则m的值必为()A. - 1 或3B. - 1C. 3D. -3或1A.开口向下B.顶点坐标是(1, 2)C.对称轴是直线x= - 1D.有最大值是29.如果函数y=(m-2) x m -2+2x-7是二次函数,则"Z的取值范围是()A. m= +2B. m=2C. m= -2D.机为全体实数10.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax1+c的图象大致为()二.填空题11.已知函数^= (m+2) x m(w+1)是二次函数,则秫=・12.如果函数、=(A-3)产'-3蚌2+版+1是二次函数,那么上的值一定是・13.若函数y=(m-3) x m'~7是二次函数,则成的值为.'214.若直线y=m (m为常数)与函数y=l ' 的图象恒有三个不同的交点,则常数4(X〉2)Xm的取值范围是.15.如图所示四个二次函数的图象中,分别对应的是®y=ax2;②y=*2;®y=cx1;®y=dx2.则。

九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)

九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)

九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.函数221m m y mx --=是关于x 的二次函数,则m 的值是( )A .3B .1-C .3-D .1-或3 2.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+ 3.已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( )A .y =2x 2+4x ﹣1B .y =x 2+4x ﹣2C .y =-2x 2+4x +1D .y =2x 2+4x +14.将二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是( )A .()2772--=x yB .()2172--=x yC .()2732--=x yD .()2132--=x y 5.函数y =﹣x 2﹣2x+m 的图象上有两点A (1,y 1),B (2,y 2),则( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1、y 2的大小不确定6.已知点 A (a ,2)、B (b ,2)、C (c ,7)都在抛物线()212--=x y 上,点A 在点B 左侧,下列选项正确的是( )A .若0<c ,则b c a << B.若0<c ,则c b a <<C .若0>c ,则b c a <<D .若0>c ,则c b a <<7.在同一坐标系中,函数y =ax 2+b 与y =bx 2+ax 的图象只可能是( )8.如图抛物线y =ax 2+bx +c (a ≠0)经过点(3,0)且对称轴为直线x =1.有四个结论:①ac <0;②b 2﹣4ac =0;③a ﹣b +c =0;④若m >n >0,则x =1﹣m 时的函数值小于x =1+n 时的函数值,其中正确的结论个数是( )A .1B .2C .3D .49.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0),对称轴为直线x =﹣1,结合图象给出下列结论:①a +b +c =0;②a ﹣2b +c <0;③关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1;④若点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,则y 1<y 2<y 3;⑤a ﹣b <m (am +b )(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个 10.如图1,在菱形ABCD 中,060=∠A ,动点P 从点A 出发,沿折线CB DC AD →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB ∆的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ) A.3 B.32 C. 33 D. 34二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知二次函数2y x bx c =++的图象经过()1,1与()2,3两点,则这个二次函数的表达式为__________12.已知抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线13.将抛物线y =x 2﹣2x +3向左平移2个单位长度,所得抛物线为14.已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为____________15.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当10≤x ≤20时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额﹣总成本).16.抛物线y =ax 2+bx +c 的部分图象如图所示,对称轴为直线x =﹣1,直线y =kx +c 与抛物线都经过点(﹣3,0).下列说法:①ab >0;②4a +c >0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x有最大值.其中正确的是___________________(填序号)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)已知二次函数y=x2﹣4x+c(c是常数)的图象与x轴只有一个交点,求c的值及这个交点的坐标.18(本题8分)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.19.(本题8分)已知二次函数y=ax2+bx﹣6(a≠0)的图象经过点A(4,﹣6),与y轴交于点B,顶点为C(m,n).(1)求点B的坐标;(2)求证:4a+b=0;(3)当a>0时,判断n+6<0是否成立?并说明理由.20(本题10分)已知函数y=-x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值;(2)当﹣4≤x≤0时,求y的最大值;(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.21.(本题10分)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.22(本题12分)如图,已知抛物线()()a x x ay +-=21 ()0>a 与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值;(2)在(1)的条件下,解答下列问题;①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH +EH 的值最小,直接写出点H 的坐标.23(本题12分).如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线与x轴交于A 、B 两点,与y 轴交于C 点,其中A (1,0),C (0,3).(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)点Q 为BC 上一动点,过Q 作x 轴垂线交抛物线于点P (点P 在第二象限),求线段PQ 长度最大值.参考答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵函数221m m y mx --=是关于x 的二次函数,∴2212m m --=,且0m ≠,由2212m m --=得,3m =或1m =-,∴m 的值是3或-1,故选择:D .2.答案:A解析:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π,∴圆环面积216y x ππ=-.故选择:A .3.答案:A 解析:根据题意得48145a c a c -+=-⎧⎨++=⎩, 解得:21a c =⎧⎨=-⎩, ∴抛物线解析式为y =2x 2+4x ﹣1.故选择:A .4.答案:D解析:由二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是()()2133242522--=+-+-=x x y ; 故选择:D.5.答案:B 解析:∵图象的对称轴为直线01,122<-=-=---=a x , ∴在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小,∵图象上有两点A (1,y 1),B (2,y 2),-1<1<2,∴y1>y2,故选择:B.6.答案:D解析:∵抛物线y=(x−1)2−2,a>0∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x−1)2−2上,点A在点B左侧,∴a<b若c<0,则c<a<b,故A、B均不符合题意;若c>0,则a<b<c,故C不符合题意,D符合题意;故选择:D.7.答案:D解析:A、两个函数的开口方向都向上,那么a>0,b>0,可得第一个函数的对称轴是y轴,与y轴交于正半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;B、两个函数的开口方向都向下,那么a<0,b<0,可得第一个函数的对称轴是y轴,与y轴交于负半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;C、D、两个函数一个开口向上,一个开口向下,那么a,b同号,可得第二个函数的对称轴在y轴的右侧,故C错误,D正确,故选择:D.8.答案:C解析:∵抛物线开口向下,∴a<0,∵抛物线交y轴的正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误;∵抛物线的对称轴为直线x=1,而点(3,0)关于直线x=1的对称点的坐标为(﹣1,0),∴a ﹣b +c =0,故③正确;∵抛物线开口向下,对称轴为直线x =1,∴横坐标是1﹣m 的点的对称点的横坐标为1+m ,∵若m >n >0,∴1+m >1+n ,∴x =1﹣m 时的函数值小于x =1+n 时的函数值,故④正确.故选择:C .9.答案:C解析:①∵二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0), ∴a +b +c =0,故①正确; ②∵抛物线的对称轴为直线12-=-=a b x , ∴b =2a ,∵抛物线开口向上,与y 轴交于负半轴,∴a >0,c <0,∴a ﹣2b +c =c ﹣3a <0,故②正确;③由对称得:抛物线与x 轴的另一交点为(﹣3,0),∴关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1,故③正确;④∵对称轴为直线x =﹣1,且开口向上,∴离对称轴越近,y 值越小,∵|﹣4+1|=3,||﹣2+1|=1,|3+1|=4,∵点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,∴y 2<y 1<y 3,故④不正确;⑤∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤am 2+bm +c (m 为任意实数),∴a ﹣b ≤m (am +b ),故⑤不正确.所以正确的结论有①②③,共3个.故选择:C .10.答案:B解析:在菱形ABCD 中,060=∠A ,∴△ABD 为等边三角形,设a AB =,由图2可知,△ABD 的面积为33, ∴33432==∆a S ABD , 解得:32=a故选择:B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:21y x x =-- 解析:把(1,1)与(2,3)分别代入y =x 2+bx +c 得11423b c b c ++=⎧⎨++=⎩,解得11b c =-⎧⎨=⎩; 所以二次函数的解析式为21y x x =--;12.答案:2=x解析:∵抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,∴对称轴为2251=+-=x , 故答案为:x =2.13.答案:()212++=x y 解析:将抛物线y =x 2﹣2x +3=(x ﹣1)2+2向左平移2个单位长度得到解析式:y =(x +1)2+2, 故答案为:y =(x +1)2+2.14.答案:4解析:∵二次函数y =2x 2﹣4x ﹣1=2(x ﹣1)2﹣3,∴抛物线的对称轴为x =1,顶点(1,﹣3),∴当y =﹣3时,x =1,当y =15时,2(x ﹣1)2﹣3=15,解得x =4或x =﹣2,∵当0≤x ≤a 时,y 的最大值为15,∴a =4,15.答案:121解析:当10≤x ≤20时,设y =kx +b ,把(10,20),(20,10)代入可得: ⎩⎨⎧=+=+10202010b k b k 解得⎩⎨⎧=-=301b k , ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =﹣x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x ﹣8)y =(x ﹣8)(﹣x +30)=﹣x 2+38x ﹣240=﹣(x ﹣19)2+121,∵﹣1<0,∴当x =19时,w 有最大值为121,故答案为:121.16.答案:①④,解析:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1, ∴12-=-ab , ∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a +c =a <0,∴②的结论不正确;∵抛物线的对称轴为直线x =﹣∴点(﹣2,y 1)关于直线x =﹣1对称的对称点为(0,y 1), ∵a <0,∴当x >﹣1时,y 随x 的增大而减小. ∵21>0>﹣1, ∴y 1>y 2.∴③的结论不正确;∵抛物线的对称轴为直线x =﹣1,抛物线经过点(﹣3,0), ∴抛物线一定经过点(1,0),∴抛物线y =ax 2+bx +c 与x 轴的交点的横坐标为﹣3,1, ∴方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1,∴④的结论正确;∵直线y =kx +c 经过点(﹣3,0),∴﹣3k +c =0,∴c =3k .∵3a +c =0,∴c =﹣3a ,∴3k =﹣3a ,∴k =﹣a .∴函数y =ax 2+(b ﹣k )x=ax 2+(2a +a )x =ax 2+3ax =2216923a x a +⎪⎭⎫ ⎝⎛+, ∵a <0,∴当x =﹣23时,函数y =ax 2+(b ﹣k )x 有最大值, ∴⑤的结论不正确.综上,结论正确的有:①④,三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.解析:∵二次函数c x x y +-=42的图象与x 轴只有一个交点,∴方程042=+-c x x 只有一个实数根,∴()044422=--=-=∆c ac b , 4=∴c ,∴0442=+-x x ,解得2=x ,∴二次函数c x x y +-=42的图象与x 轴的交点坐标为(2,0).18.解析:(1)由题意,得y 1=2(x-1)(x-2). 图象的对称轴是直线23=x (2)由题意,得y 1=2x 2-4hx+2h 2-2,∴b+c=2h 2-4h-2,=2(h-1)2-4,∴当h=1时,b+c 的最小值是-4.(3)解:由题意,得y=y 1-y 2=2(x-m)(x-m-2)-(x-m)=(x-m)[2(x-m)-5],∵函数y 的图象经过点(x 0,0),∴(x 0-m)[2(x 0-m)-5]=0,∴x 0-m=0,或x 0-m =25.19.解析:(1)∵x =0时,y =﹣6∴点B 坐标为(0,﹣6)(2)证明:∵二次函数的图象经过点A (4,﹣6)∴16a +4b ﹣6=﹣6∴4a +b =0(3)当a >0时,n +6<0成立,理由如下: ∵a b a b a n 4642422--=--= ∴ab n 462-=+ ∵a >0,4a +b =0即b ≠0∴b 2>0 ∴042<-ab ∴n +6<0成立20.解析:(1)把(0,-3),(-6,-3)代入c bx x y ++-=2,得b =-6,c=-3(2)∵()633622++-=---=x x x y , 又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)①当-3<m ≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为,∴ +(-3)=2, ∴m =-2或m =-4(舍去).②当m ≤-3时,当x =-3时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴ =-4,∴m =103--或m =103+-(舍去).综上所述,m =-2或 103-- .21.解析:(1)∵ y=a(x+1)2-4(a ≠0)经过点A(1,0),∴0=a ·22-4,∴a=1,∴y=(x+1)2-4.(2)解:∵将L 1的图象向上平移了m 个单位得到L 2 ,∴设L 2的解析式为y=(x+1)2-4+m ,∴顶点坐标为(-1,m-4),∵L 2的顶点关于原点O 的对称点在L 1的图象上,∴(1,4-m )在L 1的图象上,∴4-m=(1+1)2-4,∴m=4.(3)解: ∵抛物线L 1的图象向右平移了n 个单位得到L 3,∴设L 3的解析式为y=(x+1-n )2-4,∴抛物线开口向上,对称轴为x=n-1,∵B (1,y 1),C (3,y 2)都在抛物线L 3上,且y 1>y 2,∴B 、C 两点的中点坐标在对称轴的左侧,∴(1+3)÷2<n-1,∴n >3.22.解析:(1)将M (﹣2,﹣2)代入抛物线解析式得:()()a a +---=-22212, 解得:a =4;(2)①由(1)抛物线解析式()()4241+-=x x y , 当y =0时,得:()()42410+-=x x , 解得:x 1=2,x 2=﹣4,∵点B 在点C 的左侧,∴B (﹣4,0),C (2,0),当x =0时,得:y =﹣2,即E (0,﹣2), ∴62621=⨯⨯=∆BCE S ; ②由抛物线解析式()()4241+-=x x y ,得对称轴为直线x =﹣1, 根据C 与B 关于抛物线对称轴直线x =﹣1对称,连接BE ,与对称轴交于点H ,即为所求, 设直线BE 解析式为y =kx +b ,将B (﹣4,0)与E (0,﹣2)代入得:⎩⎨⎧-==+-204b b k ,解得:⎪⎩⎪⎨⎧-=-=221b k∴直线BE 解析式为221--=x y , 将x =﹣1代入得:23221-=-=y 则H (﹣1,23-).23.解析:(1)依题意得: ⎪⎪⎩⎪⎪⎨⎧==++-=-3012c c b a a b ,解得:⎪⎩⎪⎨⎧=-=-=321c b a ,∴抛物线解析式为y =﹣x 2﹣2x +3,∵对称轴为直线x =﹣1,且抛物线经过A (1,0),∴把B (﹣3,0)、C (0,3)分别代入直线y =mx +n , 得⎩⎨⎧==+-303n n m , 解得:⎩⎨⎧==31n m , ∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小. 把x =﹣1代入直线y =x +3得,y =2,∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)设Q (a ,a +3),此时P (a ,﹣a 2﹣2a +3),∴PQ =﹣a 2﹣2a +3﹣(a +3)=﹣a 2﹣3a =﹣(a +23)2+49. ∴该抛物线顶点坐标是(﹣23,49),且开口向下, ∴当a =﹣23时,PQ 取最大值49.。

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷考试范围:第一章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列函数关系中是二次函数的是( )A. 正三角形面积S与边长a的关系B. 直角三角形两锐角A与B的关系C. 矩形面积一定时,长y与宽x的关系D. 等腰三角形顶角A与底角B的关系2.已知二次函数y=(k−3)x2+2x+1的图像与x轴有交点,则k的取值范围是( )A. k<4B. k≤4且k≠3C. k<4,且k≠3D. k≤43.对于关于x的函数y=(m+1)x m2−m+3x,下列说法错误的是( )A. 当m=−1时,该函数为正比例函数B. 当m2−m=1时,该函数为一次函数C. 当该函数为二次函数时,m=2或m=−1D. 当该函数为二次函数时,m=24.将抛物线y=x2+3x+2向右平移a单位正好经过原点,则a的值为( )A. a=1B. a=2C. a=−1或a=1D. a=1或a=25.二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③b2−4ac>0;④a+b+c>0,其中正确的个数是( )A. 1B. 2C. 3D. 47.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8.抛物线y=x2−2x−3的顶点坐标是( )A. (1,−4)B. (2,−4)C. (−1,4)D. (−2,−3)9.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b−2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个10.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )A. y=(200−5x)(40−20+x)B. y=(200+5x)(40−20−x)C. y=200(40−20−x)D. y=200−5x11.用长8米的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A. 64m225B. 4m23C. 83m2D. 4m212.已知二次函数y=x2−x+√28,若x=a时,y<0;则当x=a−1时,对应的函数值范围判断合理的是( )A. y<0B. 0<y<√28C. √28<y<16+√28D. y>4+√28第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.若y=(m−3)x2+3x−4是关于x的二次函数,则m的取值范围是.14.若函数y=−9(x+3)2+1−k的顶点在x轴上,则k=______.15.如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为______ .16.如图,某扶贫单位为了提高贫困户的经济收入,购买了29m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个矩形养鸡舍,门MN宽1m,该鸡舍的最大面积可以达到m2.三、解答题(本大题共9小题,共72.0分。

浙教版九年级数学上册 第一章 二次函数单元检测B卷(含答案)

浙教版九年级数学上册 第一章 二次函数单元检测B卷(含答案)

第一章二次函数单元检测B卷学号________姓名____________总分_____________一、选择题(共12小题)1、二次函数y=x2+2x+3的定义域为()A、x>0B、x为一切实数C、y>2D、y为一切实数2、当ab>0时,y=ax2与y=ax+b的图象大致是()3、已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A、y=3x2+6x+1B、y=3x2+6x﹣1C、y=3x2﹣6x+1D、y=﹣3x2﹣6x+14、已知二次函数y=﹣x2+2x﹣3,用配方法化为y=a(x﹣h)2+k的形式,结果是()A、y=﹣(x﹣1)2﹣2;B、y=﹣(x﹣1)2+2;C、y=﹣(x﹣1)2+4D、y=﹣(x+1)2﹣45、如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x 轴分别与y轴和抛物线C1交于点E,F,则的值为()A、B、C、D、20),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确的个数是()A、4个B、3个C、2个D、1个7、如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'、若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A、B、C、D、8、如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点、则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A、1个B、2个C、3个D、4个9、如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0;其中正确的个数有()A、1个B、2个C、3个D、4个10、二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A、t>﹣5B、﹣5<t<3C、3<t≤4D、﹣5<t≤411、如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论:①b2>4ac;②ac>0;③a﹣b+c>0;④不等式ax2+bx+c>0的解集是﹣1<x<3;⑤当x>1时,y随x的增大而减小,其中结论正确的序号是()A、①②③B、①④⑤C、③④⑤D、①③⑤12、已知烟花弹爆炸后某个残片的空中飞行轨迹可以看成为二次函数y=﹣x2+2x+5图象的一部分,其中x为爆炸后经过的时间(秒),y为残片离地面的高度(米),请问在爆炸后1秒到6秒之间,残片距离地面的高度范围为()A、0米到8米B、5米到8米C、到8米D、5米到米二、填空题(共8小题)13、如图,正方形EFGH的顶点在边长为2的正方形的边上、若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为、14、飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为秒、15、已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A、点P为抛物线对称轴上一点,连结OA、OP、当OA⊥OP时,P点坐标为、16、已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1、则所有正确结论的序号是、17、如图,已知二次函数y=ax2+bx+c的图象过(﹣1,0)和(0,﹣1)两点,则化简代数式=、18、将抛物线y=x2+2x+3所在的平面直角坐标系中的纵轴(即y轴)向左平移1个单位,则原抛物线在新的坐标系下的函数关系式是、19、对于二次函数y=x2﹣2mx+3(m>0),有下列说法:①如果m=2,则y有最小值﹣1;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后的函数的最小值是﹣9,则;④如果当x=1时的函数值与x=2015时的函数值相等,则当x=2016时的函数值为3、其中正确的说法是、(把你认为正确的结论的序号都填上)20、已知x=2t﹣8,y=10﹣t,S=,则S有最值,这个值是、三、解答题(共8小题)21、设方程y=x2﹣(ab﹣a+b﹣1)x2+(a2+ab+a)x﹣2a2+1的图象对任何实数a均通过一定点,试求b的值以及定点的坐标、22、二次函数y=x2+px+q的图象经过点(2,﹣1)且与x轴交于不同的两点A(a,0)、B(b,0),设图象顶点为M,求使△AMB的面积最小时的二次函数的解析式、23、设二次函数y=ax2+bx+c(a>0,c>1),当x=c时,y=0;当0<x<c时,y>0、(1)请比较ac和1的大小,并说明理由;(2)当x>0时,求证:、24、已知抛物线y=﹣x2+bx+c与直线y=﹣4x+m相交于第一象限不同的两点,A(5,n),B(e,f)(1)若点B的坐标为(3,9),求此抛物线的解析式;(2)将此抛物线平移,设平移后的抛物线为y=﹣x2+px+q,过点A与点(1,2),且m﹣q=25,在平移过程中,若抛物线y=﹣x2+bx+c向下平移了S(S>0)个单位长度,求S的取值范围、25、如图,已知直线y=x+与x轴、y轴分别相交于B、A两点,抛物线y=ax2+bx+c经过A、B两点,且对称轴为x=﹣3、(1)求A、B两点的坐标,并求抛物线的解析式;(2)若点P以1个单位/秒的速度从点B沿x轴向点O运动,过点P作y轴的平行线交直线AB于点M,交抛物线于点N,设点P运动的时间为t,MN的长度为s,求s与t之间的函数关系式,并求出当t为何值时,s取得最大值?26、如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C、(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC于点H,连接CM,当△CMH 为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标、27、某公司主要生产和销售A产品,每件产品的成本为200元,销售单价为260元,顾客一次购买A产品不超过10件,每件销售为260元;若一次购买A型产品多于10件,则每多一件,所购买的全部产品的销售单价均降低2元,但销售单价均不低于224元、(1)顾客一次购买A产品多少件时,销售单价恰好为224元?(2)某次交易中,小张一次性购买A产品x件,公司盈利792元,求本次交易中小张购买产品的件数、(3)进入冬季,公司举行“情系山区,你我共同送温暖”的公益促销活动,活动规定:在原定价格的基础上每件均优惠5元,若一次购买A型产品不超过10件,则每销售一件产品公司捐款5元;若一次购买A型产品超过10件,则每售出一件产品公司捐款a元,此外再一次性捐款100元,受活动影响,每位顾客购买件数x均满足10<x≤17,为使顾客一次购买的数量越多,公司在该次交易中所获得的利润越大,求a的取值范围、28、如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B、抛物线y=﹣+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧、(1)n=(用含m的代数式表示),点C的纵坐标是(用含m的代数式表示)、(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式、(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式、(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值、参考答案与试题解析一、选择题(共12小题)1、【考点】二次函数的定义、【分析】找出二次函数的定义域即可、解:二次函数y=x2+2x+3的定义域为x为一切实数,故选B2、【考点】二次函数的图象;一次函数的图象、【分析】根据题意,ab>0,即a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案、解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选D、3、【考点】待定系数法求二次函数解析式、【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:y=a(x+1)2﹣2,再把(1,10)代入,求出a的值,即可得出二次函数的解析式、解:设抛物线的解析式为:y=a(x+1)2﹣2,把(1,10)代入解析式得10=4a﹣2,解得a=3,则抛物线的解析式为:y=3(x+1)2﹣2=3x2+6x+1、故选A、4、【考点】二次函数的三种形式、【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式、解:y=﹣x2+2x﹣3=﹣(x2﹣2x+1)+1﹣3=﹣(x﹣1)2﹣2,故选A、5、【考点】二次函数图象上点的坐标特征、【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF 的长度,即可解题、解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选D、6、【考点】二次函数图象与系数的关系、【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断、解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确、故选B、7、【考点】二次函数图象与几何变换、【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解、解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4、故选D、8、【考点】二次函数的性质;二次函数的图象;等腰直角三角形、【分析】把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案、解:∵抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=,故①正确;过点E作EF⊥AC于点F,∵E是抛物线的顶点,∴AE=EC,E(4,﹣3),∴AF=3,EF=6,∴AE==3,AC=2AF=6,∴AC≠AE,故②错误;当y=3时,3=(x+1)2+1,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,AD=BD=2,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵(x+1)2+1=(x﹣4)2﹣3时,解得:x1=1,x2=37,∴当37>x>1时,y1>y2,故④错误、故选:B、9、【考点】抛物线与x轴的交点;二次函数图象与系数的关系、【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论、解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;故选:C、10、【考点】图象法求一元二次方程的近似根;抛物线与x轴的交点、【分析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t 的交点的横坐标,利用图象法即可解决问题、解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4、故答案为D、11、【考点】二次函数与不等式(组);二次函数图象与系数的关系、【分析】由抛物线的位置以及对称轴易判断a,b,c的符号以及判别式的符号,再由对称性可求得抛物线与x轴的另一交点坐标为(﹣1,0),容易判断④,根据抛物线的增减性即可判断⑤、解:∵二次函数y=ax2+bx+c过点A(3,0),对称轴是x=1,∴抛物线与x轴的另一交点坐标为(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0,故③错误;∵开口向下,与y轴的交点在x轴的上方,∴a<0,c>0,∴ac<0,故②错误;∵抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,即b2>4ac,故①正确;∵二次函数y=ax2+bx+c的图象过点A(3,0),对称轴是x=1,∴二次函数y=ax2+bx+c与x轴的交点坐标是(﹣1,0),(3,0),结合图象可知当﹣1<x<3,ax2+bx+c>0,∴不等式ax2+bx+c>0的解集是﹣1<x<3,故选项④正确;由图象和二次函数图象的对称轴是x=1,可得当x>1时,y随x的增大而减小,故选项⑤正确,故选B、12、【考点】二次函数的应用、【分析】首先求得二次函数y=﹣x2+2x+5的顶点坐标,求得点(1,y1)的坐标,再求得(6,y2)这个点的坐标,观察图象即可解答、解:如图、∵y=﹣x2+2x+5=﹣(x﹣3)2+8,∴顶点坐标为B(3,8),对称轴为x=3、又∵爆炸后1秒点A的坐标为(1,),6秒时点的坐标为(6,5),∴爆炸后1秒到6秒之间,残片距离地面的高度范围为5≤y≤8、故选B、二、填空题(共8小题)13、【考点】根据实际问题列二次函数关系式;正方形的性质、【分析】由AAS证明△AHE≌△BEF,得出AE=BF=x,AH=BE=2﹣x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式、解:如图所示:∵四边形ABCD是边长为2的正方形,∴∠A=∠B=90°,AB=2、∴∠1+∠2=90°,∵四边形EFGH为正方形,∴∠HEF=90°,EH=EF、∴∠1+∠3=90°,∴∠2=∠3,在△AHE与△BEF中,∵,∴△AHE≌△BEF(AAS),∴AE=BF=x,AH=BE=2﹣x,在Rt△AHE中,由勾股定理得:EH2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4;即y=2x2﹣4x+4(0<x<2),故答案为:y=2x2﹣4x+4、14、【考点】二次函数的应用、【分析】将s=60t﹣1.5t2,化为顶点式,即可求得s的最大值,从而可以解答本题、解:解:s=60t﹣t2=﹣(t﹣20)2+600,∴当t=20时,s取得最大值,此时s=600、故答案是:20、15、【考点】二次函数综合题、【分析】根据抛物线对称轴列方程求出a,即可得到抛物线解析式,再根据抛物线解析式写出顶点坐标,设对称轴与x轴的交点为E,求出∠OAE=∠EOP,然后根据锐角的正切值相等列出等式,再求解得到PE,然后利用勾股定理列式计算即可得解、解:∵抛物线y=ax2+x的对称轴为直线x=2,∴﹣=2,∴a=﹣,∴抛物线的表达式为:y=﹣x2+x,∴顶点A的坐标为(2,1),设对称轴与x轴的交点为E、如图,在直角三角形AOE和直角三角形POE中,tan∠OAE=,tan∠EOP=,∵OA⊥OP,∴∠OAE=∠EOP,∴=,∵AE=1,OE=2,∴=,解得PE=4,∴P(2,﹣4),故答案为:(2,﹣4)、16、【考点】二次函数图象与系数的关系、【分析】根据点A、B的坐标,利用待定系数法即可求出b=﹣a+1、c=﹣2a+2,结合a>0,可得出b<1、c<2,即结论①②正确;由抛物线顶点的横坐标m=﹣,可得出m=﹣,即m<,结论③不正确;由抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),可得出n≤1,结论④正确、综上即可得出结论、解:∵抛物线过点A(﹣1,1),B(2,4),∴,∴b=﹣a+1,c=﹣2a+2、∵a>0,∴b<1,c<2,∴结论①②正确;∵抛物线的顶点坐标为(m,n),∴m=﹣=﹣=﹣,∴m<,结论③不正确;∵抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),顶点坐标为(m,n),∴n≤1,结论④正确、综上所述:正确的结论有①②④、故答案为:①②④、17、【考点】二次函数图象上点的坐标特征;二次根式的性质与化简、【分析】由二次函数y=ax2+bx+c的图象过(﹣1,0)和(0,﹣1)两点,求c的值及a、b 的关系式,根据对称轴的位置判断a的取值范围,再把二次根式化简求值、解:把(﹣1,0)和(0,﹣1)两点代入y=ax2+bx+c中,得a﹣b+c=0,c=﹣1,∴b=a+c=a﹣1,由图象可知,抛物线对称轴x=﹣=﹣>0,且a>0,∴a﹣1<0,0<a<1,,=+,=|a+|+|a﹣|,=a+﹣a+,=、故本题答案为:、18、【考点】二次函数图象与几何变换、【分析】求出平移前后的两个抛物线的顶点坐标,然后利用顶点式形式写出即可、解:抛物线y=x2+2x+3=(x+1)2+2的顶点坐标是(﹣1,2),纵轴(即y轴)向左平移1个单位,相当于抛物线向右平移1个单位,顶点坐标为(0,2),所以,抛物线在新坐标系下的函数关系式为y=x2+2、故答案为:y=x2+2、19、【考点】二次函数的性质、【分析】①把m=2代入,利用配方法求顶点坐标;②利用对称轴和增减性的性质可知,对称轴一定是x=1的右侧;③根据平移原则:左⇒+,右⇒一,得出解析式,并利用最值列式;④根据已知先求m的值,写出解析式,把x=2016代入求y、解:①当m=2时,二次函数为y=x2﹣4x+3=(x﹣2)2﹣1,∵a=1>0,∴当x=2时,y有最小值为﹣1;故①正确;②如果当x≤1时y随x的增大而减小,则﹣=m≥1;故②错误;③y=x2﹣2mx+3=(x﹣m)2﹣m2+3,将它的图象向左平移3个单位后的函数:y=(x﹣m+3)2﹣m2+3,则﹣m2+3=﹣9,m=±2,∵m>0,∴m=2,故③正确;④由当x=1时的函数值与x=2015时的函数值相等得:12﹣2m+3=20152﹣4030m+3,m=1008,∴当x=2016时,y=20162﹣2×2016×1008+3=3,故④正确;故答案为:①③④、20、【考点】二次函数的最值、【分析】根据题意和已知,计算出表示xy的值的多项式,根据二次函数的性质求出xy的有最大值,得到S的最大值、解:xy=(2t﹣8)(10﹣t)=﹣2t2+28t﹣80=﹣2(t﹣7)2+18﹣2<0,∴函数xy有最大值18,则S有最大值3故答案为:大;3、三、解答题(共8小题)21、【考点】二次函数图象上点的坐标特征、【分析】将方程按照含a2、a及不含a的项整理,令a2、a项系数为0即可、解:原方程整理为y=(x﹣2)a2+(x2﹣bx2+bx+x)a+2x2﹣bx2+1,当x﹣2=0,x2﹣bx2+bx+x=0时,图象对任何实数a均通过一定点,解得x=2,b=3,定点坐标为(2,﹣3)、22、【考点】二次函数的最值;根与系数的关系、【分析】A、B两点在x轴上,用|AB|=|a﹣b|表示线段AB的长,由两根关系转化为p、q的表达式,根据顶点坐标公式得M(),故有S△AMB=|AB|•||,又依题意得4+2p+q=﹣1,即q=﹣2p﹣5,转化为关于p的二次函数求面积最小时,p、q的值、解:由题意知4+2p+q=﹣1,即q=﹣2p﹣5,∵A(a,0)、B(b,0)两点在抛物线y=x2+px+q上,∴a+b=﹣p,ab=q,又|AB|=|a﹣b|=,M(),∴S△AMB=|AB|•||=|a﹣b|•(P2﹣4q)=要使S△AMB最小,只须使P2﹣4q为最小,而P2﹣4q=P2+8p+20=(p+4)2+4,∴当p=﹣4时,P2﹣4q有最小值为4,此时q=3,S△AMB=×=1、∴二次函数解析式为y=x2﹣4x+3、23、【考点】二次函数的性质、【分析】(1)由条件x=c时,y=0,代入可得ac+b+1=0,即b=﹣ac﹣1,根据0<x<c时,y >0,而抛物线开口向上,可知对称轴x=﹣≥c,将b代入解不等式即可;(2)将所证不等式左边通分,再根据题目的条件,证明每一个部分大于0即可、(1)解:当x=c时,y=0,即ac2+bc+c=0,c(ac+b+1)=0,又c>1,所以ac+b+1=0又因为当0<x<c时,y>0,x=c时,y=0,于是二次函数y=ax2+bx+c的对称轴:即b≤﹣2ac所以b=﹣ac﹣1≤﹣2ac即ac≤1;(2)证明:因为0<x=1<c时,y>0,所以a+b+c>0由ac≤1及a>0,c>1得:0<a<1因为而a+b+c>0,0<a<1,c>1,a﹣2ac﹣2+3c=(1﹣a)(2c﹣1)+(c﹣1)>0所以当x>0时,,即、24、【考点】二次函数图象与几何变换、【分析】(1)根据点B的坐标可求出m的值,写出一次函数的解析式,并求出点A的坐标,最后利用点A、B两点的坐标求抛物线的解析式;(2)根据题意列方程组求出p、q、m、n的值,计算平移后的抛物线的解析式,并求抛物线过A、C时的解析式,根据平移规律,计算其顶点坐标,向下平移的距离主要看顶点坐标的纵坐标之差即可、解:(1)∵直线y=﹣4x+m过点B(3,9),∴9=﹣4×3+m,解得:m=21,∴直线的解析式为y=﹣4x+21,∵点A(5,n)在直线y=﹣4x+21上,∴n=﹣4×5+21=1,∴点A(5,1),将点A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此抛物线的解析式为y=﹣x2+4x+6;(2)由抛物线y=﹣x2+px+q与直线y=﹣4x+m相交于A(5,n)点,得:﹣25+5p+q=n①,﹣20+m=n②,y=﹣x2+px+q过(1,2)得:﹣1+p+q=2③,则有解得:∴平移后的抛物线为y=﹣x2+6x﹣3=﹣(x﹣3)2+6,顶点为(3,6),一次函数的解析式为:y=﹣4x+22,A(5,2),∵当抛物线在平移的过程中,a不变,∵抛物线与直线有两个交点,如图所示,抛物线与直线一定交于点A,所以当抛物线过点C以及抛物线在点A处与直线相切时,只有一个交点介于点A、C之间,当抛物线y=﹣x2+bx+c过A(5,2)、C(0,22)时,得c=22,b=1,此时抛物线解析式为:y=﹣x2+x+22,顶点(,);﹣6=;则0<S<、25、【考点】待定系数法求二次函数解析式;一次函数图象与系数的关系;二次函数的性质、【分析】(1)根据直线的解析式分别令x=0、y=0,即可求得A、B的坐标,然后设出抛物线的顶点式,用待定系数法得到二次函数的解析式即可、(2)设BP=t(0<t<7),则OP=7﹣t,P(t﹣7,0),M(t﹣7,),N(t﹣7,﹣(t﹣7+3)2+8),即可得出s=MN=﹣t2+t(0<t<7),由﹣<0,可知S有最大值,然后根据二次函数的性质即可求得s的最大值、解:(1)∵直线y=x+与x轴、y轴分别相交于B、A两点,∴令x=0,则y=,令y=0,则x=﹣7,∴A(0,),B(﹣7,0),∵抛物线的对称轴为直线x=﹣3、∴设抛物线的解析式为y=a(x+3)2+n,∵抛物线过A(0,),B(﹣7,0),∴解得、∴抛物线的解析式为y=﹣(x+3)2+8、(2)设BP=t(0<t<7),则OP=7﹣t,∴P(t﹣7,0)∵由于MP与y轴平行,且点M在直线AB上∴M(t﹣7,),∵MN与y轴平行,且点N在抛物线上∴N(t﹣7,﹣(t﹣7+3)2+8),∴s=MN=﹣(t﹣7+3)2+8﹣=﹣t2+t(0<t<7),∵﹣<0,即S有最大值∴当t=﹣=时,s最大=﹣×()2+×=、26、【考点】抛物线与x轴的交点;二次函数图象与几何变换;等腰三角形的性质、【分析】(1)利用交点式求二次函数的解析式,并配方求对称轴;(2)先求直线AC的解析式,根据各自的解析式设出M(x,﹣x2++2),H(x,﹣x+2),由图得△CMH为等腰三角形时,①CM=CH,②当HC=HM时,③当CM=HM时,列式计算求出M的坐标,把M的坐标代入平移后的解析式可并得出m的值、解:(1)当x=0时,y=ax2+bx+2=2,∴抛物线经过(0,2),∵抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,设抛物线的解析式为:y=a(x﹣4)(x+1),把(0,2)代入得:2=a(0﹣4)(0+1),a=﹣,∴y=﹣(x﹣4)(x+1)=﹣x2++2=﹣(x﹣)2+,∴抛物线的解析式为:y=﹣x2++2,对称轴是:直线x=;(2)设直线AC的解析式为:y=kx+b,把A(4,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=﹣x+2,设M(x,﹣x2++2),H(x,﹣x+2),∵△CMH为等腰三角形,分三种情况:①当CM=CH时,∴C是MH垂直平分线上的点,∴GH+GM=4,则﹣x2++2+(﹣x+2)=4,解得:x1=0(舍),x2=2,∴M(2,3),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(2,3)代入得:m=1、②当HC=HM时,HM=﹣x2++2﹣(﹣x+2)=﹣x2+2x,CH2=,CH=,∴=﹣x2+2x,x1=0(舍),x2=4﹣,∴M(4﹣,﹣),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(4﹣,﹣),代入得:m1=0(舍),m2=5﹣2;③当CM=HM时,HM=﹣x2+2x,CM2=,则=,x=,∴M(,),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(,),代入得:m=0(舍);综上所述,当m=1时,M(2,3);当m=5﹣2时,M(4﹣,﹣)、27、【考点】二次函数的应用、【分析】(1)根据一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低2元,得出260﹣2(x﹣10)=224求出即可;(2)根据利润关系式,列出一元二次方程,求出件数;(3)由于此次购买数量大于10件,根据已知,设利润为y,根据条件列出二次函数关系式,利用对称轴性质求出a的取值范围、解:(1)设商家一次购买该产品x件时,销售单价恰好为224元、260﹣2(x﹣10)=224,解得:x=28;答:顾客一次购买A产品28件时,销售单价恰好为224元、(2)设本次交易中小张购买产品的件数是x,∵792>(260﹣200)×10,∴x>10,根据题意得:[260﹣2(x﹣10)﹣200]x=792,解得:x1=22,x2=18,∴本次交易中小张购买产品的件数是22件或18件;(3)设公司获利为y,则y=[260﹣2(x﹣10)﹣5﹣a﹣200]x﹣100,即y=﹣2x2+(75﹣a)x﹣100,对称轴x=﹣=,∵顾客一次购买的数量越多,公司在该次交易中所获得的利润越大,≥17解得:a≤7,∴a的取值范围为:0≤a≤7、28、【考点】二次函数综合题、【分析】(1)根据二次函数的解析式写出顶点P的坐标(m,n),又因为点p在直线y=﹣x+4上,将p点坐标代入可求出n,将二次函数化成一般式后得出点C的纵坐标,并将其化成含m的代数式;(2)当点P在矩形BCDE的边DE上,且在第一象限时,由CD=2可知,点P的横坐标为2,可求得纵坐标为2,则P(2,2),得出抛物线对应的函数表达式;(3)根据坐标表示出边BC的长,由矩形周长公式表示出d;(4)首先点B与C不能重合,因此点B不会在抛物线上,则分两类情况讨论:①点C、D 在抛物线上时;②点C、E在抛物线上时;由(1)的结论计算出m的值、解:(1)y=﹣(x﹣m)2+n=﹣x2+mx﹣m2+n,∴P(m,n),∵点P在直线y=﹣x+4上,∴n=﹣m+4,当x=0时,y=﹣m2+n=﹣m2﹣m+4,即点C的纵坐标为:﹣m2﹣m+4,故答案为:﹣m+4,﹣m2﹣m+4;(2)∵四边形BCDE是矩形,∴DE∥y轴、∵CD=2,∴当x=2时,y=2、∴DE与AB的交点坐标为(2,2)、∴当点P在矩形BCDE的边DE上时,抛物线的顶点P坐标为(2,2)、∴抛物线对应的函数表达式为、(3)∵直线y=﹣x+4与y轴交于点B,∴点B的坐标是(0,4)、当点B与点C重合时,、解得m1=0,m2=﹣3、i)当m<﹣3或m>0时,如图①、②,、、ii)当﹣3<m<0时,如图③,、、(4)如图④⑤,点C、D在抛物线上时,由CD=2可知对称轴为:x=±1,即m=±1;如图⑥⑦,点C、E在抛物线上时,由B(0,4)和CD=2得:E(﹣2,4)则4=﹣(﹣2﹣m)2+(﹣m+4),解得:、、综上所述:m=1、m=﹣1、、、。

浙教版九年级上册第一章 二次函数 单元测试卷及答案

浙教版九年级上册第一章 二次函数 单元测试卷及答案

浙教版九年级上册第一章二次函数单元测试卷班级__________ 姓名__________ 得分_________一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-22.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.03.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+54.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+27.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-18.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.99.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c-3=0,有两个不相等的实数根二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y=x2-2x-3与y轴交点坐标是__________.12.如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__________.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是__________.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.18.已知二次函数y=x2-mx-1,当x<4时,函数值y随x的增大而减小,则m的取值范围是__________.三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y=x2-4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况.(2)求函数图象与x轴的交点A,B的坐标及△ABC的面积.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m,利用图③,解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③22.(本题8分)一列火车在A城的正北240 km处,以120 km/h的速度驶向A城.同时,一辆汽车在A 城的正东120 km处,以120 km/h速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计)23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.第一章二次函数单元测试·答案一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-2【答案】B2.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.0【答案】A3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+5【答案】A【解析】根据“左加右减,上加下减”的规律可知,将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为y=(x+2)2-5,故选A.4.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)【答案】A【解析】二次函数y=ax2的图象关于y轴对称.关于y轴对称的点的横坐标互为相反数,纵坐标相同,故选A.5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小【答案】D6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2【答案】D【解析】y=x2-2x+3=x2-2x+1+2=(x-1)2+2.7.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-1【答案】C8.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.9【答案】B9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()【答案】A【解析】连结AF,由题意EC=4-x,FD=4-y,在Rt △AEF 中,AE 2+EF 2=AF 2,即x 2+42+y 2+(4-x )2=42+(4-y )2, 化简得y =-14x 2+x =-14(x -2)2+1,∵0≤x ≤4,∴选A .10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( ) A .abc >0 B .2a +b <0 C .3a +c <0D .ax 2+bx +c -3=0,有两个不相等的实数根【答案】C【解析】由二次函数图象开口向下可知,a <0,由“左同右异”可知b >0,由图象与y 轴交于正半轴可知c >0,故abc <0,故A 选项错误;由图象可知,对称轴为直线x =1,即-b2a =1,则b =-2a ,故2a +b =0,故B 选项错误;当x =-1时,y =a -b +c =a +2a +c =3a +c ,由图象与x 轴交于x 轴下方可知,当x =-1时,y <0,即3a +c <0,故C 选项正确;当y =3时,ax 2+bx +c =3,即ax 2+bx +c -3=0,由图象可知,当y =3时,x =1,故ax 2+bx +c -3=0有两个相等的实数根,故D 选项错误.故选C .二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y =x 2-2x -3与y 轴交点坐标是__________.【答案】(0,-3)12.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图象,那么a 的值是__________.【答案】-1【解析】由图象可知,抛物线经过原点(0,0),∴a2-1=0,解得a=±1.∵图象开口向下,∴a<0,∴a=-1.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.【答案】y=-x2+4x-3【解析】设抛物线的函数表达式为y=a(x-2)2+1(a≠0),将B(1,0)代入y=a(x-2)2+1,得a=-1.∴函数表达式为y=-(x-2)2+1,即y=-x2+4x-3.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.【答案】y=x2-2x15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.【答案】y=-(x+1)2-2【解析】二次函数y=(x-1)2+2的顶点坐标为(1,2),开口向上,绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),开口向下,所以旋转后的新函数图象的表达式为y=-(x+1)2-2.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx +n>ax2+bx+c的解集是__________.【答案】x<-1或x>4【解析】由函数图象可知:在点A的左侧和点B的右侧,一次函数的函数值都大于二次函数的函数值,∵A(-1,p),B(4,q),∴关于x的不等式mx+n>ax2+bx+c的解集是x<-1或x>4.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.【答案】-2 【解析】由抛物线y =ax 2+bx可知,点C 的横坐标为-b 2a ,纵坐标为-b 24a.∵四边形ABOC 是正方形, ∴-b 2a =-⎝⎛⎭⎫-b 24a .∴b =-2.18.已知二次函数y =x 2-mx -1,当x <4时,函数值y 随x 的增大而减小,则m 的取值范围是__________. 【答案】m ≥8三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况. (2)求函数图象与x 轴的交点A ,B 的坐标及△ABC 的面积.【答案】解:(1)y =x 2-4x +3=x 2-4x +4-4+3=(x -2)2-1. ∴顶点C 的坐标是(2,-1).当x ≤2时,y 随x 的增大而减小;当x ≥2时,y 随x 的增大而增大. (2)令x 2-4x +3=0,解得x 1=3,x 2=1. ∴点A 的坐标是(1,0),点B 的坐标是(3,0). ∴S △ABC =12AB ×h =12×2×1=1.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.【答案】解:∵二次函数图象的顶点坐标为(1,-1), ∴可设为y =a (x -1)2-1(a ≠0).∵当x =0时,y =0,∴0=a ×(0-1)2-1,解得a =1. ∴该函数表达式为y =(x -1)2-1. 21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m ,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m 时,透光面积的最大值约为1.05 m 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m ,利用图③,解答下列问题:(1)若AB 为1 m ,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③【答案】解:(1)由题意,得AD =54 m ,∴S =54 m 2;(2)设AB =x (m ),则AD =12×⎝⎛⎭⎫6-3x -x 2=⎝⎛⎭⎫3-74x m , ∵3-74x >0,∴0<x <127.设窗户面积为S (m 2),由题意,得S =AB ·AD =x ⎝⎛⎭⎫3-74x =-74x 2+3x =-74⎝⎛⎭⎫x -672+97, 当x =67 m 时,S 最大值=97m 2>1.05 m 2.∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.(本题8分)一列火车在A 城的正北240 km 处,以120 km /h 的速度驶向A 城.同时,一辆汽车在A城的正东120 km 处,以120 km /h 速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计) 【答案】解:如答图,设经过t h ,火车到达B 处,汽车到达C 处,则AB =|240-120t |, AC =|120-120t |, 在Rt △ABC 中, BC =AB 2+AC 2=(240-120t )2+(120-120t )2 =1202(2-t )2+1202(1-t )2 =1202t 2-6t +5=1202⎝⎛⎭⎫t -322+12. 当t =32 h 时,BC 之间的距离最小,此时BC =12012=602, ∵当t =32 h 时,汽车运动的距离为120×32=180(km )>120(km ),∴汽车已过铁路与公路的交叉口.答:当经过32h 时汽车与火车的距离最近,此时汽车已过铁路与公路的交叉口.23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD ,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米? (2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?【答案】解:(1)设矩形广场四角的小正方形的边长为x米,根据题意,得4x2+(100-2x)(80-2x)=5200,整理,得x2-45x+350=0,解得x1=35,x2=10.经检验,x1=35,x2=10均符合题意.所以,要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为35米或10米.(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30×[4x2+(100-2x)(80-2x)]+20×[2x(100-2x)+2x(80-2x)],即y=80x2-3600x+240000,配方,得y=80(x-22.5)2+199500.当x=22.5时,y的值最小,最小值为199500元.所以,当矩形广场四角的小正方形的边长为22.5米时,所铺广场地面的总费用最少,最少费用为24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.【答案】解:(1)∵点A(a,12)在直线y=2x上,∴12=2a,解得:a=6,又∵点A是抛物线y=12x2+bx上的一点,将点A(6,12)代入y=12x2+bx,可得b=-1,∴抛物线表达式为y=12x2-x.(2)∵点C是OA的中点,∴点C的坐标为(3,6),把y=6代入y=12x2-x,解得:x1=1+13,x2=1-13(舍去),故BC=1+13-3=13-2.(3)∵直线OA的表达式为:y=2x,点D的坐标为(m,n),∴点E的坐标为(12n,n),点C的坐标为(m,2m),∴点B的坐标为(12n,2m),把点B(12n,2m)代入y=12x2-x,可得m=116n2-14n,。

浙教版九年级上册 第1章 二次函数 单元检测卷(含解析)

浙教版九年级上册 第1章 二次函数 单元检测卷(含解析)

浙教版九年级上册第1章二次函数单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列函数是二次函数的是( )A.y=2x B.y=C.y=x2D.y=2.抛物线y=3(x﹣1)2+2的顶点坐标为( )A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)3.将抛物线先向左平移2个单位,再向下平移3个单位,得到抛物线的函数关系表达式是( )A.B.C.D.4.已知某二次函数,当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小,则该二次函数的解析式可以是( )A.y=2(x+1)2B.y=﹣2(x+1)2C.y=2(x﹣1)2D.y=﹣2(x﹣1)25.函数y=ax和函数y=a(x﹣1)2(a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.6.若点A(﹣3,y1),B(1,y2),C(2,y1)是抛物线y=﹣x2+2x上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y2>y1>y37.某果园有10棵苹果树,平均每一棵树可以结200个苹果.根据经验估计,每多种一棵树,平均每棵树就会少结5个苹果,现果园增种了x棵苹果树,若苹果总个数为y(个),则下列y与x的关系式中哪一个是正确的( )A.y=(10+x)(200+5x)B.y=(10+x)(200﹣5x)C.y=(10﹣x)(200+5x)D.y=(10﹣x)(200﹣5x)8.二次函数y=﹣ax2+3ax+c(a>0,c>0)与动直线y=ax+b交于M,N两点,线段MN中点为H,A(﹣1,0),B(0,﹣2),则AH+BH的最小值为( )A.B.2C.D.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②2a+b=0;③m为任意实数时,a+b≤m(am+b);④a﹣b+c>0;⑤若ax+bx1=+bx2,且x1≠x2,则x1+x2=2.其中正确的有( )A.1个B.2个C.3个D.4个10.抛物线交x轴于O(0,0),A两点,将C1绕点A旋转180°得到抛物线C2,交x 轴于另一点A1;将C2绕点A1旋转180°得到抛物线C3,交x轴于另一点A2;…,如此进行下去,形成如图所示的图象,则下列各点在图象上的是( )A.(2022,1)B.(2022,﹣1)C.(2023,1)D.(2023,﹣1)二.填空题(共6小题,满分24分,每小题4分)11.如果函数+3是二次函数,则m的值为 .12.抛物线y=ax2﹣2ax+4(a≠0)的对称轴是 .13.已知二次函数y=ax2﹣3的图象经过点(1,﹣1),则a的值为 .14.二次函数y=ax2+bx+c(a≠0,a、b、c是常数)的图象如图所示,则不等式ax2+(b﹣2)x+c>0的解集是 .15.已知函数y=x2﹣6x+2,当﹣1<x<4时,则y的取值范围为 .16.如图,甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分.甲在O点正上方的A处发出一球,以点O为原点建立平面直角坐标系,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数解析式y=﹣(x﹣4)2+,球网BC离点O的水平距离为5米,甲运动员发球过网后,乙运动员在球场上N(n,0)处接球,乙原地起跳可接球的最大高度为2.4米,若乙因接球高度不够而失球,则n的取值范围是 .三.解答题(共8小题,满分66分)17.(6分)已知二次函数y=ax2+bx+2(a≠0)的图象经过点(﹣1,7)和(3,﹣1).(1)求二次函数的表达式和顶点坐标.(2)当m≤x≤m+2时,y有最小值﹣1,求m的值.18.(6分)在平面直角坐标系中,已知二次函数y=mx2﹣x+1.(1)若点(2,3)在二次函数的图象上,求二次函数的表达式;(2)当时,二次函数y=mx2﹣x+1的图象与y=t(t为常数)的图象只有一个交点,求t的值;(3)已知点A(﹣1,0),B(1,1),若二次函数y=mx2﹣x+1的图象与线段AB有两个不同的交点,直接写出m的取值范围.19.(6分)已知二次函数y=2(x﹣1)2的图象如图所示,求△ABO的面积.20.(8分)如图,已经抛物线经过点O(0,0),A(5,5),且它的对称轴为x=2.(1)求此抛物线的解析式;(2)若点B是x轴上的一点,且△OAB为等腰三角形,请直接写出B点坐标.21.(8分)“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的(如图),水柱的最高点为P,AB=2m,BP=10m,水嘴高AD=6m.(1)以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y轴建立平面直角坐标系,求图中抛物线的解析式;(2)求水柱落点C与水嘴底部A的距离AC.22.(10分)有一张轴对称纸片,曲线部分为抛物线,如图1,以抛物线对称轴所在直线为y轴建立平面直角坐标系,其中点A,B在x轴上,点C在y轴上,且AB=OC=6.(1)求该抛物线的函数关系式;(2)在纸片中裁剪出一个正方形EFGH,如图2,其中点E,F在该抛物线上,点G,H在x轴上.求点F的坐标.23.(10分)在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别相交于A(﹣3,0)、B(0,﹣3),二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的表达式;(2)若二次函数y=x2+mx+n图象与y轴交点为(0,3),请判断此二次函数的顶点是否在直线y=kx+b(k≠0)的图象上?(3)当n>0,m≤5时,二次函数y=x2+mx+n的最小值为t,求t的取值范围.24.(12分)如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0),交y轴于C(0,3).(1)求抛物线的表达式;(2)P是直线BC上方的抛物线上的一个动点,设P的横坐标为t,当四边形OBPC的面积S最大时,求出面积的最大值及P点的坐标;(3)设点M是x轴上的动点,在平面直角坐标系中,存在点N,使得以点A、C、M、N为顶点的四边形是菱形,直接写出所有符合条件的点N坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用二次函数的一般形式为:y=ax2+bx+c(a、b、c是常数,a≠0),进而判断得出即可.【解答】解:A、该函数不符合二次函数的定义,故本选项不符合题意;B、该函数不符合二次函数的定义,故本选项不符合题意;C、该函数符合二次函数的定义,故本选项符合题意;D、该函数的右边不是整式,它不是二次函数,故本选项不符合题意;故选:C.2.【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+2是顶点式,∴顶点坐标是(1,2).故选:C.3.【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【解答】解:将抛物线先向左平移2个单位,再向下平移3个单位,得到抛物线的函数关系表达式是y=(x﹣3+2)2﹣5﹣3,即y=2﹣8,故选:C.4.【分析】先利用二次函数的性质得到抛物线开口向上,对称轴为直线x=1,然后对各选项进行判断.【解答】解:∵当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,∴抛物线开口向上,对称轴为直线x=1,∴抛物线y=2(x﹣1)2满足条件.故选:C.5.【分析】根据题目中的函数解析式,利用分类讨论的方法,可以得到这两个函数图象经过的象限和某些特殊点,从而可以解答本题.【解答】解:当a>0时,函数y=ax经过第一、三象限且过原点,函数y=a(x﹣1)2的图象开口向上,顶点坐标为(1,0),故选项B不符合题意,选项C符合题意;当a<0时,函数y=ax经过第二、四象限且过原点,函数y=a(x﹣1)2的图象开口向下,顶点坐标为(1,0),故选项A不符合题意,选项D不符合题意;故选:C.6.【分析】根据二次函数的性质得到抛物线y=﹣x2+2x的开口向下,对称轴为直线x=1,然后根据三个点离对称轴的远近判断函数值的大小.【解答】解:∵抛物线y=﹣x2+2x,∴抛物线开口向下,对称轴为直线x=﹣=1,而A(﹣3,y1)离直线x=1的距离最远,B(1,y2)在直线x=1上,∴y1<y3<y2.故选:B.7.【分析】根据多种一棵树,平均每棵树就会少结5个苹果列式即可得到答案.【解答】解:由题意可得,y=(10+x)(200﹣5x),故选:B.8.【分析】设M、N两点的横坐标分别为x1,x2,根据两个函数的交点的横坐标就是方程﹣ax2+3ax+c=ax+b的解,根据根与系数的关系和中点坐标公式可得点H的横坐标为1,故点H在直线x=1上运动,确定点A关于直线x=1的对称点C,连接BC,求出BC的值即为AH+BH的最小值.【解答】解:设M、N两点的横坐标分别为x1,x2,﹣ax2+3ax+c=ax+b,﹣ax2+2ax+c﹣b=0,∴x1+x2=﹣=1,∵H为线段MN的中点,∴点H在直线x=1上运动,∵A(﹣1,0),设点A关于直线x=1的对称点为点C,∴C(3,0),∴BC的值即为AH+BH的最小值,∵B(0,﹣2),∴BC==,即AH+BH的最小值为.故选:C.9.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口方向向上,则a>0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于y轴负半轴,则c<0,所以abc<0.故①错误;②∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最小值为:a+b+c,∴m为任意实数时,a+b≤m(am+b);即a+b+c<am2+bm+c,故③正确;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y>0,∴a﹣b+c>0,故④正确;⑤∵+bx1=+bx2,∴+bx1﹣﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②③④⑤.故选:D.10.【分析】根据抛物线的旋转,找到图象的循环特征,由循环特性分别找到当x=2022、x=2023时,对应的函数值,进行判定即可.【解答】解:由已知y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1,则抛物线C1的顶点为(1,﹣1),由旋转可知,抛物线C2的顶点为(3,1),则抛物线C2解析式为:y=﹣(x﹣3)2+1,由题意可知,题干中的复合图象,每4个单位循环一次,由2022=505×4+2可知,x=2022的函数值等于x=2时的函数值,∴x=2时,y=22﹣2×2=0,由2023=505×4+3可知,x=2023的函数值等于x=3时的函数值,∴x=3时,y=﹣(3﹣3)2+1=1,故可知,点(2023,1)在图象上.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.【分析】由二次函数的定义进行计算,即可得到答案.【解答】解:∵是二次函数,∴,解得:,∴m=2;故答案为:2.12.【分析】由二次函数解析式及抛物线对称轴为直线x=﹣求解.【解答】解:∵y=ax2﹣2ax+4,∴抛物线对称轴为直线x=﹣=1,故答案为:直线x=1.13.【分析】把(1,﹣1)代入函数y=ax2﹣3中,即可求a.【解答】解:把(1,﹣1)代入函数解析式,得a﹣3=﹣1,解得a=2.故答案是2.14.【分析】先根据题意化简不等式,然后转化为比较二次函数和一次函数的函数值的大小问题即可解答.【解答】解:ax2+(b﹣2)x+c>0,ax2+bx+c﹣2x>0,∴ax2+bx+c>2x,即二次函数大于一次函数时x的取值范围,如图,由图象可知,x<1或x>3,故答案为:x<1或x>3.15.【分析】将二次函数解析式化为顶点式,根据抛物线开口方向及顶点坐标求解.【解答】解:∵y=x2﹣6x+2=(x﹣3)2﹣7,∴抛物线开口向上,对称轴为直线x=3,顶点坐标为(3,﹣7),将x=﹣1代入y=x2﹣6x+2得y=1+6+2=9,∴当﹣1<x<4时,y的取值范围是﹣7≤y<9,故答案为:﹣7≤y<9.16.【分析】将(n,2.4)代入y=﹣(x﹣4)2+即可求得n的最大值,再结合球网BC离点O的水平距离为5米可得n>5,即可求解.【解答】解:∵乙原地起跳可接球的最大高度为2.4米,∴若乙因接球高度不够而失球,当x=n时,羽毛球飞行的高度y≥2.4,当y=2.4时,﹣(n﹣4)2+=2.4,解得:n=7或n=1(舍去),∵网BC离点O的水平距离为5米,∴n>5,∴5<n<7,故答案为:5<n<7.三.解答题(共8小题,满分66分)17.【分析】(1)利用待定系数法求出二次函数的解析式,然后求出其顶点坐标即可;(2)先根据抛物线的对称轴确定其增减性,然后分情况讨论:当m+2<2,m>2,m<2<m+2时分别判断即可得出m的值.【解答】解:(1)根据题意得,,解得,∴二次函数的解析式为y=x2﹣4x+2,∵y=x2﹣4x+2=(x﹣2)2﹣2,∴其顶点坐标是(2,﹣2);(2)由(1)知抛物线的对称轴是直线x=2,开口向上,当x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,当m+2<2,即m<0时,当x=m+2时y有最小值﹣1,∴(m+2﹣2)2﹣2=﹣1,解得m=﹣1或m=1(舍去);当m>2时,当x=m时y有最小值﹣1,∴(m﹣2)2﹣2=﹣1,解得m=3或m=1(舍去);当m<2且m+2>2,即0<m<2时y有最小值﹣2,不合题意,舍去;综上,m的值为﹣1或3.18.【分析】(1)利用待定系数法即可求得;(2)求得抛物线的顶点即可求得;(3)分m>0和m<0两种情况来讨论,结合图象作出判断.【解答】解:(1)∵点(2,3)在二次函数y=mx2﹣x+1的图象上,∴3=4m﹣2+1,解得m=1,∴二次函数的表达式为y=x2﹣x+1;(2)当时,二次函数关系式为y=x2﹣x+1,∵y=(x﹣2)2,∴抛物线的顶点为(2,0),∵二次函数y=mx2﹣x+1 的图象与y=t(t为常数)的图象只有一个交点,∴t=0;(3)①如图1,当m<0时,x=﹣1时,y=mx2﹣x+1=m+1+1≥0,解得m≥﹣2,所以﹣2≤m<0,②如图2,当m>0时,x=1时,y=mx2﹣x+1=m﹣1+1≥1,解得m≥1,∴m的取值范围为﹣2≤m<0或m≥1.19.【分析】根据函数解析式,可以得到点A和点B的坐标,然后即可求得△ABO的面积.【解答】解:∵二次函数y=2(x﹣1)2,∴顶点A的坐标为(1,0),点B的坐标为(0,2),∴OA=1,OB=2,∴△ABO的面积为:,即△ABO的面积是1.20.【分析】(1)由抛物线经过点O(0,0),对称轴为直线x=2,知抛物线经过点(4,0),设抛物线的解析式为y =ax(x﹣4),用待定系数法可得抛物线的解析式为y=x2﹣4x;(2)设B(m,0),有OA2=50,OB2=m2,AB2=(m﹣5)2+25,分三种情况:①若OA=OB,则50=m2,②若OA=AB,则50=(m﹣5)2+25,③若OB=AB,则m2=(m﹣5)2+25,分别解方程可得答案.【解答】解:(1)∵抛物线经过点O(0,0),对称轴为直线x=2,∴抛物线经过点(4,0),设抛物线的解析式为y=ax(x﹣4),把A(5,5)代入得:5=5a,解得:a=1,∴y=x(x﹣4)=x2﹣4x,∴抛物线的解析式为y=x2﹣4x;(2)设B(m,0),∵O(0,0),A(5,5),∴OA2=50,OB2=m2,AB2=(m﹣5)2+25,①若OA=OB,则50=m2,解得m=5或m=﹣5,∴B(5,0)或(﹣5,0);②若OA=AB,则50=(m﹣5)2+25,解得m=0(与O重合,舍去)或m=10,∴B(10,0);③若OB=AB,则m2=(m﹣5)2+25,解得m=5,∴B(5,0);综上所述,B的坐标为(5,0)或(﹣5,0)或(10,0)或(5,0).21.【分析】(1)据D(0,6),顶点P(2,10),设抛物线的解析式为y=a(x﹣h)2+k,用待定系数法求解析式即可;(2)当y=0时,求出x的值解答即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣h)2+k,∴y=a(x﹣2)2+10,把D(0,6)代入y=a(x﹣2)2+10得,4a=﹣4.∴a=﹣1,∴y=﹣(x﹣2)2+10.(2)当y=0时,0=﹣(x﹣2)2+10.解得x1=2+,x2=(舍去).所以C(,0).答:水柱落点C与水嘴底部A的距离AC为()m.22.【分析】(1)设抛物线的表达式为y=a(x+3)(x﹣3),用待定系数法可得答案;(2)设正方形EFGH的边长为m,则F(,m),代入y=﹣x2+6可解得m=﹣3+3或m=﹣3﹣3,又m>0,故F(,﹣3+3).【解答】解:(1)由题意得A(﹣3,0),B(3,0),C(0,6),设抛物线的表达式为y=a(x+3)(x﹣3),将C(0,6)代入得:﹣9a=6,解得a=﹣,∴y=a(x+3)(x﹣3)=﹣(x+3)(x﹣3)=﹣x2+6,∴抛物线的函数关系式y=﹣x2+6;(2)设正方形EFGH的边长为m,则F(,m),∵点F在抛物线y=﹣x2+6上,∴m=﹣×()2+6,解得m=﹣3+3或m=﹣3﹣3,∵m>0,∴m=﹣3+3,∴F(,﹣3+3).23.【分析】(1)待定系数法求直线解析式即可;(2)利用点(0,3)、A(﹣3,0)求出抛物线解析式,配方后得到抛物线的顶点坐标代入直线解析式验证即可;(3)根据点A在二次函数图象上,可以确立9﹣3m+n=0,即n=3m﹣9,由n>0可得3<m≤5,利用最值公式得t=﹣(m﹣6)2;根据m范围确定t的范围即可.【解答】解:(1)∵点A(﹣3,0)、B(0,﹣3)在一次函数y=kx+b(k≠0)的图象上,∴,解得,一次函数解析式为:y=﹣x﹣3.(2)∵二次函数y=x2+mx+n图象与y轴交点为(0,3),且A(﹣3,0)在图象上,∴n=3;m=4.∴二次函数解析式为:y=x2+4x+4﹣1=(x+2)2﹣1,∴顶点坐标(﹣2,﹣1).当x=﹣2时,y=﹣x﹣3=﹣(﹣2)﹣3=﹣1,∴抛物线的顶点在直线y=﹣x﹣3上.(3)∵二次函数y=x2+mx+n图象过A(﹣3,0),∴9﹣3m+n=0,即n=3m﹣9,∵n>0,∴m>3,∴3<m≤5.∵二次函数y=x2+mx+n的最小值为t,∴t===﹣(m﹣6)2;当m=5时,t=﹣,当m=3时,t=﹣.∴﹣<t≤﹣.24.【分析】(1)用待定系数法求抛物线的表达式;(2)将四边形OBPC分割成两个三角形PBC和三角形OBC;(3)分两类,AC作为菱形的一条边和对角线,数形结合法求N的坐标.【解答】解:(1)抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0),交y轴于C(0,3).∴,∴,∴抛物线的表达式为y=﹣x2+2x+3.(2)设直线BC的表达式为:y=kx+3,代入B(3,0)得,k=﹣1,∴y=﹣x+3,过P作PD∥y轴交BC于点Q,设P(x,﹣x2+2x+3),Q(x,﹣x+3),∴PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,∴S四边形OBPC=S△PBC+S△OBC=×3×PD+×OB×OD=×3×(﹣x2+3x)+×3×3=﹣x2+x+=﹣(x﹣)2+,∴当t=时,S四边形OBPC的最大值=,此时P点的坐标(,).(3)存在点N,使得以点A、C、M、N为顶点的四边形是菱形,满足条件的N的坐标为(,3)或(﹣,3)或(0,﹣3)或(﹣5,3).理由如下:A(﹣1,0)、C(0,3),AC=,当AC作为菱形的一条边时,如图,N(,3)或(﹣,3)或(0,﹣3).当AC作为菱形的对角线时,设菱形的边长为x,在Rt△COM中,OC=3,CM=x,OM=AM﹣OA=x﹣1,由勾股定理得,32+(x﹣1)2=x2,∴x=5,∴N(﹣5,3).综上,N(,3)或(﹣,3)或(0,﹣3).或(﹣5,3).。

2022-2023学年浙教版九年级数学上册《第1章二次函数》单元综合练习题(附答案)

2022-2023学年浙教版九年级数学上册《第1章二次函数》单元综合练习题(附答案)

2022-2023学年浙教版九年级数学上册《第1章二次函数》单元综合练习题(附答案)一.选择题1.关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6 2.已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.﹣5或2B.﹣5C.2D.﹣23.将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变4.在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=﹣x2﹣4x+5B.y=x2+4x+5C.y=﹣x2+4x﹣5D.y=﹣x2﹣4x﹣5 5.若抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,P为这条抛物线的顶点,则点P关于x轴的对称点的坐标是()A.(2,4)B.(﹣2,4)C.(﹣2,﹣4)D.(2,﹣4)6.将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为()A.或﹣3B.或﹣3C.或﹣3D.或﹣37.定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值分别是()A.4,﹣1B.,﹣1C.4,0D.,﹣18.已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为()A.﹣4≤a<﹣B.﹣4≤a≤﹣C.﹣≤a<0D.﹣<a<0二.填空题9.抛物线y=3(x﹣1)2+8的顶点坐标为.10.将抛物线y=x2﹣2x+3向左平移2个单位长度,所得抛物线为.11.二次函数y=﹣3x2﹣2的最大值为.12.对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是.13.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=﹣2x2+4x+1,则喷出水珠的最大高度是m.14.已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(﹣3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=﹣2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是(填写序号).15.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是元.16.如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C 的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.17.我们规定:若=(x1,y1),=(x2,y2),则•=x1x2+y1y2.例如=(1,3),=(2,4),则•=1×2+3×4=2+12=14.已知=(x+1,x﹣1),=(x﹣3,4),且﹣2≤x≤3,则•的最大值是.18.已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE 的面积为.19.把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.20.如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为.21.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.22.在函数y=(x﹣1)2中,当x>1时,y随x的增大而.(填“增大”或“减小”)23.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是.(只填序号)24.设抛物线y=x2+(a+1)x+a,其中a为实数.(1)若抛物线经过点(﹣1,m),则m=;(2)将抛物线y=x2+(a+1)x+a向上平移2个单位,所得抛物线顶点的纵坐标的最大值是.25.如图,已知点A(3,0),B(1,0),两点C(﹣3,9),D(2,4)在抛物线y=x2上,向左或向右平移抛物线后,C,D的对应点分别为C′,D′.当四边形ABC′D′的周长最小时,抛物线的解析式为.三.解答题26.如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c 图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.27.如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,).(1)求该抛物线的解析式;(2)若直线y=kx+(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值,求m的值.28.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.57.5…y…8.0 6.0 5.0 3.0 1.0…(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元),①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?29.如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).(1)填空:点A的坐标为,点D的坐标为,抛物线的解析式为;(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;(3)P是抛物线对称轴上一动点,是否存在点P,使△P AC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.30.如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F 的距离与点G到直线y=﹣2的距离总相等.①证明上述结论并求出点F的坐标;②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.证明:当直线l绕点F旋转时,+是定值,并求出该定值;(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC 周长最小,直接写出P,Q的坐标.31.已知O为坐标原点,直线l:y=﹣x+2与x轴、y轴分别交于A、C两点,点B(4,2)关于直线l的对称点是点E,连接EC交x轴于点D.(1)求证:AD=CD;(2)求经过B、C、D三点的抛物线的函数表达式;(3)当x>0时,抛物线上是否存在点P,使S△PBC=S△OAE?若存在,求点P的坐标;若不存在,说明理由.32.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD ⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.33.如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.34.如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)连接BC,求直线BC的解析式;(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵二次函数y=2(x﹣4)2+6,a=2>0,∴该函数图象开口向上,有最小值,当x=4取得最小值6,故选:D.2.解:∵抛物线y=x2+kx﹣k2的对称轴在y轴右侧,∴x=﹣>0,∴k<0.∵抛物线y=x2+kx﹣k2=(x+)²﹣.∴将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线的表达式是:y=(x+﹣3)²﹣+1,∴将(0,0)代入,得0=(0+﹣3)²﹣+1,解得k1=2(舍去),k2=﹣5.故选:B.3.解:A、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,a不变,开口方向不变,故不符合题意.B、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,顶点的横坐标不变,对称轴不变,故不符合题意.C、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,抛物线的开口方向不变,对称轴不变,则y随x的变化情况不变,故不符合题意.D、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,与y轴的交点也向下平移两个单位,故符合题意.故选:D.4.解:由抛物线y=x2﹣4x+5=(x﹣2)²+1知,抛物线顶点坐标是(2,1).由抛物线y=x2﹣4x+5知,C(0,5).∴该抛物线关于点C成中心对称的抛物线的顶点坐标是(﹣2,9).∴该抛物线关于点C成中心对称的抛物线的表达式为:y=﹣(x+2)²+9=﹣x²﹣4x+5.故选:A.5.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16,﹣=2,∴(﹣)2﹣4×=16,b=﹣4,解得c=0,∴抛物线的解析式为y=x2﹣4x=(x﹣2)2﹣4,∴顶点P的坐标为(2,﹣4),∴点P关于x轴的对称点的坐标是(2,4),故选:A.6.解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),把抛物线y=﹣x2+2x+3图象x轴上方的部分沿x轴翻折到x轴下方,则翻折部分的抛物线解析式为y=(x﹣1)2﹣4(﹣1≤x≤3),顶点坐标M(1,﹣4),如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,∴3+b=0,解得b=﹣3;当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣1≤x≤3)相切时,直线y=x+b与该新图象恰好有三个公共点,即(x﹣1)2﹣4=x+b有相等的实数解,整理得x2﹣3x﹣b﹣3=0,△=32﹣4(﹣b﹣3)=0,解得b=﹣,所以b的值为﹣3或﹣,故选:A.7.解:如图,由题意可得,互异二次函数y=(x﹣m)2﹣m的顶点(m,﹣m)在直线y =﹣x上运动,在正方形OABC中,点A(0,2),点C(2,0),∴B(2,2),从图象可以看出,当函数图象从左上向右下运动时,若抛物线与正方形有交点,先经过点A,再逐渐经过点O,点B,点C,最后再经过点B,且在运动的过程中,两次经过点A,两次经过点O,点B和点C,∴只需算出当函数经过点A及点B时m的值,即可求出m的最大值及最小值.当互异二次函数y=(x﹣m)2﹣m经过点A(0,2)时,m=2或m=﹣1;当互异二次函数y=(x﹣m)2﹣m经过点B(2,2)时,m=或m=.∴互异二次函数y=(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值分别是,﹣1.故选:D.8.解:由题意,抛物线的顶点(1,2),又∵线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.∴开口向下,∴a<0,当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,∴a=﹣,观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,∴﹣≤a<0.故选:C.二.填空题9.解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).10.解:将抛物线y=x2﹣2x+3=(x﹣1)2+2向左平移2个单位长度得到解析式:y=(x+1)2+2,故答案为:y=(x+1)2+2.11.解:在二次函数y=﹣3x2﹣2中,∵顶点坐标为(0,﹣2),且a=﹣3<0,∴抛物线开口向下,∴二次函数y=﹣3x2﹣2的最大值为﹣2.故答案为:﹣2.12.解:∵对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有交点,∴△≥0,则(2a)2﹣4(a+b)≥0,整理得b≤a2﹣a,∵a2﹣a=(a﹣)2﹣,∴a2﹣a的最小值为﹣,∴b≤﹣,故答案为b≤﹣.13.解:∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3,∴当x=1时,y有最大值为3,∴喷出水珠的最大高度是3m,故答案为:3.14.解:∵抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,∴(1,0)是抛物线与x轴的一个交点.①∵抛物线经过点(﹣3,0),∴抛物线的对称轴为直线x==﹣1,∴﹣=﹣1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,且二次函数y=cx2+bx+a过点(1,0),∴=﹣,解得m=﹣2,∴y=cx2+bx+a与x轴的另一个交点为(﹣2,0),即方程cx2+bx+a=0一定有根x=﹣2;故②正确;③Δ=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,∴抛物线与x轴一定有公共点,且当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且>1,∴(1,0)在对称轴的左侧,∴当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.故④正确.故答案为:①②④.15.解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解得a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.故答案为:1264.16.解:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图:∵AD⊥y轴,BE⊥y轴,∴AD∥BE,∵CB=3AC,∴CE=3CD,BE=3AD,设AD=m,则BE=3m,∵A、B两点在二次函数y=x2的图象上,∴A(﹣m,m2),B(3m,9m2),∴OD=m2,OE=9m2,∴ED=8m2,而CE=3CD,∴CD=2m2,OC=3m2,∴C(0,3m2),∵P为CB的中点,∴P(m,6m2),又已知P(x,y),∴,∴y=x2;故答案为:y=x2.17.解:根据题意知:•=(x+1)(x﹣3)+4(x﹣1)=(x+1)2﹣8.因为﹣2≤x≤3,所以当x=3时,•=(3+1)2﹣8=8.即•的最大值是8.故答案是:8.18.解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),抛物线的对称轴为直线x=1,当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),当x=4时,y=x2﹣2x﹣3=5,则D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,∵BE+DE=EA+DE=AD,∴此时BE+DE的值最小,设直线AD的解析式为y=kx+b,把A(﹣1,0),D(4,5)代入得,解得,∴直线AD的解析式为y=x+1,当x=1时,y=x+1=2,则E(1,2),当x=0时,y=x+1=1,则F(0,1),∴S△ACE=S△ACF+S△ECF=×4×1+×4×1=4.故答案为4.19.解:把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:y=2(x+1)2+1﹣3,即y=2x2+4x故答案为y=2x2+4x.20.解:把A(2,4)代入y=ax2中得4=4a,解得a=1,∴y=x2,设点C横坐标为m,则CD=CE=2m,∴点E坐标为(m,4﹣2m),∴m2=4﹣2m,解得m=﹣1﹣(舍)或m=﹣1+.∴CD=2m=﹣2+2.故答案为:﹣2+2.21.解:由题意得:Δ=b2﹣4ac=4﹣4k=0,解得k=1,故答案为1.22.解:∵函数y=(x﹣1)2,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.23.解:由图象可得,a<0,b>0,c>0,则abc<0,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x=1,∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,故④正确;∴当x=﹣1时,y=a﹣b+c<0,∴y=a+2a+c<0,∴3a+c<0,故③错误;故答案为:①②④.24.解:(1)点(﹣1,m)代入抛物线解析式y=x2+(a+1)x+a,得(﹣1)2+(a+1)×(﹣1)+a=m,解得m=0.故答案为:0.(2)y=x2+(a+1)x+a向上平移2个单位可得,y=x2+(a+1)x+a+2,∴y=(x+)2﹣(a﹣1)2+2,∴抛物线顶点的纵坐标n=﹣(a﹣1)2+2,∵﹣<0,∴n的最大值为2.故答案为:2.25.解:过C、D作x轴平行线,作A关于直线y=4的对称点A',过A'作A'E∥CD,且A'E =CD,连接BE交直线y=9于C',过C'作C'D'∥CD,交直线y=4于D',如图:作图可知:四边形A'ECD和四边形C'D'DC是平行四边形,∴A'E∥CD,C'D'∥CD,且A'E=CD,C'D'=CD,∴C'D'∥A'E且C'D'=A'E,∴四边形A'EC'D'是平行四边形,∴A'D'=EC',∵A关于直线y=4的对称点A',∴AD'=A'D',∴EC'=AD',∴BE=BC'+EC'=BC'+AD',即此时BC'+AD'转化到一条直线上,BC'+AD'最小,最小值为BE的长度,而AB、CD为定值,∴此时四边形ABC′D′的周长最小,∵A(3,0)关于直线y=4的对称点A',∴A'(3,8),∵四边形A'ECD是平行四边形,C(﹣3,9),D(2,4),∴E(﹣2,13),设直线BE解析式为y=kx+b,则,解得,∴直线BE解析式为y=﹣x+,令y=9得9=﹣x+,∴x=﹣,∴C'(﹣,9),∴CC'=﹣﹣(﹣3)=,即将抛物线y=x2向右移个单位后,四边形ABC′D′的周长最小,∴此时抛物线为y=(x﹣)2,故答案为:y=(x﹣)2.三.解答题26.解:(1)在y=x﹣中,令x=0得y=﹣,令y=0得x=3,∴A(3,0),B(0,﹣),∵二次函数y=x2+bx+c图象过A、B两点,∴,解得,∴二次函数解析式为y=x2﹣x﹣;(2)存在,理由如下:由二次函数y=x2﹣x﹣可得其对称轴为直线x==1,设P(1,m),Q(n,n2﹣n﹣),而B(0,﹣),∵C与B关于直线x=1对称,∴C(2,﹣),①当BC、PQ为对角线时,如图:此时BC的中点即是PQ的中点,即,解得,∴当P(1,﹣),Q(1,﹣)时,四边形BQCP是平行四边形,由P(1,﹣),B(0,﹣),C(2,﹣)可得PB2==PC2,∴PB=PC,∴此时Q(1,﹣);②BP、CQ为对角线时,如图:同理BP、CQ中点重合,可得,解得,∴当P(1,0),Q(﹣1,0)时,四边形BCPQ是平行四边形,由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,∴四边形BCPQ是菱形,∴此时Q(﹣1,0);③以BQ、CP为对角线,如图:BQ、CP中点重合,可得,解得,∴P(1,0),Q(3,0)时,四边形BCQP是平行四边形,由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,∴此时Q(3,0);综上所述,Q的坐标为:(1,﹣)或(﹣1,0)或(3,0).27.解:(1)∵抛物线y=a(x﹣2)2+3与y轴交于点A(0,),∴4a+3=,∴a=﹣,∴y=﹣(x﹣2)2+3;(2)∵直线y=kx+与抛物线有两个交点,∴kx+=﹣(x﹣2)2+3,整理得x2+(3k﹣4)x﹣3=0,∴Δ=(3k﹣4)2+12>0,∵x1+x2=4﹣3k,x1•x2=﹣3,∴x12+x22=(4﹣3k)2+6=10,∴k=或k=2,∴k的值为2或;(3)∵函数的对称轴为直线x=2,当m<2时,当x=m时,y有最大值,=﹣(m﹣2)2+3,解得m=,∴m=﹣,当m≥2时,当x=2时,y有最大值,∴=3,∴m=,综上所述,m的值为﹣或.28.解:(1)(2)根据图象设y=kx+b,把(4.0,8.0)和(5.0,6.0)代入上式,得,解得,∴y=﹣2x+16,∵y≥0,∴﹣2x+16≥0,解得x≤8,∴y关于x的函数表达式为y=﹣2x+16(x≤8);(3)①P=(x﹣2)y=(x﹣2)(﹣2x+16)=﹣2x2+20x﹣32,即P与x的函数表达式为:P=﹣2x2+20x﹣32(x≤8);②∵物价局限定商品的销售单价不得超过进价的200%,∴x≤2×200%,即x≤4,由题意得P=10,∴﹣2x²+20x﹣32=10,解得x1=3,x2=7,∵x≤4,∴此时销售单价为3元.29.解:(1)∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x+c,∵点B(3,0)是抛物线与x轴的交点,∴9﹣12+c=0,∴c=3,∴y=x2﹣4x+3,令y=0,x2﹣4x+3=0,∴x=3或x=1,∴A(1,0),∵D是抛物线的顶点,∴D(2,﹣1),故答案为(1,0),(2,﹣1),y=x2﹣4x+3;(2)当m+2<2时,即m<0,此时当x=m+2时,y有最小值,则(m+2)2﹣4(m+2)+3=,解得m=,∴m=﹣;当m>2时,此时当x=m时,y有最小值,则m2﹣4m+3=,解得m=或m=,∴m=;当0≤m≤2时,此时当x=2时,y有最小值为﹣1,与题意不符;综上所述:m的值为或﹣;(3)存在,理由如下:A(1,0),C(0,3),∴AC=,设AC的中点为E,则E(,),设P(2,t),∵△P AC是以AC为斜边的直角三角形,∴PE=AC,∴=,∴t=2或t=1,∴P(2,2)或P(2,1),∴使△P AC是以AC为斜边的直角三角形时,P点坐标为(2,2)或(2,1).30.解:(1)∵顶点B关于x轴的对称点坐标为(2,1),∴B(2,﹣1),∴A(4,0),将点O、点A、点B代入抛物线y=ax2+bx+c,得到,解得,∴y=x2﹣x;(2)①设F(2,m),G(x,y),∴G点到直线y=﹣2的距离为|y+2|,∴(y+2)2=y2+4y+4,∵y=x2﹣x,∴(y+2)2=y2+4y+4=y2+x2﹣4x+4=y2+(x﹣2)2,∴G到直线y=﹣2的距离与点(2,0)和G点的距离相等,∴抛物线上的任意一点G到定点F的距离与点G到直线y=﹣2的距离总相等;∵G到定点F的距离与点G到直线y=﹣2的距离相等,∴(x﹣2)2+=,整理得,m(m﹣x2+2x)=0,∵距离总相等,∴m=0,∴F(2,0);②设过点F的直线解析式为y=kx﹣2k,M(x M,y M),N(x N,y N),联立,整理得x2﹣(4+4k)x+8k=0,∴x M+x N=4+4k,x M•x N=8k,∴y M+y N=4k2,y M•y N=﹣4k2,∵M到F点与M点到y=﹣2的距离相等,N到F点与N点到y=﹣2的距离相等,∴+=+===1,∴+=1是定值;(3)作B点关于y轴的对称点B',作C点关于x轴的对称点C',连接C'B'交x轴、y轴分别于点P、Q,∵BQ=B'Q,CP=C'P,∴四边形PQBC周长=BQ+PQ+PC+BC=B'Q+PQ+C'P+CB=C'B'+CB,∵点C(3,m)是该抛物线上的一点∴C(3,﹣),∵B(2,﹣1),∴B'(﹣2,﹣1),C'(3,),∴直线B'C'的解析为y=x﹣,∴Q(0,﹣),P(,0).31.(1)证明:∵y=﹣x+2与x轴、y轴分别交于A、C两点,∴A(4,0),C(0,2),由对称得∠ACD=∠ACB,∵B(4,2),∴四边形OABC是矩形,∴OA∥BC,∴∠BCA=∠OAC,∴∠ACD=∠OAC,∴AD=CD;(2)解:设OD=m,由对称可得CE=BC=4,AE=AB=OC=2,∠AED=∠B=90°,∴CD=AD=4﹣m,在Rt△OCD中,OD2+OC2=CD2,∴m2+22=(4﹣m)2,∴m=,∴D(,0),设经过B、C、D三点的抛物线的函数表达式为:y=ax2+bx+c,把B(4,2),C(0,2),D(,0)代入得:,解得:.∴经过B,C,D三点的抛物线的函数表达式为:y=x2﹣x+2;(3)解:存在,过点E作EM⊥x轴于M,∵ED=EC﹣CD=EC﹣AD=OD=,∴S△AED=AE•DE=AD•EM,∴×2×=×(4﹣)EM,∴EM=,设△PBC中BC边上的高为h,∵S△PBC=S△OAE,∴×OA•EM=BC•h,∴××4×=×4h,∴h=2,∵C(0,2),B(4,2),∴点P的纵坐标为0或4,①y=0时,x2﹣x+2=0,解得:x1=,x2=;②y=4时,x2﹣x+2=4,解得:x3=,x4=(舍去),∴存在,点P的坐标为(,0)或(,0)或(,4).32.解:(1)由题意得抛物线的顶点坐标为(﹣1,4),∴抛物线H:y=a(x+1)2+4,将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,解得:a=﹣1,∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1,由(1)知:y=﹣x2﹣2x+3,令x=0,得y=3,∴C(0,3),设直线AC的解析式为y=mx+n,∵A(﹣3,0),C(0,3),∴,解得:,∴直线AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),则E(m,m+3),∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∵﹣1<0,∴当m=﹣时,PE有最大值,∵OA=OC=3,∠AOC=90°,∴△AOC是等腰直角三角形,∴∠ACO=45°,∵PD⊥AB,∴∠ADP=90°,∴∠ADP=∠AOC,∴PD∥OC,∴∠PEF=∠ACO=45°,∵PF⊥AC,∴△PEF是等腰直角三角形,∴PF=EF=PE,∴S△PEF=PF•EF=PE2,∴当m=﹣时,S△PEF最大值=×()2=;(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,则∠AHG=∠ACO=∠PQG,在△PQG和△ACO中,,∴△PQG≌△ACO(AAS),∴PG=AO=3,∴点P到对称轴的距离为3,又∵y=﹣(x+1)2+4,∴抛物线对称轴为直线x=﹣1,设点P(x,y),则|x+1|=3,解得:x=2或x=﹣4,当x=2时,y=﹣5,当x=﹣4时,y=﹣5,∴点P坐标为(2,﹣5)或(﹣4,﹣5);②当AC为平行四边形的对角线时,如图3,设AC的中点为M,∵A(﹣3,0),C(0,3),∴M(﹣,),∵点Q在对称轴上,∴点Q的横坐标为﹣1,设点P的横坐标为x,根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,∴x=﹣2,此时y=3,∴P(﹣2,3);综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).33.解:(1)在y=x2+2x﹣8中,令y=0,得x2+2x﹣8=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0),令x=0,得y=﹣8,∴C(0,﹣8);(2)设直线AC的解析式为y=kx+b,∵A(﹣4,0),C(0,﹣8),∴,解得:,∴直线AC的解析式为y=﹣2x﹣8,∵直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,∴E(m,m2+2m﹣8),D(m,﹣2m﹣8),∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m,设DE交x轴于点F,则F(m,0),∴OF=﹣m,∴AF=m﹣(﹣4)=m+4,DF=2m+8,∵OD⊥AC,EF⊥OA,∴∠ODA=∠OFD=∠DF A=∠AOC=90°,∴∠DOF+∠COD=∠OCD+∠COD=90°,∴∠DOF=∠OCD,∴8(2m+8)=4(﹣m),解得:m=﹣,∴DE=﹣m2﹣4m=﹣(﹣)2﹣4×(﹣)=;(3)存在,如图2,∵y=x2+2x﹣8=(x+1)2﹣9,抛物线对称轴为直线x=﹣1,∵以C、M、N、P为顶点的四边形是菱形,∴分三种情况:CM对角线或CN为对角线或CP为对角线,①当CP为对角线时,CM∥PN,CM=PN=CN,∴N点为直线AC与抛物线对称轴的交点,即N(﹣1,﹣6),CN==,∴CM=PN=,∴M1(0,﹣8+),M2(0,﹣8﹣);②当CN为对角线时,CM∥PN,CM=PN=CP,设CM=a,则M(0,﹣8+a),P(﹣1,﹣6﹣a),∴(﹣1﹣0)2+(﹣6﹣a+8)2=a2,解得:a=,∴M3(0,﹣),③当CM对角线时,PN与CM互相垂直平分,设P(﹣1,b),则N(1,b),M(0,2b+8),∵N(1,b)在直线y=﹣2x﹣8上,∴b=﹣2×1﹣8=﹣10,∴M4(0,﹣12),综上所述,点M的坐标为:M1(0,﹣8+),M2(0,﹣8﹣),M3(0,﹣),M4(0,﹣12).34.解:(1)把A(﹣1,0),B(4,0)代入y=ax2+bx+4,得到,解得,∴y=﹣x2+3x+4;(2)在y=﹣x2+3x+4中,令x=0,则y=4,∴C(0,4),设BC的解析式为y=kx+b,∵B(4,0),C(0,4),∴,∴,∴直线BC的解析式为y=﹣x+4.(3)如图1中,由题意A,B关于抛物线的对称轴直线x=对称,连接BC交直线x=于点P,连接P A,此时P A+PC的值最小,最小值为线段BC的长==4,此时P(,).(4)如图2中,存在.观察图象可知,满足条件的点N的纵坐标为4或﹣4,对于抛物线y=﹣x2+3x+4,当y=4时,x2﹣3x=0,解得x=0或3,∴N1(3,4).当y=﹣4时,x2﹣3x﹣8=0,解得x=,∴N2(,﹣4),N3(,﹣4),综上所述,满足条件的点N的坐标为(3,4)或(,﹣4)或(,﹣4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》测试卷
班级 姓名 成绩
一.选择题(每题3分,共30分)
1. 下列各式中,y 是x 的二次函数的是 ( )
A . 21xy x +=
B . 2
20x y +-= C . 2
2y ax -=- D . 2
2
10x y -+=
2.在同一坐标系中,作2
2y x =+2、2
2y x =--1、2
12
y x =
的图象,则它们 ( ) A .都是关于y 轴对称 B .顶点都在原点 C .都是抛物线开口向上 D .以上都不对
3.下列对二次函数,0(2
≠++=a c bx ax y a 、b 、c 为常数)叙述不正确的是( )
A 二次函数因变量一定有最大值或最小值
B 二次函数图像是轴对称图形
C 二次函数图象一定会与y 轴相交
D 二次函数图像一定过原点 4.若二次函数)2(2
-++=m m x mx y 的图象经过原点,则m 的值必为 ( ) A . 0或2 B . 0 C . 2 D . 无法确定
5.已知原点是抛物线2
(1)y m x =+的最高点,则m 的范围是 ( ) A . 1-<m B . 1<m C . 1->m D . 2->m
6.关于02
=--n x x 没有实数根,则n x x y --=2
的图象的顶点在 ( )
A 第一象限
B 第二象限
C 第三象限
D 第四象限 7.在同一直角坐标系中,函数b ax y -=2
与)0(≠+=ab b ax y 的图象大致如图 ( )
8.抛物线122
+-=x x y 则图象与x 轴交点为 ( ) A . 二个交点 B . 一个交点 C . 无交点
D . 不能确定
9.)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2
的图象大致为 ( )
10.对于2)3(22
+-=x y 的图象下列叙述正确的是 ( ) A 顶点作标为(-3,2) B 对称轴为y=3
C 当3≥x 时y 随x 增大而增大
D 当3≥x 时y 随x 增大而减小
二.填空题:(每题3分,共15分)
11. 写出一个开口向上,顶点坐标是(2,-3)的函数解析式 ; 12.直线y=3与抛物线y =-x 2+8x -12的两个交点坐标分别是A ( )、B ( )
13.函数,0(2
≠++=a c bx ax y a 、b 、c 为常数)的对称轴是 ;顶点坐标是 ;
14.抛物线2
3x y =的图象向右移动两个单位,再向下移动一个单位,它的顶点坐标是 ,对称轴是 解析式是 ;
15.如果抛物线b ax y +=2
和直线y x b =+都经过点P(2,6),则a _______,b =_______,抛物线不经过第_______象限.
16.请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小。

这样的二次函数的解析式可以是 。

三.解答题(共105分)
17.(8分)若抛物线322--=x x y 经过点A (m ,0)和点B (-2,n ),求点A 、B 的坐标。

17.(7分)请设计一个开口向下,与x 轴交于(-1,0)、(3,0)的二次函数解析式,并指出它的对称轴。

18.(8分)已知抛物线m x x y +-=42的顶点在x 轴上,求这个函数的解析式及其顶点坐标。

19.(8分)若二次函数的图象x x m y 2)1(2
+-=与直线1-=x y 没有交点,求m 的取值范围。

12分)已知二次函数的图象的顶点坐标为(3,-2)且与y 轴交与(0,2
5) (1)求函数的解析式,并画于它的图象; (2)当x 为何值时,y 随x 增大而增大。

21.(10分)若直线3+=x y 与二次函数的图象322
++-=x x y 与交A 、B 两点,求以A 、B 及原点O 为顶点的三角形的面积。

22.(6分)一台机器原价为60万元,如果每年的折旧率为x ,两年后这台机器的价格为y 万元,求与函数关系式,若折旧率以10%计算,那么两年后的该机器价值为多少? 23.(12分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少。

(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。

24.(16分)某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示)。

若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米。

(1)求这条抛物线的解析式;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。

25.(18分)二次函数62
5
412+-=
x x y 的图象与x 轴从左到右两个交点依次为A 、B ,与y 轴交于点C ,
(1)求A 、B 、C 三点的坐标;
(2)如果P(x ,y)是抛物线AC 之间的动点,O 为坐标原点,试求△POA 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;
(3)是否存在这样的点P ,使得PO=PA ,若存在,求出点P 的坐标;若不存在,说明理由。

相关文档
最新文档