模式识别习题2017_答案2

合集下载

模式识别习题2017杭电模式识别

模式识别习题2017杭电模式识别

《模式识别》课后习题注:章和习题编号与《模式识别》(第二版,清华大学出版社)一致,请按内容与其它教材对应,另有部分补充题目单独编号。

第二章 贝叶斯决策理论习题作业2.3 证明:在两类情况下12()()1P x P x ωω+= 2.4 分别写出在以下两种情况 (1)(2)下的最小错误率贝叶斯决策规则。

2.9 写出两类和多类情况下最小风险贝叶斯决策判别函数和决策方程。

2.20 对的特殊情况,证明(1) 若,则超平面靠近先验概率较小的类;(2) 在什么情况下,先验概率对超平面的位置影响不大。

2.24 二维正态分布,写出负对数似然比决策规则。

第三章 概率密度函数的估计3.1设总体分布密度为N (μ,1 ),-∞< μ < +∞,并设 R ={x 1,x 2,…,x N } ,分别用最大似然估计和贝叶斯估计计算求 , 已知μ的先验分布p(μ)~ N (0,1 )。

(3-2)试分析用Parzen 窗法估计的类概率密度函数,窗口尺寸h 过大或过小可能产生的影响,比较Kn 近邻估计较之于Parzen 窗法的优势。

12()()p x p x ωω=12()()P P ωω=2iI σ∑=()()i j P P ωω≠1212111122(1,0) (1,0) 111122T Tμμ⎡⎤⎡⎤-⎢⎥⎢⎥=-=∑=∑=⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦,,,12()()P P ωω=ˆμ第四章 线性判别函数4.4 对于二维线性判别函数12g()22x x x =+- (1)将判别函数写成0()T g x w x w =+的形式,并画出()0g x =的几何图形。

(2)映射成广义七次线性函数()Tg x a y =;(3)指出上述X 空间实际是Y 空间的一个子空间,且0Ta y =对于X 子空间的划分和原空间中00Tw w +=对原空间的划分相同,并在图上表示出来。

(4-2)两类样本点用感知器算法设计分类器。

2017年北京邮电大学模式识别期末考试试题

2017年北京邮电大学模式识别期末考试试题

北京邮电大学2016——2017学年第二学期《模式识别》期末考试试题(A卷)①写出后验概率的表达式,描述它和先验概率的区别。

②写出线性判别函数的表达式,画图指出参数的物理意义,描述它和神经元模型的联系。

③为什么说SVM是最优线性分类器,它相比感知器算法的优点是?④Logistic Regression的优化表达式,它的功能与SVM的作用有什么区别?⑤单层神经网络有什么局限性?如何将其扩展处理复杂的非线性分类问题?⑥多层神经网络的主流参数学习算法是什么?试用个公式说明参数学习的原理。

⑦针对图像处理和识别设计的神经网络是什么?为什么它的参数数量远小于全连接网络?⑧主成分分析获得的特征有什么特点?主成分投影基向量与博里叶变换基函数有什么区别?⑨当误差数值的符合什么分布时,我们常用的均方误差是理论最优的?为什么?⑩当需要衡量两个分布的误差时,一般采用什么物理量作为损失函数?试写出该函数形式。

二、技术应用速答题(每题答案不超过10字,1分*10):①根据用户画像(上网特征)预测用户购买某类商品的概准,用什么方法?②为了获得两类分类任务中最靠谱的投影特征,用什么方法?③两类特征的类条件密度函数未知,对测试样本分类并求出后验概率,用什么方法?④在训练样本数量较少的两类分类任务中,一般认为什么方法是最靠谱的?⑤在高维数据分析任务中,什么方法是最常用的数据进行降维方法?⑥系统要对多类样本进行分类,而手上的分类器只能处理两类,如何扩展?⑦当采用线性SVM分类器的分类效果较差,应该首先试验什么改进分类器?⑧我们常用的正态分布的均值和方差公式,是用什么算法估计出来的?.⑨得到一批无标记(类别标签的)数据,用什么算法可以对其进行自动“分类”⑩深度学习或者深度神经网络中的“深度”是指三、综合设计题:假设您是Facebook的系统架构师,需求是使用模式识别技术设计一个根据用户上传图片预测出TA当前年龄的系统,请您描述主要设计步骤和技术流程框图(设计步骤应包含一般模式识别系统的设计过程,技术流程应包含候选的算法和目标函数,不能加页,10分)。

模式识别题目及答案

模式识别题目及答案

一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。

解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。

(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。

解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A) (2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分) (1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。

(完整word版)模式识别题目及答案(word文档良心出品)

(完整word版)模式识别题目及答案(word文档良心出品)

一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。

解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。

(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。

解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。

模式识别_作业2

模式识别_作业2

作业一:在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。

问该模式识别问题所需判别函数的最少数目是多少?答案:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。

再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。

故共需要4+21=25个判别函数。

作业二:一个三类问题,其判别函数如下:d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-11. 设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。

2. 设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)=d3(x)。

绘出其判别界面和多类情况2的区域。

3. 设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。

答案:123作业三:两类模式,每类包括5个3维不同的模式,且良好分布。

如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。

)答案:如果它们是线性可分的,则至少需要4个系数分量;如果要建立二次的多项式判别函数,则至少需要个系数分量。

作业四:用感知器算法求下列模式分类的解向量w:ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T}ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T}答案:将属于ω2的训练样本乘以(-1),并写成增广向量的形式。

x①=(0 0 0 1)T,x②=(1 0 0 1)T,x③=(1 0 1 1)T,x④=(1 1 0 1)Tx⑤=(0 0 -1 -1)T,x⑥=(0 -1 -1 -1)T,x⑦=(0 -1 0 -1)T,x⑧=(-1 -1 -1 -1)T第一轮迭代:取C=1,w(1)=(0 0 0 0)T因wT(1)x① =(0 0 0 0)(0 0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 0 1)因wT(2)x②=(0 0 0 1)(1 0 0 1)T =1>0,故w(3)=w(2)=(0 0 0 1)T因wT(3)x③=(0 0 0 1)(1 0 1 1)T=1>0,故w(4)=w(3)=(0 0 0 1)T因wT(4)x④=(0 0 0 1)(1 1 0 1)T=1>0,故w(5)=w(4)=(0 0 0 1)T因wT(5)x⑤=(0 0 0 1)(0 0 -1 -1)T=-1≯0,故w(6)=w(5)+x⑤=(0 0 -1 0)T因wT(6)x⑥=(0 0 -1 0)(0 -1 -1 -1)T=1>0,故w(7)=w(6)=(0 0 -1 0)T因wT(7)x⑦=(0 0 -1 0)(0 -1 0 -1)T=0≯0,故w(8)=w(7)+x⑦=(0 -1 -1 -1)T因wT(8)x⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T=3>0,故w(9)=w(8)=(0 -1 -1 -1)T因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。

模式识别答案

模式识别答案

模式识别试题二答案问答第1题答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。

问答第2题答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。

问答第3题答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

问答第4题答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

问答第5题答:在给定观察序列条件下分析它由某个状态序列S产生的概率似后验概率,写成P(S|O),而通过O求对状态序列的最大似然估计,与贝叶斯决策的最小错误率决策相当。

问答第6题答:协方差矩阵为,则1)对角元素是各分量的方差,非对角元素是各分量之间的协方差。

2)主分量,通过求协方差矩阵的特征值,用得,则,相应的特征向量为:,对应特征向量为,对应。

这两个特征向量即为主分量。

3) K-L变换的最佳准则为:对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。

4)在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关消除。

20xx年模式识别试题及参考答案

20xx年模式识别试题及参考答案

20xx年模式识别试题及参考答案2017年模式识别试题及参考答案(一) 1、举出日常生活或技术、学术领域中应用模式识别理论解决问题的实例。

答:我的本科毕设内容和以后的研究方向为重症监护病人的状态监测与预诊断,其中的第一步就是进行ICU病人的死亡率预测,与模式识别理论密切相关。

主要的任务是分析数据库的8000名ICU病人,统计分析死亡与非死亡的生理特征,用于分析预测新进ICU病人的病情状态。

按照模式识别的方法步骤,首先从数据库中采集数据,包括病人的固有信息,生理信息,事件信息等并分为死亡组和非死亡组,然后分别进行数据的预处理,剔除不正常数据,对数据进行插值并取中值进行第一次特征提取,然后利用非监督学习的方法即聚类分析进行第二次特征提取,得到训练样本集和测试样本集。

分别利用判别分析,人工神经网络,支持向量机的方法进行训练,测试,得到分类器,实验效果比传统ICU中采用的评价预测系统好一些。

由于两组数据具有较大重叠,特征提取,即提取模式特征就变得尤为重要。

语音识别,图像识别,车牌识别,文字识别,人脸识别,通信中的信号识别; ①文字识别汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。

所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。

目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。

其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。

从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。

到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。

②语音识别语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

模式识别课后习题答案

模式识别课后习题答案
• 2.10 随机变量l(x)定义为l(x) = p(x|w1) ,l(x)又称为似然比,试证明 p(x|w2)
– (1) E{ln(x)|w1} = E{ln+1(x)|w2} – (2) E{l(x)|w2} = 1 – (3) E{l(x)|w1} − E2{l(x)|w2} = var{l(x)|w2}(教材中题目有问题) 证∫ 明ln+:1p对(x于|w(12)),dxE={ln∫(x()∫p(|wp(x(1x|}w|w=1)2))∫n)+nl1nd(xx)所p(x以|w∫,1)Ed{xln=(x∫)|w(1p(}p(x(=x|w|Ew1)2{))ln)n+n+11d(xx)又|wE2}{ln+1(x)|w2} = 对于(2),E{l(x)|w2} = l(x)p(x|w2)dx = p(x|w1)dx = 1
对于(3),E{l(x)|w1} − E2{l(x)|w2} = E{l2(x)|w2} − E2{l(x)|w2} = var{l(x)|w2}
• 2.11 xj(j = 1, 2, ..., n)为n个独立随机变量,有E[xj|wi] = ijη,var[xj|wi] = i2j2σ2,计 算在λ11 = λ22 = 0 及λ12 = λ21 = 1的情况下,由贝叶斯决策引起的错误率。(中心极限 定理)
R2
R1
容易得到


p(x|w2)dx = p(x|w1)dx
R1
R2
所以此时最小最大决策面使得P1(e) = P2(e)
• 2.8 对于同一个决策规则判别函数可定义成不同形式,从而有不同的决策面方程,指出 决策区域是不变的。
3
模式识别(第二版)习题解答

大学模式识别考试题及答案详解优选稿

大学模式识别考试题及答案详解优选稿

大学模式识别考试题及答案详解内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别习题参考-齐敏-教材第2章

模式识别习题参考-齐敏-教材第2章

2聚类分析习题解答2.1 设有10个二维模式样本,如图2.13所示。

若21=θ,试用最大最小距离算 法对他们进行聚类分析。

解:① 取T 11]0,0[==X Z 。

② 选离1Z 最远的样本作为第二聚类中心2Z 。

()()201012221=-+-=D ,831=D ,5841=D ,4551=D5261=D ,7471=D ,4581=D ,5891=D ,651,10=D ∵ 最大者为D 71,∴T 72]7,5[==X Z742121=-=Z Z θT ③ 计算各样本与{}21,Z Z 间距离,选出其中的最小距离。

7412=D ,5222=D ,3432=D ,…,132,10=D }13,20,17,0,2,5,4,8,2,0{),min(21=i i D D ④ 742120)},max{min(9221=>==T D D D i i ,T 93]3,7[==∴X Z ⑤ 继续判断是否有新的聚类中心出现:⎪⎩⎪⎨⎧===58740131211D D D ,⎪⎪⎩⎪⎪⎨⎧===40522232221D D D ,…⎪⎪⎩⎪⎪⎨⎧===113653,102,101,10D D D13579X 1图2.13 10个二维模式样本}1,0,1,0,2,5,4,8,2,0{),,min(321=i i i D D D 74218)},,max{min(31321=<==T D D D D i i i 寻找聚类中心的步骤结束。

⑥ 按最近距离分到三个聚类中心对应的类别中:3211,,:X X X ω;76542,,,:X X X X ω;10983,,:X X X ω2.2 设有5个二维模式样本如下:T 1]0,0[=X ,T 2]1,0[=X ,[]T30,2=X ,T 4]3,3[=X ,[]T54,4=X定义类间距离为最短距离,且不得小于3。

利用层次聚类法对5个样本进行 分类。

解:(1) 将每一样本看作单独一类,得{}11)0(X =G ,{}22)0(X =G ,{}33)0(X =G ,{}44)0(X =G ,{}55)0(X =G计算各类间欧氏距离:2112)0(X X -=D ()()212221222111][x x x x -+-=[]1101=+=2)0(3113=-=X X D 同理可求得:)0(14D ,)0(15D ;)0(23D ,)0(24D ,)0(25D ; )0(34D ,)0(35D ; )0(45D ; 得距离矩阵D (0)为(2) 将最小距离1对应的类)0(1G 和)0(2G 合并为一类,得到新的分类{})0(),0()1(2112G G G =,{})0()1(33G G =,{})0()1(44G G =,{})0()1(55G G =按最短距离法计算类间距离,由D (0)矩阵递推得到聚类后的距离矩阵D (1)为(3) 将D (1)中最小值2对应的类合并为一类,得D (2)。

模式识别练习题

模式识别练习题

模式识别练习题模式识别练习题模式识别是一种认知能力,是人类大脑的重要功能之一。

通过模式识别,我们能够从复杂的信息中抽取出有用的模式,并进行分类、归纳和推理。

模式识别在日常生活中无处不在,无论是辨认人脸、理解语言还是解读图像,都离不开模式识别的帮助。

在这里,我将给大家提供一些模式识别练习题,帮助大家锻炼和提高自己的模式识别能力。

这些题目涵盖了不同的领域,包括数字、形状和图案等,旨在让大家在娱乐中提升自己的认知水平。

1. 数字序列请观察以下数字序列:2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...请问下一个数字是多少?答案:2048解析:观察数字序列,可以发现每个数字都是前一个数字的2倍。

因此,下一个数字是1024的2倍,即2048。

2. 形状序列请观察以下形状序列:▲, □, ○, △, ▢, ◇, ...请问下一个形状是什么?答案:□解析:观察形状序列,可以发现每个形状都是按照一定的规律交替出现。

▲和○是封闭的形状,□和▢是开放的形状,△和◇是封闭的形状。

因此,下一个形状应该是开放的形状,即□。

3. 图案序列请观察以下图案序列:A, AB, ABA, ABAC, ABACA, ...请问下一个图案是什么?答案:ABACABAC解析:观察图案序列,可以发现每个图案都是在前一个图案的基础上添加一个新的元素。

第一个图案是A,第二个图案是在A的基础上添加B,第三个图案是在ABA的基础上添加C,依此类推。

因此,下一个图案是在ABACABAC的基础上添加ABAC,即ABACABAC。

通过这些练习题,我们可以锻炼自己的观察力和逻辑思维能力。

模式识别不仅仅是一种认知能力,也是一种解决问题的思维方式。

通过不断地练习和思考,我们可以提高自己的模式识别能力,更好地应对各种复杂的情境和挑战。

除了以上的练习题,我们还可以通过观察自然界、阅读文学作品和解决日常问题等方式来锻炼模式识别能力。

模式识别习题及答案

模式识别习题及答案

模式识别习题及答案案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案模式识别非学位课考试试题考试科目:模式识别考试时间考生姓名:考生学号任课教师考试成绩一、简答题(每题6分,12题共72分):1、监督学习和非监督学习有什么区别?参考答案:当训练样本的类别信息已知时进行的分类器训练称为监督学习,或者由教师示范的学习;否则称为非监督学习或者无教师监督的学习。

2、你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。

描述样本的常见方法:矢量、矩阵、列表等。

3、什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。

例如:贝叶斯分类器、神经网络等。

4、进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。

5、聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。

距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。

相似测度有角度相似系数、相关系数、指数相似系数等。

6、你怎么理解聚类准则?参考答案:包括类内聚类准则、类间距离准则、类内类间距离准则、模式与类核的距离的准则函数等。

准则函数就是衡量聚类效果的一种准则,当这种准则满足一定要求时,就可以说聚类达到了预期目的。

不同的准则函数会有不同的聚类结果。

7、一种类的定义是:集合S 中的元素x i 和x j 间的距离d ij 满足下面公式:∑∑∈∈≤-S x S x ij i jh d k k )1(1,d ij ≤ r ,其中k 是S 中元素的个数,称S 对于阈值h ,r 组成一类。

请说明,该定义适合于解决哪一种样本分布的聚类?参考答案:即类内所有个体之间的平均距离小于h ,单个距离最大不超过r ,显然该定义适合团簇集中分布的样本类别。

8、贝叶斯决策理论中,参数估计和非参数估计有什么区别?参考答案:参数估计就是已知样本分布的概型,通过训练样本确定概型中的一些参数;非参数估计就是未知样本分布概型,利用Parzen 窗等方法确定样本的概率密度分布规律。

2017年承压设备损伤模式识别在线测试题及答案

2017年承压设备损伤模式识别在线测试题及答案

一、单选题【本题型共44道题】1.如果已经发现了碱腐蚀,还应注意下列哪些可能伴随的损伤?()A.蒸汽阻滞B.球化C.蠕变D.敏化正确答案:[A]2.下列哪种金属合金元素对耐高温硫化物腐蚀(无氢气环境)能力的影响最明显?()A.镍B.铬C.碳D.钛正确答案:[B]3.通过什么方法可以判定是否发生石墨化损伤?()A.抗拉强度测试B .硬度测定C.涡流检测D .金相检验正确答案:[D]4.承压设备会因渗氮而发生材质劣化,()材料耐渗氮能力强,不易受到影响。

A.低合金钢8.400系列不锈钢C.球墨铸铁D.镍基合金正确答案:[D]5.下列哪个关于球化的表述是错误的?()A.目视检测一般不能发现球化B.碳钢中片状碳化物形成球状碳化物C.材料因球化而强度降低的同时延展性也会降低D.可通过金相分析判断是否发生球化正确答案:[C]6.下列哪项不是耐火材料退化伴随的其他损伤?()A.高温氧化腐蚀B.高温硫化物腐蚀C烟气露点腐蚀D.钛氢化正确答案:[D]7.检查燃灰腐蚀的最有效的方法为()。

A.目视检测8.超声波测厚C.金相分析D.沉积物分析技术正确答案:[A]8.硫酸浓度低于70%(质量比)时,碳钢的腐蚀速率()。

A.随浓度增高而增大9.随浓度增高而减小C.随浓度降低而减小D.与浓度无关正确答案:[B]10下列哪种已知合金可以耐受所有条件下的金属粉化影响?()A.低合金钢B.奥氏体不锈钢C.碳钢D.目前没有正确答案:[D]10.与高温氢腐蚀损伤相关或相伴的其他损伤为()。

A.脱碳B.渗碳。

脱硫D.脱氧正确答案:[A]11.下列哪种材料最不耐酸性水腐蚀(碱式酸性水)?()A.双相不锈钢B.碳钢C. 300系列不锈钢D.铝合金正确答案:[B]12.下列不属于易发生振动疲劳损伤的设备或装置是()。

A.泵、压缩机的管道B.高压降压力调节阀C.旋转和往复设备周围的旁通细管及回流细管D.搅拌反应器正确答案:[D]13.运行期间可采用什么方法来检测冷壁设备的高温部位、判断耐火材料的损伤程度?()A.红外热像仪B.目视检测C.超声检测D .射线检测正确答案:[A]14.下面几种材料之间比较,哪一种抗环烷酸腐蚀性能最好?()A.Q245RB.304LC.316D.304正确答案:[C]15.下列选项中不属于机械磨损损伤阶段的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档