实验二 典型系统的时域响应分析实验仿真报告答案

合集下载

典型环节的时域响应实验报告

典型环节的时域响应实验报告

典型环节的时域响应实验报告一、实验要求了解和掌握各典型环节的传递函数及模拟电路图,观察和分析各典型环节的响应曲线。

二、实验原理及内容:1.比例环节(P)(1) 方框图:(2) 传递函数:(3) 阶跃响应:其中(4) 模拟电路图图1注意:图中运算放大器的正相输入端已经对地接了的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

2.积分环节(I)(1) 方框图:(2) 传递函数(3) 阶跃响应:其中(4)模拟电路图:图23.比例积分环节(PI) (1) 方框图:(2)传递函数:(3) 阶跃响应:其中(4)模拟电路图:图34.惯性环节(T) (1) 方框图:(2) 传递函数:(3) 阶跃响应其中(4) 模拟电路图:图45.比例微分环节(PD)(1) 方框图:(2) 传递函数:(3) 阶跃响应:其中为单位脉冲函数,这是一个面积为t的脉冲函数,脉冲宽度为零,幅值为无穷大,在实际中是得不到的。

(4) 模拟电路图:图56.比例积分微分环节(PID)(1) 方框图:(2) 传递函数:(3) 阶跃响应:其中为单位脉冲函数,(4) 模拟电路图:图 6三、实验步骤1. 按比例环节的模拟电路图将线接好,检查无误后开启设备电源。

2. 将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。

调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s左右。

3. 将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入Ui端和输出U0端,观测输出端的实际响应曲线U0(t),记录实验波形及结果。

4. 改变几组参数,重新观测结果。

5. 用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节和比例积分微分环节的模拟电路图。

观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

四、实验曲线及结论1.比例环节 (P)(1)当R0=200K,R1=100K时, 图形如下:(2)当R0=200K、R1=200K时,图形如下:结论:对于比例环节的放大系数,其影响因素为R1、R0电阻的比值,其比值越大,放大系数越大。

典型环节的时域响应的实验报告.doc

典型环节的时域响应的实验报告.doc

典型环节的时域响应的实验报告.doc实验目的:通过对几种典型电路的时域响应进行实验,掌握不同类型环节的时域特性,并了解如何利用示波器观测和测量信号的时域特性。

实验器材和材料:1.示波器2.函数发生器3.电容4.电阻5.电感6.直流电源实验原理:在实验中将会涉及到三种基本电路环节:电容、电阻和电感。

它们的特性分别如下:电容:存储电荷,并在电场作用下产生电压。

在一定时间内,当外加电压改变时,电容内积累的电荷量也会发生相应变化,产生电流。

电阻:在电路中引入能够消耗电能的元件,对通过其的电流施加一定阻阻碍作用,从而产生电势降,转化成功率消耗的过程。

电感:存储能量的元件,具有感抗作用,对交变电压的响应速度较慢,产生电压滞后和电压峰值下降等现象。

实验步骤:1.进行电容的实验,连接电容和符合线路要求的示波器和函数发生器,调节函数发生器输出方波信号,观察示波器中的电容电压波形,并记录下时间常量,重复操作多次,得到更多数据。

实验数据和分析:在实验过程中记录数据并进行数据统计分析,如下表:表1 电容、电阻、电感时域响应数据表|环节|电阻R(Ω)|电容C(F)|电感L(H)|时间常量τ(s)||:-:|:-:|:-:|:-:|:-:||电容|500|1μF|—|0.0005||电阻|1k|—|—|0.001||电感|—|—|200μH|0.0001|通过数据可以看出,不同环节的时间常量不同,电容的时间常量最大,电感的时间常量最小。

这是由于电容对变动快速响应,而电感则对变化的响应速度较慢。

实验结论:经过实验数据的分析,可以得出以下结论:1.电容环节的时间常量比电阻、电感短。

4.不同环节的时间常量与电路元件特性有关,不同元件的响应速度不同。

实验中可以利用示波器等工具对时间常量进行测量,进而了解电路环节的时域特性,这对于设计电路、优化电路性能具有重要作用。

MATLAB实验二_线性系统时域响应分析报告

MATLAB实验二_线性系统时域响应分析报告

工程大学实验报告专业班号组别 01 教师同组者(个人)(1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。

(2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。

(3)系统的特征方程式为010532234=++++s s s s ,试用二种判稳方式判别该系统的稳定性。

(4)单位负反馈系统的开环模型为 )256)(4)(2()(2++++=s s s s K s G 试分别用劳斯稳定判据和赫尔维茨稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值围。

三、 实验结果及分析1.可以用两种方法绘制系统的阶跃响应曲线。

(1)用函数step( )绘制MATLAB 语言程序:>> num=[ 0 0 1 3 7];>> den=[1 4 6 4 1 ];>>step(num,den);>> grid;>>xlabel('t/s');ylabel('c(t)');title('step response');MATLAB 运算结果:(2)用函数impulse( )绘制MATLAB 语言程序:>> num=[0 0 0 1 3 7];>> den=[1 4 6 4 1 0];>> impulse(num,den);>> grid ;>> xlabel('t/s');ylabel('c(t)');title('step response'); MATLAB 运算结果:2. (1))/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线的绘制:MATLAB语言程序:>> num=[0 0 4];>> den1=[1 0 4];>> den2=[1 1 4];>> den3=[1 2 4];>> den4=[1 4 4];>> den5=[1 8 4];>> t=0:0.1:10;>> step(num,den1,t);>> grid>> text(2,1.8,'Zeta=0'); holdCurrent plot held>> step(num,den2,t);>> text (1.5,1.5,'0.25');>> step(num,den3,t);>> text (1.5,1.2,'0.5');>> step(num,den4,t);>> text (1.5,0.9,'1.0');>> step(num,den5,t);>> text (1.5,0.6,'2.0');>> xlabel('t');ylabel('c(t)'); title('Step Response ') ; MATLAB运算结果:实验结果分析:从上图可以看出,保持)/(2s rad n =ω不变,ζ依次取值0,0.25,0.5,1.0和2.0时, 系统逐渐从欠阻尼系统过渡到临界阻尼系统再到过阻尼系统,系统的超调量随ζ的增大而减小,上升时间随ζ的增大而变长,系统的响应速度随ζ的增大而变慢,系统的稳定性随ζ的增大而增强。

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。

实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。

2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。

3、分析系统特征方程的根,判断系统的稳定性。

4、探讨系统的性能指标,并初步探讨系统的优化方法。

实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。

3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。

根据根的位置,我们可以判断系统的稳定性。

由于系统的根都在左半平面,因此系统是稳定的。

4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。

在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。

结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。

在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。

典型环节的时域响应自动控制理论实验报告

典型环节的时域响应自动控制理论实验报告

《自动控制理论》实验报告姓名班级学号台号日期节次成绩教师签字实验二典型系统瞬态响应和稳定性分析一、实验目的1.研究二阶系统的特征参量对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD-ACC+教学试验系统一套三、实验原理及内容一、典型二阶系统1、结构框图2、模拟电路3、理论分析 开环传函: )1(/)1()()(101101+=+=S T S T k S T S T k S H S G 系统的开环增益: 01/T k K =当s T 10= ,s T 1.01= ,R k /1001= , R k T k K /100/101=== 时 系统的开环传递函数为:)11.0(/100)()(+=S S RS H S G 系统的闭环传递函数为: RS S RR S S R S H S G S G S W /100010/1000/100)11.0(/100)()(1)()(2++=++=+=系统闭环传递函数标准式为: 2222)(n n nS S S W ωξωω++= 二式比较得: R n /10002=ω 102=n ξωR n /1010=ω R/10105=ξ当R=10k 时: 5.0/10105==Rξ0 < ξ < 1 , 当R=20k 时: 707.0/10105==Rξ 0 < ξ < 1 当R=40k 时: 1/10105==Rξ1=ξ ,当R=100k 时: 58.1/10105==Rξ ξ > 12.1 R=10Kp t =0.375S, s t =1.117S ,%p σ近似为零理论值p t = 0.363S, s t = 1.0S ,%p σ=12.8% 由此可以分析,理论值与实际值接近。

R=20Kp t =0.650S, s t 无法看出,%p σ近似为零理论值p t =0.444S ,s t =0.651S ,%p σ=1% 由此分析,理论值与实际值近似相等。

【实验报告】一、二阶系统的电子模拟及时域响应测试

【实验报告】一、二阶系统的电子模拟及时域响应测试

实验名称:一二阶系统的电子模拟及时域响应测试课程名称:自动控制原理实验目录(一)实验目的 (3)(二)实验内容 (3)(三)实验设备 (3)(四)实验原理 (3)(五)一阶系统实验结果 (3)(六)一阶系统实验数据记录及分析 (7)(七)二阶系统实验结果记录 (8)(八)二阶系统实验数据记录及分析 (11)(九)实验总结及感想............................................................................错误!未定义书签。

图片目录图片1 一阶模拟运算电路 (3)图片2 二阶模拟运算电路 (3)图片3 T=0.25仿真图形 (4)图片4 T=0.25测试图形 (4)图片5 T=0.5仿真图形 (5)图片6 T=0.5测试图形 (5)图片7 T=1仿真图形 (6)图片8 T=1测试图形 (6)图片9 ζ=0.25s仿真图形 (8)图片10 ζ=0.25s测试图形 (8)图片11 ζ=0.5s仿真图形 (9)图片12 ζ=0.5s测试图形 (9)图片13 ζ=0.8s仿真图形 (10)图片14 ζ=0.8s测试图形 (10)图片15 ζ=1s仿真图形 (11)图片16 ζ=1s测试图形 (11)表格目录表格1 一阶系统实验结果 (7)表格2 二阶系统实验结果 (11)一二阶系统的电子模拟及时域响应测试(一)实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

(二)实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

(三)实验设备HHMN电子模拟机,实验用电脑,数字万用表(四)实验原理一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。

实验二 二阶系统时域分析

实验二 二阶系统时域分析

K = 闭环传递函数: 闭环传递函数: Φ ( s ) = 2 Ts + s + K
ωn = K / T = 10 K = 103 1/ R ζ =
1 2ωnT = R 200 R = 10 K R = 20 K R = 51K
K /T 1 2 s + s + K /T T
ζ = 0.5 ζ = 0.707 ζ = 1.1
三、实验原理与线路 典型二阶系统的结构和 模拟电路图如图所示: 模拟电路图如图所示:
开环传递函数: 开环传递函数:
K2 K 1 G ( s) = K1 ⋅ ⋅ = T2 s + 1 T3 s s(Ts + 1)
其中: 其中:
K1 = 1, T3 = 1, K =
K1 K 2 = 100 ×103 / R, T = T2 = 0.1 T3
实验一
一、 实验目的
二阶系统时域响验,掌握线性定常系统 通过二阶系统的模拟电路实验, 静态性能的一般测试方法。 动、静态性能的一般测试方法。 2.研究二阶系统的参数与其动、静态性能间的关系。 研究二阶系统的参数与其动、静态性能间的关系。
二、实验仪器和设备 PC机 自控原理实验箱、 PC机、自控原理实验箱、普通示波器
四、实验内容与步骤 接线构成二阶闭环系统的模拟电路; 1. 接线构成二阶闭环系统的模拟电路; 在输入端加入阶跃信号; 2. 在输入端加入阶跃信号; 为不同值时, 3. R为不同值时,用普通示波器观测并记录二阶系统模拟 电路的输出曲线及相关的数据; 电路的输出曲线及相关的数据;
五、实验报告要求 1.画出典型二阶系统的模拟电路,由实验数据理论分析 画出典型二阶系统的模拟电路, 不同参数时系统阶跃响应情况和性能指标值; 不同参数时系统阶跃响应情况和性能指标值; 2.整理实验记录并计算实验得出的性能指标; 整理实验记录并计算实验得出的性能指标; 将实验结果与理论分析结果进行比较; 3. 将实验结果与理论分析结果进行比较; 4. 讨论参数变化对系统阶跃响应和系统性能的影响? 讨论参数变化对系统阶跃响应和系统性能的影响?

实验二 测试系统的时域响应和频域响应

实验二  测试系统的时域响应和频域响应

实验一测试系统的时域响应【实验目的】1.了解MATLAB软件的基本特点和功能,熟悉其界面、菜单和工具条,熟悉MATLAB程序设计结构及M文件的编制;2.掌握线性系统模型的计算机表示方法;3.掌握求线性定常连续系统时域输出响应的方法,求得系统的时域响应曲线;4. 了解Simulink 的使用。

【实验指导】一、模型的建立:在线性系统理论中,一般常用的数学模型形式有:(1)传递函数模型;(2)状态空间模型;(3)零极点增益模型这些模型之间都有着内在的联系,可以相互进行转换.1、传递函数模型若已知系统的传递函数为:对线性定常系统,式中s的系数均为常数,且an不等于零,这时系统在MATLAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示.num=[cm,c,m-1,…,c1,c0]den=[an,an-1,…,a1,a0]注意:它们都是按s的降幂进行排列的.则传递函数模型建立函数为:sys=tf(num,den).2、零极点增益模型(略)3、状态空间模型(略)二、模型的转换在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换.三、模型的连接1、并联:parallel[num,den]=parallel(num1,den1,num2,den2)%将并联连接的传递函数进行相加.2、串联:series[num,den]=series(num1,den1,num2,den2)%将串联连接的传递函数进行相乘.3、反馈:feedback[num,den]=feedback(num1,den1,num2,den2,sign)%可以得到类似的连接,只是子系统和闭环系统均以传递函数的形式表示.当sign=1时采用正反馈;当sign= -1时采用负反馈;sign缺省时,默认为负反馈.4、闭环:cloop(单位反馈)[numc,denc]=cloop(num,den,sign)%表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同.四、线性连续系统的时域响应1 求取线性连续系统的阶跃响应函数为(step) 基本格式为:step(sys) step(num,den)【实验内容】1. 典型一阶系统的传递函数为 11)(+=s s G τ;τ为时间常数,试绘出当τ=0.5、1、 2、4、6、8、时该系统的单位阶跃响应曲线。

自动控制原理实验典型系统地时域响应和稳定性分析报告

自动控制原理实验典型系统地时域响应和稳定性分析报告

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

实验二典型系统的时域响应分析实验仿真报告答案

实验二典型系统的时域响应分析实验仿真报告答案

实验二典型系统的时域响应分析1. 实验目的1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。

2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。

3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。

4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。

2. 实验仪器PC计算机一台,MATLAB软件1套3. 实验内容1)一阶系统的响应(1) 一阶系统的单位阶跃响应在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。

理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0)由此得知,图形是一条单调上升的指数曲线,与理论分析相符。

(2) 一阶系统的单位斜坡响应在SIMULINK环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。

理论分析:C(s)=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4.3)一阶系统的单位脉冲响应在medit 环境下,编译一个.m 文件,利用impulse()函数可以得出仿真曲线图。

此处注意分析在SIMULINK 环境中可否得到该曲线图。

理论分析:C (s )=5/(0.8s+2)=(5/2)/(0.4s+1)可求的g(t)=6.25e^(-t/0.4),是一个单调递减的函数。

两种环境下得到的曲线图不一致。

2)二阶系统的单位阶跃响应二阶系统的闭环传递函数标准形式为 2222)(nn n s s s G ωζωω++= 其阶跃响应可以分以下情况解出①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-=②当10<<ζ时,系统阶跃响应为 )sin(111)(2θωζζω+--=-t e t c d tn其中ζζθ/121-=-tg ,21ζωω-=n d③当1=ζ时,系统阶跃响应为 t n n e t t c ωω-+-=)1(1)(④当1>ζ时,系统阶跃响应为 ⎪⎪⎭⎫ ⎝⎛---=21221121)(λλζωλλt t ne e t c 其中121---=ζζλ,122-+-=ζζλ (1)自然角频率1=n ω选取不同阻尼比=ζ0,0.2,0.4,0.6,0.8,1.0,2.0,用MATLAB得到二阶系统阶跃响应曲线。

实验二典型系统的时域响应分析实验仿真报告答案分析解析

实验二典型系统的时域响应分析实验仿真报告答案分析解析

实验二典型系统的时域响应分析实验仿真报告答案分析解析Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】实验二典型系统的时域响应分析1. 实验目的1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。

2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。

3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。

4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。

2. 实验仪器PC计算机一台,MATLAB软件1套3. 实验内容1)一阶系统的响应(1) 一阶系统的单位阶跃响应在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。

理论分析:C(s)=1/[s+1)]由拉氏反变换得h(t)=1-e^(-t/ (t>=0)由此得知,图形是一条单调上升的指数曲线,与理论分析相符。

(2) 一阶系统的单位斜坡响应在SIMULINK 环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。

理论分析:C (s )=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4)e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4.3) 一阶系统的单位脉冲响应在medit 环境下,编译一个.m 文件,利用impulse ()函数可以得出仿真曲线图。

此处注意分析在SIMULINK 环境中可否得到该曲线图。

理论分析:C (s )=5/+2)=(5/2)/+1)可求的g(t)=^(-t/,是一个单调递减的函数。

两种环境下得到的曲线图不一致。

2)二阶系统的单位阶跃响应二阶系统的闭环传递函数标准形式为 其阶跃响应可以分以下情况解出①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-=②当10<<ζ时,系统阶跃响应为 )sin(111)(2θωζζω+--=-t e t c d tn其中ζζθ/121-=-tg ,21ζωω-=n d③当1=ζ时,系统阶跃响应为 t n n e t t c ωω-+-=)1(1)(④当1>ζ时,系统阶跃响应为 ⎪⎪⎭⎫ ⎝⎛---=21221121)(λλζωλλt t ne e t c 其中121---=ζζλ,122-+-=ζζλ (1)自然角频率1=n ω选取不同阻尼比=ζ0,,,,,,,用MATLAB 得到二阶系统阶跃响应曲线。

实验2 系统的时域分析

实验2  系统的时域分析

实验2 系统的时域分析1 实验目的1)学会利用MATLAB 求解连续系统的零状态响应、冲激响应和阶跃响应;2)学会利用MATLAB 求解离散系统的单位取样响应;3)学会利用MATLAB 求解离散系统的卷积和。

2 实验原理及实例分析(实验原理见教材的第二章和第三章。

)2.1 连续系统零状态响应的数值求解例 1 已知某LTI 系统的微分方程为)(6)(6)(5)(t f t y t y t y =+'+'',其中,)()2sin(10)(t t t f επ=。

试用MATLAB 命令绘出50≤≤t 范围内系统零状态响应)(t y f 的波形图。

解:程序如下:clc; % 命令窗口清屏close all;clear all;t = 0:0.01:5;sys = tf([6], [1 5 6]); % 用传输函数形式表示系统 f = 10 * sin(2*pi*t) .* uCT(t);y = lsim(sys,f,t); % 对输入信号模拟仿真plot(t, y, 'linewidth', 2); grid on;xlabel('t(sec)'); title('y(t)');产生的图形如图1所示。

图1 例1程序产生的图形2.2 连续系统的冲激响应和阶跃响应的数值求解例2 已知某LTI 系统的微分方程为)(16)()(32)(2)(t f t f t y t y t y +'=+'+'',试用MATLAB 命令绘出50≤≤t 范围内系统的冲激响应)(t h 和阶跃响应)(t g 。

解:MATLAB 程序如下:clc;close all;clear all;t = 0:0.01:5;sys = tf([1 16],[1 2 32]);h = impulse(sys, t); % 计算系统的冲激响应g = step(sys,t); % 计算系统的阶跃响应subplot(2, 1, 1);plot(t, h, 'Linewidth', 2); grid on;xlabel('t(sec)');title('Impulse response -- h(t)');subplot(2, 1, 2);plot(t,g,'Linewidth',2); grid on;xlabel('t(sec)'); title('Step response -- g(t)');图2 例2程序产生的图形2.3 离散系统的响应例3 已知系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y ,试用MATLAB 命令绘出当激励信号为)()2/1()(n n x n ε=时,该系统的零状态响应。

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析实验三主要研究了二阶系统的时域响应及其性能分析,通过实验得到不同二阶系统的单位阶跃响应和单位脉冲响应,并对其进行分析和性能评估。

首先,实验中使用的二阶系统是由两个一阶系统串联而成,可以通过两个一阶系统的参数来确定二阶系统的性能。

实验中设置了不同的参数组合来得到不同的二阶系统,并测量了这些系统的单位阶跃响应和单位脉冲响应。

实验中,单位阶跃响应是通过给系统输入一个单位阶跃信号,观察系统的输出得到的。

单位脉冲响应是通过给系统输入一个单位脉冲信号,观察系统的输出得到的。

通过测量这两个响应,可以了解二阶系统在时域的性能。

对于单位阶跃响应,实验中测量了系统的超调量、调整时间和稳态误差。

超调量是指单位阶跃响应中最高峰值与稳态值之差与稳态值的比值,可用来评估系统的动态性能。

调整时间是指从单位阶跃信号开始输入到响应达到其稳态值所需要的时间,反映了系统调整过程的快慢。

稳态误差是指系统最终的输出值与期望值之差,用来评估系统的稳态准确性。

对于单位脉冲响应,实验中测量了系统的峰值和时间常数,用来评估系统的动态特性。

峰值是指单位脉冲响应中的最高值,与系统的阻尼比有关。

时间常数是指单位脉冲响应中曲线从0到达其最大值所需要的时间,与系统的阻尼比和自然频率有关。

通过实验数据的测量和分析,可以得到不同参数组合下的二阶系统的性能指标,进而对系统进行评估。

如果超调量小、调整时间短、稳态误差小,表示系统的动态特性优秀,能够快速、准确地响应输入信号;如果峰值小、时间常数短,表示系统的动态特性好,有较快的响应速度和较小的振荡现象。

综上所述,实验三通过对二阶系统的时域响应进行测量和分析,并对性能指标进行评估,可以得到不同二阶系统的动态特性和稳态准确性信息。

这些信息对于系统设计和参数调整具有重要的参考价值。

通过实验的学习,可以更深入地理解掌握二阶系统的性能分析方法,为系统控制和优化提供理论和实践基础。

实验二 线性系统的时域分析法

实验二     线性系统的时域分析法

实验二 线性系统的时域分析法【实验目的】1.熟悉Matlab 软件及其界面,学会运用Simulink 仿真控制系统。

2.熟悉利用Matlab 编程分析线性系统的时域响应过程。

3.熟悉控制系统的稳定判据,并了解其Simulink 仿真过程。

【实验仪器】Matlab6.5 Matlab7.0 计算机【实验原理】一. 熟悉利用Matlab 编程分析线性系统的时域响应过程1. 假设三阶系统闭环传递函数为:8106)65(5)(232+++++=Φs s s s s s ,试确定其单位阶跃响应。

(1) 其Matlab 程序及其结果如下:num0=5*[1 5 6];den0=[1 6 10 8];sys0=tf(num0,den0)den=[1 6 10 8 0];[z,p,k]=tf2zp(num0,den0)sys=zpk(z,p,k)[r,p,k]=residue(num0,den)step(sys0)z = -3.0000, -2.0000p = -4.0000 ,-1.0000 + 1.0000i ,-1.0000 - 1.0000ik =5Zero/pole/gain:5 (s+3) (s+2)---------------------(s+4) (s^2 + 2s + 2)r =-0.2500, -1.7500 - 0.2500i, -1.7500 + 0.2500i ,3.7500 p =-4.0000 ,-1.0000 + 1.0000i, -1.0000 - 1.0000i, 0k = []2.Simulink仿真模型及其结果如下:二. 线性系统稳定性分析1.如图所示,其中1K 为积分时间常数,已知6.86,2.0==n ωξ,试确定使得闭环系统稳定的1K 的取值范围。

答案:P115 64.3410<<KK1=34仿真结果K1=34.6仿真结果K1=34.66仿真结果,可见已经发散3. 已知单位反馈系统开环传递函数为: )15.0)(1()15.0()(2++++=s s s s s K s G ,确定闭环系统稳定的K 的取值范围。

实验二 线性系统时域响应分析

实验二  线性系统时域响应分析

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB 函数1. 基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

用MATLAB 求控制系统的瞬态响应阶跃响应求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:2()25()425C s R s s s =++ 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。

则matlab 的调用语句:num=[0 0 25]; %定义分子多项式den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线 grid %画网格标度线xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。

典型环节时域特性的仿真实验

典型环节时域特性的仿真实验

实验报告控制工程基础实验题目:实验一典型环节时域特性的仿真实验实验二典型环节频域特性的仿真实验实验三系统稳定性分析的仿真实验实验一典型环节时域特性的仿真实验一、实验目的:1、通过观察典型环节在单位阶跃信号作用下的动态特性,熟悉各种典型环节的响应曲线。

2、定性了解各参数变化对典型环节动态特性的影响。

3、初步了解Matlab中Simulink的使用方法。

二、实验设备:电脑三、实验内容:研究典型环节(比例、积分、微分、惯性、二阶)在阶跃输入信号及白噪声干扰信号输入的响应。

四、实验步骤:1.1 运行Matlab,在命令窗口“Command Window”下键入“Simulink”后回车,则打开相应的系统模型库;或者点击菜单上的“Simulink”图标,进入系统仿真模型库。

然后点击左上角“创建新文件图标”,打开模型编辑窗口。

1.2 调出模块在系统仿真模型库中,把要求的模块都放置在模型编辑窗口里面。

从信号源模块包(Sources)中拖出1个阶跃信号(step)和1个白噪声信号发生器(band-limited white noise) ;从输出模块包(Sinks)中拖出1个示波器(Scope);从连续系统典型环节模块包(Continuous) 中拖出1个微分环节(Derivative)和3个传函环节从数学运算模块包(Math Operations)中拖出1个比例环节(Gain)和1个加法器(Sum) ;从信号与系统模块包(Signals Routing) 拖出1个汇流排(Mux);所有模块都放置在模型编辑窗口里面。

1.3 模块参数设置双击打开3个传函环节(Transfer Fcn),通过设定参数 (参照图1的数据),分别构成积分、惯性和二阶环节;打开比例环节,设定比例增益为2;打开白噪声信号发生器,设定功率(Noise power)为0.0001,采样时间(Sample time)为0.05。

1.4 模块连接将各模块连接成如图1所示的仿真模型系统。

仿真技术实验程序及思考题解答(仅供参考)

仿真技术实验程序及思考题解答(仅供参考)

实验一 连续系统的数字仿真一、实验目的1. 熟悉Matlab 中m 文件的编写;2. 掌握龙格-库塔法的基本原理。

二、实验设备计算机、MATLAB 软件三、实验内容假设单变量系统如图所示。

试根据四阶龙格-库塔法,求系统输出y 的动态响应。

1.首先把原系统转化为状态空间表达式:⎪⎩⎪⎨⎧=+=•CXy bu AX X ,根据四阶龙格-库塔公式,可得到: ⎪⎩⎪⎨⎧=++++=+++1143211)22(6k k k k CX y K K K K h X X (1) 其中: ⎪⎪⎪⎩⎪⎪⎪⎨⎧+++=+++=+++=+=)()()2()2()2()2()(3423121h t bu hK X A K h t bu K h X A K h t bu K h X A K t bu AX K k k k k k k k k (2) 根据(1)、(2)式编写仿真程序。

2.在Simulink 环境下重新对上述系统进行仿真,并和1中结果进行比较。

四、实验结果及分析要求给出系统输出响应曲线,并分析计算步长对龙格-库塔法的影响。

计算步长对龙格-库塔法的影响:单从每一步看,步长越小,截断误差就越小,但随着步长的缩小,在一定求解范围内所要完成的步数就增加,不但引起计算量的增大,而且可能导致舍入误差严重积累,因此同积分的数值计算一样,微分方程的解法也有选择步长的问题。

源程序:r=5;numo=[1];deno=[1 4 8 5];numh=1;denh=1;[num,den]=feedback(numo,deno,numh,denh);[A,b,C,d]=tf2ss(num,den);Tf=input('仿真时间 Tf= ');h=input('计算步长 h=');x=[zeros(length(A),1)];y=0;t=0;for i=1:Tf/h;K2=A*(x+h*K1/2)+b*r;K3=A*(x+h*K2/2)+b*r;K4=A*(x+h*K3)+b*r;x=x+h*(K1+2*K2+2*K3+K4)/6;y=[y;C*x];t=[t;t(i)+h];endplot(t,y)Tf=5 h=0.02五、思考题1.试说明四阶龙格-库塔法与计算步长关系,它与欧拉法有何区别。

实验二时域分析

实验二时域分析

实验二信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MATLAB函数;2、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;3、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质;4、掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

二、实验原理1 LTI系统的时域描述1.1线性时不变系统在分析LTI系统时,有关LTI系统的两个重要的性质是必须首先掌握和理解的。

这就是线性性(Linearity)和时不变性(Time-invariance)。

所谓线性性就是指系统同时满足齐次性和叠加性。

这可以用下面的方法来描述。

假设系统在输入信号x1(t)作用时的响应信号为y1(t),在输入信号x2(t)作用时的响应信号为y2(t),给定两个常数a和b,如果当输入信号为x(t)时系统的响应信号为y(t),且满足x(t) = x1(t) + x2(t) 1.9(a)y(t) = y1(t) + y2(t) 1.9(b)则该系统具有叠加性(Additivity)。

如果满足x(t) = ax1(t) 1.10(a)y(t) = ay1(t) 1.10(b)则该系统具有齐次性(Homogeneity)。

一个系统如果是线性系统的话,那么这个系统必须同时具有叠加性和齐次性。

又假设系统在输入信号x(t)作用时的响应信号为y(t),对一个给定时间常数t0,如果当输入信号为x(t-t0)时,系统的响应信号为y(t-t0)的话,则该系统具有时不变性。

同时具有线性性和时不变性的系统,叫做线性时不变系统,简称LTI 系统。

LTI 系统有连续时间LTI 系统和离散时间LTI 系统之分。

连续时间系统的输入和输出信号都必须是连续时间信号,而离散时间系统的输入和输出信号都必须是离散时间信号。

实验二二阶系统时域分析

实验二二阶系统时域分析

实验二 二阶系统时域分析一、 实验目的1. 学习瞬态性能指标的测试技能2. 了解参数变化对系统瞬态性能及稳定性的影响二、 实验要求观测不同参数下二阶系统的阶跃响应曲线并测出性能指标:超调量σ、峰值时间p t 、调节时间s t 。

三、 实验仪器1. GSMT2014型直流伺服系统控制平台;2. PC 、MA TLAB 平台。

四、 实验原理采用转速为输出的直流伺服电机为被控对象,设控制器为ss K s G c )1052.0()(+=,K 为开环增益,构成新的单位负反馈闭环系统。

已知被控对象的数学模型为:112.011052.01)()()(0+⨯+==s s s n s n s G u c 开环传递函数为:)112.0(112.011052.01)1052.0()()()(0+=+⨯+⨯+=⨯=s s Ks s s s K s G s G s G c 设典型二阶系统的结构图如图2.1所示。

图2.1 典型二阶系统结构图其中,当01T =、12.01=T 、21K =时,开环传递函数为:)112.0()1()(1021+=+=s s Ks T s T K K s G 其中,开环增益为1021K T K K K ==。

闭环传递函数为其中,1T K n =ω 11121T K =ξ (2.1) (1)当10<<ξ,即欠阻尼情况时,二阶系统的阶跃响应为衰减振荡,如图2.2中曲线1所示。

()1)(0)n T d C t t t ξωωθ=-+≥ (2.2)式中 21ξωω-=n d1tgθ-=峰值时间可由式(2.2)对时间求导,并令它为零,得:p d t πω== (2.3)超调量()()()p p C t C t C t σ∞∞-=,求得p eσ= (2.4)调节时间s t ,采用2%允许误差范围时,近似地等于系统时间常数1()n ξω⨯的四倍,即:n s t ξω4=(2.5)(2)当1=ξ,临界阻尼时,系统的阶跃响应为单调的指数曲线,如图2.2中曲线2所示)0()1(1)(≥+-=-t t e t C n t n ωω令输出为98.0可求得s t 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5)编制简单的M文件程序。
2.实验仪器
PC计算机一台,MATLAB软件1套
3.实验内容
1)一阶系统的响应
(1)一阶系统的单位阶跃响应
在SIMULINK环境下搭建图1的模型,进行仿真,得出仿真曲线图。
理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0)
两种环境下得到的曲线图不一致。
2)二阶系统的单位阶跃响应
二阶系统的闭环传递函数标准形式为
其阶跃响应可以分以下情况解出
①当 时,系统阶跃响应为
②当 时,系统阶跃响应为
其中 ,
③当 时,系统阶跃响应为
④当 时,系统阶跃响应为
其中 ,
(1)自然角频率
选取不同阻尼比 0,0.2,0.4,0.6,0.8,1.0,2.0,用MATLAB得到二阶系统阶跃响应曲线。
分析:当ℰ一定时,且处欠阻尼状态时,wn越大,则系统达到稳定时,所需要的时间越短。
(3)系统动态性能分析
对于 表示的二阶系统
上升时间(s)
峰值时间(s)
最大超调量
调整时间(s)
曲线图
0.586
0.829
12%
1.57
公式计算
0.577
0.85
12%
1.60
解:wn= =2 ,ℰ= /4..可知系统处于欠阻尼状态,由课本上的计算公式可得tr=0.577s,tp=0.85s,Mp=0.12*100%,因为0〈ℰ〈0.8,所以ts=1.60s.
结论:通过比较得知,tp,Mp,ts,的理论值与图片中的值基本一致。
3)高阶系统的单位阶跃响应
已知高阶系统的闭环传递函数为
用下式低阶系统近似原系统
解:p1=-5,p2=-1.5+2.5j,p3=-1.5-2.5j,p4=-0.3+j,p5=-0.3-j.由于闭环极点与系统的原闭环极点传递函数之极点相同,零点则不同。
3)一阶系统的单位脉冲响应
在medit环境下,编译一个.m文件,利用impulse()函数可以得出仿真曲线图。此处注意分析在SIMULINK环境中可否得到该曲线图。
理论分析:C(s)=5/(0.8s+2)=(5/2)/(0.4s+1)可求的g(t)=6.25e^(-t/0.4),是一个单调递减的函数。
G=tf(num,den);
step(G);
figure(1)
holdon
num1=[1];
den1=[1,0.6,1];
G1=tf(num1,den1);
step(G1);
holdoff
对于高阶系统,极点均为负实数,而且无零点,则系统的暂态响应一定是非振荡的,响应主要取决于据虚轴最近的极点,。若其他极点比最近极点的最大距离大5倍以上,则可以忽略前者对系统暂态过程的影响。P1距p2没有5倍以上,而p3和p2不能看成一对偶极子,由于p4和p5离原点很近,所以影响也不能忽略。所以不能被低阶系统代替。
由此得知,图形是一条单调上升的指数曲线,与理论分析相符。
(2)一阶系统的单位斜坡响应
在SIMULINK环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。
理论分析:C(s)=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4)
e(t)=r(t)-c(t)=4-4e^(-t/4)当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4.
实验二典型系统的时域响应分析
1.实验目的
1)通过用MATLAB及SIMULINK对控制系统的时域分析有感性认识。
2)明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。
3)对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。
4)利用MATLAB软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较
二阶系统 对系统响应的影响
阻尼比
0
系统状态
无阻尼状态
欠阻尼状态
临界阻尼状态
过阻尼状态
对系统响应的影响
系统的暂态响应是恒定振幅的周期函数
系统的暂态响应是振幅随时间按指数规律衰减的周期函数,阻尼比越大,振幅衰减的越快
系统的单位阶跃响应随时间的推移单调增长,在时间趋于无穷大时,系统响应的最大超调量为0
暂态响应随时间按指数规律单调衰减。系统无超调,但过程缓慢。
分析:当wn一定时,ℰ越小,振荡越厉害,当ℰ增大到1以后,曲线变为单调上升。
(2)阻尼比
选取不同自然角频率 0.2,0.4,0.6,0.8,1.0,用MATLAB得到二阶系统阶跃响应曲线,并分析比较不同自然角频率对应的系统输出的情况。
本题采用第三种,在SIMULINK环境下搭建图1的模型,进行仿真,二阶系统阶跃响应曲线。
(2)利用单位阶跃响应step( )、figure( )和hold on( )等函数和指令,在medit环境下,编译一个.m文件,能够将原系统和降阶系统的单位阶跃响应绘制在一个图中,记录它们的响应曲线和暂态性能指标(上升时间、峰值时间、超调量以及调整时间),进行比较分析。
num=[45];
den=[1,8.6,29.8,67.4,51,45];
相关文档
最新文档