有限元非线性分析

合集下载

非线性结构有限元分析概论

非线性结构有限元分析概论

一、线性问题的基本方程
由复杂结构受力平衡问题的虚功方程有:
v T dv vuT qvdv suT qsds u0T R0
vmu
T
••
u dv
v
Du
T

u
dv
(10-1)
上式左端为内力的虚功,右端为外力的功。
由于: u N u Bu C
式中 u 为单元体内的位移; u为节点位移; N 形函数阵;
t t t
T
S t t t
dvt
W t t
(10-18)
返回
其中:
W tt o
tv
u
T
q tt tv
中推荐采用BFGS法。
程序对几何非线性的考虑可采用完全的拉格朗
日公式或改进的拉格朗日公式。在非线性动态分析
中采用隐式时间积分(Newmarli法和Wilson- 法) 或显式时间积分(中心差分法)的方法。隐式时间
积分通常用来分析结构的振动问题,显式时间积分
主要用来分析波传布现象。
返回
第一节 有限元基本方程
解此方程也用隐式时间积分,显式时间积分或振形迭加
法求解。
返回
二、非线性问题的基本方程
对于非线性问题通常不能用一步直接求解方案,必须分成
若干步加载,按各个阶段不同的非线性性质逐步求解,即增量求
解方案。
1.增量形式的平衡方程:
已知设:0,△t,2△t‥‥的位移和应力(各载荷步的)
要求出:t+△t步时的位移和应力。
ov oe T o
o e dv
ov
o
T
t o
SdvtW t o来自ovoe Tt o
S
dv

有限元非线性分析

有限元非线性分析

2)对数应变和真实应力 对数应变/自然应变/真实应变是度量大应变的方法,计算公式如下:
它是非线性应变的度量,因此是关于最终长度的非线性函数。与线性应变相比,对数应变(或真实应变)是可加
的。考虑一个初始长度为1m的杆经过下面3步的变形: 第1步: 从1m 变形至1.2m 第2步:从1.2m 变形至1.5m 第3步:从1.5m变形至2m 在下表中我们比较了工程应变和真实应变。可以清楚地看到,只有真实应变是可加的,因此在非线性分析中应该
大位移和大转角(小应变;线性或非线性材料)
大位移、大转角和大应变(线性或非线性材料)
K.J. Bathe, Finite Elemente Methoden 在线性FEA中,应变,如x方向应变可写为εx = ∂u/∂x,也就是说在表达式εx = ∂u/∂x + ...[(∂u/∂x)z + (∂v/∂x)z + (∂w/∂x)z]中只考虑了一次项的影响。在大位移(非线性)中,表达式的二次项也要考虑。另外,材料的应力-应变关 系也不一定是线性的。 2)材料非线性
材料非线性的特点
非线性材料(小位移)
K.J. Bathe, Finite Elemente Methoden 所有的工程材料本质上都是非线性的,因为无法找到单一的本构关系满足不同的条件比如加载、温度和应变率。 可以对材料特性进行简化,只考虑对分析来说重要的相关因素。线弹性材料(胡克定律)假设是最简单的一种。如果 变形可恢复,则材料为线弹性,如果变形不可恢复,则为塑性。如果温度效应对材料属性影响较大,则应该通过热弹性或热-塑性关系考虑结构和热之间的耦合效应。如果应变率对材料有明显影响,则应使用粘-弹性或粘-塑性理论。 上图是一个材料非线性的示例。 材料非线性的简单分类: 1. 非线性弹性 2. 超弹性 3. 理想弹-塑性 4. 弹性-时间无关塑性 5. 时间相关塑性(蠕变) 6. 应变率相关弹-塑性 7. 温度相关的弹性和塑性 如果考察上图中的应力-应变曲线,则材料非线性可以分为以下几类: 1. 线弹性-理想塑性 2. 线弹性-塑性。应力-应变曲线的塑性段与时间无关,还可细分为两种:

《有限元非线性》课件

《有限元非线性》课件
有限元非线性
本课件介绍《有限元非线性》课程的重要概念和应用领域,帮助学习者深入 了解非线性有限元分析的基本原理和解决方案。
有限元分析基础概念
介绍有限元分析的基本原理,包括离散化方法、单元类型和刚度矩阵的计算。
进一步学习非线性有限元方法
深入讨论非线性有限元方ቤተ መጻሕፍቲ ባይዱ的应用和优缺点,以及适用场景。
常见的非线性问题类型
弹性-塑性耦合模型
讨论弹性和塑性耦合的模型,以及其在结构分析和变形分析中的应用。
本构方程的求解方法
详细介绍求解非线性本构方程的数值方法和迭代策略,包括线性化方法和增量迭代法。
探讨材料非线性、几何非线性和边界条件非线性等常见问题类型,并提供解决方案。
经典弹塑性模型
介绍经典弹塑性模型及其在非线性有限元分析中的应用,包括塑性流动准则和硬化规律。
渐进式塑性模型
探讨渐进式塑性模型的特点及其在复杂材料行为建模中的应用。
黏塑性模型
介绍黏塑性模型及其在某些材料和地质工程分析中的应用,如粘土和岩石。

非线性有限元法综述

非线性有限元法综述

非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。

关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。

进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。

有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。

方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。

非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。

图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。

2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。

这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。

完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。

两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。

非线性有限元分析报告

非线性有限元分析报告

非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。

但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。

对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。

这类问题的解决通常有两种途径。

一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。

但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。

因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。

特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。

已经发展的数值分析方法可以分为两大类。

一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。

其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。

但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。

另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。

如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。

诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。

但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。

1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。

线性和非线性有限元分析

线性和非线性有限元分析

Strain-rate dependence of tensile response of cortical bone. (Adapted from J. H. McElhaney, J. Appl. Physiology, 21(1966) 1231.)‫‏‬
为何线性有限元
• 线性元是对自然界非线性问题的小范围和小规 模逼近 • 线性材料是人为假设的 • 人类在构造建筑和机械结构时假设它们不会在 人造环境和人为的载荷条件下产生大的物理量 变 • 线性有限元可以解决大部分民用建筑结构和民 用机械结构问题 • 非线性问题可以用多个线性问题的解来逼近
ZIENKIEWICZ &CHANG popularize the method with the practicing engineering community (有限元在工程界广泛推广) IRONS &RAZZAQUE frontal solution technique successful implementation of finite elements (成功应用单元前沿刚度矩阵方程解法) isoparametric elements , modern finite element methods (参数元,从长现代有限元) theory of distributions, generalized functions, weak solutions of pde’s (广义函数,偏微分方程弱解) the decade of the mathematics of finite elements (数学家的十年)
几何非线性:
• • • Large deformation (线性和非线性材料大变形) Contact Non linearity(线性材料接触和非线性材料接触) Nonlinear Buckling (线性和非线性材料屈曲)

钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇钢筋混凝土结构非线性有限元分析1钢筋混凝土结构是现代建筑结构中常用的一种结构形式。

由于钢筋混凝土结构自身的复杂性,非线性有限元分析在该结构的设计和施工过程中扮演着重要的角色。

非线性有限元分析是建立在解析的基础之上的,它可以更真实地模拟结构在实际载荷下的变形和破坏特性。

本文对钢筋混凝土结构的非线性有限元分析进行细致的介绍。

首先需要了解的是,钢筋混凝土结构存在多种非线性问题,如材料非线性、几何非线性和边界非线性等。

这些非线性问题极大地影响了结构的受力性能。

在结构的设计阶段,要对这些非线性因素进行充分分析。

钢筋混凝土结构在材料方面存在很多非线性问题,例如,混凝土的拉应力-应变曲线存在非线性变形,钢筋的本构关系存在弹塑性和损伤等等。

这些材料的非线性特性是钢筋混凝土结构变形和破坏的重要因素。

钢筋混凝土结构材料的非线性特性需要通过相关试验来获得,例如混凝土的轴向拉伸试验和抗压试验,钢筋的拉伸试验等,试验数据可以被用来建立预测结构非线性响应的有限元模型。

钢筋混凝土结构在几何方面存在很多非线性问题,例如,结构的非线性变形、结构的大变形效应、结构的初始应力状态等等。

钢筋混凝土结构几何的非线性效应可通过有限元分析明确地描述。

要对几何非线性进行分析,通常使用非线性有限元分析程序,其中包括基于条件梯度最优化技术的材料和几何非线性分析以及有限元法分析中使用的高级非线性模拟技术。

钢筋混凝土结构的边界条件也可能导致结构的非线性响应,例如基础的扰动、结构的支承和约束条件等。

所有这些条件都会导致模型在分析中出现非线性行为。

最后,非线性有限元分析可以简化结构设计的过程,并且可以更准确地分析结构的性能。

另外,分析过程中还可以考虑更多因素,例如局部的材料变形、应力浓度等等,让设计人员了解到结构的真实状态。

总之,钢筋混凝土结构非线性有限元分析是现代建筑结构中常用的一种结构分析方式,对于设计和施工都有着重要的意义。

非线性有限元分析

非线性有限元分析

课程名称:非线性有限元分析
英文名称:Nonlinear finite element methods
课程类型:√□讲授课程□实践(实验、实习)课程□研讨课程□专题讲座□其它
考核方式:大作业、编程
教学方式:课堂讲授
适用专业:理工文医各专业
适用层次:硕士□√博士□√
开课学期:
总学时/讲授学时:40/40
a)Volume 1 & Volume 2
3.Bathe: Finite element procedures in engineering analysis. 1982
4.Cook, Malkus, Plesha, Witt: Concept and applications of finite element analysis. 2002
5.Simo, Hughes: Computational inelasticity. 1997
6.Zienkiewicz, Taylor: The finite element method. Volume 2. 2008
7.Reddy: An introduction to nonlinear finite element method. 2004
第九章接触
§9.1光滑及摩擦接触问题的数学描述
§9.2变分等式及变分不等式方法
§9.3一维无摩擦接触问题的求解方法及过程
§9.4摩擦接触问题算法
§9.5接触面相关的数学描述及算法
§9.6几种摩擦模型简介
第十章材料非线性
§10.1一维理想塑性ห้องสมุดไป่ตู้题及算法
§10.2基本的等向强化模型及算法
§10.3率无关塑性积分算法
Volume 1 & Volume 2

03非线性分析要点

03非线性分析要点

第三部分非线性分析第一章非线性有限元概述1.1非线性行为1、 非线性结构的基本特征是结构刚度随载荷的改变而变化。

如果绘制一个非线 性结构的载荷一位移曲线,则 力与位移的关系是非线性函数。

2、 引起结构非线性的原因:a 几何非线性:大应变,大位移,大旋转 (例如钓鱼竿的变形)b 材料非线性:塑性,超弹性,粘弹性,蠕变c 状态改变非线性:接触,单元死活3、 非线性行为一一分析方法特点A 不能使用叠加原理!B 结构响应与路径有关,也就是说加载的顺序可能是重要的。

C 结构响应与施加的载荷可能不成比例。

1.2非线性分析的应用1、 一些典型的非线性分析的应用包括: 非线性屈曲失稳分析金属成形研究碰撞与冲击分析制造过程分析(装配、部件接触等)材料非线性分析 (塑性材料、聚合物)2、 橡胶底密封:一个包含几何非线性(大应变与大变形),材料非线性(橡胶), 及状态非线性(接触)的例子。

2.1非线性方程组的解法1、求解一个结构的平衡问题通常等于求解结构的总位能的驻值 问题。

结构总位能n : 口 "3弋门心 2、 增量法:就是将荷载分成一系列的荷载增量,即 ANSYS 中的荷载步或荷载子 步。

A 要点:在每一个荷载增量求解完成后,继续进行下一个荷载增量之前, 刚度矩阵以反映结构刚度的变化。

B 增量法的优点:可以追踪结构变形历程,这对于材料或几何非线性(特别是 极限值屈曲分析)十分有用。

C 增量法的缺点:随着荷载步增量的增加而产生积累误差,导致荷载-位移曲 线飘移。

D 对飘移进行平衡修正,可以大大提高增量法的精度。

应用最广的就是在每一 级载荷增量上用Newton-Raphsor 或其变形的迭代法。

3、 迭代法:割线刚度法:收敛性差,因此很少应用切线刚度法Newto n-Ra phsor 迭代法:切向刚度法中 2.2 Newto n-Ra phsor 迭代法 1、 优点:对于一致的切向刚度矩阵有 二次收敛速度。

非线性结构有限元分析课件

非线性结构有限元分析课件

非线性结构有限元分析的步骤与流程
• 设定边界条件和载荷,如固定约束、压力 或力矩等。
非线性结构有限元分析的步骤与流程
01 步骤三:求解
02
选择合适的求解器,如Newton-Raphson迭代法或 直接积分法。
03 进行迭代计算,求解非线性结构的内力和变形。
非线性结构有限元分析的步骤与流程
01
步骤四:后处理
非线性有限元分析的基本概念
总结词
非线性有限元分析是一种数值分析方法,通过将复杂的结构或系统离散化为有限个小的单元,并建立 每个单元的数学模型,来模拟和分析结构的非线性行为。
详细描述
非线性有限元分析是一种基于离散化的数值分析方法,通过将复杂的结构或系统划分为有限个小的单 元(或称为有限元),并建立每个单元的数学模型,来模拟和分析结构的非线性行为。这种方法能够 考虑各种复杂的边界条件和材料特性,提供更精确的数值结果。
非线性有限元分析的常用方法
总结词
非线性有限元分析的常用方法包括迭代法、增量法、 降维法等。这些方法可以根据不同的非线性问题选择 使用,以达到更好的分析效果。
详细描述
在非线性有限元分析中,常用的方法包括迭代法、增量 法、降维法等。迭代法是通过不断迭代更新有限元的位 移和应力,逐步逼近真实解的方法;增量法是将总载荷 分成若干个小的增量,对每个增量进行迭代计算,最终 得到结构的总响应;降维法则是通过引入一些简化的假 设或模型,将高维的非线性问题降维处理,以简化计算 和提高计算效率。这些方法各有优缺点,应根据具体的 非线性问题选择使用。
03
02
弹性后效
材料在卸载后发生的变形延迟现象。
材料强化
材料在受力过程中发生的强度增加 现象。
04

轴心受压L形柱的有限元非线性分析

轴心受压L形柱的有限元非线性分析
较, 以期 为 L形 柱 的 合 理 设 计提 供 参 考 。
关键词 钢 异 形 柱 弯 扭 屈 曲 ANS YS
NoNLl NEAR Nl Fl TE ELEM ENT ANALYS S 0F ,S I I HAPE CoLUM N UNDER
AX l L A Co M PRES O N SI
维普资讯
粟增 欣 , : 心 受 压 L形 柱 的有 限元 非 线 性 分 析 等 轴
轴 心 受压 L形 柱 的有 限元 非 线性分 析
栗增 欣
( 西安 建 筑 科 技 大 学
郭成 喜
西 安 7 0 5 ) 10 5
摘 要 考 虑 不 同长 细 比 、 弯 曲 和 翘 曲 是 否 约 束 的 影 响 , 用 有 限 元 软 件 A YS计 算 L 形 柱 轴 心 受 压 时 的极 初 采 NS 限荷 栽 , 结 出 曲 线 的 简 便 计 算 公 式 , 而得 到 一 曲 线 与 《 结 构 设 计 规 范 》 GB 50 7 2 0 ) 曲 线 的 比 总 进 钢 ( 0 1 — 0 3 中
弯扭屈 曲 。计算 开 口薄壁 构件 弯扭屈 曲的基本假 定 为: 弹性小 变形 、 刚周 边和 中面 的剪应 变 为零 。 如 图 2所 示 , 面 的 整体 主 坐 标 系 为 o y , 截 xz0 为截 面形 心 。距 柱底 为 处 截面剪 心在 X和 Y向 的 位移 为 “和 , 纵轴 的扭转 角 为 。剪 心 S在形 心 绕
ANS YS
在 住宅 建筑 中 使用 规 则 截 面 柱 , 往使 得 柱 体 往 凸 出墙 面 , 就会 占用 一定 的室 内空 间 , 影响 建筑 这 既 美观 , 又带来 使用 上 的不便 。为 此 , 需要 采用 异形 就 柱 , 如角 柱 采用 L形 截 面 、 例 中柱 采 用 十字形 截 面 、

建筑结构设计中的力学分析方法

建筑结构设计中的力学分析方法

建筑结构设计中的力学分析方法建筑结构设计是一门综合性学科,旨在确保建筑物能够在不同的力学荷载下保持结构稳定和安全。

力学分析是建筑结构设计中的关键环节之一,它通过深入研究和分析不同荷载对建筑结构产生的影响,以确定和优化结构的设计。

1. 引言在建筑结构设计中,力学分析是一项至关重要的技术。

通过运用力学原理和方法,可以预测建筑结构在外界荷载作用下的响应,为设计提供可靠的基础和指导。

本文将介绍建筑结构设计中常用的力学分析方法。

2. 静力分析静力分析是建筑结构设计中最基本的分析方法之一。

它基于力和力的平衡原理,通过计算建筑结构受力情况来确定结构的承载能力和稳定性。

静力分析常用的方法包括受力图法、弯矩计算、剪力计算等。

这些方法能够准确地描述结构在静力荷载下的受力状态。

3. 动力分析动力分析是一种更为复杂的分析方法,适用于考虑到地震、风载等动力荷载的建筑结构。

动力分析主要包括静力等效法、模态超静力法和时程分析等。

其中,静力等效法和模态超静力法都是基于模态分析的思想,并在考虑动力荷载的情况下简化了计算过程。

时程分析是一种更为精确的方法,通过模拟荷载和结构之间的相互作用来评估结构的响应。

4. 有限元分析有限元分析是一种广泛应用于建筑结构设计领域的数值分析方法。

它将结构划分为有限个单元,利用数学模型和计算机技术模拟结构的受力行为。

有限元分析可以综合考虑结构的几何形状、材料性质和边界条件等因素,对结构的受力性能进行精确分析。

由于有限元分析具有较高的计算精度和灵活性,因此在复杂建筑结构的设计和优化中得到广泛应用。

5. 非线性分析非线性分析是一种针对具有非线性特征的结构进行分析的方法。

在许多情况下,建筑结构在受到极限荷载或变形限制时会发生非线性响应。

非线性分析通过考虑结构材料的非线性特性、几何非线性和接触非线性等因素,准确地描述结构的受力性能,并提供合理的设计参考。

6. 结构优化方法结构优化方法在建筑结构设计中发挥着重要的作用。

非线性问题有限元分析

非线性问题有限元分析

【问题描述】如图I所示的模型,纵向尺寸均为100mm,水平尺寸均为30mm,圆角半径均为10mm,模型厚度为4mm。

图I 本例中所使用的模型【要求】在ANSYS Workbench软件平台上,通过改变材料属性,分别对该模型进行线性材料静力分析以及非线性材料的静力分析,并加以对比。

1.分析系统选择(1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。

在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,mm,s,℃,mA,N,mV)命令。

(2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“静力结构分析”【Static Structural】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。

相关界面如图1所示。

图1 Workbench中设置静力分析系统2.输入材料属性(1)在右侧窗口的分析系统A中双击工程材料【Engineering Data】单元格,进入工程数据窗口。

(2)我们首先进行的是线性材料问题,选用系统默认的结构钢作为材料即可。

(3)可以看见,系统本身默认结构钢【Structural Steel】已在备选材料窗口中,在此不必再另行选择,直接单击【Project】选项卡回到项目流程界面即可。

3.导入几何模型(1)双击分析系统A中的“几何”【Geometry】单元格。

(2)找到菜单栏中的文件【File】选项,依次选择【File】>【Import External Geometry File】,在弹出的对话框中找到模型文件“non-linear.igs”并打开。

(3)单击工具栏中的【Generate】选项,即选项,确认生成导入的模型。

导入完成后的模型如图2所示。

(4)至此,模型导入步骤完成。

图2 导入的模型3.网格划分(1)双击Workbench界面中系统A的第四个单元格,模型【Model】单元格,进入【Static Structural】的静力分析模块。

第6章 非线性有限元法(几何非线性)分析

第6章 非线性有限元法(几何非线性)分析
dxiFkiFkjdxj dxidxi
FkiFkj ij dxidxi 2eijdxidxi
由于大变形问题有
2、限A元lm方an程sh主i应要变采用张量
T.L列式法或U.L列式 Alm法an建sh立i应,变因张此量应采在用初Eular运动 描述始方状法态,下即定按义当应前变状张态下的构 形定量义,应即变采张用量G。reen应
变ds张2 量d。s2 dxidxi dxidxi
dxidxi dxi Fki1Fkj1dx j
ij Fki1Fkj1 dxidxi 2Eij dxidxi
eij
1 2
FkiFkj ij
式中,eij称为Green应变张量或 Green-Lagrangian应变张量。
Eij
第六章 非线性有限元法(几何非线性)
1、变几形何非体线性的的有运限动元方描程一述 般采用T.L或U.L列式法建立!
变形体上的质点的运动状态 可以随不同的坐标选取以下几 种描述方法:
1、全拉格朗日列式法(T.L列式 法—Total Lagrangian Formulation):
选取t0=0时刻未变形物体的构 形A0作为参照构形进行分析。
uk xj
ij
ij
式中:
ij
1
ui
2 xj
u j xi
为小变形应变张量;
ij
1 2
uk xi
uk xj
为非线性二次项
2、Green变形张量也可写为:
eij
1 2
Cij
ij
式中,Cij是Cauchy变形张量
Cij FkiFkj
由于Cauchy变形张量是正定对称 阵,因此该张量有三个实特征值; 这些特征值的平方根记为材料的 主轴拉伸。

基于ABAQUS的混凝土结构非线性有限元分析

基于ABAQUS的混凝土结构非线性有限元分析

基于ABAQUS的混凝土结构非线性有限元分析引言:混凝土结构在工程领域中应用广泛,其力学行为具有非线性特点。

在设计和分析混凝土结构时,需要考虑材料的非线性、几何的非线性以及边界条件的非线性等。

有限元方法是一种常用的分析工具,能够模拟复杂的结构非线性行为。

本文将介绍基于ABAQUS的混凝土结构非线性有限元分析。

方法:混凝土结构在非线性有限元分析中,需要建立几何模型、材料模型和加载模型。

ABAQUS提供了丰富的功能和材料模型,适用于混凝土结构的各种非线性分析。

1.几何模型:在建立几何模型时,可以使用ABAQUS提供的几何建模工具,也可以导入CAD软件中的几何模型。

在建立模型时,需要注意结构的几何形状、尺寸和边界条件。

2.材料模型:混凝土的力学行为通常可以用Drucker-Prager或Mohr-Coulomb材料模型来描述。

ABAQUS提供了这些材料模型的参数输入和选项设置。

在输入混凝土材料的参数时,需要考虑抗压强度、抗拉强度、杨氏模量、泊松比、体积变形模量等。

同时,材料的破坏准则也需要考虑。

ABAQUS支持多种破坏准则,如最大应变准则、耐久性准则等。

3.加载模型:在非线性有限元分析中,加载模型对于模拟真实工况非常重要。

ABAQUS提供了多种加载模型,如集中力、均布力、压力等。

除了静力加载,动力加载也是重要的分析手段。

ABAQUS可以模拟动力荷载,如地震、风载等。

加载模型的选择和参数的设置需要根据实际工程情况来确定。

4.边界条件:在模拟混凝土结构中,正确设置边界条件是至关重要的。

ABAQUS提供了多种边界条件的设定方法,如位移边界条件、约束边界条件等。

在设置边界条件时,需要根据结构的实际情况来选择合适的约束条件,确保分析结果的准确性。

结果与讨论:通过非线性有限元分析,可以得到混凝土结构的应力、应变分布,以及结构的变形和破坏情况。

这些结果对于工程设计和结构优化非常重要。

在使用ABAQUS进行混凝土结构非线性有限元分析时,需要进行结果的后处理和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2 线性和非线性FEA对比
下表简要列出了线性和非线性有限元分析之间的主要不同。关于荷载-位移关系、应力-应变关系、应力-应变度量 等主要不同将在本章详细介绍。
序号 1.
特征 荷载-位移关系
2.
应力-应变关系
3.
比例缩放
4.
线性叠加
5.
可逆性
6.
求解序列
7.
计算时间
8.
用户与软件的交互
13.3 非线性的类型
2)对数应变和真实应力 对数应变/自然应变/真实应变是度量大应变的方法,计算公式如下:
它是非线性应变的度量,因此是关于最终长度的非线性函数。与线性应变相比,对数应变(或真实应变)是可加
的。考虑一个初始长度为1m的杆经过下面3步的变形: 第1步: 从1m 变形至1.2m 第2步:从1.2m 变形至1.5m 第3步:从1.5m变形至2m 在下表中我们比较了工程应变和真实应变。可以清楚地看到,只有真实应变是可加的,因此在非线性分析中应该
13.6 非线性静力分析的一般流程
一个典型的非线性静力分析项目需要以下步骤:
网格划分:有限元模型的创建是有限元分析一个非常重要的步骤,不论进行什么样的分析。在第4-7章已经讨论过对 于某些应用的如何选择适当的单元类型。FEA小组会得到零件的几何数据,需要对这些几何进行网格划分以得到零件 网格。当装配中所有的零件划分网格后,使用适当的连接单元把它们都连接在一起如CWELD或CBUSH。一般来说, 四边形单元和六面体单元优于三角形单元、楔形单元和四面体单元。应该注意模型中的关键特征,比如圆角、孔和倒 角。如果在两个平行表面之间有紧固件或焊接,应该尽量在两个面上创建相似的网格。这将有助于焊接单元或刚性单 元垂直于表面而不破坏壳单元。然而,许多有限元分析(FEA)代码支持不依赖于节点焊接,而是基于绑定接触。这 允许用户在两个焊接零件之间创建不依赖于节点的连接单元。建议首先对复杂零件进行网格划分,然后对简单或平面 几何进行网格划分以保证良好的单元质量。需要用适当的方式来模拟夹紧、铰接和焊接以在结构中正确地传递荷载。 为单元定义适当的刚度和预荷载以得到更高的精度。如果荷载从结构上的某个面传递到另一个面上,应该在两个面间 定义接触。每个FEA代码都有自己的接触参数输入格式。一个典型的接触定义需要主从节点或单元,摩擦系数,接触 面间的间隙和接触算法。
XIII 非线性分析
13.1 简介
本章将从实际应用的角度讨论非线性静态有限元分析。但是如何知道我们的问题是非线性呢?最好的方法是考察 一个或多个关键荷载作用点的荷载-位移响应。如“分析类型”一章所述,当结构的响应(变形、应力和应变)与荷载(力、 压力、力矩、扭矩、温度等)成线性比例关系,这样的分析就是线性分析。当荷载与响应的关系不是线性关系时,这 个分析就是非线性分析(如下图所示)。
a. 弹性-分段线性塑性(如下图所示) b. 弹性- 真实应力应变曲线
(a) 弹性材料
(b) 弹塑性材料
线性和非线性材料的应力-应变曲线
3. 没有固定屈服点的非线性弹性材料,比如进入塑性但应变远低于20%
4. 超弹性材料,比如大位移下的橡胶。典型应用是垫片材料。
3)边界条件非线性/接触非线性 当位移D的阶数发生变化时,说明边界条件发生改变,比如自由度的改变。
Log(2/1) = 0.6931
结论
工程应变是不可加的,不能准确 真实应变是可加的,准确表现了
表应变计算1-D应变类似,用F除以当前(变形后)的面积。这种应力通常也称为柯西 应力。
3) Green-Lagrange应变和第二类Piola-Kirchoff应力 Green-Lagrange应变是另一种大应变度量方法,一维情况由下式计算:
13.4 非线性分析中的应力-应变关系度量
线性静态和非线性有限元分析有一个重大区别。在线性分析中,我们经常使用工程应力-应变的定义,而在非线 性分析通常是真实应力-应变。关于应力/应变关系,下面的网页有很好的总结: /TENSILE/tutorial/node3.html。
13.5 非线性有限元分析的基本步骤
1. 在应用一些没有用过的非线性功能之前,先通过一个简单的模型了解软件是如何工作的。预测结构的表现,可 以查看研究报告和示例。
2. 理解软件支持文档,以及输出和警告信息。 3. 明白你需要什么结果。准备一个需要问答的问题清单。为了回答这些问题,来创建分析,包括模型,材料模型
重要并且最终状态不会受有加载历 史非常重要。
史的影响。
荷载一次性加载,没有迭代步。
荷载被分解到多个小的增量步进
行迭代加载以保证每个荷载增量
步都满足平衡条件。


要求很少
需要经常查看软件状态,因为可
能无法收敛。
有三种基本的非线性类型:几何非线性、材料非线性和接触非线性。回顾线弹性的概念——小变形并且应力与应 变成比例。
线性与非线性响应对比 如之前的章节所述,在静力分析中假定与荷载和响应有关的刚度矩阵是常量。但是,现实世界中所有的结构行为 都是非线性的。刚度矩阵中包含了几何参数如长度、截面积、惯性矩等,还包含材料属性如弹性模量、硬化准则等。 静力分析假设这些参数在结构荷载作用下不发生改变。另一方面,非线性静力分析考虑了在加载过程中这些参数的变 化。 这些变化体现在刚度矩阵的更新上,每个荷载增量作用以后,刚度矩阵都会根据变形以后的结构(即变化后的属 性)重新创建。需要指出的是,虽然现实世界是非线性的,但在许多情况下线性假设是可行的,也就是说可以用线性 分析来替代。从计算资源的角度来说,线性分析消耗的计算资源更少。
线性问题
非线性问题
位移与荷载成线性关系,刚度是常 非线性问题的刚度是随荷载变化
数。位移引起的几何变形认为是小变 的函数。位移可以很大并且几何
形并且可忽略。初始状态或未变形的 变形不可忽略。因此刚度是荷载
状态作为参考状态。
的函数。
在比例极限/弹性极限之前是线性的。 是关于应力-应变或时间的非线性
杨氏模量等属性可以很容易得到。 函数,获取这个关系比较困难,
大位移和大转角(小应变;线性或非线性材料)
大位移、大转角和大应变(线性或非线性材料)
K.J. Bathe, Finite Elemente Methoden 在线性FEA中,应变,如x方向应变可写为εx = ∂u/∂x,也就是说在表达式εx = ∂u/∂x + ...[(∂u/∂x)z + (∂v/∂x)z + (∂w/∂x)z]中只考虑了一次项的影响。在大位移(非线性)中,表达式的二次项也要考虑。另外,材料的应力-应变关 系也不一定是线性的。 2)材料非线性
材料非线性的特点
非线性材料(小位移)
K.J. Bathe, Finite Elemente Methoden 所有的工程材料本质上都是非线性的,因为无法找到单一的本构关系满足不同的条件比如加载、温度和应变率。 可以对材料特性进行简化,只考虑对分析来说重要的相关因素。线弹性材料(胡克定律)假设是最简单的一种。如果 变形可恢复,则材料为线弹性,如果变形不可恢复,则为塑性。如果温度效应对材料属性影响较大,则应该通过热弹性或热-塑性关系考虑结构和热之间的耦合效应。如果应变率对材料有明显影响,则应使用粘-弹性或粘-塑性理论。 上图是一个材料非线性的示例。 材料非线性的简单分类: 1. 非线性弹性 2. 超弹性 3. 理想弹-塑性 4. 弹性-时间无关塑性 5. 时间相关塑性(蠕变) 6. 应变率相关弹-塑性 7. 温度相关的弹性和塑性 如果考察上图中的应力-应变曲线,则材料非线性可以分为以下几类: 1. 线弹性-理想塑性 2. 线弹性-塑性。应力-应变曲线的塑性段与时间无关,还可细分为两种:
和边界条件。 4. 最终模型要尽可能简单。首先做一个线性分析,可以提供大量的信息,比如哪里的应力高,哪些地方可能发生
的初始接触,多大的荷载将导致模型进入塑性。线性分析的结果甚至可能指出没有必要进行非线性分析。例如: 未达到屈服极限,没有接触并且位移很小。 5. 验证和确认的非线性有限元分析(FEA)的结果。确认是指从数值上看“模型是正确计算的”。不考虑网格尺 寸和时间步长的离散化是常见的错误。验证是指“模型是否正确”,比如几何、材料、边界条件、接触等是否 和真实情况一致。 6. 查看结构的相关假设,打开或关闭大应变后的几何变形,如果简单的材料模型不能给出预期的结果可以尝试不 同的材料模型(某些情况下材料模型只适用于常用单元,你可能需要改变单元类型)。
由于它由更新后的长度L(未知的)的平方来决定,因此它是非线性的。这种方法相比对数应变或Hencky应变在 计算上的优势是它自适应任意大应变问题中的大转角。Green-Lagrange应变对应的应力是第二类Piola-Kirchoff应力, 对于一维问题计算公式如下:
可以看出这个应变没有太多的物理意义。
需要大量的材料实验。注意真实
应力和工程应力之前的差别。
可以。如果1N的力引起了x个单位位 不可以。
移,那么10N的力将产生10 x的位移。
可以。可以进行工况的线性组合。 不可以。
在卸掉外荷载后结构的行为是完全 卸载后的状态与初始状态不同。
可逆的。这也意味着荷载的顺序并不 因此不能进行工况叠加。加载历
线弹性
1) 几何非线性 几何非线性可能与以下几种情况有关:1)大应变 2)大转角 3)大变形 几何非线性会考虑大变形可能引起的几何截面变形(在线性静力分析中截面假定为常量)。大位移也可能由几何
屈曲引起。屈曲是构件在受到较大的压应力情况下的突然失效现象。实际上失稳时的压应力小于材料的根限压应力。 因此平衡方程必须参考变形后的结构几何重写。此外,在荷载增加的过程中,方向可能会发生变化,比如压力作用下 膜结构膨胀。(参考Concepts and applications of finite element analysis; R.D. Cook et. al, 595页)
相关文档
最新文档