二次根式 PPT优秀课件

合集下载

《二次根式PPT课件》

《二次根式PPT课件》
(1)(3 2)2 (2 3)2 (2) (5)2 ( 5)2 (3) m2 16m 64(m 8) (4) a2b2 (a 0,b 0)
若a.b为实数,且 2 a b 2 0
求 a2 b2 2b 1 的值
解:
2 a 0, b 2 0
读作: 根号a
规定:0的算术平方根是0
探究 a
1、a可以取任何数吗?被开方数a是非负数,
2、 a 是什么数?
即a≥0
(2) a 是非负数,即 a ≥0
也就是说,非负数的“算术”平方根是非负数。
负数不存在算术平方根,即当 a小于0 时, a 无意义。
如: - 6 无意义 。
非负数
a ≥0(a≥0)
非负数
算术平方根具有双重非负性
算术平方根的性质
• 正数有一个正的算术平方根;
• 0的算术平方根,是0本身;
• 负数没有算术平方根.
定义
一般的,如果一个数x的平方等于a,即x2=a,
那么这个数x叫做a的平方根或二次方根
a的平方根表示为 a 读 作 : 正 , 负 a根
求一个数a的平方根
的运算叫做开平方
例如:4的平方根表示为: 4, 4 2
5的平方根表示为: 5,
3265 的平方根表示为:
25 36

25 5 36 6
0的平方根表示为: 0
规定: 0 0. 0 0 所以, 0的平方根仍是0
讨论
平方根有什么性质?
试一试: (1)144的平方根是什么?
(2)0的平方根是什么?
二次根式
x 一般地,如果一个正数的x平方等于a , 即 x a , x 那么这个正数 叫做 的 算术平方根 即

第五讲二次根式PPT课件

第五讲二次根式PPT课件
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
(2)( 10-3)2012·( 10+3)2013. 解 原式=( 10-3)2012·( 10+3)2012·( 10+3) =[( 10-3)( 10+3)]2012·( 10+3) =[( 10)2-32]2012·( 10+3) =(10-9)2012·( 10+3)=1×( 10+3)= 10+3.
4. 同类二次根式:把几个二次根式化为最 简二次根式以后,它们的被开方数相同.
常考类型剖析
类型一 二次根式有意义的条件
例1(’14巴中)要使式子 m 1 有意
m 1
义,则实数m的取值范围是
(D)
A. m>-1
B. m≥-1 C. m>-1且m≠1 D. m≥-1且m≠1
第4课时┃ 数的开方及二次根式 考点1 二次根式的相关概念与性质
当堂检测
1.[2014·拱墅二模] 16的值等于
(A)
A.4 B.-4 C.±2 D.2
2.[2014·孝感] 下列二次根式中,不能与 2合并的是
(C )
A.
1 2
B. 8
C.
12
D. 18
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
3.[2014·济宁] 如果 ab>0,a+b<0,那么下面各式:①
C. 27÷ 3=3
D. (-3)2=-3
解析 27÷ 3= 27÷3= 9=3.
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.

二次根式ppt课件

二次根式ppt课件

通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如

二次根式PPT课件

二次根式PPT课件
;
;()
; ()



教材P43 习题
必做题:1.3
选做题:2.4
谢 谢
7. 二次根式
新知导入
复习提问:
1.什么叫做算术平方根?
2.5的算术平方根怎么表示?
. 的算术平方根是多少?
4.什么数才有算术平方根?
学习目标
1.通过观察能说出二次根式和最简二次根式的概念,
并会进行判断.
2.通过“做一做”活动,能总结出二次根式的性质,
并能利用性质将二次根式化为最简二次根式.

最简二次根式:一般地,被开方数不含分母,也不含能开得尽方的因
数或因式,这样的二次根式,叫做最简二次根式.
归纳
注意:化简时,通常要求最终结果中分母不含有根号,而且各个二次
根式是最简二次根式.
例题解析
例2 化简:
解:
展示与交流
议一议
(1)你是怎么发现 的被开方数含有开的尽方的因数的?
你是怎么判断

除以 除式的算术平方根(被除式必须是非负数,除式必须是正数)
=


( ≥ , > )

注意:a、b的取值范围不能忽略.
例题解析
例1 化简:

() × ; () × ; ()

探究三:二次根式的化筒
例1的化简结果 ,
方的因数.

中,被开方数中,都开方数都不含分母,也不含能开得尽
二次根式
二次根式的性质
最简二次根式
当堂检测
1.下列式子中,不属于二次根式的是(
2.式子


有意义的条件是(
C

A

3.下列根式一定是最简二次根式的是(

九年级数学总复习课件:二次根式(共29张PPT)

九年级数学总复习课件:二次根式(共29张PPT)
2 问: ( 1) 请仿照例中的分类讨论的方法, 分析二次根式 a 的各种展开的情况;
2 ( 2) 猜想 a 与| a| 的大小关系.
2 【思路点拨】 (1)仿照例题的文字描述分类讨论 a 的三种情况.
2 (2)比较 a 与| a| 的三种情况, 得出结论.
复习目标
知识回顾
重点解析
探究拓展
真题演练
复习目标
知识回顾
重点解析
探究拓展
真题演练
8. (2012·厦门九上质检)计算: 2 × ( 3+ 2) -2 6 . 【解析】 原式= 6 +2-2 6 =2- 6 .
x 1 2 6 9 x 9. (2011·福州九上质检)计算: 3 + 4 -2x x .
第 四 讲 第 五 讲 第 六 讲
【解析】
b 3. 二次根式的除法: a =
( a≥0, b>0) .
➡特别提醒: 二次根式的运算结果一定要化成最简二次根式. 【答案】 一、1. a ( a≥0) 2. 因数或因式 3. 被开方数
b 4. a
a 3. b
二、1. a≥0 2. -a 3. a · b
三、1. 最简二次根式 同类
2. ab
复习目标
第 四 讲 第 五 讲 第 六 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
所以综合起来一个数的绝对值要分三种情况, 即:
a | a | 0 a
(当a 0) (当a 0) (当a 0)
.
第 四 讲 第 五 讲 第 六 讲
这种分析方法渗透了数学的分类讨论思想.
复习目标
知识回顾
重点解析
(a 1) 2

《二次根式》PPT课件 (共31张PPT)

《二次根式》PPT课件 (共31张PPT)

练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质

《二次根式》PPT课件(第1课时)

《二次根式》PPT课件(第1课时)
当a>0时,-5a<0,则 5a 不是二次根式. ∴ 5a 不一定是二次根式. (4) a +1(a≥0)只能称为含有二次根式的代数式,不能称为二次根式.
(5)当x=-3时,
x
1
3
2
无意义,∴
1
x 32 也无意义;
当x≠-3时,
x
1
32
>0,∴
1
x 32
是二次根式.

1 不一定是二次根式.
a2 1,⑤ 15 ,
A.1个
B .2个
C.3个
D.4个
2.下列式子不一定是二次根式的是( A )
A. a B. b2 1 C. 0
D. a b2
3.为要使二次根式 x2 2x 1 有意义,x应取 ( D )
A. x>1
B. x<1
C. x=1
D. x=-1
4.下列结论正确的是( A )
A. 62 6 C. 162 16
(a<0)
2.若 a b 0, 则 a=0,b=0.由于二次根式 a和 b 都是非负数,
所以它们的值都为0.
两个非负数的和为0时, 这两个非负数都为0.
例2 若 A.1
x y 1 y 32 0, 则x-y的值为( C )
B.-1
C.7
D.-7
解析:因为 x y -1 和(y+3)2都是非负数,它们的和为0,所以 所以 y 32 0, x y 1 0, x+y-1=0,y+3=0,解得x=4,y
知识点 3 二次根式 a 2 与 a2 的性质
1.小亮和小颖对二次根式“ a (a≥0)”分别有如下的观点.
你认同小亮和小颖的观点吗? 请举例说明.
小亮的观点 因为 a 表示的是非 负数a的算术平方根,所 以,根据算术平方根的意 义,有 a ≥0.

初中数学二次根式PPT课件图文

初中数学二次根式PPT课件图文
【解析】选C.若二次根式 有意义,则2x+6≥0, 解得x≥-3,在数轴上时从表示-3的点向右画,且用实心 圆点.
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).

《二次根式》PPT(第1课时)

《二次根式》PPT(第1课时)
,我们知道:
(1)a为被开方数,为保证其有意义,可知a≥0;
(2)
a
表示一个数或式的算术平方根,可知
二次根式的被开方数非负
二次根式的双重非负性
二次根式的值非负
a
≥0.
典例精析
例3

a2
b 3 (c 4) 2 0,
求a -b+c的值.
解: 由题意可知 a-2=0,b-3=0,c-4=0,
在学习中,我们会遇到这样的表达式:
问题: 这些式子有什么共同特征?
①根指数都为2;
②被开方数为非负数.
2, S

h
5

归纳总结
一般地,我们把形如
a ( a 0)
的式子叫做二
次根式. “
”称为二次根号.
注意:a可以是数,也可以是式.
①外貌特征:含有“

两个必备特征
②内在特征:被开方数a ≥0
典例精析
(2) − 2 − 2 − 3.
解:(1)∵无论x为何实数,− 2 + 2 − 1 = − − 1
2
≤ 0,
∴当x=1时, − 2 + 2 − 1在实数范围内有意义.
(2)∵无论为何实数,- 2-2-3=-(+1)2-2<0,
∴无论 为何实数,
− 2 − 2 − 3
在实数范围内都无意义.
1 − 1;
(2ሻ 2 + 3
3
解: (1ሻ ∵ −1 ≥ 0, ∴ ≥ 1.
3
(2ሻ ∵ 2 + 3 ≥ 0, ∴ ≥ − .
2
3 ∵ − ≥ 0, ∴ ≤ 0.
(4ሻ ∵ 5 − >0, ∴ <5.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/11/2
1、( a)2=a (a 0)
a (a>0)
2、( a2)=|a| = 0 (a=0)
-a (a<0)
2020/11/2
( a)2与 a2有区别吗?
2020/11/2
( a)2与 a2
1:从运算顺序来看,
2 a
先开方,后平方
a2 先平方,后开方
2.从取值范围来看,
2 a
二次根式的双重非负性
经常作为隐含条件,是解题的关键 例 已知 x 1 y 3 0 ,求x+y的值
解:∵ x 1 ≥0, y 3 ≥0,
x1 y 3 0
∴ x 1 =0, y 3 =0 ∴x=1,y=-3
∴x+y=-2 2020/11/2
初中阶段的三个非负数:
a (a≥0)
|a|
≥0
a2
a b 0 a 0,b 0
x
所以当x>0时,
1 x
有意义
(4)不论x为何实数,都有1+x 2>0
所以,当x取任何实数时,1 x2有意义
2020/11/2
说一说
求二次根式中字母的取值范围的基本依据是什么?
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2020/11/2
练习: x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2 x为全体实数(4) 1 x 0 x
(5) x3 x 0
(7) 1 a 1 1 2a 2
1 (6) x2
(8) 3 x | x | 4
x0
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母2020/中11/2 有字母时,要保证分母不为零。
(8) 3 x | x | 4
(5) x2 2xy y2
2020/11/2
(x﹤y)
yx
今天我们学习了很多新知识,你能谈谈 自己的收获吗?说一说,让大家一起来 分享。
2020/11/2
二次根式的概念:
形如 a (a 0) 的式子叫做二次根式 .
二次根式中字母的取值范围
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
a | b | 0 a 0,b 0
a2 | b | 0 a 0,b 0
2020/11/2
......
练习
1.已知 y x 2 2 x 3,求x、y的值. x=2,y=3
2.已知 a≥4
2020/11/2
a 4 | 3 a | a ,求a的值.
a 4 a 3 a,即 a 4 3
a-4=9,则 a=13
在实数范围内分解因式: 4x2 3
解:
∵ 3 ( 3)2
∴ 4x2 3 (2x)2 ( 3)2
(2x 3)(2x 3)
?
2020/11/2
1.已知0<x<1,化简 (x 1)2 4 x
|
a≥0
2020/11/2
a2
a取任何实数
3.从运算结果来看:
a 2 =a
a (a≥ 0)
a2 =∣a∣= -a (a<0)
思考:若 (m 4)2 4 m,则m的取值范围是 _m____4____
2020/11/2
例 求下列二次根式的值
(1) (3 )2 (2) x2 2x 1(x
3)
解:(1) (3 )2 | 3 |
2020/11/2
代数式 a (a 0)叫做二次根式.
2020/11/2
代数式 a (a 0)叫做二次根式.
1.二次根式的两个特征:
(1)根指数为2

(2)被开方数大于等于零

2. a可以是数,也可以是式.
如 2, 2 , a2 1,
3
都是二次根式 2020/11/2
b2 4ac (b2 4ac),
求 a2 b2 2b 1的值
解:
2 a 0, b 2 0
而 2a b2 0
?
2a0 , b20
a 2, b 2
原式 a2 b 12 2 2 212 21 3
2020/11/2
实数p在数轴上的位置如图所示,化简
(1 p)2
2
2 p
1 p (2 p) p 1 2 p 12020/11/2
2020/11/2
a )
?
下列式子 2x 6 1 中字母x的 2x
取值范围是___3____x____0

2x+6≥0 -2x>0

x≥-3 x<0
?
2020/11/2
12 n为一个整数,
求自然数n的值.
n≤12 n = 3,8,11,12
2020/11/2
若a.b为实数,且 2 a b 2 0
解:由3-x≥0 得 由|x|-4≠0
x≤3 得 x≠±4
所以当 x ≤3且x≠-4时,
3 x 有意义 | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
2020/11/2
2020/11/2
a ≥0 a a≥0
1 (x 2)等 x2
说一说: 下列各式是二次根式吗?
(1) 32 (2) 12 (3) 3 8 (4) 4 a2 (5) -m (m 0) (6) 2a -1
(7) a2 2a 3 (8) x2 1
(9) 4 2 (10)
2020/11/2
1
3
?
a 有意义 , 被开方数a≥0
被开方数a可以是数也可以是式
2020/11/2
例1 x取何值时,下列根式有意义? (1) 2x 1 (2) 2 x (3) 1 (4) 1 x2
x
解 (1)由2x-1≥0 得x≥0.5
所以,当x ≥0.5时, 2x 1有意义
(2)由2-x≥0 得x≤2
所以,当x ≤ 2时, 2 x 有意义
(3)由 1 ≥0及x≠0 得x>0
二次根式的双重非负性
a 0, a 0.
2020/11/2
二次根式的性质
2 a a(a 0) a2 =∣a∣=
a (a>0) 0 (a=0) -a (a<0)
2020/11/2
1、练习册16.1 2、一课一练P1-2
2020/11/2
已知 1 有意义,那A(a, a
在 二 象限.
∵由题意知a<0 ∴点A(-,+)
∵3 0
∴ (3 )2
3
(2) x2 2x 1 (x 1)2 | x 1|
当x= 3 时,x-1<0
∴ x2 2x 1 1 x 1 3
2020/11/2
∴当x= 3时, x2 2x 1 1 3
练习:算一算:
(1) 25 5 (2)( 7)2 7
(3)(3 2)2 18
(4)(1 2)2 2 1
相关文档
最新文档