《随机事件与概率》PPT课件

合集下载

随机事件(共14张PPT)

随机事件(共14张PPT)

A.购买一张彩票,中奖
B.通常温度降到0℃以下,纯净的水结冰
C.明天一定是晴天
D.经过有交通信号灯的路口,遇到红灯
ห้องสมุดไป่ตู้
2.不透明的口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件
的是( C )
A.随机摸出1个球,是白球
B.随机摸出2个球,都是黄球
C.随机摸出1个球,是红球
D.随机摸出1个球,是红球或黄球
可能事件统称 确定性事件 .
2.在一定条件下,可能发生,也可能不发生的事件称为 随机事件 .
3.下列事件:①打开电视正在播放电视剧;②投掷一枚普通的骰子,掷得的点 数小于7;③射击运动员射击一次,命中10环;④在一个只装有红球的袋中 摸出白球.其中必然事件有 ② ,不可能事件有 ④ ,随机事件有 ①③ .
名 校校 讲讲 坛坛
跟踪训练 3.(练习)如图,一个任意转动的转盘被均匀分成六份,当随意转动一
次,停止后指针落在阴影部分的可能性比指针落在非阴影部分的可能性( A )
A.大
B.小
C.相等
D.不能确定
巩固训 练
(2)一般地,1.随机下事件列发事生的件可能是性必是有然大小事的件,不的同的是随(机事件D发生的)
第二十五章 概率初步
随机事件与概率
25.1.1 随机事件
学习目 标
1.理解必然事件、不可能事件和随机事件的特点,并会判断.
2.了解和体会随机事件发生的可能性是有大小的.
预习反 馈
1.在一定的条件下,有些事件必然会发生,这样的事件称为 必然事件 ;相反
地,有些事件必然不会发生,这样的事件称为 不可能事件 . 必然事件与不
巩固训 练
4.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为 随机 事件(填“必然”“不可能”或“随机”).

第一章--随机事件及其概率PPT课件

第一章--随机事件及其概率PPT课件

.
目录
上一页 下一页
返回
结8束
§1.1 随机事件及其频率·概率的统计定义
随机事件(简称事件) 随机试验中的某种结果(它在一次试验中可能发生
也可能不发生,而且在大量重复试验中具有某种统计规 律性).
或:随机试验结果的一种描述 或:关于试验结果的一个命题 用大写 A,字 B,C母 ,表.示
随机事件 事件 必然事件 (记作U)
概率论与数理统计
主编:刘韶跃 李以泉 丁碧文 杨湘桃
湘潭大学出版社
概率论与数理统计教程(第四版)
.
目录
上一页 下一页
返回
结1束
美国报纸检阅(Parade)的专栏内提出了一个有趣的 概率问题:电视主持人指着三扇关着的门说,其中一 扇后是汽车,另两扇后各有一只山羊,你可以随意打 开一扇,后面的东西就归你了,你当然想得到一辆汽 车!当你选定一扇门后,比方说选定1号门(但未打 开),主持人知道哪扇门后是汽车,哪扇门后是山羊, 他打开另一扇中有山羊的一个,比方说他打开了3号 门让你看到里边是山羊,并对你说:我现在再给你一 个机会,允许你改变原来的选择,为了得到汽车,你 是坚持1号门还是改选2号门?
个使他苦恼了很久的问题:“两个赌徒相约赌
若干局,谁先赢m局就算获胜,全部赌本就归
胜者,但是当其中一个人甲赢了a(a<m)局的
时候,赌博中止,问赌本应当如何分配才算合
理?” 概率论在物理、化学、生物、生态、
天文、地质、医学等学科中,在控制论、信息
论、电子技术、预报、运筹等工程技术中的应
用都非常广泛。
概率论与数理统计教程(第四版)
设随机 A在 n次 事试 件验m 中 次 ,则 发比 生
m称为随机事 A的件 相对频率(简称频率). n

随机事件与概率随机变量与概率分布PPT教学课件

随机事件与概率随机变量与概率分布PPT教学课件
天气系统,如高压、冷锋等
⑵锋是影响天气的重要天气系统,
冷暖空气的交界面叫锋面。
向 东 南 移 动
大风 降温 降雨
向东北移动
升温 降雨
如何从锋的图例 上知道它是向哪 个方向移动呢?
三角形或半圆凸 所指的方向
过境前 过境时 过境后
冷锋
气温高,气压低
出现较大风 雨雪天气
气温下降,气压 上升,天气转好
问题的引伸
随机事件的数量化—随机变量 多个事件的概率描述—概率分布
随机变量及其概率分布
随机变量的分类
离散变量(疗效分级、受教育程度) 计数变量(如单位时间或空间内检出细菌的
数量、发生某事件的数量)
连续变量 如血压、血脂、血糖等
判断:白色的程度越浓,表明云层越厚, 这种云区下面下雨往往就越大。
问题:
古代劳动人民并没有现代科技手段, 他们是如何预知未来的天气形势呢?
燕子低飞要下雨
天气谚语
一场秋雨凉一阵 •东虹日头西虹雨1
暖锋 气温低气压高
多连续性降水
气温上升,气压 下降,天气转晴
常见天气系统
高压 低压 冷锋 暖锋 台风
探 1、请分析当天的天气形势,并说明理由。 究 2、预测北京、上海、广州未来24小时天气形势,并说明理由


1012.5
1017.5
1007.5

1017.5

1007.5 1002.5

* *
1017.5 1012.5
定小概率事件选择大概率事件
多个随机事件的关系
任一事件发生:和事件 几个事件同时发生:积事件 一事件发生则另一事件不发生:互斥 当只有两种事件时,互斥即对立

随机事件PPT(共19张PPT)

随机事件PPT(共19张PPT)

(3)抽到的数字会是0吗? 绝对不会是0
(4)抽到的数字会是1吗?
12345
可能是1,也可能不是1,事先无法确定
问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分
别刻有 1 到 6 的点数. 请思考以下问题:掷一次骰子,
在骰子向上的一面上,
(1)可能出现哪些点数? 1、2、3、4、5、6
(2)出现的点数大于0吗?
4个黑棋2个白棋
只要使两种棋子的个数相等
嘿嘿,这次 非让你死不
可!
相传古代有个王国,国王非常阴险而多疑,一位正直的大 臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法 规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”
和“死”的两张纸条),犯人当众抽签,若抽到“死”签 ,则立即处死,若抽到“生”签,则当众赦免.
课堂练习 完成课本 P129 练习1、2
国王一心想处死大臣,与几个心腹密谋,想出一条毒计 :暗中让执行官把“生死签”上都写成“死”,两死抽一,
必死无疑. 然而,在断头台前,聪明的大臣迅速抽出一张签纸塞进
嘴里,等到执行官反应过来,签纸早已吞下,大臣故作叹息 说:“我听天意,将苦果吞下,只要看剩下的签是什么字就 清楚了.”剩下的当然写着“死”字,国王怕犯众怒,只好当
谚语中蕴含着这样的思想:当具备某条件时,某结果出现的可能性非常大. 朝霞不出门,晚霞行千里 (3)出现的点数会是7吗? (2)出现的点数大于0吗? 然而,在断头台前,聪明的大臣迅速抽出一张签纸塞进嘴里,等到执行官反应过来,签纸早已吞下,大臣故作叹息说:“我听天意,将苦果吞下,只要看剩下的签是什么字就清楚了.
问题3 袋子中装有4个黑棋、2个白棋,这些棋子的形状、 大小、质地等完全相同,即除颜色外无其他差别. 在看不到 棋子的条件下,随机从袋子中摸出1个棋子.

随机事件课件(共23张PPT)

随机事件课件(共23张PPT)

B. 4
C. 5
D. 6
25.1.1 随机事件
3. 已知地球表面陆地面积与海洋面积的比约为 3∶7, 如果宇宙中飞
来一块陨石落在地球上,那么“落在海洋里”的可能性__A____“落在
陆地上”的可能性
A. 大于
B. 等于
C. 小于
D. 以上三种情况都有可能
25.1.1 随机事件
4. 如图,电路图上有3个开关A,B,C和1个小灯泡,同时闭合开关A,C 或B,C都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随 机事件的是( B ) A. 只闭合1个开关 B. 只闭合2个开关 C. 闭合3个开关 D. 不闭合开关
片(2)长、宽为m,n的矩形面积是mn(3)掷一枚质地均匀的硬
币,正面朝上(4)π是无理数A. 1个 B. 2个 C. 3个 D. 4 个
25.1.1 随机事件
2.“把三个分别标有数字1,3,m且其余完全相同的小球放入一个不透
明的暗盒中,摇匀后随机从中摸出一个小球,摸出的小球上的数字小
于4”是必然事件,则m的值可能是( A )A. 3
例如,天气预报说明天的降水概率为90%,就意味着明天下雨(雪)的可
能性很大. 这就是我们本章要学习的概率!
你还能想到生活 中那些是运用了
概率的例子呢?
第25章 概 率 章起始课
本章学习目标 1.了解必然事件、不可能事件和随机事件的概念 2.在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能 性大小的数学概念,理解概率的取值范围的意义. 3.能够运用列举法(包括列表法和画树状图法)计算简单随机试验中事件发 生的概率. 4.能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可 以用频率估计概率,了解频率与概率的区别与联系. 5.通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.

随机事件及其概率课件1.ppt

随机事件及其概率课件1.ppt
一般地, 如果随机事件A 在 n 次试验中发生了 m 次,当试验的次数n 很大时, 我们可以将事件 A发生的频率 m 作为事件 A发生的概率的近
n 似值,即为P(A)
PA m .
n
所以, 在表1所示的实例中, 我们用0 ,1 作为 考虑事件的概率,而在表2 所示的实例中, 我们用0.95作为相应事件的概率.
不可能事件:在一定条件下不可能发生的事件。
随机事件:在一定条件下可能发生也可能不发生的事件;
我们用A,B,C等大写英文字母表示随机事件,简称为事 件。
说明:三种事件都是在“一定条件下”发生的,当 条件改变时,事件的类型也可以发生变化。
例如:水加热到100℃时沸腾的大前提是在标 准大气压下。太阳从东边升起的大前提 是从地球上看等。
回顾小结
1.理解确定性现象、随机现象、事件、随机事件、必 然事件、不可能事件的概念并会判断给定事件的类型。 2.理解概率的定义和两个性质. 3.理解频率和概率的区别和联系。
优等品数m
Hale Waihona Puke 18 48 96 193 473 952
优等品频率m / n 0.9 0.96 0.96 0.965 0.946 0.952
从表可以看出:当抽取的样品数很多时, 优等品的 频率接近于常数0.95,并在其附近摆动.
从以上几个实例可以看出: 在相同的条件下,随 着试验次的增加,随机事件发生的频率会在某个常 数附近 摆动并趋于稳 定,我们可以用这 个 常数 来刻画该随机事件发生的可能性大小, 而将频率 作为其近似值.
(2)该市男婴出生的概率是多少?

11999年男婴出生的频率为
11453 21840
0.524.
同理可求得 2000年、2001年和2002年男婴出生的频率

25-1 随机事件与概率 课件(共45张PPT)

25-1 随机事件与概率 课件(共45张PPT)
7个扇形大小相同,转动的转盘又是自由停
止,所以指针指向每个扇形的可能性相等。
概率
小练手
按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2。所
有可能结果的总数为7,并且它们出现的可能性相等。
(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因
3
此P(A)= 。
7
(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1,红2,
小军先抽,他任意(随机)从盒中抽取一个纸团。请思考以下问题:
(1)抽到的数字有几种可能的结果?
(2)抽到的数字小于6吗?
(3)抽到的数字会是0吗?
(4)抽到的数字会是1吗?
随机事件
通过简单的推理或试验,可以发现:
(1)数字1,2,3,4,5都有可能抽到,共有5种
可能的结果,但是事先无法预料一次抽取会出现哪
机事件发生的频率去估计它的概率。
概率
在问题一中,从分别写有数字1,2,3,4,5
的五个纸团中随机抽取一个,这个纸团里的数
字有5种可能,即1,2,3,4,5。因为纸团
看上去完全一样,又是随机抽取,所以每个数
1
字被抽到的可能性大小相等。我们用 表示每
5
一个数字被抽到的可能性大小。
概率
在问题二中,掷一枚骰子,向上一面的
点数有6种可能,即1,2,3,4,5,6。
因为骰子形状规则、质地均匀,又是随
机掷出,所以每种点数出现的可能性大
1
小相等。我们用 表示每一种点数出现的
6
可能性大小。
概率

1 1
数值 和 刻画了试验中相应随机事件发
5 6
生的可能性大小、一般地,对于一个随

随机事件的概率(共48张PPT)

随机事件的概率(共48张PPT)
死于车祸:危险概率是1/5000 染上爱滋病:危险概率是1/5700 被谋杀:危险概率是1/1110 死于怀孕或生产(女性):危险概率是1/4000 自杀:危险概率分别是1/20000(女性)和1/5000 因坠落摔死:危险率是1/20000
死于工伤:危险概率是1/26000 走路时被汽车撞死:危险概率是1/40000
问题1. 你是彩民吗?你买的彩票一定能中奖吗?
在现实生活中,有很多问题我们很难给予准确无误的回答,因为在客
观世界中,有些事情的发生是偶然的,有些事情的发展是必然的, 而且偶然和必然之间往往存在某种内在联系.
①从一个只装有红球的盒子里摸出一个红球
②人总有一天会死去
③投一枚骰子(点数为1—6)投出7点 ④人可以一生都不喝水
1.概率的正确理解
事实上,我们在连续投掷两次硬币时,可能出现3种结果:
1
(25%)
2
(50%)
且每中情况都是随机出现的
3
(25%)
Ex1.如果某种彩票的中奖概率为 1 ,那
1000
么买1000张这种彩票一定能中奖吗?请说 明理由.(假设该彩票有足够多的张数)
不一定,每张彩票是否中奖是随机的, 1000张 彩票中有几张中奖当然也是随机的.买1000 张这种彩票的中奖概率约为:1000,即有 63.2%的可能性中奖,但不能肯定中奖.
2. 游戏的公平性
在一场乒乓球比赛前,必须要决定由 谁先发球,并保证具有公平性,你知道裁 判员常用什么方法确定发球权吗?其公平 性是如何体现出来的?请你举出几个公平 游戏的实例.
裁判员拿出一个抽签器,它是-个像大硬币似的 均匀塑料圆板,一面是红圈,一面是绿圈,然后 随意指定一名运动员,要他猜上抛的抽签器落到 球台上时,是红圈那面朝上还是绿圈那面朝上。 如果他猜对了,就由他先发球,否则,由另一方

概率论与数理统计教程ppt课件

概率论与数理统计教程ppt课件
1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则

UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率

25.1.2 概率课件(30张PPT)

25.1.2 概率课件(30张PPT)

3 8
解: (1)
x 3 , 5 x 3 y. x y 8即y 5 x. 3 Nhomakorabeax枚 y枚
(2)往盒中再放进10枚黑棋,取得黑棋的概率变为 1 , 2 求x和y的值.
x10 1, x y10 2
∴x+10=y, 又5x=3y, ∴x=15,y=25. x+10枚 y枚 5x=3y
区域事件发生的概率: 在与图形有关的概率问题中,概率的大小往往 与面积有关.
s s
随堂演练
基础巩固 1.“明天降水的概率是15%”,下列说法中,正确的是( A.明天降水的可能性较小 A B.明天将有15%的时间降水 C.明天将有15%的地区降水 D.明天肯定不降水 )
2.事件A:打开电视,它正在播广告;事件B:抛掷一 枚质地均匀的骰子,朝上的点数小于7;事件C:在标准 大气压下,温度低于0℃时冰融化.3个事件发生的概率 分别记为P(A)、P(B)、P(C),则 P(A)、P(B)、P(C)的 大小关系正确的是( ) B A.P(C)<P(A)= P(B) B.P(C)<P(A)<P(B) C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)
3.如图所示,在平行四边形纸片上作随机扎针实验,针 头扎在阴影区域内的概率为( ) B
1 A . 3
1 B . 4
1 C . 5
1 D . 6
4.掷一枚质地均匀的硬币的试验有2种可能的结果,它们 的可能性相同,由此确定“正面向上”的 概率是
1 2
.
5.10件外观相同的产品中有1件不合格.现从中任意抽取 1件进行检测,抽到不合格产品的概 1 率为 1 0 .
8.如图是一个转盘.转盘分成8个相同的部分,颜色分为红、 绿、黄三种.指针的位置固定,转动转盘后任其自由停止, 其中的某个扇形会恰好停在指针所指的位置(指针指向两个 图形的交线时,当作指向右边的图形).求下列事件的概率:

人教版九年级数学上册《随机事件与概率》优秀PPT课件

人教版九年级数学上册《随机事件与概率》优秀PPT课件
25.1
随机事件与概率
一、情境引入
Байду номын сангаас1
旧知回顾
Jiu zhi hui gu
1
2
什么是必然事件?
1
2
什么是不可能事件?
3
3
4
4
什么是随机事件?
随机事件发生的可
能性有大小吗?
二、活动探究
问题1:抛一枚硬币,落地后会出现几种结果?
二、活动探究
问题2:从分别标有1,2,3,4,5,的5根纸签中随机抽取一
例:掷1个质地均匀的正方体骰子,观察向上一面的点数,
求下列事件的概率:
(1)点数为2 ; (2)点数是奇数; (3)点数大于2小
于5
(1)点数为2,只有1种可能。P(点数为2)=
1
6
(2)点数是奇数有3种可能,即点数为1,3,5。P(点数为奇数)=
3 1
=
6 2
(3)点数大于2小于5有2种可能,即点数为3,4。P(点数大于2小于
2、从一副扑克牌(除去大、小王)中任抽一张.则 P(抽到红心) =
桃) =
;P(抽到红心3) =
;P(抽到5) =
;P(抽到黑
.
3、一个不透明的袋子中装有20个只有颜色不同的球,其中5个黄球,8个黑球,
7个红球。
(1)求从袋中摸出一个球是黄球的概率;
1
3
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个黑球的概率是 ,求
1
概率的值
事件发生的可能性越来越大 必然事件
三、学以致用
例:掷1个质地均匀的正方体骰子,观察向上一面的点数,
求下列事件的概率:
(1)点数为2 ; (2)点数是奇数; (3)点数大于2小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 随机事件与概率
第1页
第一章 随机事件与概率
§1.1 随机事件及其运算 §1.2 概率的定义及其确定方法 §1.3 概率的性质 §1.4 条件概率 §1.5 独立性
10 May 2019
华东师范大学
第一章 随机事件与概率
第2页
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象
第6页
1.1.4 随机变量
表示随机现象结果的变量.
常用大写字母 X、Y、Z …表示.
10 May 2019
华东师范大学
第一章 随机事件与概率
第7页
事件的表示
在试验中,A中某个样本点出现了,
就说 A 出现了、发生了,记为A. 维恩图 ( Venn ). 事件的三种表示
用语言、用集合、用随机变量.
样本点 A发生必然导致B发生
A与B互不相容 A与B至少有一发生
A与B同时发生 A发生且B不发生
A不发生、对立事件
10 May 2019
第12页
集合论
空间 空集 元素 A是B的子集 A与B无相同元素 A与B的并集 A与B的交集 A与B的差集 A的余集
华东师范大学
第一章 随机事件与概率
第13页
注意点(1)
基本事件互不相容,基本事件之并=Ω
A A
A A Ω
A
A A
A A
A
A
AB A B
B
10 May 2019
华东师范大学
第一章 随机事件与概率
注意点(2)
第14页
A B A B B, AB A A B A AB A B A (B A) A (B AB) A AB AB
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
10 May 2019
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
10 May 2019
华东师范大学
第一章 随机事件与概率
第8页
1.1.5 事件间的关系
包含关系: A B, A 发生必然导致 B 发生.
相等关系: A = B A B 而且 B A.
互不相容: A 和 B不可能同时发生.
10 May 2019
华东师范大学
第一章 随机事件与概率
① A 出现; A ② 仅 A 出现;ABC ③ 恰有一个出现;ABC ABC ABC
④ 至少有一个出现;A B C ⑤ 至多有一个出现;ABC ABC ABC ABC ⑥ 都不出现; ABC ⑦ 不都出现; ABC A B C ⑧ 至少有两个出现;AB AC BC
华东师范大学
第一章 随机事件与概率
第18页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
• 古典定义;几何定义.
10 May 2019
华东师范大学
第一章 随机事件与概率
第19页
1.2.1 概率的公理化定义
• 非负性公理: P(A)0;
• 正则性公理: P(Ω)=1;
• 可列可加性公理:若A1, A2, ……, An ……
互不相容,则
P


Ai


每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
10 May 2019
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
10 May 2019
华东师范大学
第一章 随机事件与概率
1.1.7 事件域
第17页
设Ω为样本空间,F 是由Ω的子集组成的集合
类,若F 满足以下三点,则称 F 为事件域
1. ΩF ;
2. 若 AF ,则 A F ;

3. 若 AnF ,n=1, 2, …, 则 An F .
n 1
10 May 2019
10 May 2019
华东师范大学
第一章 随机事件与概率
样本空间的分割
第15页
若 A1,A2,……,An 有 1. Ai互不相容; 2. A1A2 ……An= Ω
则称 A1,A2,……,An 为Ω的一组分割.
10 May 2019
华东师范大学
第一章 随机事件与概率
第16页
5. 试用A、B、C 表示下列事件:
第9页
1.1.6 事件的运算
• 并: A B • 交: A B = AB • 差: A B
• 对立: A
A 与 B 至少有一发生 A 与 B 同时发生 A发生但 B不发生 A 不发生
10 May 2019
华东师范大学
第一章 随机事件与概率
事件运算的图示
第10页
AB
AB
AB
10 May 2019
华东师范大学
第一章 随机事件与概率
德莫根公式
第11页
A B A B; A B A B
n
n
Ai Ai ;
i 1
i 1
n
n
Ai Ai
i 1
i 1
10 May 2019
华东师范大学
第一章 随机事件与概率
记号
Ω φ
AB
AB=φ
AB AB
AB
A
概率论
样本空间, 必然事件 不可能事件
• 特 点:1. 结果不止一个; 2. 事先不知道哪一个会出现.
• 随机现象的统计规律性:随机现象的各种结果
会表现出一定的规律性,这种规律性称之为 统计规律性.
10 May 2019
华东师范大学
第一章 随机事件与概率
第4页
1.1.2 样本空间
1. 随机试验 (E) —— 对随机现象进行的实验与观察. 它具有两个特点:随机性、重复性.
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示.
2. 基本事件 —— Ω的单点集.
3. 必然事件 (Ω)
4. 不可能事件 (φ) —— 空集. 5. 随机变量 表示随机现象结果的变量.
常用大写字母 X、Y、Z …表示.
10 May 2019
华东师范大学
第一章 随机事件与概率
相关文档
最新文档