高中数学函数的概念、图像与性质
高中数学《函数的概念》课件
定义域和值域
了解函数定义的形式及其定义域 和值域非常重要。
函数的图像
函数图像的概念
掌握如何根据函数的定义、域、值域和公式绘制函数的图像。
如何绘制函数图像
学习如何使用函数的公式和几何方法来绘制函数的图像。
函数的对称性
探究函数的不同对称性,例如奇偶性和周期性。
函数的性质
1
奇偶性与周期性
了解函数的基本性质,例如奇偶性和周期性,可以帮助简化函数的分析。
高中数学《函数的概念》 ppt课件
数学是一门让人兴奋的学科。接下来,我们将探讨高中数学的一个关键主题: 函数的概念。通过本课程,你将深入了解函数的基本定义、图像、性质及其 实际应用。
函数的定义
定义及其常见表示形式
掌握函数的不同表示形式是理解 数学中其他相关概念的基础。
自变量和因变量
发现自变量和因变量之间的关系 对于定义函数是至关重要的。
函数在工程学中的应用
了解如何在工程学中使用函数来 解决复杂的问题,例如建筑和机 械设计。
总结与展望
1
函数的重要性及其实际应用
掌握函数的概念和应用,可以让你更好地理解标准数学中的其他相关主题。
2
未来函数研究的发展趋势
了解当前对函数研究的最新趋势是什么,可以让你更好地理解数学的未来。
3
课程回顾及展望
回顾本课程的内容,并思考如何将所学应用到实际的问题中。
2
单调性和极值
发现函数的单调性和极值有助于确定函数的最大值和最小值。
3
泰勒公式与函数的逼近
了解如何使用泰勒公式来将函数逼近到无穷小的阶数,以获得更多信息。
函数的应用
函数在经济学中的应用
学习如何使用函数来分析经济数 据,例如股票市场和消费趋势。
高中数学新教材必修第一册第三章 函数的概念与性质基础知识
第三章 函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的 x ,按照某种 f ,在集合B 中都有 y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合}|)({A x x f ∈叫做函数的 ,值域是集合B 的子集.2函数的三要素: 、 、 . 求函数定义域的原则:(1)若()f x 为整式,则其定义域是 ;(2)若()f x 为分式,则其定义域是 ;(3)若()f x 是二次根式(偶次根式),则其定义域是 ;(4)若()0f x x =,则其定义域是 ;(5)若()()0,1x f x a a a =>≠,则其定义域是 ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是 ;(7)若f (x )=sinx,g (x )=cosx ,则其定义域是 ;(8)若x x f tan )(=,则其定义域是 ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意 ,当 时,有 .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意 ,当 时,有 特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足: ,都有 ; 使得 ,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;偶函数的图象关于 对称;奇函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;奇函数的图象关于 对称;若奇函数)(x f y =的定义域中有零,则其函数图象必过原点,即(0)0f =.11幂函数:一般地,函数 叫做幂函数,其中 是自变量, 是常数. 12幂函数()f x x α=的性质:①所有的幂函数在 都有定义,并且图象都通过点 ; ①如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是 ; ①如果0α<,则幂函数的图象在区间()0,+∞上是 ,①幂函数图象不出现于第四象限.。
高中数学-函数概念及其性质知识总结
数学必修1函数概念及性质(知识点陈述总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注重:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注重:求出不等式组的解集即为函数的定义域。
)2.构成函数的三要素:定义域、对应关系和值域再注重:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y= f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
高一数学教案复习函数的基本概念与性质
高一数学教案复习函数的基本概念与性质函数是数学中一种重要的概念,它在数理科学的研究和实际应用中都有着广泛的应用。
高一学生正处于数学基础知识的学习和掌握阶段,因此对于函数的基本概念与性质的复习显得尤为重要。
本篇教案将细致地介绍函数的基本概念和常见的性质,以帮助学生加深对该知识点的理解和运用。
一、函数的基本概念函数是指两个集合之间的一种特殊关系,其中每个元素(自变量)在定义域内只对应一个元素(因变量)。
为了确定一个函数,我们需要明确以下几个要素:1.1 定义域和值域函数的定义域是指自变量可能取值的集合,而值域则是函数的所有可能输出值的集合。
需要注意的是,函数的定义域可以是实数集、整数集或自然数集等不同数集。
1.2 关系式或图表函数可以通过关系式或图表的形式来表示。
关系式是指将自变量和因变量之间的关系用式子表示出来,如y = 2x + 3;图表则是将自变量和因变量的对应关系用表格或图像呈现出来。
1.3 函数的特性函数可以通过一些特性来描述和判断,比如奇偶性、单调性、周期性等。
这些特性可以帮助我们更好地理解函数的性质和行为。
二、函数的性质与图像除了基本概念之外,函数还具有一些常见的性质。
下面我们将介绍一些关于函数性质的重要内容,并通过图像来进一步说明。
2.1 奇偶性一个函数可以是奇函数、偶函数或者既不是奇函数也不是偶函数。
奇函数的图像关于原点对称,即f(-x) = -f(x);偶函数的图像关于y轴对称,即f(-x) = f(x)。
2.2 单调性单调函数是指在定义域上具有单调性的函数。
如果函数在某一区间上递增,那么它是递增函数;如果函数在某一区间上递减,那么它是递减函数。
2.3 周期性周期函数是指在一定区间内,函数的值按照一定规律重复出现。
常见的周期函数有正弦函数和余弦函数等。
周期可以通过函数的图像来观察和确定。
三、函数的应用函数的概念和性质在数学和实际应用中都有广泛的应用。
在数学上,函数可以用于解决各种数学问题,如方程的求解、不等式的证明等。
高中函数定义
高中函数定义函数是数学中的基本概念,也是高中数学中的重要内容之一。
在高中数学中,函数被广泛应用于各个领域,如代数、几何、概率等。
高中函数定义是指高中数学课程中教授的函数的概念及其相关性质和应用的内容。
一、函数的基本概念函数是一种特殊的关系,它把一个集合的元素映射到另一个集合的元素上。
函数通常用字母表示,比如f(x)。
其中,x称为自变量,f(x)称为因变量。
函数的定义域是自变量的取值范围,值域是函数的所有可能取值。
函数可以用多种形式表示,如函数表达式、图像、数据集等。
二、函数的性质1. 定义域和值域:函数的定义域和值域是函数的基本性质。
定义域的确定需要考虑函数的合理性和可行性,值域的确定要依据函数的定义和性质。
2. 单调性:函数的单调性是指函数在定义域内的增减关系。
可以分为单调递增和单调递减两种情况。
3. 奇偶性:函数的奇偶性是指函数在定义域内的对称性。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
4. 周期性:周期函数是指函数在一定范围内具有重复的性质。
周期函数可以通过周期和函数值的关系来确定。
5. 对称轴:对称轴是指函数图像的对称轴线。
对称轴可以通过函数表达式的形式来确定。
三、函数的应用函数在高中数学中有广泛的应用。
以下是一些常见的应用情况:1. 函数的图像:通过函数的图像可以对函数的性质进行分析和判断。
函数的图像可以通过手绘、数学软件或图形计算器等工具得到。
2. 函数的最值:函数的最值是函数在定义域内的最大值和最小值。
最值可以通过函数的图像或数学方法进行求解。
3. 函数的方程:函数的方程是指由函数的定义和性质推导出的方程。
函数的方程可以用于解决实际问题,如求解方程组、求解最值等。
4. 函数的导数:函数的导数是函数变化率的一种表示。
导数可以用于求解函数的极值、判断函数的单调性等问题。
5. 函数的积分:函数的积分是函数的反导数。
积分可以用于计算函数的面积、求解曲线长度等问题。
一篇文章掌握高中函数图像,不看别后悔!
函数图像是必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了。
今天给大家整理了高中函数相关资料,希望能帮助高中生数学得高分!下面是基本初等函数的图像以及函数变换的规律,希望大家能学明白!一、基本初等函数的图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减。
2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图:不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的:6.幂函数y=x^a性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。
7.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
二、函数图像的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx 通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x 轴上的变换,那就一定要看x这个符号有啥变化。
高考数学函数的定义和性质
高考数学函数的定义和性质函数是高中数学中的重要概念之一。
它在高考数学中占有重要的地位,理解和掌握函数的定义和性质对于解题至关重要。
本文将从函数的定义、基本性质以及一些常见函数的性质等方面来进行阐述。
1. 函数的定义函数是一种特殊的关系,可以将一个集合中的每个元素与另一个集合中的唯一一个元素相关联。
用数学语言描述就是,对于集合A和B,如果存在一种规律,使得对于A中的每个元素a,都能找到B中唯一一个元素b与之对应,那么我们就可以说集合A和B之间存在一个函数f。
2. 函数的基本性质函数有一些基本的性质,包括定义域、值域、单调性、奇偶性以及周期性等。
2.1 定义域和值域定义域是指函数能够取值的所有实数的集合,常用符号表示为D;值域是指函数所有可能取得的值的集合,常用符号表示为R。
2.2 单调性单调性指函数在定义域上的增减性质。
如果在定义域内任取两个实数a和b,并且a小于b,那么函数f(x)在a处的函数值f(a)和在b处的函数值f(b)之间的大小关系可以判断函数的单调性。
2.3 奇偶性函数的奇偶性是指函数关于原点(0,0)的对称性。
如果对于定义域上的任何实数x,有f(-x) = -f(x)成立,则称函数是奇函数;如果对于定义域上的任何实数x,有f(-x) = f(x)成立,则称函数是偶函数。
2.4 周期性周期性指函数在一定区间上具有重复性质。
如果存在一个正数T,使得对于定义域上的任何实数x,有f(x+T) = f(x)成立,则称函数具有周期性。
3. 常见函数的性质在高考数学中,有许多常见的函数,其中包括一次函数、二次函数、指数函数、对数函数、三角函数等。
每个函数都有其独特的性质,掌握这些性质对于解题非常有帮助。
3.1 一次函数一次函数的一般形式为f(x) = ax + b,其中a和b为常数。
一次函数的图像是一条直线,其特点是斜率恒定。
3.2 二次函数二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不为零。
高中数学上册函数的概念及性质
高中数学上册函数的概念及性质
函数是高中数学的一个重要概念,它是一种映射关系,它把一组输入值映射到一组输出值。
函数可以用来描述一些物理现象、社会现象等等,是数学建模的重要工具。
一般来说,函数指的是满足一定性质的关系。
如果输入值是x,输出值是f(x),则称f(x)为x的函数值。
函数的性质包括:
1、定义域:函数f(x)的定义域是指x的取值范围,即函
数f(x)可以接受的输入值的范围。
2、值域:函数f(x)的值域是指函数f(x)的输出值的范围,即f(x)的所有可能的值的范围。
3、单调性:函数f(x)的单调性是指当x的取值发生变化时,f(x)的取值只有一种变化趋势,即f(x)的取值只会变大或
只会变小。
4、对称性:函数f(x)的对称性是指当x取值发生变化时,f(x)的取值也发生相应的变化,但f(x)的曲线不发生变化。
5、凹凸性:函数f(x)的凹凸性是指在函数f(x)的曲线上,当x取某个值时,f(x)的曲线在此点处有凸点或凹点。
6、奇偶性:函数f(x)的奇偶性是指当x取一定的值时,f(x)的值必须满足f(-x)=-f(x)的性质。
函数的性质是高中数学上册研究的必备知识,函数的性质是函数的重要特性,是数学建模过程中不可缺少的知识。
通过理解函数的性质,可以更加准确、深入地研究函数的性质,更好地描述实际问题,从而实现数学建模。
高中数学函数的必考性质
高中数学函数的必考性质高中数学函数的必考性质一次函数一、定义与定义式自变量x和因变量y有如下关系:y=kx+b 则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b 和y2=kx2+b(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
高中数学第二章函数-函数及其性质(竞赛精讲)
第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性(1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
(3) 若函数满足()(2)f x f ax =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。
(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)ay x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为Ta的周期函数。
(3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
高中数学函数概念
高中数学函数概念在高中数学课程中,函数是一个非常重要的概念。
函数是数学中的基础概念之一,也是更高级数学知识的基础。
通过学习函数的相关知识,不仅可以增进对数学的理解,还可以培养逻辑思维和解决问题的能力。
接下来我们就来详细了解高中数学函数的相关概念。
1. 函数的定义在数学中,函数是一种将一个集合中的元素映射到另一个集合的规则。
一个函数通常表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数f 定义域内的每个元素 x 都对应唯一的函数值 f(x),即不同的自变量对应不同的因变量。
2. 函数的图像函数可以通过绘制图像来描述。
函数的图像通常采用直角坐标系来表示,自变量 x 沿 x 轴,因变量 f(x) 沿 y 轴。
通过观察函数的图像,可以直观地了解函数的性质,如增减性、奇偶性、周期性等。
3. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数和三角函数等。
这些函数在数学中有着重要的地位,也是其他函数的基础。
- 线性函数:线性函数的图像是一条直线,通常表示为 y = kx + b,其中 k 和 b 分别为斜率和截距。
- 二次函数:二次函数的图像是抛物线,通常表示为 y = ax^2 + bx + c,其中 a、b、c 是常数。
- 指数函数:指数函数的表示形式为 y = a^x,其中 a 为底数,x 为指数。
- 对数函数:对数函数的表示形式为 y = loga(x),其中 a 为底数,x 为真数。
- 三角函数:三角函数包括正弦函数、余弦函数、正切函数等,是研究三角学中常见的函数。
4. 函数的性质函数具有多种性质,如奇偶性、周期性、单调性等。
了解函数的性质可以帮助我们更好地理解函数的变化规律,进而解决相关问题。
- 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) 与 f(x) 的关系。
如果 f(-x) = f(x),则函数是偶函数;如果 f(-x) = -f(x),则函数是奇函数。
《高中数学课件:几种常见函数的图像和性质》
探索几种常见函数的图像和性质,包括一次函数、二次函数、反比例函数、 幂函数、指数函数、对数函数、三角函数和常函数。
一次函数
一次函数是指具有形式y = kx + b的函数,图像为一条直线,斜率k决定了直 线的倾斜程度,纵截距b决定了直线与y轴的交点。
二次函数
Step 3
根据底数a的不同,求解指数函 数的通式。
推导对数函数的通式
1
Step 2
2
代入任意一点的坐标和底数a到对数函数
的通式y = log_a(x)中。
3
Step 1
通过两个点的坐标(x1, y1)和(x2, y2)计算 底数a:a = 10^((y1 - y2) / (x1 - x2))。
Step 3
推导反比例函数的通式
1 Step 1
2 Step 2
通过两个点的坐标(x1, y1)和(x2, y2)计算比例 系数k:k = y1 * x1 = y2 * x2。
代入一个点的坐标(x, y)和比例系数k到反比例 函数的通式y = k/x中,得到反比例函数的通 式。
推导幂函数的通式
Step 1
取幂函数的对数y = log_a(x), 其中a为底数。
二次函数是指具有形式y = ax^2 + bx + c的函数,图像为一条开口向上或向下 的曲线,顶点坐标为(-b/2a, c-b^2/4a)。
反比例函数
反比例函数是指具有形式y = k/x的函数,图像为一条曲线,呈现出一个反比 例的关系,x越大,y越小。
幂函数
幂函数是指具有形式y = kx^n的函数,图像的形态取决于指数n的值,n为正 偶数时,图像在原点右侧上升,n为正奇数时,则图像在全范围上升。
高中数学函数概念
精品文档函数1、 函数的概念定义:一般地,给定非空数集A,B,按照某个对应法那么f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数。
记作:x→y=f(x),x ∈A.集合A 叫做函数的定义域,记为D,集合{y ∣y=f(x),x ∈A}叫做值域,记为C 。
定义域,值域,对应法那么称为函数的三要素。
一般书写为y=f(x),x ∈D.假设省略定义域,那么指使函数有意义的一切实数所组成的集合。
两个函数相同只需两个要素:定义域和对应法那么。
已学函数的定义域和值域一次函数b ax x f +=)()0(≠a :定义域R, 值域R;反比例函x kx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ;二次函数c bx ax x f ++=2)()0(≠a :定义域R ,值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|22、 函数图象定义:对于一个函数y=f(x),如果把其中的自变量x 视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y 视为此点的纵坐标,那么,这个函数y=f(x),无论x 取何值,都同时确定了一个点,由于x 的取值范围是无穷大,同样y 也有无穷个,表示的点也就有无穷个。
这些点在平面上组成的图形就是此函数的图象,简称图象。
常数函数f(x)=1 一次函数f(x)=-3x+1 二次函数f(x)=2x ²+3x+1 反比例函数f(x)=1/x 3、定义域的求法函数的解析式,假设未加特殊说明,那么定义域是使解析式有意义的自变量的取值范围。
一般有以下几种情况: 分式中的分母不为零;偶次根式下的数或式大于等于零;实际问题中的函数,其定义域由自变量的实际意义确定; 定义域一般用集合或区间表示。
4、值域的求法①观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
高中数学函数的概念和性质
高中数学函数的概念和性质数学是一门抽象的学科,而函数是其中一个最基本、最重要的概念之一。
函数在高中数学中占据着非常重要的地位,它不仅是数学的基础,也是理解其他数学分支的关键。
本文将介绍高中数学函数的概念和性质。
一、概念函数是一种数学关系,它将一个集合的元素映射到另一个集合的元素上。
在函数中,输入的值被称为自变量,输出的值被称为因变量。
函数可以用各种符号表示,例如f(x)、g(x)等。
高中数学中主要研究的是实函数,即自变量和因变量都是实数。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
例如,对于函数f(x)=x^2,定义域是所有实数集合R,而值域是非负实数集合[0,+∞)。
二、性质1. 定义域与值域:函数的定义域和值域是函数的基本性质。
在确定定义域和值域时,我们需要注意函数的特殊情况,例如有理函数的分母不能为零等。
2. 奇偶性:函数的奇偶性是指函数关于y轴的对称性。
如果对于定义域内的任意x值,有f(-x) = f(x),则函数为偶函数;如果对于定义域内的任意x值,有f(-x) = -f(x),则函数为奇函数。
3. 单调性:函数的单调性描述了函数随着自变量增大或减小而变化的趋势。
如果对于定义域内的任意两个数a和b(a < b),有f(a) ≤f(b),则函数为递增函数;如果对于定义域内的任意两个数a和b(a < b),有f(a) ≥ f(b),则函数为递减函数。
4. 极值与最值:函数的极值是指函数在一定范围内取得的最大值或最小值。
我们可以通过求导数或研究函数的图像来确定函数的极值和最值。
5. 对称轴与顶点:对于二次函数,它们的图像通常是一个抛物线。
抛物线的对称轴是垂直于底边并通过顶点的直线,而顶点是抛物线的最低点或最高点。
6. 图像的平移和伸缩:通过对函数进行平移和伸缩,我们可以改变函数的图像。
例如,对于函数f(x),f(x + a)表示将函数图像向左平移a 个单位,而f(kx)(k>1)表示将函数图像在x轴方向上压缩,函数图像变窄。
(完整版)高中数学常用函数图像及性质
1.指数函数0(>=a a y x 且)1≠a图像:性质:恒过定点(0,1);当0=x 时,1=y ;当1>a 时,y 单调递增,当)0,(-∞∈x 时,)1,0(∈y ;当),0(+∞∈x 时,),1(+∞∈y .当10<<a 时,y 单调递减,当)0,(-∞∈x 时,),1(+∞∈y ;当),0(+∞∈x 时,)0,1(∈y .2.对数函数0(log >=a x y a 且)1≠a对数运算法则:N M MN a a a log log log += N M NMa a alog log log -= M n M a n a log log =)(R n ∈ N N a a =log (对数恒等式)aNN b b a log log log =(换底公式) 图像x)1>(=a y x性质:恒过定点(1,0);当1=x 时,0=y ;当1>a 时,y 单调递增,当)1,0(∈x 时,)0,(-∞∈y ;当),1(+∞∈x 时,),0(+∞∈y .当10<<a 时,y 单调递减,当)1,0(∈x 时,),0(+∞∈y ;当),1(+∞∈x 时,)0,(-∞∈y .指数函数和对数函数的关系:互为反函数3.初等函数⑴:2x y ±= 图像2x y = :开口向上,)0,(-∞∈x 时,),0(+∞∈y ,函数单调递减;),0(+∞∈x ,时,),0(+∞∈y ,函数单调递增,且是偶函数。
2x y -= :开口向下,)0,(-∞∈x 时,)0,(-∞∈y ,函数单调递增;),0(+∞∈x ,时,)0,(-∞∈y ,函数单调递减。
)0(>a x )10(<<a x性质:图像都是关于y 轴对称 ⑵:3x y = 图像性质:R y R x ∈∈,,函数是增函数,也是奇函数 ⑶:1-=x y 图像x性质:R x ∈且0≠x ,R y ∈且0≠y ;函数在)0,(-∞∈x 内和),0(+∞∈x 内都是单调递减,且函数是奇函数。
高一函数的概念与性质
高一函数的概念与性质高一数学中,函数是一种重要的数学概念,也是解决实际问题的重要工具。
理解函数的概念和性质对于学生学好高中数学非常关键。
本文将详细介绍函数的概念与性质。
一、函数的概念函数是自变量与因变量之间的一种对应关系。
具体来说,设有两个非空数集合A和B,若对于集合A中的每个元素,集合B中都有对应的唯一元素与之对应,则称这种对应关系为函数,记作y=f(x),其中x是自变量,y是因变量。
例如,设A={1,2,3},B={2,4,6},若设f(x)=2x,则可以得到以下对应关系:x,123f(x),246这种对应关系满足每个自变量都对应着唯一的因变量,因此可以称之为函数。
函数还可以通过图象来表示。
函数的图象是平面直角坐标系上的一条曲线,其中自变量x的取值范围对应着横轴,因变量y的取值范围对应着纵轴。
函数的图象有助于我们更直观地理解函数的性质。
二、函数的性质1.定义域和值域函数的定义域是指自变量x可以取的值的集合。
在函数的定义域内,函数是有意义的。
如果一个值不在函数的定义域内,将没有对应的函数值。
函数的值域是函数在定义域内所有可能的函数值的集合。
它是因变量的取值范围。
2.单调性与增减性函数可以具有单调递增性或单调递减性。
函数f(x)是单调递增的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≤f(x2)。
函数f(x)是单调递减的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≥f(x2)。
若函数在定义域的每一段上都是单调递增或单调递减的,则称该函数为增函数或减函数。
3.奇偶性函数的奇偶性是指函数图象关于坐标系的一些特点的对称性。
一个函数f(x)是奇函数,当且仅当f(-x)=-f(x),即函数图象关于原点对称。
一个函数f(x)是偶函数,当且仅当f(-x)=f(x),即函数图象关于y轴对称。
4.周期性函数的周期性是指函数图象具有其中一种重复性质,即函数值在一定范围内以其中一数值为间隔重复出现。
高中13种函数图像汇总
高中13种函数图像汇总函数图像是数学教学中的重要知识点,在高中阶段,学生要掌握常见的13种函数图像的概念、性质、特征,本文将对13种函数图像进行汇总,为学生深入学习提供参考。
一、直线函数图像直线函数的图像是一条直线,它的函数表达式为y=kx+b,其中k是斜率,b是y轴截距,如果k=0,则表示水平线;如果b=0,则表示垂直线。
二、平方函数图像平方函数的图像是一个U型函数曲线,它的函数表达式为y=x^2。
正定平方函数的图像会向上钝化,而负定平方函数的图像会向下钝化,当x=0时,y取得最大值。
三、立方函数图像立方函数的图像是一条U型函数曲线,它的函数表达式为y=x^3,正定立方函数的图像会向上钝化,而负定立方函数的图像会向下钝化,当x=0时,y取得最大值。
四、正弦函数图像正弦函数的图像是一条具有一定周期的曲线,它的函数表达式为y=A*sin(Bx+C),其中A表示振幅,B表示周期,C表示初相。
五、余弦函数图像余弦函数的图像与正弦函数的图像大致相同,它的函数表达式为y=A*cos(Bx+C),其中A表示振幅,B表示周期,C表示初相。
六、指数函数图像指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^x,其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。
七、反指数函数图像反指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^(-x),其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。
八、对数函数图像对数函数的图像是一条上升曲线,它的函数表达式为y=A*ln (x),A表示振幅,此时x的取值范围是大于0的正数。
九、反对数函数图像反对数函数的图像也是一条上升曲线,它的函数表达式为y=A*ln(1/x),A表示振幅,此时x的取值范围是大于0的正数。
十、双曲线函数图像双曲线的图像是一条上升或下降的曲线,它的函数表达式为y=A*sinh(Bx+C),其中A表示振幅,B表示周期,C表示初相。
《高中数学PPT课件——函数》
3
反函数
反函数是函数的逆运算,将函数的输 出值映射回输入值。
对数与指数的关系
对数函数与指数函数是互为反函数的 关系,它们可以互相抵消。
指数函数与对数函数的图像与性质
指数函数
指数函数的图像呈现出指数增 长或指数衰减的特点。
对数函数
对数函数的图像呈现出反比例 关系,随着自变量的增大,函 数值逐渐变化缓慢。
指数增长和指数衰减
指数函数可以呈现出快速增长 或快速衰减的趋势。
复合函数及其求法
1
复合函数
复合函数由两个函数组成,其中一个函数的输出值作为另一个函数的输入值。
2
求法
可以通过代入法、求导法或递推法等方法来求解复合函数。
3
函数运算法则
复合函数满足函数运算的一些基本法则,如分配律和结合律。
函数的奇偶性与周期性
奇函数与偶函数
奇函数关于坐标原点对称, 即f(x)=-f(-x),偶函数关于 y轴对称,即f(x)=f(-x)。
周期函数
周期函数的图像在一定区 间内不断重复,满足 f(x+T)=f(x),其中T是函数 的周期。
常用周期函数
正弦函数、余弦函数和正 切函数都是常见的周期函 数。
常用函数的图像与性质
正弦函数
函数是数学中的一种基本关系。它将一个集合的每个元素映射到另一个集合 的元素上。函数能够描述事物之间的联系和变化规律。
函数的符号表示及基本性质
符号表示
函数用f(x)或y来表示,其中x是自变量,y是 因变量。
奇偶性和周期性
函数的奇偶性决定了它的对称性,周期性描 述了函数的重复性规律。
定义域和值域
函数的定义域是自变量的取值范围,值域是 函数所有可能的输出值。
高一数学必修一函数的概念与性质知识点总结
高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。
文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。
文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。
文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。
文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。
通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。
1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。
在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。
物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。
函数是数学体系中的核心和基础。
函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。
对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。
函数也是解决实际问题的重要工具。
在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。
在经济学、统计学、工程学等领域,函数的运用非常广泛。
函数概念的重要性不言而喻。
高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。
2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。
函数是数学中的核心概念之一,具有广泛的应用领域。
在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。
本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。
高中函数的概念
高中函数的概念引言在数学中,函数是一种非常重要的概念。
它是用来描述自变量与因变量之间的关系的一种数学工具。
在高中数学教学中,函数作为一种基础和核心的内容,被广泛地讲授和研究。
本文将深入探讨高中函数的概念,包括函数的定义、性质、图像、相关概念等内容。
一、函数的定义函数是一种将一个自变量映射到一个唯一的因变量的关系。
通常用字母表示函数,例如常见的f(x)表示一个以x为自变量的函数。
函数的定义可以通过集合的方式描述,也可以通过公式的方式表示。
1. 集合定义对于一个函数f,其定义域为D,值域为R,则函数f可以表示为一个集合对:f={(x,y)|x∈D,y=f(x)∈R}集合定义强调了函数的关系和对应规律,可以方便地进行集合运算和性质推导。
2. 公式定义函数的公式定义是通过一个显式表达式来表示函数的关系。
例如,对于函数f(x)= x2,表示自变量x的平方作为因变量值。
公式定义可以更直观地表示函数的计算过程,便于进行具体计算。
二、函数的性质函数具有一些重要的性质,这些性质是函数概念的基础,也为我们进一步研究函数提供了便利。
1. 单调性函数的单调性指的是函数在定义域内的自变量值增大(或减小)时,因变量值的变化关系。
函数可以是递增的(单调递增),也可以是递减的(单调递减),还可以是常数函数(单调不变)。
2. 奇偶性函数的奇偶性描述了函数图像关于坐标轴的对称性。
奇函数满足f(−x)=−f(x),函数图像关于原点对称;偶函数满足f(−x)=f(x),函数图像关于y轴对称。
3. 边界性质函数的边界性质描述了函数的取值范围和极值情况。
函数在最大值和最小值处取得极值,可以用于求解优化问题。
如果函数在定义域内无界(即无上界或无下界),则其在该区间内可能不存在极值。
三、函数的图像函数图像是函数关系的一种可视化表示方式,也是研究函数性质的重要工具。
根据函数的定义和性质,可以通过绘制函数图像来帮助我们更好地理解和分析函数。
1. 坐标系函数图像通常在直角坐标系中绘制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念、图像与性质
数学
全国卷3年考情分析
年份
全国Ⅰ卷
全国Ⅱ卷
全国Ⅲ卷
2019
函数的图象·T5
函数的图象与性质的应用·T12 函数的奇偶性、函数求值·T14
函数的图象·T7 函数的奇偶性及单调性·T11
2018
未考查
函数图象的识辨·T3 抽象函数的奇偶性及周期性·T11
2017
若a=f(6),b=f(11),c=f(2 017),则a,b,c的大小关系正确的是( )
A.a<b<c
B.b<a<c
C.a<c<b
D.c<b<a
解析 因为 y=f(x+4)是偶函数,所以函数 f(x)的图象关于直线 x=4 对称。 因为 f(x+4)=-f(x),所以 f(x+8)=f(x),即函数 f(x)是周期为 8 的周期函数。所 以 b=f(11)=f(3)=f(5),c=f(2 017)=f(1)=f(7)。因为对任意的 x1,x2∈[4,8],当 x1<x2 时,都有fxx11- -fx2x2>0,所以函数 f(x)在[4,8]上单调递增,所以 b<a<c。故选 B。
①若函数 y=f(x)满足 f(a+x)=f(a-x),即 f(x)=f(2a-x),则 y=f(x) 的图象关于直线 x=a 对称;
②若函数 y=f(x)满足 f(a+x)=-f(a-x),即 f(x)=-f(2a-x),则 y= f(x)的图象关于点(a,0)对称。
2.函数的性质 (1)单调性:单调性是函数在其定义域上的局部性质。证明函数的单调性时, 规范步骤为取值、作差、变形、判断符号和下结论。复合函数的单调性遵循“同 增异减”的原则。 (2)奇偶性:①若 f(x)是偶函数,则 f(x)=f(-x)。 ②若 f(x)是奇函数,0 在其定义域内,则 f(0)=0。 ③奇函数在关于原点对称的单调区间内有相同的单调性,偶函数在关于原点 对称的单调区间内有相反的单调性。
…12xxx-+11,x,0-<x1≤<1x,≤0, 2x-1x-2,1<x≤2, 22x-2x-3,2<x≤3, …
由此作出函数 f(x)的图象,如图所示。由图可知
当 2<x≤3 时,令 22(x-2)(x-3)=-89,整理,得(3x-7)(3x-8)=0,解得 x=73或 x=83,将这两个值标注在图中。要使对任意 x∈(-∞,m]都有 f(x)≥-89,必有 m≤73,即实数 m 的取值范围是-∞,37。故选 B。
(3)周期性:①若 y=f(x)对 x∈R,f(x+a)=f(x-a)或 f(x+2a)=f(x)(a>0)恒成 立,则 y=f(x)是周期为 2a 的周期函数。
②若 y=f,则 f(x)是周期为 2|a|的周期函数。
③若 y=f(x)是奇函数,其图象又关于直线 x=a(a≠0)对称,则 f(x)是周期为 4|a|的周期函数。
答案 C
(2).(2019·湖南省湘东六校联考)函数
y
=
x+sinx
ex+e-x 的
图
象
大致
为
()
解析 设 f(x)=xe+x+sein-xx,则 f(-x)=-xe+-xs+ine-x x=-xe+x+sein-xx=-f(x), 所以函数 f(x)为奇函数,故排除选项 C;又 f(-π)=-eπ+πe-π<0,故排除选 项 A;当 x→+∞时,x+sinx>0,所以 f(x)>0,故排除选项 D。故选 B。
④若 f(x+a)=-f(x)或fx+a=±f1x(a≠0),则 y=f(x)是周期为 2|a|的周期 函数。
考点考向研究
精析精研 重点攻关
考点一 函数的概念及表示
【例1】
(1)函数y=log2(2x-4)+
x
1
3
的定义域是(
)
A.(2,3)
B.(2,+∞)
C.(3,+∞)
D.(2,3)∪(3,+∞)
ln( x 1) 【变式训练1】 (1)函数f(x)= x 2 的定义域是( )
A.(-1,+∞)
B.[-1,+∞)
C.[-1,2)∪(2,+∞)
D.(-1,2)∪(2,+∞)
解析
要使 f(x)=lnxx-+21有意义,需使xx+ -12>≠00,,
x>-1, 即x≠2,
所以函数
f(x)的定义域为(-1,2)∪(2,+∞)。故选 D。
得 1<a≤ 2,所以实数 a 的取值范围是(1, 2]。
答案 (1, 2]
考点二
函数的图象及应用增分考点
广度拓展
考向1 函数图象的识别
【例2】
(2019·全国Ⅲ卷)函数y=
2x3 2x 2x
在[-6,6]的图象大致为(
)
解析 因为 f(x)=2x+2x23 -x,所以 f(-x)=2--x+2x23 x=-f(x),且 x∈[-6,6],所 以函数 y=2x+2x23 -x为奇函数,排除 C;当 x>0 时,f(x)=2x+2x23 -x>0 恒成立,排除 D;因为 f(4)=224× +62- 44=161+28116=12285×716≈7.97,排除 A。故选 B。
答案 B
方法指导:
求解一个与已知函数相关的不等式恒成立问题时,主要有两种思考方 向:①利用函数 f(x)的奇偶性与单调性将问题转化为普通的代数不等式的恒 成立问题求解;②将不等式转化为两个函数图象位置关系问题,通过图象 的直观性求解。
ex+1,x≥0, 【变式训练 2】(1) (2019·安徽合肥模拟)设函数 f(x)=|x2+2x|,x<0, 则函数 g(x)
答案 B
方法指导:
(1)对于函数单调性与奇偶性的综合问题,注意奇、偶函数图象的对称 性以及奇、偶函数在关于原点对称的区间上单调性的关系。
(2)周期性与奇偶性的综合问题多为求值问题,常利用奇偶性和周期性 将问题进行转换,即将所求值的自变量转化到已知解析式的自变量范围内 求解。
【变式训练3】 (1)(2019·山东济宁模拟)已知定义在R上的奇函数f(x)满足f(x+1)=f(1-x),且当x∈[0,1]
方法指导:
(1)函数定义域的求法 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则, 列出不等式或不等式组,然后求出它们的解集即可。 (2)分段函数问题常见类型及解题策略 ①求函数值:弄清自变量所在区间,然后代入对应的解析式,求“层层 套”的函数值,要从最内层逐层往外计算。②求函数最值:分别求出每个 区间上的最值,然后比较大小。③解不等式:根据分段函数中自变量取值 范围的界定,代入相应的解析式求解,但要注意取值范围的大前提。④求 参数:“分段处理”,采用代入法列出各区间上的方程。
答案 B
考点三 函数的性质及应用
广度拓展
考向1 函数的单调性、奇偶性与周期性的应用
【例4】 (1)已知函数的定义域为R,且满足下列三个条件:
①对任意的x1,x2∈[4,8],当x1<x2时,都有 f (x1) f (x2 ) >0;
x1 x2
③y=f(x+4)是偶函数;
②f(x+4)=-f(x);
=f(x)-3x-1 的零点个数为( )
A.1
B.2
C.3
D.4
ex+1,x≥0, 解析 f(x)=|x2+2x|,x<0, 由 g(x)=f(x)-3x-1=0 得 f(x)=3x+1,作出 f(x)与 y=3x+1 的图象,如图,由图象知两个函数图象共有 3 个交点,则函数 g(x) 的零点个数为 3。
答案 B
(2)(2019·北京高考)设函数f(x)=ex+ae-x(a为常数)。若f(x)为奇函数,则a=________;若f(x)是R上的增 函数,则a的取值范围是________。
解析 因为 f(x)为奇函数,所以 f(-x)=-f(x),e-x+aex=-ex-ae-x,所 以(1+a)e-x+(1+a)ex=0,所以 a=-1;因为 f(x)单调递增,所以 f′(x)=ex-
答案 D
(2)若函数f(x)=
x2
4x
8,
(x
2)(a>0且a≠1)的值域是[4,+∞),则实数a的取值范
2 loga x, (x 2)
围是________。
解析 当 x≤2 时,y=x2-4x+8=(x-2)2+4≥4,由 f(x)的值域是[4,+∞),
a>1,
a>1,
可知{y|y=2+logax,x>2}⊆[4,+∞),所以2+loga2≥4, 即loga2≥2, 解
)
A.-2
B.2
C.3
D.-3
解析 由题意得,f(-2)=a-2+b=5 ①,f(-1)=a-1+b=3 ②,联立①
②,结合
0<a<1,得
a=12,b=1,所以
log3x,x>0, f(x)=12x+1,x≤0,
则 f(-3)=21
-3+1=9,f(f(-3))=f(9)=log39=2。故选 B。 答案 B
2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、 不等式、创新性问题结合命题,难度较大。
考点整合
明确考点 扣准要点
知识梳理: 1.函数的图象 (1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:
一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换。 (2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究。 (3)函数图象的对称性
利用函数的单调 性、奇偶性解不 等式·T5
未考查
函数图象的识辨·T7 分段函数、解不等式·T15
高考命题规律: