九年级期末数学试卷
2022-2023学年天津市红桥区九年级(上)期末数学试卷(含解析)
…………线…………线2022-2023学年天津市红桥区九年级(上)期末数学试卷第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列图形中,可以看作是中心对称图形的是( ) A.B.C.D.2. 下列事件中,属于不可能事件的是( )A. 通常加热到100℃时,水沸腾B. 篮球队员在罚球线上投篮一次,未投中C. 掷一次骰子,向上一面的点数是6D. 任意画一个三角形,其内角和是360° 3. 用配方法解一元二次方程x 2−6x −4=0,下列变形正确的是( ) A. (x −6)2=−4+36 B. (x −6)2=4+36 C. (x −3)2=−4+9D. (x −3)2=4+94. 一元二次方程x 2+4x −3=0的两根为x 1、x 2,则x 1⋅x 2的值是( ) A. 4B. −4C. 3D. −35. 正六边形绕其中心旋转一定角度后,与自身重合,旋转角至少为( ) A. 30°B. 60°C. 120°D. 180°6. 某学校准备建一个面积为200m 2的矩形花圃,它的长比宽多10m ,设花圃的宽为x m.则可列方程为( )A. x(x −10)=200B. 2x +2 (x −10)=200C. x(x +10)=200D. 2x +2(x +10)=2007. 已知关于x 的方程x 2+mx +1=0根的判别式的值为12,则m 的值是( ) A. ±3B. 3C. 4D. ±48. 将抛物线y =5x 2向左平移2个单位,再向下平移3个单位,得到的抛物线是( ) A. y =5(x +2)2+3 B. y =5(x +2)2−3 C. y =5(x −2)2+3D. y =5(x −2)2−39. 若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为( ) A. 120° B. 180° C. 240° D. 300°10. 已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………x … −1 0 1 3 … y…−3131…则下列判断中正确的是( )A. 抛物线开口向上B. 抛物线与y 轴交于负半轴C. 当x =4时,y >0D. 方程ax 2+bx +c =0的正根在3与4之间11. 如图,MN 是⊙O 的直径,A ,B ,C 是⊙O 上的三点,∠ACM =60°,B 点是AN⏜的中点,P 点是MN 上一动点,若⊙O 的半径为1,则PA +PB 的最小值为( )A. 1B. √22C. √2D. √3−112. 如图,点A 的坐标为(−3,2),⊙A 的半径为1,P为坐标轴上一动点,PQ 切⊙A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A. (0,2)B. (0,3)C. (−2,0)D. (−3,0)第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 不透明袋子中装有5个红球,3个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______ .14. 如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ⏜的中点,则∠A 的大小为______(度).15. 生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共赠送了210件,则全组共有______名同学.16. 如图,AB 是⊙O 的直径,C ,G 是⊙O 上的两个点,OC//AG.若∠GAC =28°,则∠BOC 的大小=______度.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………17. 如图,从y =ax 2的图象上可以看出,当−1≤x ≤2时,y 的取值范围是______ .18. 在RtΔABC 中,∠ACB =90°,∠BAC =30°,BC =6.(1)如图①,将线段CA 绕点C 顺时针旋转30°,所得到与AB 交于点M ,则CM 的长= ______ ; (2)如图②,点D 是边AC 上一点D 且AD =2√3,将线段AD 绕点A 旋转,得线段AD′,点F 始终为BD′的中点,则将线段AD 绕点A 逆时针旋转______ 度时,线段CF 的长最大,最大值为______ .三、解答题(本大题共7小题,共66.0分。
九年级数学上册期末考试试卷附答案
九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
九年级数学第一学期期末考试综合复习测试题(含答案)
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2023-2024学年湖北省武汉市东湖高新区九年级上学期期末数学试卷
武汉市东湖高新区2023—2024学年度第一学期期末考试九年级数学试题说明:本卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共6页,三大题,满分120分,考试用时120分钟.第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上涂选.1.下列环保标志,既是轴对称图形,也是中心对称图形的是( ).A .B .C .D .2.事件①任意画一个多边形,其外角和为360°;事件②经过一个有交通信号灯的十字路口,遇到红灯.下列说法正确的是( ). A .事件①和②都是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是必然事件D .事件①是必然事件,事件②是随机事件3.若关于x 的一元二次方程230x x a -+=的一个根为2x =,则a 的值为( ) A .2B .-2C .4D .-44.在平面直角坐标系中,以点()4,3为圆心,4为半径的圆与坐标轴的位置关系为( ). A .与x 轴相切B .与x 轴相离C .与y 轴相切D .与y 轴相交5.我国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,试问:阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步.如果设宽为x 步,则可列出方程( ). A .()6864x x -= B .()12864x x -= C .()6864x x +=D .()12864x x +=6.已知△ABC 在正方形网格中的位置如图所示,A ,B ,C ,P 四点均在格点上,则点P 叫做△ABC 的( )A .垂心(三边高线的交点)B .重心(三边中线的交点)C .外心(三边垂直平分线的交点)D .内心(三内角平分线的交点)7.已知抛物线22y x x c =-+经过点()11,P y -和点()2,Q m y .若12y y <,则m 的取值范围( ) A .13m -<<B .13m <<C .1m <-或3m >D .1m <-或2m >8.从不透明的袋子中进行摸球游戏,这些球除颜色外其它都相同,小红根据游戏规则,作出如图所示的树状图,则此次摸球的游戏规则是( )A .随机摸出一个球后放回,再随机摸出1个球B .随机摸出一个球后不放回,再随机摸出1个球C .随机摸出一个球后放回,再随机摸出3个球D .随机摸出一个球后不放回,再随机摸出3个球 9.如图,点P 在O 的直径AB 上,作正方形PCDE 和正方形PFGH ,其中D ,G 两点在AB 所在直线上,C ,E ,F ,H 四点都在O 上,若两个正方形的面积之和为16,OP =,则DG 的长是( ).A .B .C .7D .10.已知抛物线2y x ax b =++与x 轴两个交点间的距离为2,将此抛物线向右平移2个单位,再向下平移3个单位,得到一条新抛物线,则新抛物线与x 轴两个交点问的距离是( ).A .4B .5C .8D .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6小题,每小题3分,共18分,请在答题卡上填写)11.在平面直角坐标系中,点()3,4P -关于原点对称的点的坐标是______.12.若1x m =,2x n =是一元二次方程2250x x --=的两个实数根,则mn m n --=______. 13.如图是可以自由转动的三个转盘,请根据下列情形回答问题(不考虑指针落在分界线上)。
2022-2023学年河南省平顶山市汝州市九年级(上)期末数学试卷+答案解析(附后)
2022-2023学年河南省平顶山市汝州市九年级(上)期末数学试卷1. 在中,,,则的值为( )A. B. C. D. 22. 反比例函数图象上的两点为,,且,则与的大小关系是( )A. B. C. D. 不能确定3. 如图,与位似,点O为位似中心,已知AC::3,的面积为1,则的面积是( )A. 3B. 4C. 9D. 164. 某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x,根据题意列出的方程是( )A. B.C. D.5. 已知反比例函数,下列结论中不正确的是( )A. 其图象经过点B. 其图象分别位于第一、第三象限C.当时, D. 当时,y随x的增大而增大6. 如图,点G、F分别是的边AC、CD上的点,AD的延长线与GF的延长线相交于点B,交GB于点E,则下列结论错误的是( )A.B.C.D.7. 若将抛物线向上平移2个单位,则所得抛物线对应的函数关系式为( )A. B.C.D.8. 对于二次函数,下列说法不正确的是( )A. 当时,y 有最大值2B. 当时,y 随x 的增大而减小C. 开口向下D. 函数图象与x 轴交于点和9. 如右图所示,拱桥的形状是抛物线,其函数关系式为,当水面离桥顶的高度为时,水面的宽度为米.( )A. 8B. 9C. 10D. 1110. 如图,在正方形ABCD 中,E 、F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG ,下列结论:①;②;③;④,其中正确的结论是( )A. ①②B. ①③C. ①②④D. ①②③11.______.12. 已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有12个,黑球有n 个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出黑球的频率稳定在,则n 的值为______.13. 如图是用7块相同的小长方体搭成的几何体.若拿走一块长方体后,该几何体的主视图和左视图都没改变,则这块长方体的序号是______.14. 已知二次函数的部分图象如图所示,则关于x的方程的解为______.15.如图,点在反比例函数的图象上,过A作直线轴于B,在第三象限的反比例函数图象上找一点P,使于H,若P、H、A三点组成的三角形与相似,则P点的坐标是______.16. 解方程:;17. 如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作,,CE和DE交于点求证:四边形ODEC是矩形;连接AE,交CD于点F,当,时,直接写出EA的长.18. 在4件同型号的产品A,B,C,D中,A,B,C为合格产品,D为不合格产品.从这4件产品中随机抽取1件进行检测,直接写出抽到合格品的概率;从这4件产品中任抽取一件检测后放回,再抽取一件进行检测,请用画树状图法或列表法求两次抽到的都是合格品的概率.19. 春天是放风筝的好季节,如图,小张同学在花雨广场B处放风筝,风筝位于A处,风筝线AB长为150m,从B处看风筝的仰角为,小张的父母从C处看风筝的仰角为风筝离地面多少米?小张和父母的直线距离BC是多少米?结果精确到,参考数据:,,,20.如图,已知∽,若B,E,F三点共线,线段EF与AC交于点求证:∽;若,,的面积为8,求的面积.21. 疫情当下,红星药店销售一种大包装口罩.经市场调查发现:该口罩的周销售量包是售价元/包的一次函数,其售价、周销售量、周销售利润元的三组对应值如表:售价元/包506080周销售量包1008040周销售利润元100016001600注:周销售利润=周销售量售价-进价①这种口罩的进价是______元/包;②求y关于x的函数解析式不要求写出自变量的取值范围;③当售价是多少元/包时,周销售利润最大,并求最大利润.由于疫情升级,该种口罩的进价提高了m元/包,物价部门规定该种口罩售价不得超过65元/包,该种口罩在今后的销售中,周销售量与售价仍然满足中的函数关系.若周销售最大利润是1400元,求m的值.22. 如图,在中,,轴,垂足为反比例函数的图象经过点C,交AB于点已知,若,求k的值;连接OC,若,求OC的长.23. 如图,已知二次函数的图象经过点,与x轴分别交于点和点B,点P是直线BC上方的抛物线上一动点.求二次函数的表达式;求BC所在直线的函数解析式;过点P作轴交直线BC于点M,求线段PM长度的最大值.答案和解析1.【答案】A【解析】解:在中,,、、的对边分别为a、b、c,由于,不妨设,则,由勾股定理得,,所以,故选:根据锐角三角函数的定义和勾股定理求解即可.本题考查同角的三角函数的关系,掌握锐角三角函数的定义以及勾股定理是得出正确答案的前提.2.【答案】B【解析】解:反比例函数中,,此函数的图象在二、四象限,在每一象限内y随x的增大而增大,,、两点均位于第二象限,故选:先根据反比例函数判断此函数图象所在的象限,再根据判断出、所在的象限,根据此函数的增减性即可解答.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的性质是解答此题的关键.3.【答案】C【解析】解:因为与位似,AC::3,所以::9,又的面积为1,所以故选:根据位似图形的概念得到∽,再根据AC::3可得相似比为,与之比为相似比的平方.本题考查了位似变换,熟练掌握位似变换的有关概念和性质是解题的关键.4.【答案】C【解析】解:依题意得:两次降价后的售价为,故选:可根据:原售价降低率降低后的售价得出两次降价后的价格,然后即可列出方程.本题考查降低率问题,由:原售价降低率降低后的售价可以列出方程.5.【答案】D【解析】解:A、,图象必经过点,故本选项不符合题意;B、,函数图象的两个分支分布在第一、三象限,故本选项不符合题意;C 、时,且y随x的增大而增大,时,,故本选项不符合题意;D、函数图象的两个分支分布在第一、三象限,在每一象限内,y随x的增大而减小,故本选项符合题意.故选:根据反比例函数的性质对各选项进行逐一分析即可.本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.6.【答案】C【解析】解:,,故A正确;,∽,,故B正确;,,故C错误;,,故D正确,故选:根据平行线分线段成比例定理和相似三角形的判定和性质定理即可得到结论.此题重点考查平行线分线段成比例定理、相似三角形的判定定理与性质定理等知识,根据这两个定理正确地求出相应的比例式是解题的关键.7.【答案】D【解析】解:抛物线向上平移2个单位,平移后的抛物线的顶点坐标为,所得抛物线对应的函数关系式为故选:根据向下平移纵坐标减写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.8.【答案】A【解析】解:,抛物线开口向下,顶点坐标为,当时,y有最大值4;当时,y随x的增大而减小,当时,,解得,,抛物线与x轴的交点坐标为,,故选:先把一般式配成顶点式得到,再根据二次函数的性质可对A、B、C进行判断;通过解方程得抛物线与x轴的交点坐标,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数是常数,与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.9.【答案】C【解析】解:将代入得,解得或,水面宽度故选:把代入函数解析式求解.本题考查二次函数的应用,解题关键是掌握二次函数中x,y的实际意义.10.【答案】D【解析】解:四边形ABCD是正方形,,,,F分别是AB,BC的中点,,,,在与中,,≌,,,故①正确;,,,,故②正确;,延长CE交DA的延长线于H,点E是AB的中点,,,,,≌,,是斜边的中线,,,,,故③正确;,,,,不是等边三角形,,故④错误;故选:根据正方形的性质得到,,得到,,根据全等三角形的性质得到,,故①正确;求得,根据垂直的定义得到,故②正确;延长CE交DA的延长线于H,根据线段中点的定义得到,根据全等三角形的性质得到,由AG是斜边的中线,得到,求得,根据余角的性质得到故③正确.根据,可得,所以,所以不是等边三角形,故④错误.此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.11.【答案】【解析】解:原式故答案为:根据特殊角的三角函数值进行计算.本题考查的是特殊角的三角函数值,比较简单.12.【答案】3【解析】解:根据题意得:,解得:,经检验是分式方程的解.答:n的值约为3个;故答案为:根据黑球的频率稳定在,根据概率公式列出方程求解可得.本题考查了利用频率估计概率,解答此题的关键是了解黑球的频率稳定在附近即为概率约为13.【答案】⑤【解析】解:若拿走一块长方体后,该几何体的主视图和左视图都没改变,则这块长方体的序号是⑤.故答案为:⑤.根据几何体的主视图和左视图的定义解答即可.本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“主视图疯狂盖,左视图拆违章”就更容易得到答案.14.【答案】,【解析】解:由图象可知,该函数的对称轴是直线,与x的轴的一个交点是,则该函数与x轴的另一个交点是,即当时,,此时,,故关于x的一元二次方程的解为,,故答案是:,根据函数图象可以得到该函数的对称轴,该函数与x轴的一个交点,然后根据二次函数的对称性即可得到另一个交点,从而可以得到关于x的一元二次方程的解,本题得以解决.本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.15.【答案】,,【解析】解:点在反比例函数的图象上,,,在反比例函数图象上找一点,使于H,若、H、A三点组成的三角形与相似,,或,假设P点横坐标为:x,则纵坐标为:,,,当,,解得:不合题意舍去,当,,解得:,不合题意舍去,,的坐标为:,同理可得出,点的坐标分别为:,故答案为:,,根据点在反比例函数的图象上,首先得出反比例函数的解析式,进而求出AB,BO 的比值,进而得出直角边之间比值关系分别求出即可.此题主要考查了反比例函数的综合应用以及相似三角形的性质,根据已知得出直角边之间比值关系是解题关键.16.【答案】解:,或,所以,;解:,,,,,,【解析】先移项,然后利用因式分解法解方程;利用求根公式求方程的解.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法.17.【答案】证明:,,四边形ODEC是平行四边形.又菱形ABCD,,四边形ODEC是矩形.解:中,,,,,,,【解析】先证四边形ODEC是平行四边形,然后根据菱形的对角线互相垂直,得到,根据矩形的定义即可判定四边形ODEC是矩形.根据含30度角直角三角形的性质、勾股定理来求EA的长度即可.本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.18.【答案】解:从这4件产品中随机抽取1件进行检测,抽到合格品的概率为;列表如下:A B C DABCD由表知,共有16种等可能结果,其中抽到的都是合格品的有9种结果,所以抽到的都是合格品的概率为【解析】直接根据概率公式求解即可;列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.本题考查的是用列表法或画树状图法求概率,随机事件,解决本题的关键是掌握概率=所求情况数与总情况数之比.19.【答案】解:作于点D,,,,,即风筝离地面90m;,,,,,,,即BC是【解析】作,然后根据,,即可计算出BD的长;根据题意和中的结果,利用勾股定理和锐角三角函数可以计算出BD和CD的长,然后将它们相加,即可得到BC是多少米.本题考查解直角三角形的应用-仰角俯角问题、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】证明:∽,,AB::AF,,即,::AF,∽;解:由知,∽,,,∽,::OC,,∽,:,,【解析】由∽,可得,AB::AF,可得,所以AB::AF,由两边对应成比例且夹角相等的三角形相似可得结论;由知,∽,所以,易证∽,进而可得∽,所以:,由此可得结论.本题主要考查相似三角形的性质与判定,相似三角形的面积比等于相似比的平方,得出∽是解题关键.21.【答案】40【解析】解:①该商品进价是;故答案为:②依题意设,则有,解得:,关于x的函数解析式为;③设每周获得利润:则有,解得:,,当售价是70元/件时,周销售利润最大,最大利润是1800元;根据题意得,,,对称轴,抛物线的开口向下,,随x的增大而增大,当时,,即,解得:①该商品进价是;②依题意设,解方程组即可得到结论;③设每周获得利润,根据题意构造方程,解方程组即可得到结论;根据题意得,,把,代入函数解析式,解方程即可得到结论.本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.22.【答案】解:作,垂足为E,,,在中,,,,,点的坐标为:,反比例函数的图象经过点C,,设A点的坐标为,,,,,C两点的坐标分别为:,点C,D都在反比例函数的图象上,,,点的坐标为:,【解析】利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C 点坐标即可得出答案;首先表示出D,C点坐标,进而利用反比例函数图象上的性质求出C点坐标,然后利用勾股定理即可求得OC的长.此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出方程是解题关键.23.【答案】解:将点A和点C的坐标代入函数解析式,得,解得:,二次函数的解析是为;当时,,解得,,所以点B坐标为,设直线BC的解析式为,将点B和点C的坐标代入函数解析式,得,解得:直线BC的解析为;在抛物线上,设,设点M的坐标为,,,故PM有最大值,当时,PM的最大值为:【解析】直接利用待定系数法求解即可;令,得点B的坐标,设直线BC的解析式为,利用待定系数法可得答案;在抛物线上,设,设点M的坐标为,求出PM,即可求解.此题考查的是二次函数综合题目,能够熟练运用待定系数法求角函数的解析式是解决此题关键.。
贵州省遵义市2023-2024学年九年级上学期期末数学试题
贵州省遵义市2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在3,1,0,1-四个数中最小的一个数是( ) A .3B .1C .0D .1-2.下列几何图形既是中心对称图形又是轴对称图形的是( ) A .B .C .D .3.已知2x =是一元二次方程280ax -=的解,则a 的值是( ) A .2B .1C .1-D .2-4.如图,ABC V 是等腰直角三角形,a b ∥.若1125∠=︒,则2∠的度数是( )A .30︒B .35︒C .40︒D .45︒5.下列计算正确的是( ) A .22a a -=B .824a a a ÷=C .()236a a =D .3412a a a ⋅=6.《九章算术》中有这样一道题,大意是:假设有5头牛、2只羊,值10两金;2头牛、5只羊,值8两金.问1头牛、1只羊各值多少金?设1头牛、1只羊分别值x ,y 金,则列方程组正确的是( ) A .510,58.x y x y +=⎧⎨+=⎩B .5210,258.x y x y +=⎧⎨+=⎩C .58,510.x y x y +=⎧⎨+=⎩D .528,2510.x y x y +=⎧⎨+=⎩7.如图,O e 是PAB V 的外接圆,OC AB ⊥,连接OB .若50BOC ∠=︒,则APB ∠的度数是( )A .45︒B .50︒C .55︒D .60︒8.在一列数1,8,x ,4,9,4,11中,众数是4,平均数是7,中位数是8,则数x12182448(4)若ABC V 是直角三角形,则20ax bx c ++=的判别式4∆≥.A .(1)(3)B .(2)(3)C .(2)(4)D .(3)(4)三、解答题24(2)当6AB =,30C ∠=︒时,求图中阴影部分的面积.22.某商品每件的成本为100元,销售价(元/件)与时间(天)之间的函数关系如下图所示,商家预测未来30天的日销售量(件)与时间(天)满足函数表达式2140y x =-+.(1)求销售价(元/件)与时间(天)之间的函数表达式,写出自变量的取值范围; (2)在未来30天中哪天销售利润最大?求出该天销售利润.23.如图,在平面直角坐标系中,AOB V 为等腰直角三角形,90B ??,点A 的坐标为()2,0,将AOB V 绕点O 逆时针旋转90︒得到A OB ''△(A 的对应点为A ',B 的对应点为B ').(1)写出图中一个度数为45︒的角:______;(2)在平面直角坐标系中画出A OB ''△,点B '的坐标是______;(3)以()2,0M -为圆心的圆与A OB ''△三边中的一边所在直线相切,求M e 的半径. 24.如图,在正方形ABCD 中,点Q 在射线DC 上(不与C ,D 重合),点P 为直线BC 上一点,DAQ PAQ ∠=∠.图① 图②(1)如图①,若30DAQ ∠=︒,3AB =,DQ 的长是______,AP 的长是______; (2)如图②,当Q 在线段DC 上时,猜想AP ,BP ,DQ 之间的数量关系并证明; (3)当Q 在线段DC 的延长线上时,第(2)问中的结论是否成立?若成立,说明理由:若不成立,请探究AP ,BP ,DQ 之间的数量关系.25.初中阶段学习函数的方法:通过“列表、描点、连线”的方法画函数图象,根据图象(1)根据表中数据求21y x bx c=++中b ,c的值,并在图中画出函数在直线1x =右侧的大致图象;。
江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)
2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。
2024年北京朝阳区初三九年级上学期期末数学试题和答案
张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.下列4个图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.平面直角坐标系内一点(-3,4)关于原点对称点的坐标是()A .(3,4)B .(-3,-4)C .(3,-4)D .(4,-3)3.如图,在⊙O 中,OC ⊥AB ,若∠BOC =40°,则∠OAB 等于()A .40°B .50°C .80°D .120°4.抛物线y =﹣2(x ﹣3)2﹣4的对称轴是()A .直线x =3B .直线x =﹣3C .直线x =4D .直线x =﹣45.连续抛掷两次骰子,它们的点都是奇数的概率是()A .136B .19C .14D .126.二次函数y =ax 2+bx+c 的图象如图所示,则一次函数y =﹣bx+c 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,将△ABC 绕点A 顺时针旋转α,得到△ADE ,若点D 恰好在CB 的延长线上,则∠CDE 等于()A .ΑB .90°+2αC .90°﹣2αD .180°﹣2α8.如图,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1=y 2;④4a+2b+c <0,其中说法正确的()A .①②B .①②③C .①②④D .②③④9.已知平面直角坐标系中有点A (﹣4,﹣4),点B (a ,0),二次函数y =x 2+(k ﹣3)x ﹣2k 的图象必过一定点C ,则AB+BC 的最小值是()A .B .C .D .10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°二、填空题11.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是________ 12.为了估计池塘里有多少条鱼,先从池溏里捕捞100条鱼做上记号,然后放回池塘里去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞300条鱼,若其中有15条有标记,那么估计池塘里大约有鱼________条._____.13.如图,扇形AOB的圆心角为120°,弦AB=14.已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是_____.15.已知二次函数y=﹣x2+bx+c与一次函数y=mx+n的图象相交于点A(﹣2,4)和点B(6,﹣2),则不等式﹣x2+bx+c>mx+n的解集是_____.16.如图,已知Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是_____.17.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.三、解答题18.解方程:(x+3)2﹣2x(x+3)=0.19.如图,四边形ABCD内接于⊙O,E为BC延长线上的一点,点C为 BD的中点.若∠DCE =110°,求∠BAC的度数.20.如图,已知△ABC 中,BD 是中线.(1)尺规作图:作出以D 为对称中心,与△BCD 成中心对称的△EAD .(2)猜想AB+BC 与2BD 的大小关系,并说明理由.21.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,又放回.小明摸取了60次,结果统计如下:标号1234次数16142010(1)上述试验中,小明摸取到“2”号小球的频率是;小明下一次在袋中摸取小球,摸到“2”号小球的概率是;(2)若小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,请用列举法求小明两次摸取到小球的标号相同的概率.(3)若小明一次在袋中摸出两个小球,求小明摸出两个小球标号的和为5的概率.22.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.23.在平面直角坐标系中,以坐标原点为圆心的⊙O 半径为3.(1)试判断点A (3,3)与⊙O 的位置关系,并加以说明.(2)若直线y =x+b 与⊙O 相交,求b 的取值范围.(3)若直线y =x+3与⊙O 相交于点A ,B .点P 是x 轴正半轴上的一个动点,以A ,B ,P 三点为顶点的三角形是等腰三角形,求点P 的坐标.24.已知关于x 的一元二次方程﹣212x +ax+a+3=0.(1)求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y =﹣212x +ax+a+3与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C ,连结BC ,BC 与对称轴交于点D .①求抛物线的解析式及点B 的坐标;②若点P 是抛物线上的一点,且点P 位于直线BC 的上方,连接PC ,PD ,过点P 作PN ⊥x 轴,交BC 于点M ,求△PCD 的面积的最大值及此时点P 的坐标.25.已知关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0.(1)若方程有两个实数根,求a 的取值范围.(2)若x=2是方程的一个根,求另一个根.(3)在(1)的条件下,试判断直线y=(2a﹣3)x﹣a+5能否过点A(﹣1,3),并说明理由.26.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.参考答案1.B【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选B.2.C【详解】∵P(-3,4),∴关于原点对称点的坐标是(3,-4),故选:C.3.B【详解】解:在⊙O中,OA=OB,∴△AOB为等腰三角形,∵OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,∴∠OAB=(180°-∠AOB)÷2=50°.4.A【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.5.C【详解】解:列表如下:123456 1()1,1()1,2()1,3()1,4()1,5()1,6 2()2,1()2,2()2,3()2,4()2,5()2,6 3()3,1()3,2()3,3()3,4()3,5()3,6 4()4,1()4,2()4,3()4,4()4,5()4,6 5()5,1()5,2()5,3()5,4()5,5()5,6 6()6,1()6,2()6,3()6,4()6,5()6,6由表格信息可得:所有的等可能的结果数有36个,符合条件的结果数有91=. 364故选C6.D【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-2ba<0,得b<0.∴0b ->所以一次函数y =﹣bx+c 的图象经过第一、二、三象限,不经过第四象限.故选:D .7.A【详解】解:由旋转的性质可得:∠ABC=∠ADE ,∵∠ABC+∠ABD=180°,∴∠ABD+∠ADE=180°,即∠ABD+∠ADB+∠CDE=180°,∵∠ABD+∠ADB+∠BAD=180°,∴∠CDE=∠BAD ,∵∠BAD=α,∴∠CDE=α.故选:A .8.B【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确的是①②③,故选:B .9.C【详解】解:二次函数y =x 2+(k ﹣3)x ﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C (2,-2)点C 关于x 轴对称的点C '的坐标为(2,2),连接AC ',如图,∵()4,4A --∴AC '==故选:C 10.B【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.11.3m ≠【详解】解:mx 2+3x-4=3x 2,可变形为2(3)340m x x -+-=,∵2(3)340m xx -+-=是一元二次方程,∴30m -≠,∴3m ≠.故答案为:3m ≠.12.2000100条,由此即可解答.【详解】设该池塘里现有鱼x 条,由题意知,15100300x=,∴x=2000.∴估计池塘里大约有鱼2000条.故答案为2000.13.4π3【详解】解:由题意知:∵OA OB=∴△OAB 为等腰三角形∴()1180120302OAB ∠=︒-︒=︒∵12cos30OA⨯︒=∴2OA =∵π120π24π1801803n r S ⨯⨯===扇1sin 302OAB S OA =⨯⨯︒⨯=∴4π3AOB S S S =-=- 阴扇故答案为:4π314.相切或相交【详解】设直线AB 上与圆心距离为4cm 的点为C ,当OC ⊥AB 时,OC=⊙O 的半径,所以直线AB 与⊙O 相切,当OC 与AB 不垂直时,圆心O 到直线AB 的距离小于OC ,所以圆心O 到直线AB 的距离小于⊙O 的半径,所以直线AB 与⊙O 相交,综上所述直线AB 与⊙O 的位置关系为相切或相交,故答案为:相切或相交.15.26x -<<【详解】解:如图,∵两函数图象相交于点A (-2,4),B (6,-2),∴不等式﹣x 2+bx+c >mx+n 的解集是26x -<<.故答案为:26x -<<.16.【分析】将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N .证明△PBH 是等边三角形,得PH BP =,所以PA PB PC PA PH HG ++=++,推出当A ,P ,G ,H′共线时,PA+PB+PC 的值最小,最小值=AG 的长,再运用勾股定理求出AG 的长即可.【详解】解:将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N ,如图,∵∠90,30ABC ACB ︒︒=∠=,4AC =2,AB ∴=由勾股定理得:BC ==∵将△BCP 绕点B 顺时针旋转60°得到△BHG ,∴△BPC BHG≅∆∴,60BP BH PBH ︒=∠=,,HG PC BC BG ===,∠PBC GBH=∠∴△PBH 是等边三角形,∴PH BP=∴PA PB PC PA PH HG++=++∴当点A ,点P ,点G ,点H 共线时,PA PH HG ++有最小值,最小值为AG ,∵∠150ABP PBH GBH ABP PBC CBH ︒+∠+∠=∠+∠+∠=∴∠150ABG ︒=∴∠30GBN ︒=∵GN AB⊥∴1122GN BG ==⨯=由勾股定理得,3BN ===∴235AN AB BN =+=+=∴AG ===∴PA PB PC ++最小值为故答案为:17【详解】∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,∵CA=CA 1,∴△ACA 1是等边三角形,AA 1=AC=BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB=CB 1,∴△BCB 1是等边三角形,∴BB 1BA 1=2,∠A 1BB 1=90°,∴BD=DB 1∴A 1=18.123,3x x ==-【详解】解:(x+3)2﹣2x (x+3)=0()()3320x x x ++-=()()330x x +-=解得123,3x x ==-19.55°【分析】由圆内接四边形的性质可得110BAD ∠=︒,根据“点C 为 BD的中点”可得AC 是BAD ∠平分线,从而可得结论.【详解】解:∵四边形ABCD 内接于⊙O ,∴DCE BAD∠=∠∵110DCE ∠=︒∴110BAD ∠=︒∵点C 为 BD的中点∴ BC D C=∴111105522BAC DAC BAD ∠=∠=∠=⨯︒=︒20.(1)见详解;(2)AB+BC >2BD .证明见详解.【分析】(1)延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,根据点D 为AC 中点,得出AD=CD ,再证△ADE ≌△CDB (SAS ),根据∠CDB+∠ADB=180°,得出△BCD 绕点D 旋转180°得到△EAD ,(2)根据△ADE ≌△CDB (SAS ),得出AE=BC ,BD=ED ,得出BE=2BD ,在△ABE 中,AB+AE >BE 即可.(1)解:延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,∵点D 为AC 中点,∴AD=CD ,在△ADE 和△CDB 中,AD CD ADE CDB ED BD =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDB (SAS ),∵∠CDB+∠ADB=180°,∴△BCD 绕点D 旋转180°得到△EAD,(2)AB+BC >2BD .证明:∵△ADE ≌△CDB (SAS ),∴AE=BC ,BD=ED ,∴BE=2BD ,在△ABE中,AB+AE>BE,即AB+BC>2BD.【点睛】本题考查尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系,掌握尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系是解题关键.21.(1)7 30,14(2)1 4(3)1 3【分析】(1)摸取到“2”号小球的频率为1460,摸到“2”号小球的概率是14;(2)小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况,进而可求概率;(3)列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况,进而可求概率.(1)解:摸取到“2”号小球的频率为147 6030=摸到“2”号小球的概率是1 4故答案为:71 304,.(2)解:列举法求小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况∵41 164=∴小明两次摸取到小球的标号相同的概率为1 4.(3)解:列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况∵2163=∴小明摸出两个小球标号的和为5的概率为13.【点睛】本题考查了频率,列举法求概率.解题的关键在于正确的列举所有事件.22.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.23.(1)点A 在O 外(2)b -<<(3)(3-+或(3,0)【分析】(1)由勾股定理求出AO 的长,再与圆的半径比较即可得出结论;(2)求出直线y x b =+与O 相切时OB 的长度即可得到b 的取值;(3)分BA BP =,AB AP =和PB PA =三种情况求解即可.(1)∵(3,3)A∴OA ==∵3>∴点A 在O 外(2)如图,当直线y x b =+与O 相切于点C 时,连接OC ,则OC=3∵∠45CBO ︒=∴OB =∴直线y x b =+与O 相交时,b -<(3)∵直线3y x =+与O 相交于点A ,B ,∴(0,3)A ,(3,0)B -∴AB =当BA BP ==P 坐标为:1(3P -+,2(3P--(舍去)当AB AP =时,∵AO x ⊥轴∴BO OP=∴3(3,0)P 当PB PA =时,点P 与点O 重合,∴4()0,0P (舍去)综上,点P 的坐标为:(3-+或(3,0)24.(1)见解析;(2)①y=2142x x -++,点B (4,0);②△PCD 的面积的最大值为1,点P (2,4).【分析】(1)判断方程的判别式大于零即可;(2)①把A (-2,0)代入解析式,确定a 值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B 的坐标;②设点P 的坐标为(x ,2142x x -++),确定直线BC 的解析式y=kx+b ,确定M 的坐标(x ,kx+b ),求得PM=2142x x -++-(kx+b ),从而利用C ,D 的坐标表示=-PCD PCM CDM S S S △△△构造新的二次函数,利用配方法计算最值即可.(1)∵21-+302x ax a ++=,∴△=214(-)(3)2a a -⨯+=2226(1)5a a a ++=++>0,∴无论a 为任何实数,此方程总有两个不相等的实数根.(2)①把A (-2,0)代入解析式21=-+32y x ax a ++,得1-4-2302a a ⨯++=,解得a=1,∴抛物线的解析式为2142y x x =-++,令y=0,得21402x x -++=,解得x=-2(A 点的横坐标)或x=4,∴点B (4,0);②设直线BC 的解析式y=kx+b ,根据题意,得4=0=4k b b +⎧⎨⎩,解得=-1=4k b ⎧⎨⎩,∴直线BC 的解析式为y=-x+4;∵抛物线的解析式为2142y x x =-++,直线BC 的解析式为y=-x+4;∴设点P 的坐标为(x ,2142x x -++),则M (x ,4x -+),点N (x ,0),∴PM=2142x x -++-(4x -+)=2122x x -+,∵219(1)22y x =--+,∴抛物线的对称轴为直线x=1,∴点D (1,3),∵=-PCD PCM CDMS S S △△△=11-(1)22PM x PM x - =21124PM x x =-+=21(2)14x --+,∴当x=2时,y 有最大值1,此时2142y x x =-++=4,∴△PCD 的面积的最大值为1,此时点P (2,4).25.(1)112a ≥-且0a ≠(2)14x =(3)能,理由见解析【分析】(1)根据一元二次方程的定义,以及根的判别式进行判断即可(2)根据方程的解的定义求得a ,进而根据一元二次方程根与系数的关系求解即可;(1)关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0有两个实数根,则0a ≠,()()2242142b ac a a a ∆=-=-+--⎡⎤⎣⎦2244148a a a a=++-+121a =+0≥a 的取值范围为:112a ≥-且0a ≠(2) x =2是方程的一个根,4(21)220a a a ∴-+⨯+-=解得4a =设另一根为2x ,则2212419244a x a +⨯++===214x ∴=∴另一个根为14x =(3)若y =(2a ﹣3)x ﹣a+5过点A (﹣1,3),则()3235a a =---+解得53a = 112a ≥-且0a ≠∴y =(2a ﹣3)x ﹣a+5能经过点A (﹣1,3),26.(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD ,由AB 是圆O 的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD 为⊙O 的切线;(2)根据BE 是⊙O 的切线,则∠EBA=90°,即可求得∠P=30°,再由PD 为⊙O 的切线,得∠PDO=90°,根据三角函数的定义求得OD ,由勾股定理得OP ,即可得出PA ;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF ,由AB 是圆O 的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE 是等边三角形.进而证出四边形DFBE 为菱形.【详解】解:(1)直线PD 为⊙O 的切线,理由如下:如图1,连接OD ,∵AB 是圆O 的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO ,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴tan30OD PD︒=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.。
九年级期末考试(数学)试题含答案
九年级期末考试(数学)(考试总分:120 分)一、单选题(本题共计8小题,总分24分)1.(3分)下列成语描述的事件是随机事件的是( )A.海枯石烂B.画饼充饥C.瓜熟蒂落D.守株待兔2.(3分)窗花剪纸是我国传统民间艺术。
在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)已知关于x的一元二次方程(a+3)x2-2x+a2-9=0有一个根为x=0,则a的值为( )A.0B.±3C.3D.-3x2+1先向左平移2个单位,再向下平移3个单位,得到的抛物线4.(3分)把抛物线y=25的解析式为( )(x−2)2+4A.y=25(x+2)2−2B.y=25(x+2)2−4C.y=25(x−2)2+2D.y=255.(3分)如图,在⊙O中,AE是直径,半径OC⊙弦AB于点D,连接BE,若AB=2√7,CD=1,则BE的长是( )A.5B.6C.7D.86.(3分)如图,将⊙ABC绕点C顺时针方向旋转40°,得⊙A′B′C.若AC⊙A′B′,则⊙A等于( )A.50°B.60°C.70°D.80°的图象过矩形OABC的顶点B,OA,OC分别在x轴、y 7.(3分)如图,反比例函数y=kx轴的正半轴上,矩形OABC的对角线OB,AC交于点E(1,2),则k的值为( )A.4B.8C.-4D.-88.(3分)如图,在四边形ABCD中,AD∥BC,⊙A=45°,⊙C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以√2cm/s的速度沿AB向终点B运动,点N以2cm/s 的速度沿折线AD—DC向终点C运动.设点N的运动时间为t(s),⊙AMN的面积为S(cm2),则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.二、填空题(本题共计8小题,总分24分)9.(3分)方程2x2-5=-6x化一般式为______.10.(3分)在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为______.11.(3分)已知抛物线y=x2-2x-3,则它的顶点坐标是______.12.(3分)在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a+b=______.13.(3分)一个圆锥的侧面积是底面积的4倍,则这个圆锥的侧面展开图的中心角的度数为______.14.(3分)若a,b是一元二次方程x2-2020x-2021=0的两根,则a2-2021a-b=______.15.(3分)如图,半径为2的⊙O中有弦AB,以AB为折痕对折,劣弧恰好经过圆心O,则弦AB的长度为______.16.(3分)如图,在Rt⊙ABC中,⊙C=90°,AC=8,BC=6,将⊙ABC绕点C旋转,得到⊙A′B′C,点A的对应点为A′,P为A'B'的中点,连接BP.在旋转的过程中,线段BP长度的最大值为______.三、解答题(本题共计9小题,总分72分)17.(8分)解一元二次方程(1).2(x+1)2=3(x+1);(2).2x2-9x+8=0.18.(6分)如图,⊙ABC是⊙O的内接三角形,⊙BAC的外角平分线AP交⊙O于点P,连接PB,PC.求证:PB=PC.19.(6分)如图,⊙ABC是直角三角形,⊙C=90°,将⊙ABC绕点B逆时针旋转60°至⊙DEB,点E落在AB上.DE延长线交AC所在直线于点F.(1).求⊙AFE的度数;(2).求证:AF+EF=DE.20.(6分)“黄冈名师课堂”'是集黄冈众多名师的网络课堂,自上线以来受到了广大师生,家长和社会各界的好评.经统计,2020年10月在线听课的学生为66250人次,12月在线听课学生增加至95400人次。
九年级数学上册期末试卷及答案【完整版】
九年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13.若点, , 都在反比例函数的图象上, 则, , 的大小关系是()A. B. C. D.4.为考察甲、乙、丙、丁四种小麦的长势, 在同一时期分别从中随机抽取部分麦苗, 获得苗高(单位: cm)的平均数与方差为: = =13, = =15: s甲2=s丁2=3.6, s乙2=s丙2=6.3.则麦苗又高又整齐的是()A. 甲B. 乙C. 丙D. 丁5.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106. 对于二次函数,下列说法正确的是()A. 当x>0, y随x的增大而增大B. 当x=2时, y有最大值-3C.图像的顶点坐标为(-2, -7)D. 图像与x轴有两个交点7.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, AB是⊙O的直径, BC与⊙O相切于点B, AC交⊙O于点D, 若∠ACB=50°, 则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°10.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 分解因式: a2b+4ab+4b=_______.3. 若二次根式有意义, 则x的取值范围是__________.4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt △ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图抛物线y=x2+2x﹣3与x轴交于A, B两点, 与y轴交于点C, 点P是抛物线对称轴上任意一点, 若点D.E、F分别是BC.BP、PC的中点, 连接DE, DF, 则DE+DF的最小值为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 在平面直角坐标系中, 已知点, 直线经过点. 抛物线恰好经过三点中的两点.(1)判断点是否在直线上. 并说明理由;(2)求,a b的值;(3)平移抛物线, 使其顶点仍在直线上, 求平移后所得抛物线与轴交点纵坐标的最大值.3. 正方形ABCD的边长为3, E、F分别是AB.BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°, 得到△DCM.(1)求证: EF=FM(2)当AE=1时, 求EF的长.4. 已知是的直径, 弦与相交, .(Ⅰ)如图①, 若为的中点, 求和的大小;(Ⅱ)如图②, 过点作的切线, 与的延长线交于点, 若, 求的大小.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分0次1次2次3次4次及以上学生在一周内借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 俄罗斯世界杯足球赛期间, 某商店销售一批足球纪念册, 每本进价40元, 规定销售单价不低于44元, 且获利不高于30%. 试销售期间发现, 当销售单价定为44元时, 每天可售出300本, 销售单价每上涨1元, 每天销售量减少10本, 现商店决定提价销售. 设每天销售量为y本, 销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时, 商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时, 商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.D2.D3.B4.D5.B6.B7、B8、D9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.b(a+2)23.4、40°.5.136.三、解答题(本大题共6小题, 共72分)1.x=12、(1)点在直线上, 理由见详解;(2)a=-1, b=2;(3)3.(1)略;(2)5 2.4.(1)52°, 45°;(2)26°5、17、20;2次、2次;;人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时, 商店每天获利2400元;(3)将足球纪念册销售单价定为52元时, 商店每天销售纪念册获得的利润w元最大, 最大利润是2640元.。
山东省泰安市新泰市2022-2023学年九年级上学期期末数学试卷(五四学制)
山东省泰安市新泰市2022-2023学年九年级(上)期末数学试卷(五四学制)题号一二三总分得分一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列几何体的主视图与其左视图不同的是( )A. 三棱柱B. 正方体C. 圆锥D. 空心正方体2. 反比例函数的图像在第象限.( )A. 一、三B. 二、四C. 一、二D. 三、四3. 如图,在平面直角坐标系中,函数y=12x(x>0)与y=x−2的图象交于点P(a,b),则代数式1a −1b的值为( )A. −13B. −14C. −15D. −164. 设A,B,C是抛物线上三点,,,的大小关系为( )A. B. C. D.5. 从边长相等的正三角形、正四边形、正五边形、正六边形、正八边形中任选两种不同的正多边形,能够进行平面镶嵌的概率是( )A. 15B. 310C. 25D. 126. 如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为( )A. 252B. 252π C. 50 D. 50π7. 如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②4a+2b+c>0;③b−a>c;④若B(−12,y1),C(32,y2)为函数图象上的两点,则y1>y2;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的个数是( )A. 1B. 2C. 3D. 48. 如图,点A(x1,y1),B(x2,y2)分别是反比例函数y1=k1x 与y2=k2x在第一象限图象上的动点.①k2>k1②当y1=y2时,x2>x1③△OAB的面积可能是k2−k12④OA+OB的最小值为√2k1+√2k2以上结论中正确的有( )A. 4个B. 3个C. 2个D. 1个9. 小宇和小轲两位同学准备利用所学数学知识对勖艾亭的高度进行测量.他们在临时搭建的一个坡度为12:5的钢板斜坡上的F点测得亭顶A点的仰角为13°,F点到地面的垂直高度FG=1.8米,从钢板斜坡底的E点向前走16.2米到D点,测得亭前阶梯CD的长度为2.5米,坡度为3:4.C点到亭中心O点的距离为1米.根据测量结果,勖艾亭的高度AO大约为米.( )(参考数据:sin13°≈0.22,cos13°≈0.97,tan13°≈0.23,A,B,C,D,E,F,G各点均在同一平面内)A. 4.9B. 4.6C. 6.4D. 6.110. 如图,在平行四边形ABCD中,∠B=50°,BC=6,以AD为直径的⊙O交CD于点E,则劣弧ED⏜的长为( )A. 56π B. 43π C. 53π D. 52π11. 若函数y=x2−6x+c的最小值是4,则c=( )A. 4B. 9C. 5D. 1312. 在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为,那么袋中球的总个数为( )A. 15个B. 12个C. 9个D. 3个二、填空题(本大题共6小题,共18分)13. 如图,点O为ACB弧所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠ABC=______°,∠D=______°.14. 如果从π0、227、√−1、913、tan30°任意选取一个数,选到的数是无理数的概率为______.15. 点A(−1,m)与点B(1,n)在反比例函数y=kx图象上,且m>n,则k______ 0.(填“>”,“<”或“=”)16. 一个侧面积为16√2πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为______cm.17. 如图,四边形ABCD是平行四边形,以点B为圆心,BC的长为半径作弧交AD于点E,分别以点C,E为圆心、大于12CE的长为半径作弧,两弧交于点P,作射线BP交AD的延长线于点F,∠CBE=60°,BC=6,则BF的长为______.18. 如图,已知点C处有一个高空探测气球,从点C处测得水平地面上A,B两点的俯角分别为30°和45°.若AB=2km,则A,C两点之间的距离为______km.三、解答题(本大题共7小题,共66分。
人教版九年级上册数学期末考试试卷(含解析)
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列属于一元二次方程的是( )A .x 2-3x+y=0B .x 2+2x= C .2x 2=5x D .x(x 2-4x)=32.抛物线的顶点坐标为( )A .(3,0) B.(-3,0) C .(0,3) D .(0,-3)3.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A . B . C . D .4.若关于x 的方程x 2﹣2x ﹣k =0有实数根,则k 的值可能为( )A .﹣4B .﹣3C .﹣2D .05.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C 2D .26.如图,将就点C 按逆时针方向旋转75°后得到,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°7.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A .B .C .D .8.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )1x 2y 2x 3=-()()2019nCoV -ABC A B C ''△50120,x ()()2501501120x x +++=()()250501501120x x ++++=()2501120x +=()50160x +=A .25°B .30°C .35°D .40°9.若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )A .B .C .D .10.关于x 的方程k 2x 2+(2k-1)x+1 =0有实数根,则下列结论正确的是()A .当k=时,方程的两根互为相反数B .当k=0时,方程的根是x=-1C .若方程有实数根,则k≠0且k≤D .若方程有实数根,则k≤二、填空题。
北京市东城区2023-2024学年九年级上学期期末数学试题
北京市东城区2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________....3x =是关于x 的方程220x x m --=的一个根,则m 的值是()15-.3-3.关于二次函数21)2y =+,下列说法正确的是().当1x =时,有最小值为2.当1x =时,有最大值为.当=1x -时,有最小值为2.当=1x -时,有最大值为.在下列事件中,随机事件是().投掷一枚质地均匀的骰子,向上一面的点数不超过6.从装满红球的袋子中随机摸出一个球,是白球.通常情况下,自来水在10℃结冰.投掷一枚质地均匀的骰子,向上一面的点数为2.如图,正方形ABCD 的边长为6,且顶点B ,C ,D 都在)A .3B .6326.北京2022年冬奥会以后,冰雪运动的热度持续.某地滑雪场第一周接待游客人,第三周接待游客8470人.设该地滑雪场游客人数的周平均增长率为A .2m 10π8.如图,O 是ABC 半径为2,6AB =,A .123B .24二、填空题9.将抛物线22y x =向下平移310.若一元二次方程261x x +-为.11.为了解某品种小麦的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550发芽种子个数m44415.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分,铅球出手位置的高度为5m 3,当铅球行进的水平距离为y (单位:m )与水平距离过原点的水平直线为式为2112y x =-.若以过出手点且与地面垂直的直线为建立如图3所示的平面直角坐标系16.某单位承担了一项施工任务,完成该任务共需施工要求如下:①先完成工序A ,B ,②完成工序A 后方可进行工序③完成工序D 后方可进行工序④完成各道工序所需时间如下表所示:工序AB三、解答题作法:①作边AB 的垂直平分线,交AB ②以点O 为圆心,OA 长为半径作圆.则O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:连接OC .由作图可知,12OB OA AB ==∴点B 在O 上,在Rt ACB △中,90ACB ∠=︒,12OC ∴=()(填推理依据).OC OA ∴=.∴点C 在O 上.ACB ∴ 的三个顶点都在O 上.19.在平面直角坐标系xOy 中,二次函数(3)当03x <<时,对于x 的每一个值,都有2kx x bx >+,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A ,B ,C ,D ,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是O 的弦,半径OD AB ⊥于点C ,若16AB =,2CD =,求O 的半径的长.22.已知关于x 的一元二次方程22(21)20x m x m -++-=.(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),3OA =,4OB =,且150AOB ∠=︒,线段OA 关于直线OB 对称的线段为OA ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段OA '、OB ';(2)将线段OB 绕点O 逆时针旋转()4590αα︒<<︒得到线段OC ',连接A C '.若5A C ''=,(1)求证:直线DE 是O (2)若30BAC ∠=︒,BC =25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t 分钟,农药的去除率为t (分)5810()1%y 305057方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x ()%x 257(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为______分钟;(3)利用方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度%x 中,x 的取值范围可以是_____.26.在平面直角坐标系xOy 中,点(2,)c 在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知()11,M x y ,()22,N x y 是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60︒得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE BC ⊥;(2)当BD CD ≠时(图2中BD CD <,图3中BD CD >),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形.②猜想AFE ∠的大小,并证明.(1)在点1(3,0)P ,2(1,2)P -,3(4,1)P -(2)若P 是直线3y x =-+上的动点,(3)已知点(0,3)A ,A 的半径为1线36y x =+的“和距离”d 的取值范围.。
九年级上学期期末考试数学试卷(附答案)
九年级上学期期末考试数学试卷(附答案)一.单选题。
(每小题4分,共40分)1.﹣5的相反数是()A.15B.﹣15C.5D.﹣52.如图是一根空心方管,它的左视图是()A. B. C. D.3.一个数是8600,这个数用科学计数法表示8600为()A.8.6×102B.8.6×103C.86×102D.0.86×1044.下列各式计算正确的是()A.3x+3y=6xyB.4xy2-5xy2=﹣1C.﹣2(x-3)=﹣2x+6D.2a+a=3a25.把20个除颜色外完全相同的小球,放在一个不透明的盒子中,其中有m个白球,做大量重复试验,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子里,最终发现摸到白球的频率稳定在35%左右,则m的值大约是()A.7B.8C.9D.106.关于菱形一定具有的性质,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.邻边相等D.对角线相等7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,下列关系正确的是()A.sinA=BCAC B.tanB=ACABC.cosA=CDACD.sinB=CDBC(第7题图)(第8题图)(第9题图)8.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,AC⊥x轴于点C,BD⊥x轴于点D,连接OA ,BC ,若点C (1,0),BD=2,△BCD 面积为3,则△AOC 的面积是( ) A.2 B.3 C.4 D.59.如图,已知点C ,D 是以AB 为直径的半圆O 的三等分点,圆的半径为1,则图中阴影部分面积是( )A.16π B.316π C.124π D.112π+√3410.如图,二次函数y=ax 2+bx+c 的图象的顶点在第一象限,且过点(0,1)和(﹣1,0)下列结论:①ab >0,②b 2-4ac >0,③0<a+b+c <2,④0<b <1,⑤当y >﹣1时,x >0,其中正确结论个数是( )A.2个B.3个C.4个D.5个(第10题图)二.填空题。
2023-2024学年广东省广州市海珠区九年级(上)期末数学试卷及答案解析
2023-2024学年广东省广州市海珠区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.2.(3分)若x1、x2是一元二次方程x2﹣2x﹣4=0的两个根,则x1+x2的值是()A.2B.﹣2C.﹣4D.43.(3分)关于二次函数y=﹣x2+6,下列说法正确的是()A.开口向上B.对称轴是y轴C.有最小值D.当x<0时,函数y随x的增大而减小4.(3分)如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC 与△DEF的面积之比是()A.1:2B.1:4C.1:3D.1:95.(3分)用配方法解方程x2﹣4x﹣1=0,方程应变形为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5 6.(3分)在Rt△ABC中,∠ACB=90°,AC=5,AB=10,以点C为圆心,BC为半径作⊙C,则点A与⊙C的位置关系是()A.点A在⊙C内B.点A在⊙C上C.点A在⊙C外D.无法确定7.(3分)如图,在高3米,宽5米的矩形墙面上有一块长方形装饰板(图中阴影部分),装饰板的上面和左右两边都留有宽度相同为x米的空白墙面.若矩形装饰板的面积为4.5平方米,则以下方程正确的是()A.(3﹣x)(5﹣x)=4.5B.(3﹣x)(5﹣2x)=4.5C.(3﹣2x)(5﹣x)=4.5D.(3﹣2x)(5﹣2x)=4.58.(3分)把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°9.(3分)如图,Rt△ABC的内切圆分别与AB、BC相切于D点、E点,若BD=1,AD=4,则CE=()A.B.C.D.10.(3分)如图,在矩形ABCD中,AB=6,BC=8,点E是AD边上的动点,点M是点A 关于直线BE的对称点,连接MD,则MD的最小值是()A.6B.5C.4D.3二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,⊙O是△ABC的外接圆,AC为⊙O直径,若∠AOB=50°,那么∠C =.12.(3分)如图,在直径为10cm的⊙O中,AB=8cm,弦OC⊥AB于点C,则OC等于_____cm.13.(3分)若a是一元二次方程x2﹣2x﹣1012=0的一根,则4a﹣2a2的值为.14.(3分)已知圆锥的侧面积为20π,底面半径为4,则圆锥的高是.15.(3分)一个同学想测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长为0.5米,同时测量旗杆AD的影长时由于影子不全落在地面上,他测得地面上的影长AB为5米,留在墙上的影高BC为2米,通过计算他得出旗杆AD的高度是_____米.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=12,AC=6,点D在AB边上,且AD=3,点E在直角边上,直线DE把Rt△ABC分成两部分,若其中一部分与原Rt△ABC 相似,则∠ADE=.三、解答题(本大题有9个小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.(6分)解方程:(1)(x﹣2)2=9;(2)x(x+2)=3(x+2).18.(6分)利用图中的网格线(最小的正方形的边长为1)画图.(1)画出△A1B1C1,使它与△ABC是关于原点O的中心对称;(2)将△ABC绕点A逆时针旋转90°得到△AB2C2.19.(6分)二次函数y=x2+bx+c的图象如图所示,其中图象与x轴交于点A和点B.(1)求此二次函数的解析式;(2)直接写出不等式x2+bx+c>0的解集.20.(6分)已知关于x的一元二次方程kx2﹣2x﹣4=0有两个不等的实数根.(1)求k的取值范围;(2)若方程有一个根为2,求方程的另一根.21.(6分)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,AC与⊙O相交于点D.(1)求证:△CBD∽△CAB;(2)若CD=2,AD=6,求CB的长度.22.(8分)某店销售一种环保建筑涂料,当每桶售价为300元时,月销售量为60桶,该店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当该涂料每桶售价每下降5元时,月销售量就会增加10桶,每售出1桶涂料共需支付厂家及其他费用200元.(1)当每桶售价是280元时,求此时该店的月销售量为多少桶?(2)求每桶降价多少元时,该店能获得最大月利润?最大月利润为多少元?23.(10分)如图,点C在以AB为直径的⊙O上,点D是的中点,连接AC,过点D作DE⊥AC交AC的延长线于点E.延长ED交AB的延长线于点F,且AB=BF.(1)求证:DE是⊙O的切线;(2)设DE=x,AE=y,求y与x的数量关系式.24.(12分)在Rt△ABC中,∠C=90°,分别取BC、AC的中点并且同时将这两个中点绕点C按顺时针方向旋转依次得到点D、E,记旋转角为a(0°<a<90°),连接AE、CD、BD,如图所示.(1)当BC=AC时,求证:∠DBC=∠EAC;(2)若BC=AC=4,当B,D,E三点共线时,求线段BE的长;(3)当∠ABC=30°时,延长BD交AE于点H,连接CH,探究线段BH,AH,CH之间的数量关系并说明理由.25.(12分)已知二次函数,顶点为P,且二次函数的图象恒过两定点A、B(点A在点B的左侧).(1)当m=﹣1时,求该二次函数的顶点坐标;(2)在(1)的条件下,二次函数y1的图象上是否存在一点D,使得∠ADB=90°,若存在,求出点D的横坐标;若不存在,请说明理由;(3)将点P先沿水平方向平移m个单位,再向下移动(|4m|+5)个单位得到P',若二次函数经过点P'(h,k),在二次函数y2的图象上存在点Q,使得QA+QB 的最小值为4,求m的取值范围.2023-2024学年广东省广州市海珠区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项B、C、D都能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.选项A不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.故选:A.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.【分析】直接根据根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=2.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.3.【分析】根据二次函数的性质逐一分析即可.【解答】解:∵二次函数y=﹣x2+6,∴由a=﹣1可知开口向下,对称轴为y轴,顶点为(0,6),∴函数有最大值6,当x<0时,函数y随x的增大而增大,故选项B正确,故选:B.【点评】本题考查二次函数的性质,熟知二次函数的性质是关键.4.【分析】根据位似图形的概念得到△ABC∽△DEF,BC∥EF,得出△OBC∽△OEF,根据相似三角形的面积比等于相似比的平方计算得到答案.【解答】解:∵△ABC与△DEF位似,∴△ABC∽△DEF,BC∥EF,∴△OBC∽△OEF,∴==,∴△ABC与△DEF的面积之比为1:4,故选:B.【点评】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.5.【分析】常数项移到方程的右边后,两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2﹣4x=1,∴x2﹣4x+4=1+4,即(x﹣2)2=5,故选:D.【点评】本题主要考查配方法解一元二次方程的能力,熟练掌握完全平方公式和配方法的基本步骤是解题的关键.6.【分析】若⊙O的半径为r,一点P和圆心O的距离为d,当d=r时,点P在⊙O上;当d<r时,点P在⊙O内;当d>r时,点P在⊙O外.求出半径BC,与AC进行比较即可判断.【解答】解:∵∠ACB=90°,AC=5,AB=10,∴BC==5,∵AC=5<5,∴点A在⊙C内,故选:A.【点评】本题考查点与圆的位置关系,熟知与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r是解题的关键.7.【分析】根据长方形装饰板的面积为4.5平方米,列一元二次方程即可.【解答】解:根据题意,得(5﹣2x)(3﹣x)=4.5,故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,理解题意是解题的关键.8.【分析】根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【解答】解:五角星可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360°÷5=72°,故选:B.【点评】此题主要考查了旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.9.【分析】设⊙O与AC相切于点F,连接OD、OE、OF,由切线的性质得OD⊥AB,OE ⊥BC,OF⊥AC,可证明四边形OEBD是正方形,则BE=BD=OD=OE=OF=1,而CF=CE,AF=AD=4,则AB=5,BC=CE+1,AC=CF+4=CE+4,所以×5×1+,求得CE=,于是得到问题(CE+1)×1+(CE+4)×1=×5(CE+1)=S△ABC的答案.【解答】解:设⊙O与AC相切于点F,连接OD、OE、OF,∵Rt△ABC的内切圆分别与AB、BC相切于D点、E点,∴OD⊥AB,OE⊥BC,OF⊥AC,CF=CE,∴∠ODB=∠OEB=∠EBD=90°,∴四边形OEBD是矩形,∵OD=OE,∴四边形OEBD是正方形,∵BD=1,AD=4,∴BE=BD=OD=OE=OF=1,AF=AD=4,AB=BD+AD=1+4=5,∴BC=CE+1,AC=CF+4=CE+4,+S△BOC+S△AOC=S△ABC,∠ABC=90°,∵S△AOB∴×5×1+(CE+1)×1+(CE+4)×1=×5(CE+1),解得CE=,故选:D.【点评】此题重点考查三角形的内切圆的定义、切线的性质、切线长定理、正方形的判定、根据面积等式求线段的长度等知识与方法,正确地作出所需要的辅助线是解题的关键.10.【分析】连接BD,以点B为圆心,BA为半径作圆,交BD于点M,则M即为所求.【解答】解:连接BD,以点B为圆心,BA为半径作圆,交BD于点M,∵四边形ABCD为矩形,∴∠A=90°,∴BD==10,∵点A和点M关于BE对称,∴AB=BM=6,∴DM=BD﹣BM=10﹣6=4.故DM的最小值为4.故选:C.【点评】本题考查了矩形的性质和轴对称的性质,解题的关键是确定点M的位置.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】根据圆周角定理解答即可.【解答】解:由圆周角定理得:∠C=∠AOB=×50°=25°,故答案为:25°.【点评】本题考查的是三角形的外接圆与外心,熟记圆周角定理是解题的关键.12.【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【解答】解:连接OA,如图:∵AB=8cm,OC⊥AB,∴AC=AB=4cm,∵直径为10cm,∴AC=10×=5(cm),在Rt△OAC中,OC==3(cm),故答案为:3.【点评】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.13.【分析】把x=a代入方程,求出2a﹣a2=﹣1012,可得结论.【解答】解:∵a是一元二次方程x2﹣2x﹣1012=0的一根,∴a2﹣2a﹣1012=0,∴2a﹣a2=﹣1012,∴4a﹣2a2=﹣2024.【点评】本题考查一元二次方程的解,解题的关键是理解方程解的定义.14.【分析】根据扇形面积公式求出母线长,根据勾股定理求出圆锥的高.【解答】解:设圆锥的母线长为R,则×2π×4×R=20π,解得:R=5,由勾股定理得:圆锥的高为:=3,故答案为:3.【点评】本题考查了圆锥的计算,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.【分析】过C作CE⊥AD于E,连接CD,首先证明四边形ABCE为矩形,可得BC=AE =2,设AD=x,列比例式解答即可.【解答】解:如图,过C作CE⊥AD于E,∵AD⊥AB,BC⊥AB,∴∠AEC=∠EAB=∠CBA=90°,∴四边形ABCE是矩形,∴AE=BC=2m,设AD=x m,则DE=(x﹣2)m,∴,解得x=12,即旗杆AD的高度是12米.故答案为:12.【点评】本题考查相似三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用物长:影长=定值,构建方程解决问题,属于中考常考题型.16.【分析】首先解Rt△ABC,得出∠B=30°,∠A=60°.然后分三种情况进行讨论:①如图1,过D作DE∥BC交AC于E,则△ADE∽△ABC;②如图2,过D作DE∥AC交BC于E,则△BDE∽△BAC;③如图3,过D作DE⊥AB交AC于E,则△ADE∽△ACB,分别求出∠ADE即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=12,AC=6,∴sin B===,∴∠B=30°,∠A=60°.分三种情况:①如图1,过D作DE∥BC交AC于E,则△ADE∽△ABC,∴∠ADE=∠B=30°;②如图2,过D作DE∥AC交BC于E,则△BDE∽△BAC,∴∠ADE=180°﹣∠A=120°;③如图3,过D作DE⊥AB交AC于E,则△ADE∽△ACB,∴∠ADE=∠C=90°;综上所述,∠ADE=30°或120°或90°.故答案为:30°或120°或90°.【点评】本题考查了相似三角形的判定与性质,解直角三角形,进行分类讨论是解题的关键.三、解答题(本大题有9个小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.【分析】(1)两边直接开平方可得答案;(2)先移项,再利用提公因式法将方程的左边因式分解后求解可得.【解答】解:(1)∵(x﹣2)2=9,∴x﹣2=±3,解得x1=5,x2=﹣1;(2)∵x(x+2)=3(x+2),∴x(x+2)﹣3(x+2)=0,则(x+2)(x﹣3)=0,∴x+2=0或x﹣3=0,解得x1=﹣2,x2=3.【点评】本题主要考查解一元二次方程,解一元二次方程的常用方法有直接开平方法、公式法、因式分解法,解题的关键是根据方程的特点选择合适、简便的方法求解.18.【分析】(1)利用中心对称变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出B,C的对应点B2,C2即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求.【点评】本题考查作图﹣旋转变换,解题的关键是掌握旋转变换,中心对称变换的性质.19.【分析】(1)由图可知,二次函数的图象过点A(﹣1,0),B(3,0),利用待定系数法求二次函数解析式即可.(2)结合图象可得答案.【解答】解:(1)由图可知,二次函数的图象过点A(﹣1,0),B(3,0),将A(﹣1,0),B(3,0)代入y=x2+bx+c,得,解得,∴二次函数的解析式为y=x2﹣2x﹣3.(2)由图可得,不等式x2+bx+c>0的解集为x<﹣1或x>3.【点评】本题考查二次函数与不等式(组)、待定系数法求二次函数解析式,熟练掌握待定系数法求二次函数解析式、二次函数的图象与性质是解答本题的关键.20.【分析】(1)根据不等式组求解即可;(2)求出求出k,再解方程求出另一个根.【解答】解:(1)由题意,∴k>﹣且k≠0;(2)∵方程有一个根为2,∴4k﹣4﹣4=0,∴k=2,∴方程为2x2﹣2x﹣4=0,即x2﹣x﹣2=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x=2或﹣1,∴另一个根为﹣1.【点评】本题考查根与系数关系,根的判别式等知识,解题的关键是转化利用转化的思想解决问题.21.【分析】(1)由AB是⊙O的直径,得∠ADB=∠BDC=90°,由切线的性质得BC⊥AB,则∠ABC=90°,所以∠BDC=∠ABC,而∠C=∠C,即可根据“两角分别相等的两个三角形相似”证明△CBD∽△CAB;(2)由CD=2,AD=6,得CA=8,由相似三角形的性质得=,所以CB==4.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与⊙O相切于点B,∴BC⊥AB,∴∠ABC=90°,∴∠BDC=∠ABC,∵∠C=∠C,∴△CBD∽△CAB.(2)解:∵CD=2,AD=6,∴CA=CD+AD=2+6=8,∵△CBD∽△CAB,∴=,∴CB===4,∴CB的长度是4.【点评】此题重点考查直径所对的圆周角等于90°、切线的性质定理、相似三角形的判定与性质等知识,推导出∠BDC=∠ABC是解题的关键.22.【分析】(1)依据题意,先计算出降价了:300﹣280=20(元),进而由月销售了增加了×10=40(桶),再列式计算可以得解;(2)依据题意,设每桶降价了x元,再列出该店这个月的利润w=[300﹣x﹣200](60+×10)=﹣2x2+140x+6000=﹣2(x﹣35)2+8450,然后根据二次函数的性质进行判断可以得解.【解答】解:(1)由题意,降价了:300﹣280=20(元),∴月销售了增加了×10=40(桶).∴此时该店的月销售量为60+40=100(桶).(2)由题意,设每桶降价了x元,∴该店这个月的利润w=[300﹣x﹣200](60+×10)=﹣2x2+140x+6000=﹣2(x﹣35)2+8450.∴当x=35时,该店能获得最大月利润,最大月利润为8450元.答:每桶降价35元时,该店能获得最大月利润,最大月利润为8450元.【点评】本题主要考查了二次函数的应用,解题时要能找出相等关系:利润=销售价﹣成本价.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.23.【分析】(1)连接OD,AD,利用圆周角定理,同圆的半径相等,等腰三角形的性质,平行线的判定与性质与垂直的定义得到OD⊥DE,利用圆的切线的判定定理解答即可得出结论;(2)利用相似三角形的判定与性质得到分别用x,y的代数式表示出的线段AF,EF的长度,再利用勾股定理解答即可.【解答】(1)证明:连接OD,AD,如图,∵点D是的中点,∴,∴∠CAD=∠BAD,∵OA=OD,∴∠CAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵AB=BF,OA=OB,∴FB=2OA=2OB,∴.∵OD∥AE,∴△ODF∽△AEF,∴=,∴,,∴OD=y,FD=3x,∴OA=OB=y,EF=ED+FD=4x.∴AF=4OA=3y.∵AE2+EF2=AF2,∴y2+(4x)2=(3y)2,∴y2=2x2,∵x>0,y>0,∴y=x.【点评】本题主要考查了圆的有关性质,圆周角定理,平行线的判定与性质,直角三角形的性质,勾股定理.相似三角形的判定与性质,连接经过切点的半径是解决此类问题常添加的辅助线和解题的关键.24.【分析】(1)先证∠C=∠DCE=90°,再证∠ACE=∠BCD,从而证明△BCD≌△ACE 即可;(2)由题意可知,CD=CE=BC=2,∠DCE=∠ACB=90°,CF⊥BE,进而根据勾股定理得DE==2,再根据三线合一及直角三角形的性质可得DF=EF=CF=,最后利用勾股定理即可得解;(3)过点C作CG⊥CH交BH于点G,证△BCD∽△ACE,得∠CBG=∠CAH,又∠BCG=∠ACH,得证△BCG∽△ACH,得BG=AH,最后证△ACB∽△HCG,得∠HGC =∠ABC=30°,利用直角三角形的性质即可得解.【解答】(1)证明:在Rt△ABC中,∠C=90°,BC、AC的中点同时绕点C按顺时针方向旋转依次得到点D、E,∴∠DCE=90°,又∵BC=AC,∴CD=CE,∵∠ACE=∠DCE﹣∠ACD=90°﹣∠ACD,∠BCD=∠ACB﹣∠ACD=90°﹣∠ACD,∴∠ACE=∠BCD,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠DBC=∠EAC;(2)解:当旋转角为α(0°<α<90°),B、D、E三点共线时,如图,过点C作BE 的垂线交BE于F,由题意可知,CD=CE=BC=2,∠DCE=∠ACB=90°,CF⊥BE,∴DE==2,DF=EF,∵CF⊥BE,∴DF=EF=CF=,∴在Rt△BFC中,BF=,∴BE=BF+EF=+;(3)解:BH=AH+2CH,理由如下:过点C作CG⊥CH交BH于点G,∴∠ACB=∠GCH=90°,∠BCG=∠ACB﹣∠ACG,∠ACH=∠GCH﹣∠ACG,∴∠BCG=∠ACH,分别取BC、AC的中点并且同时将这两个中点绕点C按顺时针方向旋转依次得到点D、E,记旋转角为α(0°<α<90°),∴∠BCD=∠ACE,CE=AC,CD=BC,∵,∴△BCD∽△ACE,∴∠CBG=∠CAH,∵BCG=∠ACH,∴△BCG∽△ACH,∴,∴,BG=AH,∵∠ACB=∠GCH=90°,∴△ACB∽△HCG,∴∠HGC=∠ABC=30°,∴GH=2CH,∴BH=BG+GH=AH+2CH.【点评】本题主要考查了等腰三角形的判定及性质,相似三角形的判定及性质,勾股定理,直角三角形的性质,旋转的性质,全等三角形的判定及性质等,熟练掌握相似三角形的判定及性质,勾股定理,直角三角形的性质,旋转的性质以及全等三角形的判定及性质是解题的关键.25.【分析】(1)把m=﹣1代入,再求顶点坐标;(2)根据函数特征,将函数解析式变形为y1=m(x﹣5)(x﹣1)+3,由二次函数的图象恒过两定点A、B,确定点A,B坐标分别为(1,3),(5,3),再设点D坐标为(x,y),由题意得到AD2+BD2=AB2,代入得(x﹣1)2+(y﹣3)2+(x﹣1)2+(y﹣3)2=(5﹣1)2解出x即可;(3)由平移得到P′(3﹣m,﹣2),从而得到,由点Q为抛物线的动点,则可知,当A,B,Q三点共线时,QA+QB有最小值4,则点Q在线段AB上,分别把点A,B坐标代入,求出m的临界值得到结果.【解答】解:(1)当m=﹣1时,,故二次函数顶点坐标为:(3,7);(2)存在一点D,使得∠ADB=90°,理由如下:由整理得y1=m(x﹣5)(x﹣1)+3,∵二次函数的图象恒过两定点A、B,∴当x=1或5时,函数的值为3,∴点A、B坐标分别为(1,3),(5,3),设点D坐标为(x,y),则当AD2+BD2=AB2时,∠ADB=90°,(x﹣1)2+(y﹣3)2+(x﹣1)2+(y﹣3)2=(5﹣1)2,整理得x2﹣6x+5+(y﹣3)2=0,∵,∴x2﹣6x+5+(﹣x2+6x﹣5)2=0,即(x2﹣6x+5)(x2﹣6x+6)=0,∴x2﹣6x+5=0或x2﹣6x+6=0,∴解得x1=5(舍去),x2=1(舍去),,,故点D横坐标为或;(3)由题可知,点P坐标为(3,3﹣4m),由点P先沿水平方向平移m个单位,再向下移动(|4m|+5)个单位,故点P′横坐标h=3+|m|=3﹣m,纵坐标k=3﹣4m﹣(|4m|+5)=3﹣4m﹣(﹣4m+5)=﹣2,∴P′(3﹣m,﹣2),∴二次函数,由Q为抛物线上动点,则可知,当A,B,Q三点共线时,QA+QB有最小值,由QA+QB最小值为4,A,B坐标分别为(1,3),(5,3),∴当点Q在线段AB上时QA+QB的最小值为4,∴当点A(1,3)时,3=(1﹣3+m)2﹣2,解得(舍去)或,∴当点A(5,3)时,3=(5﹣3+m)2﹣2,解得(舍去)或,故m的取值范围为:.【点评】本题考查了二次函数的顶点式以及二次函数背景下的几何综合问题,解答的关键是根据数形结合思想,构造方程求解。
九年级初三数学期末考试卷
一、选择题(每题5分,共50分)1. 若m和n是实数,且m + n = 0,则下列等式中正确的是()A. m² = n²B. m² > n²C. m > nD. m < n2. 已知等差数列{an}中,a1 = 2,d = 3,则第10项a10等于()A. 27B. 30C. 33D. 363. 已知函数f(x) = 2x - 1,则f(-3)的值为()A. -7B. -5C. 1D. 34. 下列哪个不是一元二次方程?()A. x² + 2x + 1 = 0B. x² - 3x + 4 = 0C. x³ + 2x² - 3x - 6 = 0D. 2x² - 3x + 1 = 05. 已知三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°6. 若等比数列{an}中,a1 = 2,q = 3,则第5项a5等于()A. 18B. 27C. 36D. 547. 下列哪个不是等差数列?()A. 1, 4, 7, 10, ...B. 1, 3, 5, 7, ...C. 1, 2, 4, 8, ...D. 1, 2, 3, 4, ...8. 已知函数f(x) = x² - 4x + 4,则f(2)的值为()A. 0B. 2C. 4D. 89. 若等差数列{an}中,a1 = 3,d = -2,则第10项a10等于()A. -17B. -15C. -13D. -1110. 下列哪个不是一元二次方程的解?()A. x = 1B. x = 2C. x = -3D. x = 0二、填空题(每题5分,共50分)1. 若x² - 5x + 6 = 0,则x的值为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B ' A '
B C A 第10题图
2012-2013学年第一学期
九年级数学期末试卷
A 卷(100分)
一、选择:(每小题3分,共30分)
1.下面的图形中,是中心对称图形的是 ( )
2.方程022=-x x 的根是 ( )
A .2=x
B .2-=x
C .01=x ,22=x
D .01=x ,22-=x 3.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是 ( )
A .12
B .13
C .14
D .15
4.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.( )
A .4个
B .3个
C . 2个
D . 1个
5.已知,如图,AB 是⊙O 的直径,CD 是弦,AB ⊥CD 于点E, 若AB=10,CD=6,则BE 的长是 ( ) A .4 B.3 C.2 D.1
6. 如果圆锥的底面半径是3,高为4,那么它的侧面积是 ( )
A.12πcm 2
B.15πcm 2
C.15 cm 2
D.24πcm 2
7. 已知两圆的半径R 、r 分别为方程0652
=+-x x 的两根,两圆的圆圆心距为1,
则两圆的位置关系是 ( ) A .外离 B .内切 C .相交 D .外切 8.如图,PA 、PB 是⊙O 的切线,A 、B 是切点,∠P =600,PA=2, ⊙O 的直径等于
( )
A .
B .
C .
D .
(第4题) B O
P A 第5题 第8题
23.
3A 43
.3
B C . 2 D.1 9. 正三角形的内切圆半径为1,那么这个正三角形的边长为 ( )
A .2
B .3
C .3
D .23
10.如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针 方向旋转到C B A ''的位置.若AC=15cm 那么顶点A 从开始到结束所经过的路 径长为 ( ) A .10πcm B .103πcm C .15πcm D .20πcm 二、填空:(每小题4分,共32分)
11函数y =x -2+
31
-x 中自变量x 的取值范围是 。
12. 分解因式:4x 2
–1=
13. 上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 可
列方程
14.关于x 的一元二次方程
0433)12222=-+++-m m x m x m (有一个根为0,则m 的值为 。
15.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P= 40°,则∠BAC= .
(第16题图)
16、如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是 17.已知一元二次方程x 2–6x –5=0两根为a 、b ,
则 b
a 1
1+ 的值是
18、若最简根式b a a +3与b a 2+是同类二次根式,则ab= . 三、简答题:(共38分)
1、作图题(4分×2=8分,不写做法,保留做图痕迹。
) (1)把△ABC 绕O 点顺时针旋转1200(4分) (2)做△A 1B 1C 1的外接圆(4分)
(第15题
O
C
B
A
P
A
O
C (第1题图)
B 1 (第2题图) C
2、解下列关于x 方程:(8分)
(1)x 2-7x+6=0 (3分) (2)x 2-2x+1-k(x-1)=0 (5分)
3.(6分) 有四张背面相同的纸牌A 、B 、C 、D ,其正面分别画有四个不同的几何图形(如图),小华将这四张牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张 (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A 、B 、C 、D 表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
4. (8分) 如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明:
A
C
D
E F
5(8分)如图,一条公路的转弯处是一段圆弧(图中的弧AB ),点O 是这段圆弧的圆心。
AB=140m ,C 是弧AB 上一点,O C ⊥AB ,垂足为D ,CD=10m ,求这段圆弧的半径。
A
C D
O B
(第5题图)
B 卷(50分)
1.(8分)有一盒刚打开的“兰州”牌香烟,图(1)是它的横截面(矩形ABCD ),
已知每支香烟底面圆的直径是8mm .(1) 矩形ABCD 的长AB= mm ; (2)利用图15(2)求矩形ABCD 的宽AD .(3≈1.73,结果精确到0.1mm )
2.(10分)先化简,后求值:
(44222-++-x x x x )÷4
1
2-x 其中x=-3 ,小玲做题时把“x =-3”错抄成了“x=3”,但她计算结果也是正确的,请你解释这是怎么回事。
(1) O 1
O 2
O 3
(2)
3.(10分)无论m为何值时,方程x2-2mx-2m-4=0总有两个不相等的实数根吗?为什么?
4.(10分)某公园在一块长40米,宽26米的矩形地面ABCD上修建三条同样宽的通道(如图),使其中两条与AB平行,另一条与AB垂直,这三条通道把ABCD 分割成面积均为144平方米的矩形小块,分别种上六色花草.求通道的宽.
D
C
5.(12分)一只狗用皮带系在10×10的正方形狗窝的一角上,皮带长为14,(1)画出狗能活动的范围,
(2求狗能活动的范围面积是多少?。