概率论与数理统计几种重要的分布

合集下载

概率论中几种具有可加性的分布及其关系

概率论中几种具有可加性的分布及其关系

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3 正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致谢 (13)概率论中几种具有可加性的分布及其关系概率论中几种具有可加性的分布及其关系摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数Several Kinds of Probability Dstribution and its Relationshipwith AdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on,has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k (1-p )kn -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是概率论中几种具有可加性的分布及其关系kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i ki n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑m n k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型. 1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示: 2,1,0,!)(===-k e k k P kλλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k eek kE k k k k11)!1(!)(.又因, λλλλλ-+∞=-+∞=∑∑-==e k kek kE k kkk 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P 证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(2121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ概率论中几种具有可加性的分布及其关系),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u ut π1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证.对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π因被积函数2/2)(x xe x h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有).,(~222121σσμμ+++N Y X证明 知Y X ,服从于正态分布,且它们的密度函数分别是).2exp(),2exp(22222211tt i t t i Y X σμϕσμϕ-=-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ=+.)()(exp 2222121⎥⎦⎤⎢⎣⎡+-+=t t i σσμμ这正是数学期望为,21μμ+方差为2221σσ+的正态分布的特征函数,即证!我们同样可以使用连续场合的卷积公式进行证明,详见文献[5],此处不再赘述. 1.4 伽玛分布在讨论伽玛分布之前,我们先来看一下伽玛函数:我们称dx e x x -+∞-⎰=Γ01)(αα )0(>α为伽玛函数,α为其参数.它的性质如下:①;)21(,1)1(π=Γ=Γ②).()1(αααΓ=+Γα取自然数n 的时候,有 !.)()1(n n n n =Γ=+Γ 1.4.1 伽玛分布的定义定义1.4 如果随机变量X 的密度函数为⎪⎩⎪⎨⎧<≥Γ=--,0,0;0,)()(1x x e x x p xλαααλ 就称作X 服从伽玛分布,记为),,(~λαGa X 且λα,的值均大于0.α为伽玛分布的形状参数,λ为其尺度参数.当10<<α时,)(x p 为严格单调递减的函数,在0=x 处取得奇异点;当1=α时,)(x p 亦严格单调减,且0=x 时有;)0(λ=p 当21≤<α时,)(x p 为单峰函数,先上凸然后下凸;当2>α时,先下凸再上凸,最后下凸.而且随着α的增大,)(x p 逐渐接近于正态分布的密度函数.1.4.2 伽玛分布的可加性定理 1.4.1 设随机变量),,(~),,(~21λαλαGa Y Ga X 且X 和Y 彼此独立,则).,(~21λαα++Ga Y X证明 知 ,)1()(,)1()(21ααλϕλϕ---=-=itt it t Y X且X 与Y 彼此独立,所以,)1()()()()(21ααλϕϕϕ+-+-==itt t t Y X Y X此即为)(21αα+Ga 的特征函数,根据惟一性定理则可知).,(~21λαα++Ga Y X 结论得证!概率论中几种具有可加性的分布及其关系如正态分布,对于伽玛分布,我们同样可以利用连续场合的卷积公式对其可加性进行证明,详见文献[5]; 1.5 柯西分布[4]1.5.1 柯西分布的密度函数柯西分布是几个常见的连续分布之一.它的密度函数为).,(,)(1),,(22+∞-∞∈-+=x x x p μλλπμλ0,1==μλ时的柯西分布密度函数称为标准柯西分布密度函数,即).,(,111)(2+∞-∞∈+=x xx p π 为方便起见,往后我们分别记这两类密度函数为),(μλp 和).1,0(p 对于柯西分布的数学期望和方差,因.)(1),,(22+∞=-+⋅=⎰⎰+∞∞-+∞∞-dx x x dx x p x μλλπμλ 所以dx x p x ),,(μλ⎰+∞∞-不收敛,故柯西分布的数学期望与方差均不存在.1.5.2 柯西分布的可加性定理 1.5.1 设随机变量),,(~),,(~2211μλμλp Y p X 且Y X ,彼此独立,则有).,(~2121μμλλ+++p Y X证明 因Y X ,均服从于柯西分布,且Y X ,的特征函数分别是 ,)(11tt i X e t λμϕ-=.)(22tt i Y et λμϕ-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ⋅=+.)()(2121tt i e λλμμ+-+=这恰好就是参数为2121,μμλλ++的柯西分布的特征函数,所以).,(~2121μμλλ+++p Y X 即证! 1.6 卡方分布(2χ分布)1.6.1卡方分布(2χ分布)的定义及密度函数定义 1.6[7] 设n X X X ⋅⋅⋅,,21独立同分布与标准正态分布分布),1,0(N 则称222212nX X X +⋅⋅⋅++=χ所服从的分布为自由度为n 的卡方分布,记为).(~22n χχ 卡方分布的密度函数为⎪⎪⎩⎪⎪⎨⎧≤>Γ=--.0,0;0,)2(21)(1222x x x e nx p n x n1.6.2 卡方分布可加性卡方分布密度函数的图像是一个只取非负值的偏态图像.它的图像随着自由度的增加而逐渐趋于对称,当自由度∞→n 时,其图像趋于正态分布的图像.这也从另一个侧面告诉我们,卡方分布是由其自由度决定的,不同的自由度对应了不同的卡方分布.由1.6.1,我们可以知道卡方分布即伽玛分布的一个特例,所以由伽玛分布的可加性我们易知卡方分布亦满足可加性定理,即定理1.6.1[5]设),(~),(~22221n m χχχχ且2221,χχ彼此独立,则有).(~22221n m ++χχχ 证明 由卡方分布的定义,设,,22221222222121n m m m m X X X X X X ++++⋅⋅⋅++=+⋅⋅⋅++=χχ 且,,,2,1),1,0(~n m i N X i +⋅⋅⋅=j i X X ,彼此独立.则有,,22221222212221n m m m m X X X X X X ++++⋅⋅⋅++++⋅⋅⋅++=+χχ从从卡方分布的定义,因此).(~22221n m ++χχχ即证!2 具有可加性的概率分布间的关系2.1 二项分布的泊松近似[4]当n 的取值很大时,二项分布),(p n B 的计算是令人头疼的.这里介绍了泊松分布的一个十分有用的特性,我们可利用泊松分布作为二项分布的一种特殊近似,即二项分布的泊松近似.下面我们来看泊松定理,当n 取值较大,而p 取值偏小的情况下使用泊松定理,可大大减小二项分布的计算量.定理 2.1[8](Possion 定理) 在n 重伯努利试验中,记事件A 在每次试验中发生的概率为,n p 它与试验发生的次数n 有关,若当0>n 时,有,λ→n np 即,lim λ=+∞→n n np 则对任意给定的k (k 为非负整数),有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n证明 设,n n np =λ则有,np nn λ=所以k n n k n k n kn n k n n k k n n n n p p ---+-⋅⋅⋅--=-⎪⎭⎫ ⎝⎛)1()(!)1()2)(1()1(λλ.)1(!)11()21)(11(k n n kn nk n k n n --⋅⋅--⋅⋅⋅--=λλ .)1()1(!)11()21)(11(k n n n kn nn k n k n n ---⋅⋅--⋅⋅⋅--=λλλ 由已知有,,lim λλ=+∞→n n 则对于给定的k 值,有;lim k kn n λλ=+∞→且+∞→n lim 1)11()21)(11(=--⋅⋅⋅--nk n n ; ;)1(lim )1(lim )(λλλλλ--⋅-+∞→+∞→=-=-e nnn nnnn nnn.1)1(lim =--+∞→k nn nλ所以有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n 即证!因Possion 定理的条件之一为,lim λ=+∞→n n np 所以在二项分布的计算中,若n 值很大,p的值却很小,且λ=np 的大小适中时(一般认为当,1.0,100≤≥p n 且10≤=np λ时),二概率论中几种具有可加性的分布及其关系项分布),(p n B 可以使用参数为λ的泊松分布来做近似,即有,2,1,0,!)1(⋅⋅⋅=≈-⎪⎭⎫ ⎝⎛--k e k p p np kk n n kn n k λ此即为二项分布),(p n B 的泊松近似,而且n 的值应尽可能的大,这样计算结果才能更精确.二项分布),(p n B 的泊松近似经常被用于稀有事件(即每次试验中事件发生的概率很小)的研究中,大量实例表明,一般情况下概率1.0<p 时,泊松近似非常好用,甚至n 的取值不必很大. 2.2 二项分布的正态近似定理 2.2[7](棣莫佛-拉普拉斯(De Laplace Moivre -)极限定理) 设随机变量),(~p n B X (⋅⋅⋅=<<,2,1,0,10n p ),则对任意的实数x ,有()).(211lim 2/2x dt e x p np np X P x t n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--+∞→π 证明 因随机变量X 服从二项分布),(p n B ,所以X 可看做是n 个相互独立的且服从于同一参数p 的两点分布的随机变量n X X X ,,,21⋅⋅⋅的和,即,1∑==ni i X X 而且⋅⋅⋅⋅⋅⋅=-==,2,1),1()(,)(i p p X Var p X E i i 根据Levy Lindeberg -中心极限定理,有).(21)1(lim 2/12x dt e x p np np X P x t n i i n Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤--⎰∑∞--=+∞→π 定理得证! De Laplace Moivre -中心极限定理说明,n 相当大时,服从二项分布),(p n B 的随机变量X 的概率的计算服从正态分布))1(,(p np np N -的随机变量的计算.也就是说,二项分布可以用正态分布来近似计算.比如k n kn k p p k X P --⎪⎭⎫ ⎝⎛==)1()(,在n 比较大的时候的计算量时十分大的.根据De Laplace Moivre -中心极限定理,因 )1(np np npX --近似服从于标准正态分布,或者说是X 近似服从于))1(,(p np np N -分布,也就是说k n k nk p p k X P --⎪⎭⎫⎝⎛==)1()(≈.)1()1(1)1(21)1(2)(2⎪⎪⎭⎫ ⎝⎛---=----p np np k p np ep np p np np x ϕπ 对于,)1()(k n kb k a n k p p b X a P -≤≤-⎪⎭⎫ ⎝⎛=≤≤∑有))1()1()1(()(2121p np npa p np np X p np np a P a X a P --≤--≤--=≤≤ ))1(())1((12p np npa p np np a --Φ---Φ≈ )(* 我们只需查一下标准正态分布表,就可以求出我们需要的相当精确的值.但是,当p 较大或者较小时近似效果可能差一些,利用公式时p 的值最好满足9.01.0≤≤p .另外,因二项分布是离散分布,正态分布是连续分布,所以在我们实际的应用中,为减小误差, 常常使用≈≤≤)(21a X a P ))1(5.0())1(5.0(12p np npa p np np a --+Φ---+Φ来替换)(*式.2.3 正态分布与泊松分布之间的关系[9]由上面的定理2.1和定理2.2我们可以知道,二项分布),(p n B 可以用泊松分布来做近似,同样也可以用正态分布来近似.所以,从某个方面来说,泊松分布与正态分布也具有某种近似的关系,首先我们来看特征函数的连续性定理.定理 2.3.1[11] 分布函数列{})(x F n 弱收敛于分布函数)(x F 的充分必要条件是它的相应的特征函数列{})(t n ϕ收敛于)(x F 的特征函数).(t ϕ定理2.3.2[11] 设随机变量),(~λλP X 则有.21lim 22dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-πλλλλ证明 知λX 服从泊松分布,则λX 的特征函数为.)()1(-=it e e t λλϕ所以λλμλλ-=X 的特征函数是.)(1t i e ti et λλλλψ-⎪⎪⎪⎭⎫ ⎝⎛-=对于任何一个,t 我们有.,1!212∞→⎪⎭⎫⎝⎛+-+=λλολλλt ite ti所以有.,212122∞→-→⎪⎭⎫⎝⎛⋅+-=-⎪⎪⎭⎫ ⎝⎛-λλολλλλt t t i eti因此对于任意的点列,∞→n λ有.)(lim 22t et n n -∞→=λλψ又知22t e-是标准正态分布)1,0(N 的特征函数,因此由连续性定理可以得到,.21lim 22dt ex X P xt n n nn ⎰∞--∞→=⎪⎪⎭⎫ ⎝⎛<-πλλλλ由n λ的任意性,所以有dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-2221lim πλλλλ成立.我们来看泊松分布的正态逼近. 定理2.3.3[8] 对于任意的,21a a <有,21!lim2122/⎰∑-<<-+∞→=a a x k k dx ek e βαλλπλ其中.,21λλβλλα-=-=a a 其证明见文献[8].由前可知,),(p n B 的正态近似与泊松近似的条件是不同的,当p 的取值特别小时,哪怕n 的值不是太大,用泊松分布来近似二项分布也是可以的.但在这种情况下,用正态近似却是不合理的.我们可以想象,若p 值很小,但n 的值也不是太大,则np =λ的值概率论中几种具有可加性的分布及其关系肯定不会很大,而由定理2.3.1,我们可知,此时正态分布就不可能很好的进行泊松近似.2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布之间的关系 首先来看正态分布与柯西分布的关系.定理 2.4.1 设).1,0(~),1,0(~N Y N X 且X 与Y 独立同分布,记Y X Z /=,则)1,0(~N Z .证明 易知Z 的取值范围是),(+∞-∞,所以对于),(+∞-∞∈z ,我们利用商的公式,可以得到⎰⎰∞+∞+∞-⎭⎬⎫⎩⎨⎧+-==0222)1(exp 1)()()(dt z t t dt t t p zt p z p Y X Z π .)1(12z +=π 这正是1,0==μλ时的柯西分布的密度函数,所以结论得证!正态分布与卡方分布的关系如下:定理2.4.2 若随机变量),1,0(~N X 则).1(~22χX定理证明见文献[10].这说明了标准正态分布与自由度为1的卡方分布之间的关系.若().,2,1,1,0~n i N X i ⋅⋅⋅=且i X 彼此独立,记222212nX X X +⋅⋅⋅++=χ,根据卡方分布的定义,我们知2χ服从自由度为n 的卡方分布.对于伽玛分布,当其参数21,2==λαn 时即为自由度为n 的卡方分布,记为).()21,2(2n n Ga χ=3 小结文章第一部分我们讨论了六种具有可加性的分布以及它们的简单性质,上述分布的可加性均可利用卷积公式或者特征函数进行证明.正态分布是概率论中最重要的分布,一般地,如果某个数量指标受到大量随机因素影响,而每一因素起的作用很小,则这个数量指标就近似服从正态分布.在第二部分里研究了二项分布、正态分布与泊松分布的关系,从此处我们可以知道二项分布不仅可以用泊松分布近似,同样也可由正态分布来近似. 参考文献[1] 罗建华.卷积公式的应用注记[J].中南林业科技大学学报,2007年,第27卷,第1期:152页. [2] 李贤平,沈崇生,陈子毅.概率论与数理统计[M].上海:复旦大学出版社,2003.5:221-231. [3]唐玲,徐怀.复合泊松分布和泊松过程的可加性[J].安徽建筑工业学院学报,2007.05:83页. [4] 郭彦.对柯西分布性质的进一步讨论[J].淮阴工学院学报,2005.05:12页.[5] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,2004.7:155-160; [6] 王梓坤.概率论基础及应用[M].北京:北京师范大学出版社,1996.3:61-64. [7] 宋立新.概率论与数理统计[M].北京:人民大学出版社,2003.9:176-177.[8]于洋.浅析二项分布、泊松分布和正态分布之间的关系[J].《企业科技与发展》,2008 年第20期:120页.[9]魏宗舒等.概率论与数理统计教程[M].北京:高等教育出版社,1983.10:208-211.[10]孟凡华.浅谈几种概率分布之间的相互关系[J].信阳农专学报,1992年第3卷第2期:63-65.[11]王淑云.特征函数及其应用[J].邯郸学院学报,2008年第18卷第3期:52-56.。

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)


x2 x2

~ F (1,1)
4. 正态总体的样本均值与样本方差的分布
正态总体 N ( , 2 ) 的样本均值和样本方差
有以下两个重要定理.
定理一
设 X1, X 2, , X n 是来自正态总体N (, 2 )
的样本, X 是样本均值, 则有
(1) X ~ N (, 2 / n).即 X ~ N (0,1)
样本, X , S 2 分别是样本均值和样本方差, 则有
X ~ t(n 1).
S/ n
证明
因为 X ~ N (0,1), / n
(n 1)S 2
2
~ 2(n 1),
且两者独立, 由 t 分布的定义知
X (n 1)S 2 ~ t(n 1). / n 2(n 1)
n
2
πn

1
n 2


1

t2 n


n1 2


,
t
t 分布的概率密度曲线如图
显然图形是关于
t 0对称的.
当 n 充分大时, 其
图形类似于标准正
态变量概率密度的
图形. 因为lim h(t)
1
t2
e 2,
n

所以当 n 足够大时 t 分布近似于 N (0,1) 分布,
1,
因为 1 F
~ F (n2 , n1 ),
所以
P
1 F

F1
(n2
,
n1
)

1


,
比较后得
F1
(n2 ,

概率论与数理统计知识点总结(详细)

概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21ΛΛ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结概率论与数理统计中有许多不同的概率分布,每个分布都具有不同的特征和应用。

下面是一些常见的概率分布的总结:1. 均匀分布(Uniform Distribution):在一个区间内的所有取值都具有相等的概率。

它可以是离散的(离散均匀分布)或连续的(连续均匀分布)。

2. 二项分布(Binomial Distribution):描述了在一系列独立的伯努利试验中成功次数的概率分布。

每个试验只有两个可能结果(成功和失败),并且成功的概率保持不变。

3. 泊松分布(Poisson Distribution):用于描述在给定时间或空间单位内发生某事件的次数的概率分布。

它通常用于模拟稀有事件的发生情况。

4. 正态分布(Normal Distribution):也称为高斯分布,是最常见的连续概率分布之一。

它具有钟形曲线的形状,对称且具有明确的均值和标准差。

许多自然现象和测量数据都可以近似地用正态分布来描述。

5. 指数分布(Exponential Distribution):描述了连续随机事件之间的时间间隔的概率分布。

它通常用于模拟无记忆性事件的发生情况,如设备故障、到达时间等。

6. 卡方分布(Chi-Square Distribution):由正态分布的平方和构成的概率分布。

它在统计推断中广泛应用,特别是在假设检验和信赖区间的计算中。

7. t分布(Student's t-Distribution):用于小样本量情况下参数估计和假设检验。

与正态分布相比,t分布具有更宽的尾部,因此更适用于小样本数据。

8. F分布(F-Distribution):用于比较两个或多个样本方差是否显著不同的概率分布。

它经常用于方差分析和回归分析中。

这只是一些常见的概率分布的总结,还有其他许多分布,每个都在不同的领域和应用中起着重要的作用。

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

概率论与数理统计基础知识

概率论与数理统计基础知识
一、个体、母体与子样 在统计分析中,构成研究对象的每一个最基本的单位称为个体。
进行统计分析,通常是从母体中随机地选择一部分样品,称为子样(又称样本)。用它来代 表母体进行观察、研究、检验、分析,取得数据后加以整理,得出结论
例如,我们可将一个编号水泥看成是母体,每一包水泥看成是个体,通过随机取样(连续取 样或从20个以上不同部位取样),所取出的12kg检验样品可称为子样,通过检验分析,即可 判断该编号水泥(母体)的质量状况。
实例2 随机变量 X 为“测量某零件尺寸时的测量 误差”.
则 X 的取值范围为 (a, b) .
定义
设 E 是随机试验, 它的样本空间是 S {e}. 如 果对于每一个 e S , 有一个实数 X (e) 与之对应, 这样就得到一个定义在 S 上的单值实值函数 X (e), 称 X (e) 为随机变量.
如果事件A发生必然导致事件B发生,即A的每个样本点都是B的样本点,则称 B包含A,记作 A B .从事件的集合表示看,事件B包含事件A就是样本空间的 子集B包含子集A 等对,任记何为事A件=AB,,总即有,AA与 B含有如相果同A 的 B样本,点同时B A ,则称事件A和事件B相
事件的互斥
如果事件A和B不可能同时发生,即A与B没有公共样本点,则称A与B是互斥 的(Mutually Exclusive)或互不相容的,换句话说,两个事件A与B互斥就是 样本空间两个子集A与B不相交
四、数据统计特征数
算术平均值 我们从总体抽了一个样本(子样),得到一批数据X1、X2、X3……Xn在处理这批数据时,经常
用算术平均值X来代表这个总体的平均水平。统计中称这个算术平均值为“样平均值”。 中位数 把数据按大小顺序排列,排在正中间的一个数即为中位数。当数据的个数n为奇数时,中位数就

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。

因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。

关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。

(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。

例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。

在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。

为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。

2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。

(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。

定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。

自考04183概率论与数理统计(经管类)总结2-数理统计部分

自考04183概率论与数理统计(经管类)总结2-数理统计部分

高等教育自学考试辅导《概率论与数理统计(经管类)》第二部分数理统计部分专题一统计量及抽样的分布I.考点分析近几年试题的考点分布和分数分布II.内容总结一、总体与样本1.总体:所考察对象的全体称为总体;组成总体的每个基本元素称为个体。

2.样本:从总体中随机抽取n个个体x1,x2…,x n称为总体的一个样本,个数n称为样本容量。

3.简单随机样本如果总体X的样本x1,x2…,x n满足:(1)x1与X有相同分布,i=1,2,…,n;(2)x1,x2…,x n相互独立,则称该样本为简单随机样本,简称样本。

得到简单随机样本的方法称为简单随机抽样方法。

4.样本的分布(1)联合分布函数:设总体X的分布函数为F(x),x1,x2…,x n为该总体的一个样本,则联合分布函数为二、统计量及其分布1.统计量、抽样分布:设x1,x2…,x n为取自某总体的样本,若样本函数T=T(x1,x2…,x n)不含任何未知参数,则称T为统计量;统计量的分布称为抽样分布。

2.样本的数字特征及其抽样分布:设x1,x2…,x n为取自某总体X的样本,(2)样本均值的性质:①若称样本的数据与样本均值的差为偏差,则样本偏差之和为零,即②偏差平方和最小,即对任意常数C,函数时取得最小值. (5)样本矩(7)正态分布的抽样分布A.应用于小样本的三种统计量的分布的为自由度为n的X2分布的α分位点.求法:反查X 2分布表.III.典型例题[答疑编号918020101]答案:D[答疑编号918020102]答案:[答疑编号918020103]答案:B[答疑编号918020104]答案:1[答疑编号918020105]答案:B[答疑编号918020106]故填20.[答疑编号918020107]解析:[答疑编号918020108]答案:解析:本题考核正态分布的叠加原理和x2-分布的概念。

根据课本P82,例题3-28的结果,若X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y~N(0+0,1+1)=N(0,2)。

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

卡方分布和置信度

卡方分布和置信度

卡方分布和置信度1.引言1.1 概述卡方分布和置信度在统计学中是两个重要的概念。

卡方分布是概率论和数理统计中的一种概率分布,而置信度则是用来评估统计结果的可信程度的一种方法。

在统计学中,我们经常需要对一些随机现象或实验结果进行分析和推断。

卡方分布是一种重要的统计分布,它经常用于对样本数据进行检验和推断。

卡方分布以希腊字母χ^2(读作卡方)表示,在统计分析中具有很高的应用价值。

卡方分布的性质使得它在统计推断中得到了广泛的应用。

一般来说,卡方分布是在满足一定条件下,多个独立标准正态分布的平方和的分布。

它的概率密度函数形态特殊,呈现出非对称的特征。

卡方分布的自由度是决定其形状的重要参数,自由度越大,卡方分布越接近正态分布。

与卡方分布密切相关的概念是置信度。

在统计分析中,我们常常需要通过样本数据对总体参数进行估计。

然而,由于样本数据受到抽样误差的影响,我们无法得到绝对准确的结果。

因此,我们需要一种方式来评估估计结果的可靠性。

置信度就是用来评估统计结果的可信程度的一种指标。

它表示在相同抽样条件下,反复进行抽样调查,估计量会在一定范围内波动的概率。

一般来说,置信度越高,估计结果与总体参数的真值之间的偏离程度就越小,也就是估计结果越可信。

卡方分布和置信度在统计学中都扮演着重要的角色。

卡方分布作为一种统计分布,为我们提供了一种基于样本数据进行统计推断的方法;而置信度则帮助我们评估统计推断结果的可靠性。

在实际应用中,我们常常需要同时运用这两个概念,以获得准确和可靠的统计分析结果。

1.2文章结构文章结构部分的内容可以如下所示:文章结构:本文将分为三个主要部分来介绍卡方分布和置信度。

首先,我们将在引言部分进行概述,介绍卡方分布和置信度的基本概念以及本文的目的。

接下来,在正文部分的第二部分,我们将详细讨论卡方分布。

这将包括卡方分布的定义和主要性质,以便读者能够更好地理解和应用卡方分布。

然后,在正文部分的第三部分,我们将深入探讨置信度。

概率论与数理统计第四章_几种重要的分布

概率论与数理统计第四章_几种重要的分布
用贝努公式计算ξ的分布律下
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0

《概率论与数理统计》笔记

《概率论与数理统计》笔记

《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。

概率论与数理统计常见问题解答

概率论与数理统计常见问题解答

概率论与数理统计常见问题解答1.概率论研究的对象是什么?现实生活中有两类现象。

必然现象:一定条件下,结果是肯定的。

如:一定大气压下,水加温到100℃:沸腾随机现象:一定条件下,结果不肯定的。

如:实弹射击,打一发子弹:可能中或不中概率论是研究随机现象规律性的一门学科。

2.随机现象有规律性吗?有。

例如:两人打枪。

甲是神枪手,乙是普通射手。

如果打一发子弹,甲可能打中也可能打不中,乙也可能打中也可能打不中,看不出什么规律。

如果两人比赛,各打10组,每组100发子弹,结果是:我们可以看出规律性:甲可说几乎每发必中,乙只有大约一半的可能性打中。

这种规律性称为统计规律性。

在大量试验中才显示出来,不是个别试验显示的特性。

3.随机现象的规律性如何指导实践?例如:农业生产上选择品种,如果当地发生旱灾的可能性大,水灾的可能性小,就应选择耐旱的品种,反之则应选择耐涝的品种。

在统计学中,以“小概率事件”判断原理来进行假设检验,例如:厂方声称,产品的废品率为5%,随机检查,发现“5个产品有2个次品”。

这时,应当拒绝“废品率为5%” 。

为什么?因为“5个产品有2个次品”是小概率事件(用概率的方法可计算),在一次试验中一般不可能发生,现在居然发生了,应怀疑原假设。

可能性小的事并不等于不发生例如:地震。

某地某日发生大地震的可能性是非常小的,但就整个地球来说,一年总要发生几次大地震。

例1:甲、乙两位棋手棋艺相当。

他们在一项奖金为1000元的比赛相遇。

比赛为五局三胜制。

已经进行了三局的比赛,结果为甲二胜一负。

现因故要停止比赛,问应该如何分配这1000元比赛奖金才算公平?奖金分配方法:平均分,对甲欠公平,按一定的比例分配,甲拿大头,乙拿小头,甲拿2/3,乙拿1/3,合理吗?例2:在第43届世界乒乓球锦标赛中,中国队与瑞典队争夺冠亚军,当时瑞典队上场队员只有瓦尔德内尔、佩尔松和卡尔松,其中卡尔松怕削球手,于是中国队排出了以下阵容:王涛马文革丁松马文革王涛决策时已经估计到瑞典队有两种可能的选择:或以卡尔松打第三单打去碰削球手丁松或以佩尔森打第三单打,以便卡尔松避开丁松最后,中国队战胜瑞典队(3:2),夺回了阔别六年之久的斯韦思林杯。

概率分布及概率分布图

概率分布及概率分布图

概率密度函数图
总结词
概率密度函数图是一种展示连续概率分布的图形,通过曲线的高低表示概率密度的大小。
详细描述
概率密度函数图是连续概率分布的图形表示,它通过曲线的高低表示概率密度的大小。在概率密度函数图中,曲 线下方的面积表示事件发生的概率。这种图形可以帮助我们了解连续随机变量的分布情况,并用于估计和预测未 来的事件。
02 离散概率分布
二项分布
01
02
03
定义
二项分布是描述在n次独 立重复的伯努利试验中成 功的次数的概率分布。
公式
$B(n, p) = C(n, k) p^k (1-p)^{n-k}$,其中C(n, k)是组合数,表示从n个 不同项中选取k个的方法 数。
应用场景
例如,抛硬币的结果(正 面或反面),或者给定数 量的独立事件中成功事件 的次数。
泊松分布
定义
泊松分布是描述在单位时间内(或单 位面积内)随机事件的次数,当这些 事件以小概率发生,并且这些事件之 间是独立的。
公式
应用场景
例如,放射性衰变或者网络中同时发 生的请求数。
$P(X=k) = frac{e^{lambda}lambda^k}{k!}$,其中 $lambda$是事件的平均发生率。
05 概率分布及概率分布图的 应用实例
在统计学中的应用
1 2 3
描述性统计
概率分布图可以用来描述数据的分布情况,如频 数分布图、直方图等,帮助我们了解数据的集中 趋势、离散程度等。
假设检验
在假设检验中,概率分布图可以用来表示样本数 据和理论分布之间的比较,帮助我们判断样本数 据是否符合预期的分布。
概率分布的种类
离散概率分布
描述离散随机变量的取值概率,如二项分布、泊 松分布等。

概率论与数理统计几种重要的分布

概率论与数理统计几种重要的分布

二、二项分布
例1、一批产品的合格率为0.9,重复抽取三次, 每次一件, 连续3次,求3次中取到的合格品件数 X的分布.
如果在一次试验中,事件A成功的概率为 p(0 p 1), 则在n重贝努里试验中事件 A成功的次数 X的分布为 :
P(X
k)
C
k n
pkqnk .
1、定义 X ~ B(n, p)
P(X
k)
C
k 3
C 4 17
k
C
4 20
(k 0,1,2,3)
1、定义 X ~ H (n, M , N )
设N个元素分为两类,
其中N
1个属于第一类,
N
个属于
2
第二类, 从中不放回抽取n个, 令X表示这n个中第一类
元素的个数,则称X的分布为超几何分布 :
P(X
m)
C C m nm N1 N N1
若X的分布为P( X
k)
C
k n
pkqnk , k
0,1,, n
其中0 p 1, q 1 p,则称X ~ B(n, p)。
2、数字特征
EX
n
kC
k n
k 0
pkqnk
n
k
k0
n! k!(n k)!
pk q nk
n
n (n 1)!
p p q k 1 (n1)(k 1)
k1 (k 1)! (n 1) (k 1) !
kkekxpk01只有两个互逆结果的n次独立重复试验n1pmin10nmllkccckxpnnknnmkm10211kppkxpk无穷次伯努利试验中a首次发生的试验次数对含有两类元素的有限总体进行不放回抽样时某类元素个数的概率分布在一定时间内出现在给定区域的随机质点的个数一均匀分布1定义

概率论与数理统计复习

概率论与数理统计复习

《概率论与数理统计》复习©基本内容和要求第一章随机事件及其概率1、掌握样本空间、随机事件、事件的概率等基本概念,了解频率的稳定性;2、掌握事件的关系与运算、熟悉概率的一些性质,会利用其计算概率;3、掌握古典概型的概率计算;4、掌握条件概率、乘法公式、事件的独立性,会利用其计算概率;5、掌握全概率公式和贝叶斯公式,会利用其计算概率。

第二章随机变量及其分布1、理解随机变量及其概率分布的概念;2、掌握离散型随机变量的分布律的概念与性质,掌握重要的常见分布:0-1,二项,Poisson分布;3、掌握分布函数和概率密度的概念及性质,熟悉均匀分布和正态分布,会查表计算正态分布随机变量的概率;4、掌握随机变量函数的分布。

5、掌握二维随机变量与联合分布,掌握联合分布与概率密度;6、理解边缘分布与条件分布,掌握边缘分布与条件分布公式;7、理解随机变量的独立性,会用其计算概率;8、掌握两个随机变量的函数的分布:Z=X+Y的分布,M=max(X,Y)、N=min(X,Y)的分布。

第三章随机变量的数字特征1.掌握数学期望和方差的概率意义和基本性质,并能熟练计算随机变量的数学期望和方差;2.记住常见分布的数学期望和方差;3.理解并掌握随机变量的协方差及相关系数,了解矩。

第四章大数定律与中心极限定理1.掌握切比雪夫不等式;2.了解贝努里大数定律,理解频率稳定性的含义;3.理解独立同分布的中心极限定律及德莫弗—拉普拉斯定理,会近似计算。

第五章统计估计1.理解总体、个体、样本、统计量等概念;2.熟记几个常见的统计量及分布:2 分布,t分布,F分布,3.正态总体的样本均值与样本方差的分布,临界值查法。

4.理解估计量与估计值的概念,会计算未知参数的矩估计和极大似然估计;5.了解估计量的评选标准;6.理解置信区间、置信度的概念,掌握单(双)正态总体均值和方差的区间估计。

第六章 假设检验1.两类错误2.掌握假设检验的一般步骤;3.掌握正态总体的均值和方差的双侧假设检验(z 检验,t 检验, 2χ检验)方法。

四大分布简述-心理统计

四大分布简述-心理统计

四大分布简述一、正态分布1. 概述正态分布又名常态分布。

高斯在研究误差理论时曾用它来刻画误差,故很多文献中亦称之为高斯分布。

正态分布是概率论中最重要的分布,并有极其广泛的实际背景,很多随机变量的概率分布都可以近似地用正态分布来描述。

统计学中的三大分布(2χ分布、t分布和F分布)均是由它导出的。

2. 定义如果随机变量X的概率密度为()222(),xμσφx x--=-∞<<+∞则称X服从正态分布,记作2~(,)X Nμσ,其中,μ为随机变量X的数学期望,σ为随机变量X的标准差。

特别地,当0μ=,1σ=时,有22(),xφx x-=-∞<<+∞相应的正态分布(0,1)N称为标准正态分布。

标准正态分布的重要性在于,任何一个普通的正态分布都可以通过线性变换转化为标准正态分布。

标准化过程为若2~(,)X Nμσ,则(0,1)XμZ~Nσ-=。

3. 性质和特点1)正态分布的概率密度函数的图像为钟形,关于xμ=对称。

2)标准差σ决定正态曲线的陡峭或扁平程度。

σ越小,曲线越高狭;σ越大,曲线越低阔。

3)普遍性:一个变量如果收到大量的独立因素的影响(无主导因素),则它一般服从正态分布。

4. 应用1) 估计频数分布。

2) 制定参考值范围。

3) 质量控制:3σ准则。

4) 二项分布、t 分布等的正态近似计算。

5) 正态分布是许多统计方法的理论基础。

检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。

二、2χ分布1. 概述2χ分布是由海尔默特(Hermert )和皮尔逊(Pearson )分别于1875年和1900年推导出来的。

2. 定义设随机变量12,,,n X X X 相互独立,且()1,2,,=i X i n 服从标准正态分布(0,1)N ,则它们的平方和21=∑n i i X 服从自由度为n 的2χ分布,记作2()χn 。

3. 性质和特点1) 2χ分布的密度函数在第一象限内呈正偏态(右偏态)。

《概率论与数理统计》学习笔记

《概率论与数理统计》学习笔记

《概率论与数理统计》(19)电子科技大学应用数学学院,徐全智吕恕主编。

2004版第6章数理统计的基本概念概率论与数理统计是两个紧密联系的姊妹学科,概率论是数理统计学的理论基础,而数理统计学则是概率论的重要应用.数理统计学是使用概率论和数学的方法,研究如何用有效的方式收集带有随机误差的数据,并在设定的模型下,对收集的数据进行分析,提取数据中的有用信息,形成统计结论,为决策提供依据. 这就不难理解,数理统计应用的广泛性,几乎渗透到人类活动的一切领域! 如:农业、生物和医学领域的“生物统计”,教育心理学领域的“教育统计”,管理领域的“计量经济”,金融领域的“保险统计”等等,这些统计方法的共同基础都是数理统计.数理统计学的内容十分丰富,概括起来可以分为两大类:其一是研究如何用有效的方式去收集随机数据,即抽样理论和试验设计;其二是研究如何有效地使用随机数据对所关心的问题做出合理的、尽可能精确和可靠的结论,即统计推断.本书主要介绍统计推断的基本内容和基本方法. 在这一章中先给出数理统计中一些必要的基本概念,然后给出正态总体抽样分布的一些重要结论.6.1总体、样本与统计量一、总体在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个基本元素称为个体.二、样本样本是按一定的规定从总体中抽出的一部分个体" 这里的“按一定的规定”,是指为保证总体中的每一个个体有同等的被抽出的机会而采取的一些措施" 取得样本的过程,称为抽样.三、统计量6.2抽样分布统计量是我们对总体的分布规律或数字特征进行推断的基础. 由于统计量是随机变量,所以在使用统计量进行统计推断时必须要知道它的分布. 统计量的分布称为抽样分布.一、三个重要分布二、抽样分布定理6.3应用一、顺序统计量及其应用二、极值的分布及其应用。

概率论与数理统计常用的统计分布

概率论与数理统计常用的统计分布

概率论与数理统计
2 X ~ N ( , ) , X1 , X 2 ,... X n 是 定理 2 设总体
取自 X 的一个样本, X 与 S 为该样本的样 本均值与样本方差,则有
2 2 S 2 2 ( X i X )2 ~ 2 (n 1) (1) i 1
概率论与数理统计
设总体 X 的均值和方差 2 E( X ) , D( X ) 都存在. X1 , X 2 , , Xn 是来自总体 X 的样本,则 2 E ( X ) , D( X ) n , E ( S 2 ) 2
n n 1 1 E( X ) E( n X i ) n E( X i ) i 1 n i 1 n
n
X (2) T S / n ~ t (n 1)
概率论与数理统计
设 X1 , X 2 , , Xn 是总体 X ~ N ( , 2 ) 的样本, X , S 2分别为样本均值和样本方差,则有 X ~ t (n 1) S/ n 由定理一、定理二有 2 ( n 1) S X 2 Y ~ N ( 0 , 1) , 2 ~ (n 1) 2 / n 2 且 Y 与 独立,由 t 分布的定义有 X X / n Y ~ t (n 1) S/ n (n 1) S 2 / 2 S 2/n n 1


3 0.1 P3 |X | 99.7%. P | X | X | 0.03} 99.7%. P{| n 100

概率论与数理统计
例3 在设计导弹发射装置时, 重要事情之 一是研究弹着点偏离目标中心的距离的方 差.对于一类导弹发射装置, 弹着点偏离目标 中心的距离服从正态分布N(μ,100), 现在进 行了25次发射试验, 用S2记这25次试验中弹 着点偏离目标中心的距离的样本方差. 试求 S2超过50的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
k n
pkqnk .
可编辑ppt
3
1、定义 X ~ B(n, p)
若X的分布为P( X
k)
C
k n
pkqnk , k
0,1,, n
其中0 p 1, q 1 p,则称X ~ B(n, p)。
2、数字特征
EX
n
kC
k n
k 0
pkqnk
n
k
k0
n! k!(n k)!
pk q nk
n
可编辑ppt
6
例4、 一批产品的废品率为0.03,进行20次重复抽样(有放 回)。求出现废品的频率为0.1的概率。
解:X表示20次中抽到废品的次数,服从二项分布,n=20, p=0.03。利用二项分布公式计算
P X 0.1 P( X 2) 0.0988. 20
可编辑ppt
7
3、二项分布的最可能值
5
6
P 0.0002 0.0044 0.0330 0.1318 0.2966 0.3560 0.1780
例3、10部机器各自独立工作,因修理调整等原因,每部机 器停车的概率为0.2。求同时停车数目X的分布。
解:X服从二项分布,n=10, p=0.2。利用二项分布公式计算
X 0 1 2 3 4 5 6 7 8 9 10 P 0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00 0.00 0.00 0.00
解:一等品数X服从二项分布,np+p=3.2+0.8=4,
所以k=3,4时P{X=k}最大。
X
0
1
2
3
4
P 0.0016 0.0256 0.1536 0.4096 0.4096
可编辑ppt
9
定理 : 若X ~ B(n, p)且Y n X ,则Y ~ B(n, q),其中q 1 p.
证明:对于m 0,1,, n, 有
解:p P( X 0.1)
0.1
0.1
f ( x)dx 2 xdx 0.01
0
因此Y ~ B(n,0.01)
例9、计算机在进行加法运算时,每个加数按四舍五入取 整数,假定每个加数的取整误差服从[-0.5,0.5]上的均匀分 布,今有五个加数相加,计算它们中至少有三个加数的 取整误差绝对值概率不超过0.3的概率。
P(Y m) P(n X m) P( X n m)
C
n n
m
pnmqm
则Y ~ B(n, q).
推论 : 若X ~ B(n, p),Y ~ B(n, q),则有 (1) P( X m) P(Y n m); (2) P( X m) P(Y n m).
可编辑ppt
10
例6、某人射击的命中率为0.8,今连续射击30次,计算命中率为 60%的概率。
np
k2
n(n 1) p2 np
DX EX 2 (EX )2 npq.
可编辑ppt
5
例2、某工厂每天用水量保持正常的概率为3/4,求最近6天 内用水量正常的天数的分布。
解:设最近六天内用水量保持正常的天数为X。它服从二 项分布,n=6, p=0.75。利用二项分布公式计算
X
0
1
2
3
4
定义 : 使概率P( X k)取最大值的k, 记作k0 , 称k0为二项分布 的最可能值.
设k k0时, P( X k0 )最大,则有下面不等式 :
P(X P(X
P(X
k0 ) k0 1) k0 )
1 1
P( X k0 1)
k0 np p k0 np p 1
2、数字特征
EX p, DX 可编p辑qp.pt
2
二、二项分布
例1、一批产品的合格率为0.9,重复抽取三次, 每次一件, 连续3次,求3次中取到的合格品件数 X的分布.
如果在一次试验中,事件A成功的概率为 p(0 p 1), 则在n重贝努里试验中事件 A成功的次数 X的分布为 :
P(X
k)
k2
n! k!(n
k )!
pk q nk
n
k(k 1) k
n!
pk q nk
k0
k!(n k)!
n
n (n 1) (n 2)!
p2 p q k 2 (n2)(k 2) EX
k2 (k 2)! (n 2) (k 2) !
n
n(n 1) p2
C p q k 2 k 2 nk n2
即k 0
np p或np [np p] ,
p 1,
当np p为整数 当np p不是整数
可编辑ppt
8
np
p1
k0
np
p
p
p n
1 n
k0 n
p
p n
n , k0 p n
n很大时,频率为概率的可能最大
例5、某批产品有80%的一等品,对它们进行重复抽样检验, 共取出4个样品,求其中一等品数X的最可能值k,并用贝努 利公式验证。
n (n 1)!
p p q k 1 (n1)(k 1)
k1 (k 1)! (n 1) (k 1) !
np
n
C p q k 1 k 1 nk n1
mk 1
np
n1
Cmห้องสมุดไป่ตู้n1
pmq
n1m
k 1
m0
np(
p
q)n1
np; 可编辑ppt
4
EX
2
n
k
2C
k n
k 1
pk q nk
n k0
解 : 设X表示30次命中目标的次数 , 且X ~ B(30,0.8), 令Y 30 X , 则Y ~ B(30,0.2).
P X 0.6 P( X 18) P(Y 12) P(Y 12) P(Y 11) 30
0.9969 0.9905 0.0064
例7、已知X ~ B(n, p), EX 6, DX 42, 计算P( X 5).
可编辑ppt
12
§4.2 超几何分布
第四章 几种重要的分布
§4.1 二项分布 §4.2 超几何分布 §4.3 泊松分布 §4.4 指数分布 §4.6 正态分布
可编辑ppt
1
§4.1 二项分布
一、两点分布
1、定义
只取两个可能值的随机 变量所服从的分布。
X
x1
x2
Pp
q
其中p q 1.
若x1 1, x2 0, 称r.v. X服从参数为p的0 1分布。
解 : 首先计算n, p.
EX np 6 n 20 则X ~ B(20,0.3).查表得 :
DX
npq
42
p
, 0.3
P( X 5) 1 P( X 4) 0.7625.
可编辑ppt
11
例8、设X
~
f
(
x)
2x,0 x 0, 其它
1 ,
现对X进行n次独立观测, 用Y表示
观测值不大于 0.1的次数 , 求Y的分布.
相关文档
最新文档