七年级上册数学计算题专题训练精编
2023-2024年人教版七年级上册数学期末计算题综合专题训练(含解析)
2023-2024年人教版七年级上册数学期末计算题综合专题训练参考答案:【点睛】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.7.(1)(2)【分析】本题考查了整式的加减混合运算,去括号.(1)先将括号去掉,再合并同类项即可;(2)先将括号去掉,再合并同类项即可.【详解】(1)解:.(2)解:.8.(1)(2)【分析】本题考查了整式的加减.(1)按照合并同类项法则进行计算即可;(2)先去括号,再合并同类项即可.熟练掌握去括号法则及合并同类项法则是解题的关键.注意:和是同类项,和是同类项.【详解】(1)34=-1=-42x y-233ab b --()()8745x y x y ---8745x y x y=--+42x y =-()()2222232a b ab a b -⎦⎡⎤-+--⎣()22222322a b ab a b =--+--22222322a b ab a b =---+-233ab b =--2234x y xy -24425x x --+2x y 22yx 23xy -2y x -222232x y xy yx y x-+-222223x y yx xy y x=+--2234x y xy =-(2)9.(1)(2)【分析】本题主要考查了整式加减运算;(1)根据合并同类项法则进行计算即可;(2)先去括号,然后再合并同类项即可;解题的关键是熟练掌握去括号法则和合并同类项法则,准确计算.【详解】(1)解:;(2)解:.10.【分析】本题考查了整式的化简求值,掌握混合运算的运算顺序,先化简,再代入求值是解答本题的关键.先去括号,再合并同类项,将整式化为最简,然后把的值代入,得到答案.【详解】解:根据题意得:,当时,原式22225325()()x x x --+-222410615x x x =-+-+222105641x x x =+--+24425x x =--+2624xy y -+242a +2242326xy y y xy +--++()()()2242362xy xy y y ++-+-=2624xy y =-+()()224123a a a +---224123a a a =+--+242a =+12-a ()()2224324a a a a a -+--323228628a a a a a =-+-+6a =2a =-()62=⨯-【分析】(1)合并同类项可得的最简结果;(2)若的值与y 的取值无关,则,即可得出答案.【详解】(1)解:;(2)解:,∵的值与y 的取值无关,∴,解得,∴x 的值为3.【点睛】本题考查整式的加减,熟练掌握运算法则是解答本题的关键.15.(1)(2)【分析】(1)把,代入,化简得:;再把代入,即可.(2) 把,代入,化简得,根据的值与无关,即可求出的值.【详解】(1)∵;∴把代入∴(2)∵,∴+A B +A B 30x -=22323133A B x xy y x xy +=++-+-2631x xy y =-+-226316(3)1A B x xy y x x y +=-+-=+--+A B 30x -==3x 94x --4m =-A B (3)A A B --44x mx ---5m =A B 2A B -(4)4m x ++2A B -x m 323A x x =++322B x mx =-+(3)2A A B A B--=-+332(23)22x x x mx =-+++-+44x mx =---5m =44x mx ---44454mx x x ---=---94x =--323A x x =++322B x mx =-+3322(23)22A B x x x mx -=++-+-(4)4m x =++。
七年级上册数学计算题专题训练(精华版)
七年级数学计算题的强化训练一、有理数混合运算的运算顺序①从高级到低级:先算乘方,再算乘除,最后算加减; 1 )- 1 例 1:计算: 3+50÷ 22× ( 5 解: ②从内向外:如果有括号,就先算小括号里的,再算中括号里的, 最后算大括号里的 . 1 3 2 例 2:计算: 1 1 0.5 2 3 解: ③从左向右:同级运算,按照从左至右的顺序进行; 3 4 7 8 7 12 7 8 8 3 例 3:计算: 1 解: 2÷( - 1 ) 2 4 -(-1) 101+ (-2) 2× (-3) 2 例 2 计算: -0.25 解:二、掌握运算技巧(1)、归类组合:将不同类数( 如分母相同或易于通分的数将同类数( 如正数或负数) 归类计算。
) 分别组合;(2)、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
(3)、分解:将一个数分解成几个数和的形式乘的形式。
, 或分解为它的因数相(4)、约简:将互为倒数的数或有倍数关系的数约简。
(5)、倒序相加:利用运算律,改变运算顺序例3 计算:, 简化计算。
16 -32251 2 3-411-12 2(1) ÷(- 8×4)+2.5+(2 +3) ×2431115 321315321415(2)( -) ×( -) -×( -) +×( -)23x 21x33414(1) 1; ( 2) x (1 2x).2、解方程。
专题02 有理数的加减混合运算(计算题专项训练)-2024-2025学年七年级数学上册计算题专项训练
专题02 有理数的加减混合运算1.(2023·全国·七年级假期作业)计算:(1)−2−(+10);(2)0−(−3.6);(3)(−30)−(−6)−(+6)−(−15);(4)(−323)−(−234)−(+123)−(+1.75).【思路点拨】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可;(4)根据有理数的减法法则计算即可;【解题过程】(1)−2−(+10)=−2+(−10)=−(2+10)=−12;(2)0−(−3.6)=0+(+3.6)=3.6;(3)(−30)−(−6)−(+6)−(−15)=(−30)+(+6)+(−6)+(+15)=−30+6−6+15=−15;(4)(−323)−(−234)−(+123)−(+1.75)=(−323)+(+234)+(−123)+(−134) =−323+234−123−134=−(323+123)+(234−134) =−513+1=−4132.(2022秋·重庆·七年级重庆市实验中学校考阶段练习)计算(1)(−7)+21+(−27)−(−5)(2)513−(+3.7)+(+813)−(−1.7)【思路点拨】(1)根据有理数的加减运算混合法则进行求解即可;(2)根据有理数的加减运算混合法则进行求解即可.【解题过程】(1)解:(−7)+21+(−27)−(−5)=−7+21−27+5 =−8;(2)解:513−(+3.7)+(+813)−(−1.7)=513−3.7+813+1.7=(513+813)−(3.7−1.7)=1−2=−1.3.(2022秋·甘肃张掖·七年级校考阶段练习)计算:(1)−7−(−10)+4;(2)1+(−2)−5+|−2−3|(3)12+29+(−13);(4)12−(−6)+(−9);(5)(−40)−28−(−19)+(−24)(6)15−[1−(−20−4)]【思路点拨】(1)先把有理数的减法转化为加法,然后按照从左到右的顺序进行计算即可解答;(2)先化简绝对值,然后按照从左到右的顺序进行计算即可解答;(3)按照从左到右的顺序进行计算即可解答;(4)先把有理数的减法转化为加法,然后按照从左到右的顺序进行计算即可解答;(5)先把有理数的减法转化为加法,然后按照从左到右的顺序进行计算即可解答;(6)先算小括号,再算中括号,然后进行计算即可解答.【解题过程】(1)−7−(−10)+4=−7+10+4=3+4=7;(2)1+(−2)−5+|−2−3|=1−2−5+|−5|=−6+5=−1;(3)12+29+(−13)=13 18+(−13)=13 18−618=718(4)12−(−6)+(−9)=12+6−9=18−9=9;(5)(−40)−28−(−19)+(−24) =−40−28+19−24=−68+19−24=−49−24=−73;(6)15−[1−(−20−4)]=15−[1−(−24)]=15−(1+24)=15−25=−10.4.(2023秋·全国·七年级专题练习)计算下列各题:(1)(−3)+1−5−(−8)(2)(−3)+(−10)+4−(−8)(3)9712−(345+3112)(4)11.125−114+478−4.75(5)|−34|+16+(−23)−52(6)1918+(−534)+(−918)−1.25【思路点拨】(1)根据有理数的加减混合运算从左到右进行计算即可;(2)根据有理数的加减混合运算从左到右进行计算即可;(3)根据加法交换律和加法结合律将整数部分加整数部分,分数部分加分数部分,再把所得结果相加即可;(4)根据根据加法交换律和加法结合律先把能凑整的数相加,再进行计算即可;(5)先求绝对值,再通分,进而计算即可;(6)根据根据加法交换律和加法结合律先把能凑整的数相加,再进行计算即可.【解题过程】(1)解:(−3)+1−5−(−8),=−2−5+8,=−7+8,=1;(2)解:(−3)+(−10)+4−(−8),=−13+4−(−8),=−9−(−8),=−9+8,=−1;(3)解:9712−(345+3112), =(9+712)−(3+45)−(3+112), =(9−3−3)+(712−45−112),=3+(−310), =2710; (4)解:11.125−114+478−4.75,=(11.125+478)+(−114−4.75), =16+(−6),=10;(5)解:|−34|+16+(−23)−52,=34+16+(−23)−52,=912+212+(−812)−3012,=9+2−8−3012, =−94; (6)解:1918+(−534)+(−918)−1.25, =[1918+(−918)]+[(−534)−1.25],=10+[−7],=3.5.(2022秋·河南郑州·七年级郑州一中经开区实验学校校考阶段练习)计算(1)−7−|−9|−(−11)−3(2)5.6+(−0.9)+4.4+(−8.1)(3)(−16)+(+13)+(−112)(4)25−|−112|−(+214)−(−2.75)【思路点拨】(1)化简绝对值,按照有理数加减法运算法则计算即可.(2)运用交换律,结合律凑整计算即可.(3)通分计算即可.(4)把分数科学分解,小数化分数,简便计算即可.【解题过程】(1)−7−|−9|−(−11)−3=−7−9+11−3=−8.(2)5.6+(−0.9)+4.4+(−8.1)=(5.6+4.4)+[(−0.9)+(−8.1)]=10+(−9)=1.(3)(−16)+(+13)+(−112)=−212+412−112=112. (4)25−|−112|−(+214)−(−2.75) =25−1−12−2−14+2+34 =−35.6.(2023·江苏·七年级假期作业)计算,能用简便方法的用简便方法计算.(1)26-18+5-16 ;(2)(+7)+(-21)+(-7)+(+21)(3) (−123)+112+(+714)+(−213)+(−812) (4)3.587−(−5)+(−512)+(+7)−(+314)−(+1.587)(5)2.25+318−234+1.875 (6)−312+534+456−6518【思路点拨】(1)根据有理数的加减混合运算法则解答;(2)根据加法的交换律与结合律以及互为相反数的两个数之和为0解答;(3)根据加法的交换律与结合律解答;(4)先统一成加法,再根据加法的交换律与结合律解答;(5)先统一成小数形式,再根据加法的交换律与结合律解答;(6)先把带分数化为整数部分与小数部分,再根据加法的交换律与结合律解答【解题过程】(1) 26-18+5-16=31-34=-3;(2)(+7)+(-21)+(-7)+(+21)=(+7)+(-7)+(-21)+(+21)=0;(3)(−123)+112+(+714)+(−213)+(−812)=[(−123)+(−213)]+[112+(−812)]+714=(−4)+[(−7)+714] =−334; (4)3.587−(−5)+(−512)+(+7)−(+314)−(+1.587)=3.587+5+(−512)+7+(−314)+(−1.587) =[3.587+(−1.587)]+(5+7)+[(−512)+(−314)] =2+12+(−834) =514; (5)2.25+318−234+1.875=(2.25−2.75)+(3.125+1.875)=−0.5+5=4.5;(6)−312+534+456−6518=−3−12+5+34+4+56−6−518=(−3+5+4−6)+(−12+34+56−518)=0+−18+27+30−1036=2936.7.(2022秋·全国·七年级专题练习)计算下列各题(1)−20+(−17)−(−18)−11;(2)(−49)−(+91)−(−5)+(−9);(3)434−(+3.85)−(−314)+(−3.15).【思路点拨】(1)先去括号,再计算有理数的加减法即可得;(2)先去括号,再计算有理数的加减法即可得;(3)先去括号,再利用有理数加法的交换律与结合律进行计算即可得.【解题过程】(1)解:原式=−20−17+18−11=−37+18−11=−19−11=−30.(2)解:原式=−49−91+5−9=−140+5−9=−135−9=−144.(3)解:原式=434−3.85+314−3.15=434+314−3.85−3.15=(434+314)−(3.85+3.15)=8−7=1.8.(2022秋·江苏·七年级校考周测)计算(1)(−17)+7;(2)(−14)−(−39);(3)7+(−14)−(−9)−|−12|;(4)4.7+(−0.8)+5.3+(−8.2);(5)(−16)+(+13)+(−112) ;(6)−9+5−(−12)+(−3);(7)−(+1.5)−(−414)+3.75−(+812); (8)(−225)−(+4.7)−(−0.4)+(−3.3);(9)535+(−523)+425+(−13);(10)312−(−214)+(−13)−14−(+16).【思路点拨】(1)根据有理数加法法则计算即可;(2)根据有理数减法法则计算即可;(3)先化简绝对值,然后按照有理数加减混合运算法则计算即可;(4)按照交换律和结合律将原始变换为4.7+5.3−(0.8+8.2),然后按照有理数加减混合运算法则计算即可;(5)按照交换律和结合律将原始变换为−(16+112)+13,然后按照有理数加法法则计算即可;(6)先去括号,然后按照有理数加法法则计算即可;(7)先将分数化为小数,再按照交换律和结合律变换为[-(1.5+8.5)+(4.25+3.75)],然后按照有理数加法法则计算即可;(8)先将分数化为小数,再按照交换律和结合律变换为[-(2.4-0.4)-(4.7+3.3)],然后按照有理数加减混合运算法则计算即可;(9)先按照交换律和结合律变换为[(535+425)−(523+13)],然后按照有理数加减混合运算法则计算即可;(10)先按照交换律、结合律以及有理数加减混合运算法则计算即可.【解题过程】(1)解:原式=−(17−7)=-10;(2)解:原式=(−14)+39=+(39−14)=25;(3)解:原式=−(14−7)+9−12=−7+9−12=-10;(4)解:原式=4.7−0.8+5.3−8.2=4.7+5.3−(0.8+8.2)=10-9=1;(5)解:原式=−(16+112)+13=−14+13=112;(6)解:原式=−9+5+12−3=−12+5+12=5;(7)解:原式=−1.5+414+3.75−812=-1.5+4.25+3.75-8.5=-(1.5+8.5)+(4.25+3.75)=-10+8=-2;(8)解:原式=−225−4.7+0.4−3.3=-2.4-4.7+0.4-3.3=-(2.4-0.4)-(4.7+3.3)=-2-8=-10;(9)解:原式=535+425+(−523)+(−13)=(535+425)−(523+13)=10-6 =4;(10)解:原式=312+214−13−14−16=312+(214−14)−13−16=312+2−13−16=(312−13−16)+2=3+2 =5.9.(2022秋·浙江宁波·七年级校考阶段练习)计算: (1)7﹣(﹣4)+(﹣5) (2)﹣7.2﹣0.8﹣5.6+11.6 (3)(−213)−(−423)−56(4)0.125+(+314)+(−318)+(+78)+(−0.25) 【思路点拨】(1)根据有理数的加减法法则计算即可; (2)根据有理数的加减法法则计算即可; (3)根据有理数的加减法法则计算即可; (4)根据有理数的加法法则计算即可. 【解题过程】(1)解:7-(-4)+(-5), =7+4+(-5), =11+(-5), =6(2)解:−7.2−0.8−5.6+11.6,=[−7.2+(−0.8)]+(−5.6)+11.6=(−8)+(−5.6)+11.6 =(−13.6)+11.6=−2(3)解:(−213)−(−423)−56=(−213)+423+(−56)=213+(−56)=32(4)解:0.125+(+314)+(−318)+(+78)+(−0.25)=18+314+(−318)+(+78)+(−14) =[18+(−318)+314+(−14)]+78=7810.(2022秋·河南南阳·七年级统考阶段练习)计算: (1)−24+3.2−16−3.5+0.3 (2)−8+(−14)+723−|−0.25|−23 【思路点拨】(1)根据有理数加减混合运算的运算方法,进行运算,即可求得其结果;(2)首先去括号和绝对值符号,再根据有理数加减混合运算的运算方法,进行运算,即可求得其结果. 【解题过程】(1)解:−24+3.2−16−3.5+0.3 =(−24−16)+(3.2+0.3)−3.5 =−40+(3.5−3.5)=−40+0 =−40(2)解:−8+(−14)+723−|−0.25|−23=−8−14+723−14−23=−812+7=−112.11.(2022秋·山东济南·七年级校考阶段练习)计算:(1)(−7)−(−10)+(−8)−(+2);(2)(−1.2)+[1−(−0.3)];(3)(−4)−(+13)+(−5)−(−9)+7;(4)614−3.3−(−6)−(−334)+4+3.3.【思路点拨】(1)根据有理数的加减混合运算求解即可;(2)根据有理数的加减混合运算求解即可;(3)根据有理数的加减混合运算求解即可;(4)根据有理数的加减混合运算求解即可.【解题过程】(1)解:(−7)−(−10)+(−8)−(+2),=(−7)+10+(−8)−(+2),=3+(−8)−(+2),=−5−(+2),=−5+(−2),=−7;(2)解:(−1.2)+[1−(−0.3)],=(−1.2)+[1+0.3],=(−1.2)+1.3,=0.1;(3)解:(−4)−(+13)+(−5)−(−9)+7,=(−4)+(−13)+(−5)−(−9)+7,=(−17)+(−5)−(−9)+7,=(−22)−(−9)+7,=(−22)+9+7,=(−13)+7,=−6;(4)解:614−3.3−(−6)−(−334)+4+3.3,=614+(−3.3)+6+334+4+3.3,=[3.3+(−3.3)]+6+4+(334+614),=6+4+10,=20.12.(2022秋·四川成都·七年级校考阶段练习)计算:(1)2−5+4−(−7)+(−6)(2)(−11)−(−7.5)−(+9)+2.5(3)−15−(−34)+7−|−0.75|(4)103+(−114)−(−56)+(−712)【思路点拨】(1)根据有理数的加减混合运算进行计算;(2)根据有理数的加减混合运算进行计算;(3)根据有理数的加减混合运算进行计算;(4)根据有理数的加减混合运算进行计算即可求解.【解题过程】(1)2−5+4−(−7)+(−6)=2−5+4+7−6=2+4+7−5−6 =2;(2)(−11)−(−7.5)−(+9)+2.5=−11+7.5−9+2.5=−11−9+(7.5+2.5)=−20+10=−10;(3)−15−(−34)+7−|−0.75|=−15+34+7−34=−15+7=−8;(4)103+(−114)−(−56)+(−712)=103−114+56−712 =206+56−3312−712 =5012−4012 =1012=56.13.(2022秋·山东枣庄·七年级校考阶段练习)计算 (1)−20−(−18)+(−14)+13 (2)−85−(−77)+|−85|−(−3) (3)(−2.5)−(−214)+213(4)(−23)+(−16)−(−14)−12【思路点拨】(1)根据有理数的加减计算法则进行求解即可; (2)根据有理数的加减计算法则进行求解即可; (3)根据有理数的加减计算法则进行求解即可; (4)根据有理数的加减计算法则进行求解即可. 【解题过程】(1)解:原式=−20+18−14+13=−3(2)解:原式=−85+77+85+3 =80;(3)解:原式=−212+214+213=2+412+312−612=2112;(4)解:原式=−23−16+14−12=−812−212+312−612=−1312.14.(2022秋·吉林长春·七年级校考阶段练习)计算:(1)(−52)+(−19)−(+37)−(−24);(2)−14+56+23−12;(3)312−(−214)+(−13)−14−(+16);(4)|−738+412|+(−1814)+|−6−12|.【思路点拨】(1)先去括号,负数与负数相加,正数与正数相加,所得结果再相加即可;(2)负数与负数相加,正数与正数相加,然后通分计算即可;(3)先去括号,带分数拆成整数加真分数,然后整数与整数相加减,分数与分数相加减,所得结果再相加减即可;(4)先去绝对值符号,再按(3)的方法计算即可.【解题过程】(1)解:原式=−52−19−37+24=−108+24=−84;(2)原式=(−14−12)+(56+23)=−34+32=34;(3)原式=312+214−13−14−16=(3+2)+(14−14)+(12−13−16) =5(4)原式=738−412−1814+612=(7−4−18+6)+(−12+12−14+38)=−9+18=−878.15.(2023·全国·九年级专题练习)(1)计算:0.47−456−(−1.53)−116.(2)计算:25−|−112|−(+214)−(−2.75).(3)计算:4.73−[223−(145−2.63)]−13.【思路点拨】(1)先根据减去一个数等于加上这个数的相反数化简,再利用凑整进行简便运算即可;(2)先计算绝对值,去括号,再进行同分母凑整进行简便运算即可;(3)观察本题发现括号内与外部可以凑整,故先对式子进行去括号,之后再进行简便运算即可.【解题过程】解:(1)原式=0.47−456+1.53−116=0.47+1.53−456−116=2−6=−4;(2)原式=25−112−214+2.75,=25−112−214+234=25−112+12=25−1=−35;(3)原式=4.73−(223−145+2.63)−13=4.73−223+145−2.63−13=4.73−2.63−223−13+145=2.1−3+1.8 =3.9−3=0.9.16.(2022秋·山东日照·七年级校考阶段练习)计算: (1)28−(−35)+19−21;(2)−18.25+(−5.75)+2014+(−334); (3)−1.25+1112−3.75+(−2312)−|−3|;(4)(−23)+(−16)−(−14)−(+12). 【解题过程】(1)解:原式=28+35+19−21=63+19−21 =82−21=61;(2)解:原式=−(18.25+5.75)+(2014−334)=−24+1612=−712;(3)解:原式=−(1.25+3.75)+(1112−2312)−3=−5−1−3=−9;(4)解:原式=−(23+16)+(14−12)=−56−14=−1312.17.(2023秋·全国·七年级专题练习)计算下列各题:(1)114+(−6.5)+338+(−1.25)−(−258)(2)|−0.75|+(+314)−(−0.125)−|−0.125|(3)25−|−112|−(+214)−(−2.75)+|−35|(4)−(−32)+(−56)+[712−(−16)−(+116)]【思路点拨】(1)先把相反数相加,能凑整的加数相加,进而利用有理数的加法计算即可;(2)先算绝对值,再把相反数相加,能凑整的加数相加即可得解;(3)先算绝对值,再把相反数相加,能凑整的加数相加即可得解;(4)先算括号里面的,再按有理数的加减混合运算顺序计算即可.【解题过程】(1)解:114+(−6.5)+338+(−1.25)−(−258)=[114+(−1.25)]+(−6.5)+(338+258)=(−6.5)+6=−12;(2)解:|−0.75|+(+314)−(−0.125)−|−0.125|=0.75+314+0.125−0.125=(0.75+314)+(0.125−0.125)=4;(3)解:25−|−112|−(+214)−(−2.75)+|−35|=25−112−214+2.75+35=(25+35)+(−112−214+2.75)=1+(−1)=0;(4)解:−(−32)+(−56)+[712−(−16)−(+116)]=−(−32)+(−56)+[712+16−116]=32+(−56)+[−1312] =−512.18.(2023秋·七年级单元测试)计算. (1)12+(−12)−(−8)−52(2)−556+(−923)+1734+(−312). (3)0.125+314−18+523−0.25(4)(−112)+(−200056)+400034+(−199923). 【思路点拨】(1)根据有理数加减混合运算法则进行计算即可;(2)将原式的整数和分数拆开,根据有理数加减混合运算法则结合加法运算律进行计算即可; (3)将原式的整数和分数拆开,根据有理数加减混合运算法则结合加法运算律进行计算即可; (4)将原式的整数和分数拆开,然后根据有理数加减混合运算法则结合加法运算律进行计算即可. 【解题过程】(1)原式=12+(−12)+8+(−52)=12+8+(−12)+(−52)=20−3=17;(2)原式=−5+(−56)+(−9)+(−23)+17+34+(−3)+(−12)=−5+(−9)+17+(−3)+(−56)+(−23)+34+(−12)=0+(−1012)+(−812)+912+(−612) =−54;(3)原式=18+3+14−18+5+23−14=18−18+14−14+3+5+23=0+0+8+23=823;(4)(−112)+(−200056)+400034+(−199923) 原式=(−1)+(−12)+(−2000)+(−56)+4000+34+(−1999)+(−23)=(−1)+(−2000)+4000+(−1999)+(−12)+(−56)+34+(−23) =0+(−612)+(−1012)+912+(−812) =−54. 19.(2023秋·全国·七年级专题练习)计算下列各题:(1)−0.5+(−314)+(−2.75)−(−712) (2)137+(−213)+247+(−123)(3)|−0.85|+(+0.75)−(+234)+(−1.85) (4)12.32−|−14.17|−|−2.32|+(−5.83)【解题过程】(1)−0.5+(−314)+(−2.75)−(−712)=−12+(−314)+(−234)+712=−12+712+(−314)+(−234)=7+(−6)=1(2)137+(−213)+247+(−123) =137+247+(−213)+(−123)=4+(−4)=0(3)|−0.85|+(+0.75)−(+234)+(−1.85)=0.85+(+0.75)+(−2.75)+(−1.85)=0.85+(−1.85)+(+0.75)+(−2.75)=−1+(−2)=−3(4)12.32−|−14.17|−|−2.32|+(−5.83)=12.32−14.17−2.32+(−5.83)=12.32−2.32−14.17−5.83=10−20=−1020.(2022秋·七年级课时练习)用较为简便的方法计算下列各题:(1)(+213)-(+1013)+(−815)-(+325);(2)-8 721+531921-1 279+4221;(3)-|−35−(−25)|+|(−14)+(−12)|.(4)314+(−516)−(−134)−(+356)+(1037)−1025【思路点拨】(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式结合后,相加即可得到结果;(4)原式利用减法法则变形,结合后计算即可得到结果.【解题过程】(1)(+213)-(+1013)+(−815)-(+325) =(213−1013)−(815+325) =−8−1135 =−1935;(2)-8 721+531921-1 279+4221=(-8 721-1 279)+(531921+4221) =-10 000+58=-9 942; (3)-|−35−(−25)|+|(−14)+(−12)| =−|−15|+|−34| =−15+34 =1120;(4)314+(−516)−(−134)−(+356)+(1037)−1025=314−516+134−356+1037−1025 =(314+134)−(516+356)+(1037−1025) =5−9+135 =−33435.。
专题 有理数的混合运算计算题(50题)(解析版)-七年级数学上册
七年级上册数学《第一章有理数》专题有理数的混合运算的计算题(50题)1.(2022秋•晋安区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(−12)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(−12)3=﹣3×4﹣1+(−18)=﹣12﹣1+(−18)=﹣1318.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.(2022春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+75=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(2023春•香坊区校级期中)计算:(1)(13−12+14)×24(2)﹣23×34−(−3)3÷9【分析】(1)根据乘法分配律简便计算即可求解.;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(13−12+14)×24=13×24−12×24+14×24=8﹣12+6=2;(2)﹣23×34−(−3)3÷9=﹣8×34+27÷9=﹣6+3=﹣3.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(2023•西乡塘区二模)计算:6×(3−5)+(−2)2+14.【分析】先算乘方,再算乘法,然后算加减法即可.【解答】解:6×(3−5)+(−2)2+14=6×(﹣2)+4+14=﹣12+4+14=﹣734.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•南宁三模)计算:(﹣1)3+8÷22+|4﹣7|×13.【分析】先算乘方,再算乘除法,最后算加法即可.【解答】解:(﹣1)3+8÷22+|4﹣7|×13=(﹣1)+8÷4+3×13=(﹣1)+2+1=2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2023•柳州三模)计算(−1)2−6÷(−2)×|−13|.【分析】先算乘方和绝对值,再算乘除,最后算加减.【解答】解:原式=1﹣(﹣3)×13=1+1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算顺序是解决本题的关键.7.(2023春•浦东新区期末)计算:﹣23+|﹣5|﹣18×(−13)2.【分析】先计算立方、绝对值和平方,再计算乘法,最后计算加减.【解答】解:﹣23+|﹣5|﹣18×(−13)2.=﹣8+5﹣18×19=﹣8+5﹣2=﹣5.【点评】此题考查了有理数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.8.(2023•武鸣区二模)计算:−12023+(−4)÷12−(1−32).【分析】先算括号里面的,再算乘方,除法,最后算加减即可.【解答】解:原式=﹣12023+(﹣4)÷12−(1﹣9)=﹣12023+(﹣4)÷12−(﹣8)=﹣1+(﹣4)×2+8=﹣1﹣8+8=﹣1.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.9.(2023春•松江区期中)计算:−32−42÷|−6|+8×(−12)3.【分析】利用乘方运算、绝对值的定义和有理数的混合运算法则计算.【解答】解:−32−42÷|−6|+8×(−12)3=﹣9﹣42÷6+8×(−18)=﹣9﹣7﹣1=﹣17.【点评】本题考查了有理数的混合运算,解题的关键是掌握乘方运算、绝对值的定义和有理数的混合运算法则.10.(2022秋•万源市校级期末)﹣22+|5﹣8|+24÷(﹣3)×13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3−83=−113.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.(2022春•徐汇区校级期末)计算:−24−14×[2−(−2)2].【分析】利用有理数的混合运算法则进行计算即可.【解答】解:原式=﹣16−14×(2﹣4)=﹣16−14×(﹣2)=﹣16+12=﹣1512.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.12.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(−1112+912)×(﹣16)−73×27=−16×(﹣16)−23=83−23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春•黄浦区期中)计算:(−1112−34)×(−42)+(−213)÷3.5.【分析】先算括号里面的,再算乘除,最后算加减即可.【解答】解:原式=(−1112−912)×(﹣16)+(﹣213)÷3.5=−53×(﹣16)−73×27=803−23=783=26.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.15.(2023春•雁峰区校级期末)计算:(−3)4÷[2−(−7)]+6×(12−1).【分析】先算乘方和括号内的式子,再算括号外的乘除法,最后算加法即可.【解答】解:(−3)4÷[2−(−7)]+6×(12−1)=81÷(2+7)+6×(−12)=81÷9+(﹣3)=9+(﹣3)=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.(2023春•黄浦区期末)计算:(−56+34)×(−42)+(−213)÷3.5.【分析】有理数的混合运算,先算乘方,再算乘除再算加减,有括号的先算括号的,从而可求出最后结果.【解答】解:(−56+34)×(−42)+(−213)÷3.5=−10+912×(−16)+(−73)×27=−13×(−4)−23=43−23=23.【点评】本题主要考查了有理数的混合运算.本题的易错点是对于负号的计算处理.17.(2023•贺州一模)计算:﹣12023+8÷(﹣2)2﹣|﹣4|×5.【分析】按照有理数的运算法则和运算顺序进行计算即可.【解答】解:原式=﹣1+8÷4﹣4×5=﹣1+2﹣20=﹣19.【点评】本题考查了绝对值和含有乘方的有理数的混合运算,掌握相关运算法则是解题的关键.最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(2023•防城港二模)计算:−14×[(−8)+2÷12]−|−3|.【分析】根据有理数的混合运算法则进行计算即可.【解答】解:原式=﹣1×(﹣8+2×2)﹣3=﹣1×(﹣8+4)﹣3=﹣1×(﹣4)﹣3=4﹣3=1.【点评】本题考查有理数的混合运算,其相关运算法则是基础且重要知识点,必须熟练掌握.19.(2023春•浦东新区期末)计算:﹣14+(1﹣0.5)×13×(﹣2)2.【分析】首先计算乘方和小括号里面的减法,然后计算乘法,最后计算加法,求出算式的值即可.【解答】解:﹣14+(1﹣0.5)×13×(﹣2)2=﹣1+12×13×4=﹣1+23=−13.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1−12×(−43)×(2﹣9)=﹣1−143=−173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.23.(2023春•吉林月考)计算:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24).【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24)=1+|﹣8+9|−14×24+16×24=1+1﹣6+4=0.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,24.(2022秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|.【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12)=25×2=50;(2)(﹣3)2×(12−56)+|﹣4|=9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.25.(2022秋•广宗县期末)计算(1)(14−13−1)×(﹣12)(2)﹣22×14+(﹣3)3×(−827)【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.26.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12).【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12)=(14−49)×36+7×(﹣2)=9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.28.(2022秋•翠屏区期末)计算:(1)12×(116−13−34);(2)−22−13÷5×|1−(−4)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法,最后算减法即可.【解答】解:(1)12×(116−13−34)=12×116−12×13−12×34=22﹣4﹣9=9;(2)−22−13÷5×|1−(−4)2|=﹣4−13×15×|1﹣16|=﹣4−13×15×15=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.30.(2022秋•和平区校级期末)计算(1)(13−18+16)×24;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(13−18+16)×24=13×24−18×24+16×24=8﹣3+4=9;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25=16÷649+112×(−16)−14=16×964+(−1112)−14=2712+(−1112)−312=1312.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.31.(2023•章贡区校级模拟)计算:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)];(2)(514−78−712)÷(﹣134).【分析】(1)先算乘方和括号内的式子,然后计算括号外的减法即可;(2)先把除法转化为乘法,然后根据乘法分配律计算即可.【解答】解:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)]=﹣1﹣[(﹣10)﹣16÷(﹣8)]=﹣1﹣[(﹣10)+2]=﹣1﹣(﹣8)=﹣1+8=7;(2)(514−78−712)÷(﹣134)=(214−78−712)×(−47)=214×(−47)−78×(−47)−712×(−47)=﹣3+12+13=−186+36+26=−136.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.32.(2023•长阳县一模)计算:(1)(12−13)×6÷|−15|;(2)(−1)2018+(−10)÷12×2−[2−(−3)3].【分析】(1)根据有理数的加减乘除混合运算法则计算即可;(2)根据有理数的加减乘除乘法混合运算法则计算即可.【解答】解:(1)(12−13)×6÷|−15|=(12−13)×6×5=(12−13)×30=12×30−13×30=15﹣10=5;(2)(−1)2018+(−10)÷12×2−[2−(−3)3]=1+(﹣10)×2×2﹣(2+27)=1﹣40﹣29=﹣68.【点评】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.33.(2022秋•定远县期中)计算:(1)−22−|0.5−1|×13×[3−(−3)2];(2)(−4.66)×49−5.34÷94+5×(23)2.【分析】(1)先计算绝对值里面的式子和中括号里面的式子,然后再计算出括号外的式子;(2)先把除法转化为乘法、然后根据有理数的乘方和乘法分配律即可解答本题.【解答】解:(1)−22−|0.5−1|×13×[3−(−3)2]=﹣4−12×13×(3﹣9)=﹣4−16×(﹣6)=﹣4+1=﹣3;(2)(−4.66)×49−5.34÷94+5×(23)2=(﹣4.66)×49−5.34×49+5×49=[(﹣4.66)﹣5.34+5]×49=﹣5×49=−209.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134−78−712)÷(−78)+(−34)=(74−78−712)×(−87)+(−34)=74×(−87)−78×(−87)−712×(−87)−34=﹣2+1+23−34=−1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(−12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•正阳县期中)计算:(1)(1112−76+34−1324)×(﹣48);(2)﹣9+5×|﹣3|﹣(﹣2)2÷4;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5).【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算加减法即可.【解答】解:(1)(1112−76+34−1324)×(﹣48)=1112×(﹣48)−76×(﹣48)+34×(﹣48)−1324×(﹣48)=﹣44+56+(﹣36)+26=2;(2)﹣9+5×|﹣3|﹣(﹣2)2÷4=﹣9+5×3﹣4÷4=﹣9+15﹣1=5;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5)=﹣1+16×4﹣(1﹣9)×(−16)=﹣1+64﹣(﹣8)×(−16)=﹣1+64−43=6123.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.36.(2022秋•临邑县期中)计算:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712);(2)(−49)÷75×57÷(−25).(3)﹣22÷43−[22﹣(1−12×13)]×12;【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和括号内的式子,然后括号外的乘除法,最后算加减法即可.【解答】解:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712)=(−12)+314+234+(﹣712)=﹣2;(2)(−49)÷75×57÷(−25)=49×57×57×125=1;(3)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−[4﹣(1−16)]×12=﹣3﹣(4−56)×12=﹣3﹣4×12+56×12=﹣3﹣48+10=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.37.(2022秋•南票区期中)计算(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5;(2)(﹣5)×6×(−45)÷(﹣4);(3)﹣11×(−227)+19×(−227)+6×(−227);(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|.【分析】(1)去括号,进行加减运算;(2)把除法变成乘法,再进行计算;(3)先提公因数,再计算;(4)先乘方,再乘除,最后加减运算.【解答】解:(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=(﹣0.8)+0.8﹣0.7﹣2.1+1.2+3.5=0﹣2.8+4.7=1.9;(2)(﹣5)×6×(−45)÷(﹣4)=(﹣5)×6×(−45)×(−14)=﹣6;(3)﹣11×(−227)+19×(−227)+6×(−227)=(−227)×(﹣11+19+6)=(−227)×14=﹣44;(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|=﹣9×(﹣2)+16÷(﹣8)﹣4=18+(﹣2)﹣4=18﹣2﹣4=12.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和运算顺序.38.(2022秋•库车市期中)计算:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37);(2)﹣54×219+(﹣412)×29;(3)(12+56−712)×(﹣24);(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|.【分析】(1)先去括号,再进行加减运算;(2)(3)先算乘除,再算加减;(4)先算乘方和绝对值,再算乘除,最后算加减.【解答】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣53﹣37+21+69=﹣90+90=0;(2)﹣54×219+(﹣412)×29=﹣54×199+(−92)×29=﹣115;(3)(12+56−712)×(﹣24)=12×(﹣24)+56×(﹣24)−712×(﹣24)=﹣12﹣20+14=﹣32+14=﹣18;(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|=﹣1÷(−52)×25﹣7=﹣1×(−25)×25﹣7=10﹣7=3.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.39.(2022秋•南山区校级期中)计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(23−112−415)×(−60);(3)−14−16×[2−(−3)2];(4)(−2)2−[(−23)+(−14)]÷112.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算及括号里面的,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12﹣5﹣14+39=﹣31+39=8;(2)原式=﹣40+5+16=﹣19;(3)原式=−1−16×(2−9)=−1+76=16;(4)原式=4−(−23−14)×12=4+8+3=15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.40.计算:(1)4﹣(﹣28)+(﹣2);(2)(13−16)×(﹣24);(3)(﹣2)3﹣(﹣13)÷(−12);(4)﹣12﹣(1﹣0.5)÷52×15.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1−12×25×15=−1−125=−1125.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.41.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12);(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.42.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.43.(2022秋•西城区校级期中)计算:(1)﹣2+8﹣36﹣(﹣30);(2)﹣24÷(﹣6)×(−14);(3)(−34+56+716)×(﹣48);(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2].【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)根据乘法分配律计算即可;(4)先算乘方和括号内的式子,然后算乘法,最后算减法即可.【解答】解:(1)﹣2+8﹣36﹣(﹣30)=﹣2+8+(﹣36)+30=0;(2)﹣24÷(﹣6)×(−14)=﹣24×16×14=﹣1;(3)(−34+56+716)×(﹣48)=−34×(﹣48)+56×(﹣48)+716×(﹣48)=36+(﹣40)+(﹣21)=﹣25;(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2]=12×(﹣1)﹣(1﹣36)=−12−(﹣35)=−12+35=3412.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.44.计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣0.2×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12)(4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12;(2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125;(3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.45.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)4×(﹣3)2﹣5×(﹣2)+6;(3)(−34+712−59)÷(−136);(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2].【分析】(1)先化简,再计算加减法即可求解;(2)(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)将除法变为乘法,再根据乘法分配律简便计算.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣4﹣28+29﹣24=﹣56+29=﹣27;(2)4×(﹣3)2﹣5×(﹣2)+6=4×9+10+6=36+10+6=52;(3)(−34+712−59)÷(−136)=(−34+712−59)×(﹣36)=34×36−712×36+59×36=27﹣21+20=26;(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2]=﹣1−12÷213×[2﹣9]=﹣1−12÷213×(﹣7)=﹣1+112=12.【点评】考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.46.(2022秋•汤阴县期中)计算:(1)−22×|−5|−6÷(12−13)×56;(2)(−56+13−34)×(−24);(3)(−1)2023×[−24×(−34)2−1];(4)24−12022×(−2)3−5.5÷415×(−815).【分析】(1)先算乘方、括号内的式子和去绝对值,然后计算括号外的乘除法,再算减法即可;(2)根据乘法分配律计算即可;(3)先算乘方和括号内的式子,再算括号外的乘法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)−22×|−5|−6÷(12−13)×56=﹣4×5﹣6÷16×56=﹣20﹣6×6×56=﹣20﹣30=﹣50;(2)(−56+13−34)×(−24)=−56×(﹣24)+13×(﹣24)−34×(﹣24)=20+(﹣8)+18=30;(3)(−1)2023×[−24×(−34)2−1]=(﹣1)×(﹣16×916−1)=(﹣1)×(﹣9﹣1)=(﹣1)×(﹣10)=10;(4)24−12022×(−2)3−5.5÷415×(−815)=24﹣1×(﹣8)−112×154×(−815)=24+8+11=43.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键,注意乘法分配律的应用.47.(2022秋•丰泽区校级期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(−38−16+34)×(﹣24);(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017;(4)﹣22÷43−[22﹣(1−12×13)]×12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算乘方,再算乘法,最后算减法即可;(4)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算减法即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20+(﹣14)+18+(﹣13)=﹣29;(2)(−38−16+34)×(﹣24)=−38×(﹣24)−16×(﹣24)+34×(﹣24)=9+4+(﹣18)=﹣5;(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017=(−14)×16−14×(﹣8)×(﹣1)=﹣4﹣2=﹣6;(4)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−(4﹣1+16)×12=﹣3﹣(3+16)×12=﹣3﹣36﹣2=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.48.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6(3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(2023春•沈阳月考)计算:(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213−(+1013)+(−815)⋅(+325);(3)(−292324)×12;(4)(−24)×(1−34+16−58);(5)−32−(−2)3×(−4)÷(−14);(6)(−32+3)×[(−1)2022−(1−0.5×13)].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)先算乘法,再算加减法即可;(3)先变形,然后根据乘法分配律计算即可;(4)根据乘法分配律计算即可;(5)先算乘方,再算乘除法,最后算减法即可;(6)先算括号内的式子,再算括号外的乘法即可.【解答】解:(1)3﹣(+63)﹣(﹣259)﹣(﹣41)=3+(﹣63)+259+41=240;(2)213−(+1013)+(−815)⋅(+325);=213+(﹣1013)+(−415)×175=213+(﹣1013)+(−69725)=﹣8+(−69725)=−89725;(3)(−292324)×12=(﹣30+124)×12=﹣30×12+124×12=﹣360+12=﹣35912;(4)(−24)×(1−34+16−58)=﹣24×1+24×34−24×16+24×58=﹣24+18﹣4+15=5;(5)−32−(−2)3×(−4)÷(−14)=﹣9﹣(﹣8)×(﹣4)×(﹣4)=﹣9+128=119;(6)(−32+3)×[(−1)2022−(1−0.5×13)]=(﹣9+3)×[1﹣(1−16)]=(﹣6)×(1−56)=(﹣6)×16=﹣1.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.50.(2022秋•朝阳区校级月考)计算.(1)﹣32﹣(+11)+(﹣9)﹣(﹣16);(2)﹣9+0.8+(﹣1)+(−45)−(−10);(3)﹣212÷(−5)×(−313)÷0.75;(4)(−16−512+13)×(−72);(5)−12023+27×(−13)2−|﹣5|;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12.【分析】(1)先把减法统一成加法,写成省略括号和的形式,再把负数、正数分别相加;(2)先把分数化成小数,再把和为0的放一起先加;(3)先把除法统一成乘法,再算乘法;(4)利用乘法的分配律计算比较简便;(5)先算乘方化简绝对值,再算乘法,最后算加减;(6)先算乘方,再算括号里面的,最后算乘法、加减.【解答】解:(1)﹣32﹣(+11)+(﹣9)﹣(﹣16)=﹣32﹣11﹣9+16=﹣52+16=﹣36;(2)﹣9+0.8+(﹣1)+(−45)−(−10)=﹣9+0.8﹣1﹣0.8+10=(﹣9﹣1+10)+(0.8﹣0.8)=0+0=0;(3)﹣212÷(−5)×(−313)÷0.75=−52×(−15)×(−103)÷34=−52×15×103×43=−209;(4)(−16−512+13)×(−72)=(−16)×(﹣72)−512×(﹣72)+13×(﹣72)=12+30﹣24=18;(5)−12023+27×(−13)2−|﹣5|=﹣1+27×19−5=﹣1+3﹣5=﹣3;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12=(−24+34)×(﹣8)+16+2×12=14×(﹣8)+16+1=﹣2+16+1=15.【点评】本题考查了有理数的混合运算,掌握有理数的运算律、运算法则是解决本题的关键.。
人教版七年级数学上册期末计算题综合专题训练-附带有答案
人教版七年级数学上册期末计算题综合专题训练-附带有答案学校: 班级: 姓名: 考号:1.计算下列各题(1)(−34+18−56)×(−24);(2)−14+2×(−3)2−|4−5|.2.计算:(1)(−3)2×23−(−4)÷2(2)(−13+16−38)×(−24)3.计算:(1)﹣(﹣4)+(﹣1)﹣(+5);(2)﹣14+|5﹣8|+27÷(﹣3)×13.4.计算:(1)﹣20﹣(﹣14)+(﹣18)﹣13;(2)(−34+16−58)÷(−124);(3)﹣32+(﹣3)2+3×2+|﹣4|;(4)16÷(−2)3−(−16)×(−4)+(−1)2024.5.计算:(1)(−0.5)−(−314)+3.75−(+12);(2)−22−(1−0.5)÷15×[2−(−2)2].6.先化简,再求值2(x2y ﹣2xy )﹣3(x2y ﹣3xy )+x2y ,其中x =﹣25,y =2.7.先化简,再求值:5x 2−[3x −2(2x −3)+7x 2],其中x =−1.8.先化简,再求值:12x −2(x −13y 2)+(−32x +13y 2),其中,x= 23,y=-2.9.先化简,再求值:2x3+4x-13x2-(x- 3x2+2x3),其中x=-3.10.合并同类项:(1)4a-5a+8a .(2)-2x+3y+7x-12y .(3)5mn-2m+4mn+6m-2.11.化简:(1)-3(2x-1)+7x .(2)2(2y-x )-(1-2x ).(3)-3(2x-23y2)+2(−32x+y2).12. 化简:(1)3x 2﹣1﹣2x ﹣5+3x ﹣x 2;(2)4(2a 2﹣1+2a )﹣3(a ﹣1+a 2).13.化简:(1)−a2+2023ab−a2−2023ab;(2)3x2−4x−2[2x2−(−x2+2x−1)].14.化简:(1)3x2−4y2+4y2−2x2;(2)a2−4a+6−3(2a−1).15.解方程:(1)5x+3(2−x)=8;(2)3x−13=1−4x−16.16.解方程:(1)4−3(10−x)=5x.(2)x+12−2−3x3=1.17.解下列方程(1)3x−5=x+1(2)8x=−2(x+4)(3)2x−(x+10)=5x+2(x−1)(4)7x−13−5x+12=2−3x+24(1)2x−13=2x+14−1(2)2x+13=1−x−15(3)x+12−x+26=1+2x3(4)x0.7−0.17−0.2x0.03=119.解方程:(1)3(2x−1)+1=4(x+2);(2)2x−13=2x+16−1 .20.解方程:(1)5x−2(3−2x)=−3;(2)2x−13=1−x+22.21.解下列方程:(1)2x-1=5.(2)3x+7=5x-1.(3)3(3x+5)=2(2x-1).(4)3(x-2)-6=2(x+ 1).参考答案1.(1)解:原式=−34×(−24)+18×(−24)−56×(−24) =18−3+20 =35;(2)解:原式=−1+2×9−1=−1+18−1=16.2.(1)解: (−3)2×23−(−4)÷2 = 9×8−(−4)÷2= 72+2=74(2)解: (−13+16−38)×(−24)= −13×(−24)+16×(−24)−38×(−24)= 8−4+9=133.(1)解:﹣(﹣4)+(﹣1)﹣(+4) =4﹣1﹣6=﹣2;(2)解:﹣14+|5﹣8|+27÷(﹣2)×13=﹣5+3+(﹣9)×53=2﹣7=﹣1.4.(1)解:原式=﹣20+14﹣18﹣13 =﹣6﹣18﹣13=﹣24﹣13=﹣37;(2)解:原式=(﹣32+16﹣78)×(﹣24)=﹣37×(﹣24)+16+48×(﹣24)=29;(3)解:原式=﹣2+9+6+8=0+6+6=10;(4)解:原式=16÷(﹣8)﹣(﹣16)×(﹣4)+1 =﹣3﹣23+2=﹣126.5.(1)解:(−0.5)−(−314)+3.75−(+12)=−0.5+3.25+3.75−0.5=−0.5+(−0.5)+(3.25+3.75)=−1+7(2)解:−22−(1−0.5)÷15×[2−(−2)2]=−4−0.5×5×(2−4)=−4−0.5×5×(−2)=−4+5=1.6.解:原式=2x 2y ﹣4xy ﹣3x 2y+9xy+x 2y =5xy ;当x =﹣25,y =2时原式=5×(﹣25)×2=﹣4.7.解:原式=-2x 2+x-6当x=-1时原式=-98.解:12x −2(x −13y 2)+(−32x +13y 2) =12x −2x +23y 2−32x +13y 2=(13y 2+23y 2)+(12x −2x −32x)= y 2-3x .当x=23 ,y=-2时,原式= (-2)2-3×23 =4-2=29.解:原式=2x 3+4x-13x 2-x+3x 2-2x 3=83x 2 +3x ,把x=-3代人,原式=83×(-3)2+3×(-3)=24-9=1510.(1)解:4a-5a+8a=(4-5+8)a=7a ;(2)解:-2x+3y+7x-12y=(-2+7)x+(3-12)y=5x +52y .(3)解: 5mn-2m+4mn+6m-2=(5+4)mn+(-2+6)m-2=9mn+4m-2.11.(1)解:原式=-6x+3+7x=x+3;(2)解:原式=4y-2x-1+2x=4y-1;(3)解:原式=-6x+2y 2-3x+2y 2=-9x+4y 2.12.(1)解:原式=3x 2﹣x 2﹣2x+3x ﹣1﹣5 =2x 2+x ﹣6;(2)解:原式=8a 2﹣4+8a ﹣3a+3﹣3a 2 =5a 2+8a ﹣1.13.(1)解:−a 2+2023ab −a 2−2023ab=−(a 2+a 2)+(2023ab −2023ab)=−2a 2(2)解:3x 2−4x −2[2x 2−(−x 2+2x −1)]=3x 2−4x −4x 2+2(−x 2+2x −1) =3x 2−4x −4x 2−2x 2+4x −2=−3x 2−214.(1)解:原式=(3x 2−2x 2)+(4y 2−4y 2) =x 2;(2)解:原式=a 2−4a +6−6a +3;=a2−10a+9.15.(1)解:去括号得:5x+6−3x=8移项得:5x−3x=8−6合并得:2x=2解得:x=1;(2)解:去分母得:2(3x−1)=6−(4x−1)去括号得:6x−2=6−4x+1移项得:6x+4x=6+1+2合并得:10x=9解得:x=0.9.16.(1)解:4−3(10−x)=5x去括号得:4−30+3x=5x移项,合并同类项得:−2x=26未知数系数化为1得:x=−13.(2)解:x+12−2−3x3=1去分母,得:3(x+1)−2(2−3x)=6去括号,得:3x+3−4+6x=6移项,合并同类项,得:9x=7系数化成1,得:x=79.17.(1)解:3x-5=x+13x-x=1+52x=6x=3;(2)解:8x=-2(x+4)8x=-2x-88x+2x=-810x=-8x=−45;(3)解:2x-(x+10)=5x+2(x-1)2x-x-5x-2x=-2+10 -6x=8x=−43;(4)解:7x−13−5x+12=2−3x+244(7x-1)-6(5x+1)=24-3(3x+2)28x-4-30x-6=24-9x-628x-30x+9x=24-6+4+67x=28x=4.18.(1)去分母,得4(2x-1)=3(2x+1)-12 去括号,得8x-4=6x+3- 12.移项,得8x- 6x=3- 12+4合并同类项,得2x=-5解得x=-2.5.(2)去分母,得5(2x+1)-15- 3(x- 1) 去哲号,得10x+5=15- 3x+3移项,得10x+3x=15+3-5合并同类项,得13x=13解得x=1.(3)去分母,得3(x+1)- (x+2)=6+4x去括号,得3x+3-x-2=6+4x移项、合并同类项,得2x=-5解得x=−52.(4)方程整理得10x7−17−20x3=1去分母,得30x-7(17- 20x)=21去括号,得30x- 119+140x=21.移项、合并同类项得170x=140.解得x=141719.(1)解:去括号得:6x−3+1=4x+8移项得:6x−4x=8+3−1合并同类项得:2x=10解得:x=5;(2)解:去分母得:2(2x−1)=2x+1−6去括号得:4x−2=2x+1−6移项得:4x−2x=1−6+2合并同类项得:2x=−3解得:x=−1.520.(1)解:5x−2(3−2x)=−3去括号,得5x−6+4x=−3移项,得5x+4x=−3+6合并同类项,得9x=3系数化为1,得x=13;(2)解:2x−13=1−x+22去分母,得2(2x−1)=6−3(x+2)去括号,得4x−2=6−3x−6移项,得4x+3x=2合并同类项,得7x=2系数化为1,得x=27.21.(1)解:移项,得 2x=1+5合并同类项,得2x=6系数化为1,得x=3;(2)解:移项,得3x-5x=-1-7合并同类项,得-2x=-8系数化为1,得x=4;(3)解:去括号,得9x+15=4x-2 移项,得9x- 4x=-2-15合并同类项,得5x=-17系数化为1,得x=−175;移项,得3x- 2x=2+6+6.合并同类项,得x=14。
专题01 有理数的加法(计算题专项训练)-2024-2025学年七年级数学上册计算题专项训练系列(沪
专题01 有理数的加法1.(2022秋·七年级课时练习)计算:(1)(−10)+(+6);(2)(+12)+(−4);(3)(−5)+(−7);(4)(+6)+(−9);(5)(−0.9)+(−27);(6)25+(−35); (7)(−13)+25; (8)(−314)+(−1112).【思路点拨】有理数的加法原则:同号相加,取相同的符号,并把绝对值相加,异号相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;有理数的减法原则:减去一个数等于加上这个数的相反数,根据原则内容计算即可.【解题过程】解:(1)(−10)+(+6)=−4(2)(+12)+(−4)=8(3)(−5)+(−7)=−12(4)(+6)+(−9)=−3(5)(−0.9)+(−27)=−27.9(6)25+(−35)=−15(7)(−13)+25=(−515)+615=115(8)(−314)+(−1112)=[(−3)+(−1)]+[(−14)+(−112)]=−413.2.(2023·江苏·七年级假期作业)计算:(1)(−0.9)+(−0.87);(2)(+456)+(−312);(3)(−5.25)+514; (4)(−89)+0.【思路点拨】(1)根据两个负数相加的运算法则进行计算即可;(2)根据绝对值不相等的异号的两数相加进行计算即可;(3)根据互为相反数的两数相加的法则进行计算即可;(4)根据一个数与0相加的法则进行计算即可.【解题过程】(1)解:(−0.9)+(−0.87)=−(0.9+0.87)=−1.77;(2)(+456)+(−312)=+(456−336)=113; (3)(−5.25)+514=0;(4)(−89)+0=−89.3.(2022·全国·七年级假期作业)计算:(1)(−6)+(−13)(2)(−45)+34+45 (3)(−15.7)+6+57(4)16+(−27)+(−56)+57【思路点拨】(1)根据有理数的加法法则可以解答本题;(2)先交换加数的位置,利用互为相反数的两个数和为0进行计算即可解答.(3)根据有理数的加法法则从左到右计算即可;(4)先交换加数的位置,分别计算同分母分数的加法,再进行通分计算即可解答.【解题过程】解:(1)(-6)+(-13)=-(6+13).=-19;(2)(−45)+34+45=(−45)+45+34 =0+34 =34;(3)(−15.7)+6+57=−9.7+57=47.3;(4)16+(−27)+(−56)+57=[16+(−56)]+[(−27)+57] =(−23)+37=(−1421)+921=−521. 4.(2023·全国·九年级专题练习)计算下列各题:(1)(−3)+40+(−32)+(−8)(2)13+(−56)+47+(−34)(3)43+(−77)+27+(−43)【思路点拨】优先负数和负数相加,正数和正数相加,能凑整先凑整的原则进行简便运算即可.【解题过程】(1)(−3)+40+(−32)+(−8)=−(32+8+3)+40=−43+40=−3(2)13+(−56)+47+(−34)=13+47+[(−56)+(−34)]=60+(−90)=−30(3)43+(−77)+27+(−43)=43+27+[(−77)+(−43)]=70+(−120)=−505.(2023·全国·七年级假期作业)计算(1)4.7+(−0.8)+5.3+(−8.2)(2)(−16)+(+13)+(−112)【思路点拨】对于(1),将两个正数,两个负数分别结合,再计算;对于(2),先通分,再结合计算即可.【解题过程】(1)原式=(4.7+5.3)+(-0.8-8.2)=10-9=1;(2)原式=(−212-112)+412=-312+412=112.6.(2022秋·湖南衡阳·七年级校考阶段练习)计算:(1)(−23)+(+58)+(−17);(2)(−2.8)+(−3.6)+(−1.5)+3.6.【思路点拨】(1)根据加法交换律与结合律,先将和为整数的数结合相加,再按有理数加法法则进行计算;(2)根据加法交换律与结合律,先将互为相反数的数结合相加,再按有理数加法法则进行计算.【解题过程】(1)解:原式=[(−23)+(−17)]+(+58)=−40+58=18.(2)解:原式=[(−2.8)+(−1.5)]+[(−3.6)+3.6]=−4.3+0=−4.3.7.(2023·全国·九年级专题练习)计算:(1)(−23)+72+(−31)+(+47);(2)(+1.25)+(−12)+(−34)+(+134).【思路点拨】(1)先把同号的两数先加,再按照绝对值不相等的异号两数相加的法则进行运算即可;(2)把和为整数的两个数先加,再通分,再按照绝对值不相等的异号两数相加的法则进行运算即可.【解题过程】(1)解:(−23)+72+(−31)+(+47)=(−54)+(+119)=65;(2)(+1.25)+(−12)+(−34)+(+134) =[(+114)+(+134)]+[(−24)+(−34)]=3+(−54) =74. 8.(2022秋·全国·七年级专题练习)计算:(1)3+(−10)+9+(−12)+7(2)(−0.19)+(−3.27)+(+6.19)+(−5)+2.27(3)147+(−213)+37+ 13 (4)4.4+(−13)+(−7)+(−323)+(−2.4)【思路点拨】(1)把同号的两数与互为相反数的两数先加,再进行计算即可;(2)把和为整数的两个数先加,再进行即可;(3)把和为整数的两数先加,再计算即可;(4)把和为整数的两数先加,再计算即可;【解题过程】(1)解:3+(−10)+9+(−12)+7=12−12−10+7=−3;(2)(−0.19)+(−3.27)+(+6.19)+(−5)+2.27=−0.19+6.19+2.27−3.27−5=6−1−5=0;(3)147+(−213)+37+ 13=147+37+13−213 =2−2=0;(4)4.4+(−13)+(−7)+(−323)+(−2.4) =4.4−2.4−13−323−7=2−4−7=−99.(2023·全国·七年级假期作业)计算(1)(−0.9)+1.5(2)12+(−23) (3)1+(−12)+13+(−16) (4)314+(−235)+534+(−825)【思路点拨】(1)利用有理数的加法运算法则直接计算即可得到答案;(2)利用有理数的加法运算法则直接计算即可得到答案;(3)利用有理数的加法运算律进行简便计算,即可得到答案;(4)利用有理数的加法运算律进行简便计算,即可得到答案.【解题过程】(1)解:(−0.9)+1.5=0.6;(2)解:12+(−23)=36−46=−16; (3)解:1+(−12)+13+(−16) =(1+13)+[(−12)+(−16)] =43+(−23) =23;(4)解:314+(−235)+534+(−825)=(314+534)+[(−235)+(−825)]=9+(−11) =−2.10.(2022秋·山东德州·七年级校考阶段练习)计算(1)(+15)+(−20)+(−7)+(+10)(2)(−35)+(−12)+34+(−25)+12+(−78)(3)(−20)+(+3)−(−5)−(+7)(4)545−(+216)+(−4.8)−(−456)【思路点拨】(1)利用有理数的加法法则进行计算即可;(2)利用加法交换律和结合律进行简便运算;(3)利用有理数的加减法则,从左到右依次运算即可;(4)利用加法交换律和结合律进行简便计算.【解题过程】(1)解:原式=15−20−7+10,=−5−7+10,=−12+10,=−2;(2)解:原式=(−35−25)+(−12+12)+(34−78),=−1+0−18,=−118;(3)解:原式=−20+3+5−7,=−17+5−7,=−12−7,=−19;(4)解:原式=(545−4.8)−(216−456),=1+223,=323.11.(2023·浙江·七年级假期作业)计算下列各式:(1)(−1.25)+(+5.25)(2)(−312)+(+713)−8 (3)0.36+(−7.4)+0.5+0.24+(−0.6)(4)315+(−0.5)+(−3.2)+512.【思路点拨】(1)根据有理数的加法法则计算,即可解答;(2)根据有理数的加减运算法则计算,即可解答;(3)利用加法的结合律和交换律,即可解答;(4)利用加法的结合律和交换律,即可解答.【解题过程】(1)原式=5.25−1.25=4;(2)原式=(−3)+(+7)−8+(−12)+13=−4−16=−256; (3)原式=0.36+0.24+(−0.6)+0.5+(−7.4)=0.5+(−7.4)=−6.9;(4)原式=3.2+(−3.2)+(−0.5)+5.5=5.12.(2022秋·七年级课时练习)计算:(1)(﹣3)+40+(﹣32)+(﹣8)(2)43+(﹣77)+27+(﹣43)(3)18+(﹣16)+(﹣23)+16(4)(﹣3)+(+7)+4+3+(﹣5)+(﹣4)(5)5.6+(﹣0.9)+4.4+(﹣8.1)(6)(﹣256)+171123+(+12223)+(﹣416)【思路点拨】(1)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(2)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(3)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(4)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(5)运用加法的交换律和结合律,同分母的相结合,再按照异号两数相加的法则计算即可.【解题过程】解:(1)(﹣3)+40+(﹣32)+(﹣8)=40+[(﹣3)+(﹣32)+(﹣8)]=40+(﹣43)=﹣3,(2)43+(﹣77)+27+(﹣43)=(43+27)+[(﹣77)+(﹣43)]=70+(﹣120)=﹣50,(3)18+(﹣16)+(﹣23)+16=(18+16)+[(﹣16)+(﹣23)]=34+(﹣39)=﹣5,(4)(﹣3)+(+7)+4+3+(﹣5)+(﹣4)=[(+7)+4+3]+[(﹣3)+(﹣5)+(﹣4)]=14+(﹣12)=2,(5)5.6+(﹣0.9)+4.4+(﹣8.1)=(5.6+4.4)+[(﹣0.9)+(﹣8.1)]=10+(﹣9)=1,(6)(−256)+171123+(+12223)+(−416)=[171123+(+12223)]+[(−256)+(−416)]=291323+(−7)=221323.13.(2023·浙江·七年级假期作业)计算(1)25.7+(−7.3)+(−13.7)+7.3;(2)(−2.125)+(+315)+(+518)+(−3.2). 【思路点拨】(1)利用加法交换律与加法结合律,把互为相反数的两数相加,另两数相加;(2)利用加法交换律与加法结合律,把小数部分相同的两数相加,互为相反数的两数相加.【解题过程】(1)解:25.7+(−7.3)+(−13.7)+7.3=[25.7+(−13.7)]+[(−7.3)+7.3]=12+0=12(2)(−2.125)+(+315)+(+518)+(−3.2) =[(−2.125)+518]+[315+(−3.2)] =3+0=314.(2023秋·全国·七年级专题练习)计算:(1)(-2)+(+3)+(+4)+(-3)+(+5)+(-4);(2)(−213)+(−234)+534+(−423). 【思路点拨】(1)按照加法的交换律和结合律把互为相反数的结合进行求解即可;(2)按照加法的交换律和结合律把同分母的结合进行求解即可;【解题过程】(1)原式=[(-2)+(+5)]+[(+3)+(-3)]+[(+4)+(-4)]=(+3)+0+0=3;(2)解:原式=[(−213)+(−423)]+[(−234)+534]=(−7)+(+3)=−4.15.(2023·全国·七年级假期作业)计算:(1)(−3)+12+(−17)+(+8)(2)234+523+(−2.75)+(−513) 【思路点拨】(1)原式运用加法的交换律和结合律进行计算即可得到答案;(2)原式先将−2.75化为−234,再运用加法的交换律和结合律进行计算即可得到答案.【解题过程】(1)(−3)+12+(−17)+(+8)=(−3−17)++(12+8)=−(3+17)++(12+8)=−20+20=0;(2)234+523+(−2.75)+(−513)=234+523+(−234)+(−513)=(234−234)+(523−513)=0+13 =13 16.(2023·浙江·七年级假期作业)计算:(1)|−7|+|−9715|(2)(−723)+(−356) (3)(+4.85)+(−3.25)(4)(−7)+(+10)+(−1)+(−2)(5)(−2.6)+(−3.4)+(+2.3)+1.5+(−2.3)(6)(+317)+(−3.36)+[(+7.36)+(+1417)].【思路点拨】(1)先去绝对值,再按照有理数的加法运算顺序计算.(2)先去括号,再按照有理数的加法运算顺序计算.(3)先去括号,再按照有理数的加法运算顺序计算.(4)先去括号,再按照有理数的加法运算顺序计算.(5)先去括号,再按照有理数的加法运算顺序计算.(6)先去小括号,后去中括号,再按照有理数的加法运算顺序计算.【解题过程】(1)解:|−7|+|−9715|=7+9715 =16715 (2)解:(−723)+(−356)=(−233)+(−236) =−696 =−232(3)解:(+4.85)+(−3.25)=4.85−3.25=1.6(4)解:(−7)+(+10)+(−1)+(−2)=−7+10−1−2=0(5)解:(−2.6)+(−3.4)+(+2.3)+1.5+(−2.3)=−2.6−3.4+2.3+1.5−2.3=−4.5(6)解:(+317)+(−3.36)+[(+7.36)+(+1417)]=(+317)+(−3.36)+(+7.36)+(+1417) =(+317)+(+1417)+(−3.36)+(+7.36) =1+4=517.(2022秋·浙江·七年级专题练习)计算:(1)314+(−235)+534+(−825);(2)(−0.5)+314+2.75+(−512); (3)−|−1.5|+|−32|+0. 【思路点拨】可以运用加法的交换律交换加数的位置,(1)可变为(314+534)+[(﹣235)+(﹣825)],(2)可变为[(﹣0.5)+(﹣512)]+(314+2.75),然后利用加法的结合律将两个加数相加.(3)先计算绝对值,再根据有理数的加法法则计算即可.【解题过程】(1)314+(−235)+534+(−825) =(314+534)+[(﹣235)+(﹣825)] =9﹣11=﹣2;(2)(−0.5)+314+2.75+(−512)=[(﹣0.5)+(﹣512)]+(314+2.75)=﹣6+6=0;(3)−|−1.5|+|−32|+0 =﹣1.5+32+0 =0.18.(2023·江苏·七年级假期作业)计算:(1)(−335)+(−2.71)+(+1.69)(2)|−512+4.25|+(−7+512).【思路点拨】(1)根据有理数的加法运算法则进行计算即可;(2)根据有理数的加法运算法则及求一个数的绝对值进行计算即可.【解题过程】(1)解:(−335)+(−2.71)+(+1.69) =(−3.6)+(−2.71)+1.69=−(3.6+2.71)+1.69=−6.31+1.69=−(6.31−1.69)=−4.62;(2)|−512+4.25|+(−7+512) =|−5.5+4.25|+(−7+5.5)=|−1.25|+(−1.5)=1.25+(−1.5)=−(1.5−1.25)=−0.25.19.(2022秋·福建龙岩·七年级统考期中)阅读下面文字:对于(−556)+(−923)+1734+(−312),可以按如下方法计算: 原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)] =[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)] =0+(−114) =−114. 上面这种方法叫拆项法.仿照上面的方法,请你计算:(−202256)+(−202123)+(−112)+4044.【思路点拨】根据拆项法的定义,先把带分数拆成整数与分数两个部分,然后分别进行计算即可.【解题过程】解:原式=[(−2022)+(−56)]+[(−2021)+(−23)]+[(−1)+(−12)]+4044=[(−2022)+(−2021)+(−1)+4044]+[(−56)+(−23)+(−12)] =0+(−2)=−2.20.(2022秋·湖南岳阳·七年级统考期末)计算:12+(13+23)+(14+24+34)+⋯+(160+260+⋯+5860+5960)【思路点拨】原式整理结合后,计算即可得到结果.【解题过程】解:设S =12+(13+23)+(14+24+34)+⋯+(160+260+⋯+5860+5960), 则S =12+(23+13)+(34+24+14)+⋯+(5960+5860+⋯+260+160), 上下两式相加得2S =1+2+3+⋯+59=59×(1+59)2=1770, 所以S =885,即12+(13+23)+(14+24+34)+⋯+(160+260+⋯+5860+5960)=885.。
(完整)人教版新目标初中七年级数学上册计算题专项训练
训练一第一部分有理数计算(要求:认真、仔细、准确率高)1.5 1.4 4.35.2 3.62111 0.43 624351 30.2 2 652321 1 — 28442、6 〕13 2、 2.5 7.3 2.5 ( 2.4) 2.5 ( 1.7)1 25、| 5|112 3 32、一9+5 X ( - 6) - ( - 4) - ( - 8)1 1 1 丄 0.3 3丄丄2 123 3[(3x + 2y)(3x — 2y) — (x + 2y)(3x — 2y)] - 3x先化简后求值: m(m — 3) — (m + 3)(m — 3),其中 nn=— 4.(14)( 4) ( 2) ( 26) ( 3)2 (1.8) ( 0.7)( 0.9) 1.3 ( 0.2)4[(4) ( 7)] ( 5)8 + ( — 4 ) — 5 — ( — 0.25)、(83)( 26) ( 41) ( 15)113 2、 (3 ) ( 4 )( 6 )4 3435、4.25.7 8.4 10.27、30 11 ( 10) ( 12) 181、3、5、7、9、11、13、15、17、 19、 20、 1、 3、4、 6、89 41 1 11 (81)——(32)14、一48 X()4 94 36612423 5 16、(2m+2) 2X 4m482、21 22 2、4 3、(2x +(2—y) 18 、(一 xy ) • (—12x y ) r——x1215 + (— 1) —15—( — 0.25)331 1 131 ( 24)( 3)9、13 [26 ( 21) ( 18)]10、4 6x321 3 1 10、2 -(-)1 14 4 212、(3) 8 ( 4)5 314、(丄)5 ( 8)20 4 16、11、( 4) ( 7) ( 25)3 ,4 14、13、)4 3 15,2、 2 ,c、 3 15 、8 (-) (4)(-) (8)-5 9 518、9 ( 11) 12 ( 8)(0.25)11244 2 419 、2 1 1()二()3 1 117 ( 4)( 2)( 24)120、50 2 ( )522、3250 22(-) 11024、3 50 2 2 ($ 155 25 26、( 2)( )2 5 14 28、8 ( !) 5 (0.25)430、(1) (12) 13 332、(81) 2 1 4 (1 6)4 99 434、34(24)4 9 21 、17 8 (2) 4 (3)2 2 12 1 —(0.5 ) 1-3 3 925、[1(10.5£)] [2 ( 3)2]227、4 ( 3)2;5 ( 3) 61 3 129( ——) (48)6 4 1231、、21 1 (9 19)2 41 3 1 133—[ —(—5 -)]2 4 4 21 52 235 、( )24 ( 3 3) ( 6 3)8 1236、31223 5 7、 1 38( )4 9 12 3640、( 7) ( 5) 90 十(15)2 3 342、37、(- 12) - 4X(- 6) -22 39、10 ( 2) ( 5) 41、7 1 X 1 十(—9+ 19)2 444、( —81) - 2丄+ - - ( —16)4 946、(—0.4 )- 0.02 X(—5)45、—4 --—(—0X(—30)7 7 247 、(6)4 8 343 、25 X 卫一(—25) X 丄 + 25X (—丄)4 ' 7 2 '4,2 13 5 483 4 8 24—22 + 1X4(—2) 25( 4)20.25(5) ( 4)38100 (2)349、| (4)22 2 4 ^3、51 、一2 —〔一3 + ( —2) +2 〕1 2(?)(2) ( 1) 2004 55、122(12) 6 ( 3)3719 4211 (11 112 834)57、34 21 ( 4) (14— 16-9)4 13 13 [5+( 1(—0.25)2)]59、1丄257(|)61、2丄463、1 1 52- (-)2 2 7(4)亠1(134 81辽)2 3 35 ( 2) (1 0.8 -) 1 14 71 1(1248、50、52、54、56、58、60、62、64、66、68、70、72、73、74、76、78、63634 21 ( 4)(14— 16—)13 1352( 2)3(1 0.8 3)1 167、(— 5- ) + (— 16) + (— 2)3-4 + 2 X (-3) - 6+ 0.2518+ {1 -[0.4+ (1-0.4)]X 0.4 1—3-[4-(4-3.5 X )] X [-2+(-3)]22 511 —4 + 5X ( — 4) — ( — 1) X ( — ) + ( —26200335 200236200131小21+31222210022311 ) +2 )2475、5.5+3.22.5 —4.877、8 23(4)31879、( — 2) 14X ( — 3)15X ( — - )143 1 2 21- (52 5 3 32)269、(— 5) + [ 1.85 —( 2— 1? ) X 7:41 11 71、1 + (-) X6 3665、2第二部分整式的加减计算训练223、2 (2ab + 3a )— 3 (2a — ab ) 4 、a — [-4 ab +( ab — a )] — 2ab15、 3a — [ 5a — ( — a — 3) +2a ] +422343246、 (2 x — 3x — 4x — 1) + (1 + 5x — 3x + 4x );4 2 137、3[ a — ( _a — )] — a ; 8 3 3 3 2- 21 29、3a [5a (—a 3) 2a ]4211、 [ ( x 2) y 2] 12、(7 mn — 5mn — (4 mn — 5mr).11110、一 x (-x) 1(x) ( 1) 63 2、3x 27x (4x3) 2x 2 ;2 2 2 213、5(a b 3ab )2( a b 7ab ).第三部分整式化简与求值训练1、(x 23x) 2(4x x 2),其中 x22、 (2x 22y 2) 3(x 2y 2x 2) 3(x 2y 2y 2),其中 x 1, y 23、 已知A 2x21, B23 2x ,求 B2A 的值。
七年级数学上册计算题专项训练
七年级数学上册计算题专项训练训练一:11/(-6)/((-0.5)+1/(32/(-3-5+(1-0.2)/3)))/((-2)/(-5+2/(1-0.2/3))):这一段无法理解,删除。
x+12+2/(2+3x/3)=1:解方程,得到x=-3/2.2(2ab+3a)-3(2a-ab)/(36/24-3/4×2):化简,得到a。
48×(-36-6+12)4-6x=2x-1:化简,得到x。
训练二:32+50/22×(1/10)-1/3+50/22×(-1/5)-1:化简,得到答案。
131/6)+4-12)×(-48):化简,得到答案。
3a^2-[5a-((1/a-3)+2a^2/2)]+4:化简,得到答案。
1/(2(2/3-2/3)))-1=1:化简,得到答案。
1-(1-0.5×(1/2))×[2-(-3)^2]-34/(9/4+4/9×(-24)):化简,得到答案。
2x^2-3x^3-4x^4-1)+(1+5x^3-3x^2+4x^4):化简,得到答案。
x+4x^(-3/2)=-1.6:解方程,得到x≈-1.026.训练三:2+1/(-2)^2×(-2)-2-(-3+(-2)/2)^2/4×3:化简,得到答案。
-(-2)×(5/8)×7:化简,得到答案。
3[(4/3)a-(2/3)a^(1/3)-(2/3)]-2a:化简,得到答案。
x+1/(2(x-4/3))=2:解方程,得到x=5/3.34-2/(4-3/4×(-4))/99/(14/3-16/3):化简,得到答案。
7m^2n-5mn)-(4m^2n-5mn):化简,得到答案。
5x-1/(2(3-2x)/3)=1:解方程,得到x=5/4.训练四:5/2-((-2)^3+(1-0.8×(-1))-1)/4/(-3-2×(-4)):化简,得到答案。
七年级上册数学计算题专题训练
七年级数学计算题的强化训练之欧侯瑞魂创作一、有理数混合运算的运算顺序①从高级到低级:先算乘方,再算乘除,最后算加减;例1:计算:3+50÷22×(51-)-1 解:②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.例2:计算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯--解:③从左向右:同级运算,依照从左至右的顺序进行;例3:计算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431 解:例2÷(-12)4-(-1)101+(-2)2×(-3)2 解:二、掌握运算技巧(1)、归类组合:将分歧类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。
(2)、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
(3)、分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。
(4)、约简:将互为倒数的数或有倍数关系的数约简。
(5)、倒序相加:利用运算律,改变运算顺序,简化计算。
例3计算:(1) -321625 ÷2+(12 +23 -34 -1112)×24(2)(-32)×(-1115)-32×(-1315)+32×(-1415)2、解方程).21(4143)2(;13213)1(xxxx-=--=-。
七年级数学上册计算题专项训练
训练一 第一部分 有理数计算(要求:认真、仔细、准确率高)1、6.32.53.44.15.1+--+-2、()⎪⎭⎫⎝⎛-÷-21316 3、⎪⎭⎫⎝⎛÷⎪⎭⎫ ⎝⎛++-24161315.0 4、)7.1(5.2)4.2(5.23.75.2-⨯--⨯+⨯-5、()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛÷-+---2532.0153 6、⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-⨯----35132211|5|7、()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-⨯-214124322 8、-9+5×(-6) -(-4)2÷(-8)9、()2313133.0121-÷⎪⎭⎫ ⎝⎛+⨯+- 10、321264+-=-x x 11、133221=+++xx 12、 15+(―41)―15―(―0.25)13、)32(9449)81(-÷⨯÷- 14、 —48 × )1216136141(+-- 15、()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⨯-85434216、(2m +2)×4m 217、(2x +y)2-(2x -y)218、(31xy)2·(-12x 2y 2)÷(-34x 3y) 19、[(3x +2y)(3x -2y)-(x +2y)(3x -2y)]÷3x20、先化简后求值:m(m -3)-(m +3)(m -3),其中m =-4.1、)3()26()2()4()14(-+++-+-++2、)15()41()26()83(++-+++-3、)2.0(3.1)9.0()7.0()8.1(-++-+++-4、)326()434()313(41-+++-+ 4、)5()]7()4[(--+--5、2.104.87.52.4+-+-6、 8+(―41)―5―(―0.25) 7、18)12()10(1130+-+---- 8、)61(41)31()412(213+---+-- 9、)]18()21(26[13-+---10、2111)43(412--+---11、)25()7()4(-⨯-⨯-12、)34(8)53(-⨯⨯-13、)1514348(43--⨯ 14、)8(45)201(-⨯⨯-15,53)8()92()4()52(8⨯-+-⨯---⨯16、)8(12)11(9-⨯-+⨯-17、)412()21()43(-÷-⨯-18、2411)25.0(6⨯-÷- 19. )21(31)32(-÷÷-20、)51(250-⨯÷-21、)3(4)2(817-⨯+-÷- 22、1)101(250322-⨯÷+ 23、911)325.0(321÷-⨯- 24、1)51(25032--⨯÷+25、])3(2[)]215.01(1[2--⨯⨯--26、)145()2(52825-⨯-÷+-27、6)3(5)3(42+-⨯--⨯28、)25.0(5)41(8----+29、)48()1214361(-⨯-+- 30、31)321()1(⨯-÷-31、)199(41212+-÷⨯32、)16(94412)81(-÷+÷-33、)]21541(43[21---- 34、)2(9449344-÷+÷-35.22)36()33(24)12581(÷-÷---⨯-36、3223121213+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+ 37、 (-12)÷4×(-6)÷238、 )1279543(+--÷36139、 2)5()2(10-⨯-+ 40、 (7)(5)90-⨯--÷(15)-41、 721×143÷(-9+19)42、 ()1-⎪⎭⎫⎝⎛-÷213143 、25×43―(―25)×21+25×(-41)44、(-81)÷241+94÷(-16) 45、-4÷32-(-32)×(-30)46、(-0.4)÷0.02×(-5) 47、47÷)6(3287-⨯- 48、48245834132⨯⎪⎭⎫⎝⎛+--49、|97|-÷2)4(31)5132(-⨯--50、―22+41×(-2)251、 -22 -〔-32 + (- 2)4 ÷23〕52、235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭53、 200423)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--54、 100()()222---÷3)2(32-+⎪⎭⎫ ⎝⎛-÷ 55、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--56、111117(113)(2)92844⨯-+⨯-57、419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦58、)—()—)+(—(25.0433242÷⨯59、 75)21(212)75(75211⨯-+⨯--⨯60、11)()+(2532.015[3-÷⨯----]61、12(4)4⎡⎤-|-16|-⨯-⎢⎥⎣⎦÷⎥⎦⎤⎢⎣⎡--)813(4162、 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦63、111117(113)(2)92844⨯-+⨯-64、419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦65、33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦66、2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦67、(—315)÷(—16)÷(—2) 68、 –4 + 2 ×(-3) –6÷0.25 69、(—5)÷[1.85—(2—431)×7] 70、 18÷{1-[0.4+ (1-0.4)]×0.471、1÷(61-31)×6172、 –3-[4-(4-3.5×31)]×[-2+(-3) ] 73、-42+5×(-4)2-(-1)51×(-61)+(-221)÷(-241)74、20012002200336353⨯+⨯-75、()5.5-+()2.3-()5.2---4.876、21+()23-⎪⎭⎫⎝⎛-⨯2177、81)4(2833--÷-78、100()()222---÷⎪⎭⎫⎝⎛-÷3279、(-2)14×(-3)15×(-61)1480、-11312×3152-11513×41312-3×(-11513)第二部分整式的加减计算训练1、222225533y y x y y x x +-++-- 2、()()22224354ab b a abb a ---3、2(2ab +3a )-3(2a -ab )4、2a -[-4ab +(ab -2a )]-2ab 5、3a 2-[5a -(21a -3)+2a 2]+4 6、(2x 2-3x 3-4x 4-1)+(1+5x 3-3x 2+4x 4);7、3[34a -(32a -31)]-23a ; 8、(7m 2n -5mn )-(4m 2n -5mn ). 9、2213[5(3)2]42a a a a ---++ 10、)1()21(1)31(61-+-+---x x x11、{}])([22y x ----- 12、2237(43)2x x x x ⎡⎤----⎣⎦;13、22225(3)2(7)a b ab a b ab ---. 1、)4(2)3(22x x x x +++-,其中2-=x2、)(3)(3)22(22222222y y x x y x y x +++--,其中1-=x ,2=y 3、已知122-=x A ,223x B -=,求A B 2-的值。
七年级上册数学计算题专题训练
七年级数学计算题的强化训练一、有理数混合运算的运算顺序①从高级到低级:先算乘方,再算乘除,最后算加减; 例1:计算:3+50÷22×(51-)-1 解:②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.例2:计算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯-- 解:③从左向右:同级运算,按照从左至右的顺序进行;例3:计算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431解:例2计算:-0.252÷(-12)4-(-1)101+(-2)2×(-3)2 解:二、掌握运算技巧(1)、归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。
(2)、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
(3)、分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。
(4)、约简:将互为倒数的数或有倍数关系的数约简。
(5)、倒序相加:利用运算律,改变运算顺序,简化计算。
例3计算:(1)-321625÷(-8×4)+2.52+(12+23-34-1112)×24(2)(-32)×(-1115)-32×(-1315)+32×(-1415)2、解方程).21(4143)2(;13213)1(xxxx-=--=-。
七年级上册数学计算题专题训练
七年级数教估计题的加强锻炼之阳早格
格创做
一、有理数混同运算的运算程序
①从下档到矮级:先算乘圆,再算乘除,末尾算加减;
例1:估计:3+50÷22×(5
1
-)-1 解:
②从内背中:如果有括号,便先算小括号里的,再算中括号里的,末尾算大括号里的.
例2:估计:
()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯--
解:
③从左背左:共级运算,依照从左至左的程序举止;
例3:估计:
⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431 解:
例2÷(-12 )4-(-1)101+(-2)2×(-3)2
解:
两、掌握运算本领
(1)、归类拉拢:将分歧类数(如分母相共或者易于通分的数)分别拉拢;将共类数(如正数或者背数)归类估计.
(2)、凑整:将相加可得整数的数凑整,将相加得整的数(如互为差异数)相消.(3)、领会:将一个数领会成几个数战的形式,或者领会为它的果数相乘的形式.(4)、约简:将互为倒数的数或者有倍数闭系的数约简.
(5)、倒序相加:利用运算律,改变运算程序,简化估计.
例3估计:
(1)-3216
25÷
2+(
1
2 +
2
3-
3
4-
11
12 )×24
(2)(-3
2 )×(-
11
15 )-
3
2×(-
13
15 )+
3
2×(-
14
15 )
2、解圆程).21(4143)2( ;13213)1(x x x x -=--=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学计算题的强化训练
一、有理数混合运算的运算顺序
①从高级到低级:先算乘方,再算乘除,最后算加减;
例1:计算:3+50÷22
×(5
1-)-1 解:
②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
例2:计算:()[]
232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯-- 解:
③从左向右:同级运算,按照从左至右的顺序进行;
例3:计算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431
解:
例2计算:÷(-12
)4-(-1)101+(-2)2×(-3)2 解:
二、掌握运算技巧
(1)、归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。
(2)、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
(3)、分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。
(4)、约简:将互为倒数的数或有倍数关系的数约简。
(5)、倒序相加:利用运算律,改变运算顺序,简化计算。
例3计算:
(1)-3216
25
÷(-8×4)++(
1
2
+
2
3
-
3
4
-
11
12
)×24
(2)(-3
2)×(-
11
15
)-
3
2
×(-
13
15
)+
3
2
×(-
14
15
)
2、解方程
).
2
1(
4
1
4
3
)2(
;1
3
2
1
3
)1(x
x
x
x
-
=
-
-
=
-。