人教版高中数学教程教学讲义

合集下载

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精练)(解析版)

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精练)(解析版)

5.1 任意角和弧度制【题组一 基本概念的辨析】1.(2020·河南林州一中高一月考)已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角} D .以上都不对【正确答案】D【详细解析】∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D .2.(2020·浙江高一课时练习)下列命题中正确的是( ). A .第一象限角一定不是负角 B .小于90°的角一定是锐角 C .钝角一定是第二象限角 D .终边和始边都相同的角一定相等 【正确答案】C【详细解析】300︒-为第一象限角且为负角,故A 错误;5090-︒<︒,但50︒-不是锐角,故B 错误;终边与始边均相同的角不一定相等,它们可以相差360,k k Z ︒⋅∈,故D 错误.钝角一定是第二象限角,C 正确. 故选:C .3.(2020·汪清县汪清第六中学高一期中(文))下列结论中正确的是( ) A .小于90°的角是锐角 B .第二象限的角是钝角 C .相等的角终边一定相同 D .终边相同的角一定相等 【正确答案】C【详细解析】对于A,小于90︒可能是负角,不是锐角;对于B,第二象限的角可能是负角,不是钝角;对于C,两个角相等,始边一致,则终边一定相同;对于D,终边相同的角,可能相差360°的倍数,不一定相等.故选C.4.(2020·全国高一课时练习)(1)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) (2)将时钟拨快20分钟,则分针转过的度数是________. 【正确答案】② 120-︒【详细解析】(1)①锐角的范围为()0,90︒︒是第一象限的角,命题①正确;②第一象限角的范围为()()360,90360k k k Z ⋅︒︒+⋅︒∈,故第一象限角可以为负角,故②错误; ③根据任意角的概念,可知小于180°的角,可以为负角,故③错误; 故正确答案为:②(2)将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒ 故正确答案为:120-︒5.(2020·全国高一课时练习)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) 【正确答案】①【详细解析】锐角指大于0°小于90°的角,都是第一象限角,所以①对;由任意角的概念知,第一象限角也可为负角,小于180°的角还有负角、零角,所以②③错误.故正确答案为:① 6.(2020·全国高一课时练习)下列命题正确的是____________( 填序号). ①-30°是第一象限角; ②750°是第四象限角; ③终边相同的角一定相等; ④-950°12′是第二象限的角. 【正确答案】④【详细解析】①30-︒是第四象限的角度,故①错误;②750°的终边与30︒的终边相同,故其为第一象限的角度,故②错误; ③终边相同的角度不一定相等,故③错误;④-950°12′与-950°12′108012948+︒=︒′的终边相同,其为第二象限的角,故④正确. 故正确答案为:④.【题组二 角度与弧度转换】1.(2019·伊美区第二中学高一月考)300-化为弧度是( ) A .43π-B .53π-C .23π-D .56π-【正确答案】B【详细解析】300530023603ππ-=-⨯=- 2.(2020·全国高一课时练习)把85π化为角度是( )A .270°B .280°C .288°D .318°【正确答案】C【详细解析】因为1801rad π⎛⎫=︒ ⎪⎝⎭,故8818028855πππ︒︒⎛⎫=⨯= ⎪⎝⎭.故选:C. 3.(2020·灵丘县豪洋中学高一期中)320-︒化为弧度是( ) A .43π-B .169π-C .76π-D .56π-【正确答案】B【详细解析】320-︒化为弧度是16320=1809ππ-︒⨯-.故选:B 4.(2020·金华市江南中学高一期中)1500︒转化为弧度数为( ) A .253B .163πC .163D .253π【正确答案】D【详细解析】由1180rad π︒=,所以15001550002318ππ︒=⨯=rad 故选:D 5.(2019·长沙铁路第一中学高一月考)将300o 化为弧度为( ) A .43πB .53π C .76π D .74π 【正确答案】B【详细解析】53003001803ππ︒=⨯=.故选:B . 6.(2020·通榆县第一中学校高一期末)512π=( )A .70°B .75°C .80°D .85°【正确答案】B【详细解析】因为1801rad π⎛⎫=︒⎪⎝⎭,故512π=51807512ππ⎛⎫⨯︒=︒ ⎪⎝⎭.故选:B. 7.(2020·全国高一课时练习)将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)712π(4)-115π. 【正确答案】(1)20°=9π;(2)-15°=-12π;(3)712π=105°;(4)-115π=-396°.【详细解析】(1)20°=20180π=9π.(2)-15°=-15180π=-12π.(3)712π=712×180°=105°.( 4)-115π=-115×180°=-396°.【题组三 终边相同】1.(2020·浙江高一课时练习)与405°角终边相同的角是( ). A .45360,k k Z ︒︒-+⋅∈ B .405360,k k Z ︒︒-+⋅∈ C .45360,k k Z ︒︒+⋅∈ D .45180,k k Z ︒︒+⋅∈【正确答案】C【详细解析】由于40536045︒︒︒=+,故与405°终边相同的角应为45360,k k Z ︒︒+⋅∈.故选:C 2.(2020·永州市第四中学高一月考)在0360~︒︒的范围内,与510︒-终边相同的角是( ) A .330︒ B .210︒C .150︒D .30︒【正确答案】B【详细解析】因为510720210︒-=-+,则在0360~︒︒的范围内,与510︒-终边相同的角是210︒,故选:B. 3.(2020·合肥市第八中学高一月考)下列各个角中与2020°终边相同的是( ) A .150︒- B .680°C .220°D .320°【正确答案】C【详细解析】由题,20202205360︒=︒+⨯︒,故选:C4.(2020·汪清县汪清第六中学高一期中(文))在0°~360°范围内,与-1050°的角终边相同的角是( )A .30°B .150°C .210°D .330°【正确答案】A【详细解析】因为1050336030-︒=-⨯︒+︒所以在0°~360°范围内,与-1050°的角终边相同的角是30故选:A5.(2020·北京延庆·高一期末)与角196π终边相同的角为( ) A .6π-B .6π C .56π-D .56π 【正确答案】C 【详细解析】与角196π终边相同的角可写成192,6παπ=+∈k k Z 令2k =-,则56πα=-故选:C6.(2020·辉县市第二高级中学高一期中) 下列与的终边相同的角的表达式中正确的是( )A .2k π+45°( k ∈Z)B .k ·360°+π( k ∈Z)C .k ·360°-315°( k ∈Z)D .k π+( k ∈Z)【正确答案】C 【详细解析】与的终边相同的角可以写成2k π+( k ∈Z),但是角度制与弧度制不能混用,所以只有正确答案C 正确.故正确答案为C7.(2020·陕西大荔·高一月考)已知角2α是第一象限角,则α的终边位于( )A .第一象限B .第二象限C .第一或第二象限D .第一或第二象限或y 轴的非负半轴上【正确答案】D 【详细解析】∵由角2α是第一象限角,∴可得π2π2π,22k k k α<<+∈Z ,∴4π4ππ,k k k α<<+∈Z .即α的终边位于第一或第二象限或y 轴的非负半轴上.故选:D.8.(2020·宁县第二中学高一期中)已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.【正确答案】{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z . 【详细解析】在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅{}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅{}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈ 【题组四 象限的判断】1.(2020·广东高一期末)下列各角中,与2019°终边相同的角为( ) A .41° B .129°C .219°D .﹣231°【正确答案】C【详细解析】因为20195360219=⨯+,所以219与2019°终边相同.故选:C. 2.(2020·湖南隆回·高一期末)下列各角中,与60终边相同的角为( )A .30B .120C .420D .300【正确答案】C【详细解析】与60终边相同的角的集合是{}60360,k k Z αα=+⋅∈,当1k =时,420α=.故选:C 3.(2020·河南项城市第三高级中学高一月考)设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一 B .二C .三D .四【正确答案】B【详细解析】∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈,∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角, ∵cos cos αα=-,∴cos 0α<,∴α是第二象限角.故选:B .4.(2020·辉县市第二高级中学高一期中)角–2α=弧度,则α所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【正确答案】C【详细解析】角–2α=弧度,2(,)2ππ-∈--,∴α在第三象限,故选:C .5.(2020·全国高一课时练习)若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限【正确答案】D【详细解析】2π-5与-5的终边相同,∵2π-5∈0,2π⎛⎫⎪⎝⎭,∴2π-5是第一象限角,则-5也是第一象限角. 故选:D6.(2020·浙江高一课时练习)若θ是第四象限角,则角2θ的终边在( ) A .第一象限 B .第一或第三象限 C .第四象限D .第二或第四象限【正确答案】D【详细解析】取80θ=-︒,则402θ=-︒,在第四象限;取320θ=︒,则1602θ=︒,在第二象限.故选:D .7.(2020·浙江高一课时练习)试求出终边在如图所示阴影区域内的角的集合.【正确答案】222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.【详细解析】因为42233πππ+=,所以43π的终边与23π-的终边相同,则终边在题图所示阴影区域内的角的集合为222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.8.(2020·上海高一课时练习)用弧度制写出终边在阴影部分的角的集合:(1)(2)【正确答案】(1)222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭;(2),6k k k Zπαπαπ⎧⎫+∈⎨⎬⎩⎭【详细解析】(1)边界对应射线所在终边的角分别为222,() 43k k k Zππππ++∈,所以终边在阴影部分的角的集合为222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭(2)边界对应射线所在终边的角分别为222,2,()667k k k k k Z πππππππ+++∈,, 所以终边在阴影部分的角的集合为722,22,66k k k Z k k k Z ππαπαπαππαπ⎧⎫⎧⎫≤+∈⋃+≤+∈⎨⎬⎨⎬⎩⎭⎩⎭=,6k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭【题组五 扇形】1.(2020·山东潍坊·高一期末)已知某扇形的半径为4cm ,圆心角为2rad ,则此扇形的面积为( ) A .232cm B .216cmC .28cmD .24cm【正确答案】B【详细解析】由题意,某扇形的半径为4cm ,圆心角为2rad , 根据扇形的面积公式,可得22211241622S r cm α==⨯⨯= 所以此扇形的面积为216cm .故选:B. 2.(2020·江西省铜鼓中学高一期末)一个扇形的圆心角为150°,面积为53π,则该扇形半径为( )A .4B .1C D .2【正确答案】D【详细解析】圆心角为51506πα==,设扇形的半径为R ,2215152326S R R ππα=⋅⇒=⨯, 解得2R =.故选:D3.(2020·武威第八中学高一期末)已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( ) A .24cm B .26cmC .28cmD .216cm【正确答案】A【详细解析】设此扇形半径为r ,扇形弧长为l=2r 则2r +2r =8,r=2,∴扇形的面积为12l r=224r cm =故选A 4.(2020·辉县市第二高级中学高一期中)已知扇形的圆心角为2,周长为8,则扇形的面积为( ) A .2 B .4C .8D .16【正确答案】B【详细解析】设该扇形的半径为r ,弧长为l ,则2lr =,且28l r +=,所以有42l r =⎧⎨=⎩,所以,该扇形的面积为142S lr ==.故选:B. 5.(2020·河南宛城·南阳中学高一月考)中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3πB .1)πC .1)πD .2)π【正确答案】A【详细解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则αβ=,又2αβπ+=,解得(3απ=- 故选:A6.(2020·永昌县第四中学高一期末) 如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.【正确答案】12π-【详细解析】∵120°=π=π,∴l =6×π=4π,∴AB 的长为4π.∵S 扇形OAB =lr =×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =×AB ×OD =×2×6cos 30°×3=9.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9.∴弓形ACB 的面积为12π-9.【题组六 生活中实际】 1.(2020·全国高一课时练习)将时钟拨快20分钟,则分针转过的度数是________.【正确答案】-120°【详细解析】将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒故正确答案为:120-︒ 2.(2020·全国高一课时练习)已知α=30°,将其终边按逆时针方向旋转三周后的角度数为________.【正确答案】1110°【详细解析】一个角为30,其终边按逆时针方向旋转三周后的角的度数为:3603301110︒⨯+︒=︒. 故正确答案为:1110︒.3.(2020·全国高一课时练习)写出下列说法所表示的角.(1)顺时针拧螺丝2圈;(2)将时钟拨慢2小时30分,分针转过的角.【正确答案】(1)-720°;(2)900°.【详细解析】(1)顺时针拧螺丝2圈,即旋转了2360=720⨯︒︒,顺时针旋转得到的角为负角,故转过的角是720-︒; (2)拨慢时钟需将分针按逆时针方向旋转,时针拨慢2小时30分,是2.5周角,角度数是2.5360900⨯︒=︒;又分针是逆时针旋转,转过的角是900︒.4.(2020·浙江高一课时练习)在一昼夜中,钟表的时针和分针有几次重合?几次形成直角?时针、分针和秒针何时重合?请写出理由.【正确答案】正确答案见详细解析.【详细解析】时针每分钟走0.5°,分针每分钟走6°,秒针每分钟走360°,(1)一昼夜有24601440⨯=(分钟), 时针和分针每重合一次间隔的时间为36060.5-分钟, 所以一昼夜时针和分针重合14402236060.5=-(次).(2)假设时针不动,分针转一圈与时针两次形成直角,但一昼夜时针转了两圈,则少了4次垂直,于是时针和分针一共有242444⨯-=(次)形成直角.(3)秒针与分针每重合一次间隔的时间为3603606-分钟,由3603606-和36060.5-的“最小公倍数”为720,而720分钟=12小时,所以一昼夜只有0:00与12:00这两个时刻“三针”重合.。

人教版高中数学必修第三册全册WORD讲义《导学案》

人教版高中数学必修第三册全册WORD讲义《导学案》

8.1.1向量数量积的概念(教师独具内容)课程标准:1.通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.教学重点:平面向量数量积的含义及几何意义.教学难点:向量的投影及数量积的几何意义.知识点一两个向量的夹角(1)定义:给定两个01非零向量a,b(如图所示),在平面内任选一点O,作OA→=a,OB→=b,则称02[0,π]内的∠AOB为向量a与向量b的夹角,记作03〈a,b〉.(2)根据向量夹角的定义可知,两个非零向量的夹角是唯一确定的,而且040≤〈a,b〉≤π,〈a,b〉=05〈b,a〉.时,称向量a与向量b垂直,记作07a⊥b.在(3)垂直:当〈a,b〉=06π2讨论垂直问题时,规定08零向量与任意向量垂直.知识点二向量数量积(内积)的定义一般地,当a与b都是非零向量时,称01|a||b|cos〈a,b〉为向量a与b的数量积(也称为内积),记作a·b,即a·b=02|a||b|cos〈a,b〉.由定义可知,两个非零向量a与b的数量积是一个实数.知识点三平面向量的数量积的性质(1)当e是单位向量时,因为|e|=1,所以a·e=01|a|·cos〈a,e〉.(2)a⊥b⇔02a·b=0.(3)a·a=03|a|2,即04|a|=a·a.(4)cos〈a,b〉=05a·b(|a||b|≠0).|a||b|(5)|a·b|06≤|a||b|,当且仅当a∥b时等号成立.知识点四向量的投影如图1,设非零向量AB→=a,过A,B分别作直线l的垂线,垂足分别为A′,B′,则称向量为向量a在直线l上的01投影向量或投影.类似地,给定平面上的一个非零向量b,设b所在的直线为l,则a在直线l 上的投影称为a在向量b上的02投影.如图2中,向量a在向量b上的投影为03.可以看出,一个向量在一个非零向量上的投影,一定与这个非零向量04共线,但它们的方向既有可能05相同,也有可能06相反.知识点五向量数量积的几何意义如图(1)(2)(3)所示.当〈a ,b 〉<π2时,A ′B ′→的方向与b 的方向01相同,而且||=02|a |cos〈a ,b 〉;当〈a ,b 〉=π2时,为零向量,即||=030;当〈a ,b 〉>π2时,的方向与b 的方向04相反,而且||=05-|a |cos 〈a ,b 〉.一般地,如果a ,b 都是非零向量,则称06|a |cos 〈a ,b 〉为向量a 在向量b 上的投影的数量.投影的数量与投影的长度有关,但是投影的数量既可能是07非负数,也可能是08负数.两个非零向量a ,b 的数量积a ·b ,等于a 在向量b 上的投影的数量与b 的模的乘积.这就是两个向量数量积的几何意义.1.a 在b 方向上的投影的数量也可以写成a ·b|b |,它的符号取决于角θ的余弦值.2.在运用数量积公式解题时,一定要注意两向量夹角的范围是0°≤θ≤180°.3.a ·b 的符号与a 与b 的夹角θ的关系设两个非零向量a与b的夹角为θ,则(1)若a·b>0⇔θ为锐角或零角.当θ=0°时,a与b共线同向,a·b>0.或a与b中至少有一个为0.(2)a·b=0⇔θ=π2(3)a·b<0⇔θ为钝角或平角,当θ=180°时,a与b共线反向,a·b<0.特别注意a,b共线同向与共线反向的特殊情况,即a·b>0(<0),向量夹角不一定为锐角(钝角).4.向量的数量积a·b=|a||b|cosθ的主要应用(1)利用公式求数量积,应先求向量的模,正确求出向量的夹角(向量的夹角由向量的方向确定).求夹角,应正确求出两个整体:数量积a·b与模(2)利用公式变式cosθ=a·b|a||b|积|a||b|,同时注意θ∈[0,π].(3)利用a·b=0证明垂直问题.1.判一判(正确的打“√”,错误的打“×”)(1)若a·b=0,则a⊥b.()(2)两个向量的数量积是一个向量.()(3)当a∥b时,|a·b|=|a||b|.()答案(1)√(2)×(3)√2.做一做(1)已知向量a与向量b的夹角为30°且|a|=3,则a在b上的投影的数量为____.(2)已知|a|=4,|b|=22,且a与b的夹角为135°,则a·b=____.(3)在直角坐标系xOy内,已知向量AB→与x轴和y轴正向的夹角分别为120°和30°,则BA→在x轴、y轴上的投影的数量分别为____和____.答案(1)32(2)-8(3)12|AB→|-32|AB→|题型一两个向量夹角的定义例1已知向量a,b的夹角为60°,试求下列向量的夹角:(1)-a,b;(2)2a,23b.[解]如图,由向量夹角的定义可知:(1)向量-a,b的夹角为120°.(2)向量2a,23b的夹角为60°.(1)向量的夹角是针对非零向量定义的.(2)注意向量的夹角是[0°,180°].(3)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC不是向量CA→与AB→的夹角,作AD→=CA→,则∠BAD才是向量CA→与AB→的夹角.|a|,求a-b与a的夹角.[跟踪训练1]已知向量a与b的夹角为60°且|b|=12解如图,作OA→=a,OB→=b,则∠BOA=60°,连接BA,则BA→=a-b.取OA的中点D,连接BD,∵|b|=1|a|,∴OD=OB=BD=DA,2∴∠BDO=60°=2∠BAO,∴∠BAO=30°.∴a-b与a的夹角为30°.题型二向量数量积的定义例2(1)已知|a|=5,|b|=2,若①a∥b;②a⊥b;③a与b的夹角为30°,分别求a·b.(2)已知|a|=4,|b|=2,b2-a2=3a·b,求向量a与向量b的夹角.[解](1)①当a∥b时,若a与b同向,则它们的夹角为0°,∴a·b=|a||b|cos0°=5×2×1=10;若a与b反向,则它们的夹角为180°,∴a·b=|a||b|cos180°=5×2×(-1)=-10.②当a⊥b时,则它们的夹角为90°,∴a ·b =|a ||b |cos90°=5×2×0=0.③当a 与b 的夹角为30°时,a ·b =|a ||b |cos30°=5×2×32=53.(2)由题意,得4-16=3a ·b ,∴a ·b =-4,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,向量a 与向量b 的夹角为120°.1.求向量数量积的一般步骤及注意事项(1)确定向量的模和夹角,根据定义求出数量积.(2)a 与b 垂直当且仅当a ·b =0.(3)非零向量a 与b 共线当且仅当a ·b =±|a ||b |.2.求向量夹角的一般步骤及注意事项(1)确定向量的模和数量积,根据夹角公式求出向量夹角的余弦值.(2)注意向量夹角的范围为[0,π],从而确定夹角的大小.[跟踪训练2](1)已知|a |=4,|b |=5,向量a 与b 的夹角θ=π3,求a ·b .(2)已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,求a 与b 的夹角.解(1)a ·b =|a ||b |cos θ=4×5×12=10.(2)设a 与b 的夹角为θ,cos θ=a ·b |a ||b |=21×4=12,又因为θ∈[0,π],所以θ=π3.题型三向量的投影例3已知直线l ,(1)|OA →|=4,〈OA→,l 〉=60°,求OA →在l 上的投影的数量OA 1;(2)|OB →|=4,〈OB →,l 〉=90°,求OB →在l 上的投影的数量OB 1;(3)|OC→|=4,〈OC→,l〉=120°,求OC→在l上的投影的数量OC1.=2.[解](1)OA1=4cos60°=4×12(2)OB1=4cos90°=4×0=0.(3)OC1=4cos120°=4 2.对向量投影的理解从定义上看,向量b在直线(或非零向量)上的投影是一个向量,投影的数量可正、可负、可为零.(1)当θ(2)当θ(3)当θ=0时,该数量为|b|.(4)当θ=π时,该数量为-|b|.注意:此处b为非零向量.时,该数量为0.(5)当θ=π2时,a在e方向[跟踪训练3]已知|a|=8,e为单位向量,当它们的夹角为π3上的投影的数量为()A.43B.4C.42D.8+32答案B解析因为a在e方向上的投影的数量为|a|cosπ=4,故选B.3题型四向量数量积的几何意义及应用例4(1)已知|b |=3,a 在b 方向上的投影的数量是32,则a ·b 为()A .3 B.92C .2D.12(2)如图,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,且AB =2DC =4.E 为腰BC 上的动点.求AE→·AB →的取值范围.[解析](1)设a 与b 的夹角为θ,a ·b =|a ||b |cos θ=|b ||a |cos θ=3×32=92.(2)如图,过E 作EE ′⊥AB ,垂足为E ′,过C 作CC ′⊥AB ,垂足为C ′.则AE →在AB →上的投影为AE ′→,∴AE →在AB →上的投影的数量为|AE ′→|,由向量数量积的几何意义知AE →·AB →=|AE ′→||AB →|=4|AE ′→|.∵E 在腰BC 上运动,∴点E ′在线段C ′B 上运动,∴|AC ′→|≤|AE ′→|≤|AB→|,∴2≤|AE ′→|≤4,∴8≤4|AE ′→|≤16,∴AE→·AB→的取值范围是[8,16].[答案](1)B(2)见解析利用向量数量积的几何意义求两向量的数量积需明确两个关键点:相关向量的模和一个向量在另一向量方向上的投影的数量,代入向量数量积的公式即可.利用向量数量积判断几何图形形状或解决最值范围问题时,常结合图形直观分析得到结果.[跟踪训练4](1)若E,F,G,H分别为四边形ABCD所在边的中点,且(AB→+BC→)·(BC→+CD→)=0,则四边形EFGH是()A.梯形B.菱形C.矩形D.正方形(2)已知a·b=16,若a在b方向上的投影的数量为4,则|b|=____.答案(1)C(2)4解析(1)因为(AB→+BC→)·(BC→+CD→)=0,所以AC→·BD→=0,所以AC→⊥BD→.又因为E,F,G,H分别为四边形ABCD所在边的中点,所以四边形EFGH的两组对边分别与AC,BD平行,且EF⊥EH,所以四边形EFGH为矩形.(2)设a与b的夹角为θ,因为a·b=16,所以|a||b|cosθ=16.又a在b方向上的投影的数量为4,所以|a|cosθ=4,所以|b|=4.1.已知|a|=3,|b|=5,且a·b=12,则向量a在向量b上的投影的数量为()A.125B.3C.4D.5答案A解析设a与b的夹角为θ,则向量a在b上的投影的数量为|a|cosθ=a·b|b|=12 5.2.已知|a|=4,|b|=2,当它们之间的夹角为π3时,a·b=() A.43B.4C.83D.8答案B解析根据向量数量积的定义得a·b=|a||b|cos〈a,b〉=4×2×cosπ3=4.3.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b的夹角θ的取值范围是()A.0,π6 B.π3,πC.π3,2π3 D.π6,π答案B解析由题意可得,Δ=|a|2-4a·b≥0,∵|a|=2|b|,∴cosθ≤12θ∈π3,π.故选B.4.(多选)已知两个单位向量e1,e2的夹角为θ,则下列结论正确的是() A.e1在e2上的投影的数量为sinθB.e21=e22C.任给θ∈[0,π],(e1+e2)⊥(e1-e2)D.不存在θ,使e1·e2=2答案BCD解析对于A,因为e1,e2为单位向量,所以e1在e2上的投影的数量为|e1|cosθ=cosθ,A错误;对于B,e21=e22=1,B正确;对于C,如图,设AB→=e1,AD→=e2,则易知四边形ABCD是菱形,AC⊥BD,即(e1+e2)⊥(e1-e2),C正确;对于D,e1·e2=1×1×cosθ=cosθ≤1,所以D正确.5.在△ABC中,已知|AB→|=|AC→|=6,且AB→·AC→=18,则△ABC的形状是____.答案等边三角形解析∵AB→·AC→=|AB→||AC→|cos∠BAC,∴cos∠BAC=12,∴∠BAC=60°.又|AB→|=|AC→|,∴△ABC为等边三角形.一、选择题1.若|a|=2,|b|=12,〈a,b〉=60°,则a·b等于()A.1 2B.1 4C.1D.2答案A解析a·b=|a||b|cos〈a,b〉=2×12×12=12.2.在Rt△ABC中,角C=90°,AC=4,则AB→·AC→等于()A.-16B.-8C.8D.16答案D解析解法一:∵AB→·AC→=|AB→||AC→|cos A,△ACB为直角三角形,∴AB→·AC→=|AB→|·|AC→|·|AC→||AB→|=|AC→|2=16.故选D.解法二:∵△ACB为直角三角形,∴AB→在AC→上的投影为AC→,∴AB→·AC→=AC→2=16.故选D.3.向量a的模为10,它与x轴正方向的夹角为150°,则它在x轴正方向上的投影的数量为()A.-53B.5C.-5D.53答案A解析a在x轴正方向上的投影的数量为|a|cos150°=-53.4.已知向量a,b满足|a|=4,|a·b|≥10,则|a-2b|的最小值是()A.1B.2C.3D.4答案A解析设a,b的夹角为θ,因为|a·b|=4|b||cosθ|≥10,所以|b|≥104|cosθ|≥52,由向量形式的三角不等式得,|a-2b|≥||a|-|2b||=|2|b|-4|≥|2×52-4|=1.5.(多选)关于菱形ABCD的下列说法中,正确的是()A.AB→∥CD→B.(AB→+BC→)⊥(BC→+CD→)C.(AB→-AD→)·(BA→-BC→)=0D.AB→·AD→=BC→·CD→答案ABC解析∵四边形ABCD为菱形,∴AB∥CD,∴AB→∥CD→,A正确;∵对角线AC 与BD互相垂直,且AB→+BC→=AC→,BC→+CD→=BD→,∴AC→⊥BD→,即(AB→+BC→)⊥(BC→+CD→),B正确;∵AB→-AD→=DB→,BA→-BC→=CA→,∵DB→⊥CA→,即DB→·CA→=0,∴(AB→-AD→)·(BA→-BC→)=0,C正确;易知〈AB→,AD→〉=180°-〈BC→,CD→〉,且|AB→|=|AD→|=|BC→|=|CD→|,∴AB→·AD→=-BC→·CD→,D错误.故选ABC.二、填空题6.△ABC中,∠A,∠B,∠C的对边长分别为a,b,c,a=3,b=1,∠C=30°,则BC→·CA→等于____.答案-332解析BC→·CA→=|BC→||CA→|cos(180°-30°)=ab cos150°=-332.7.若|a|=2,b=-2a,则a·b=____.答案-8解析|b|=2|a|=4,且b与a反向,∴〈a,b〉=180°.∴a·b=|a||b|cos180°=2×4×(-1)=-8.8.给出下列命题:①若a=0,则对任一向量b,有a·b=0;②若a≠0,则对任意一个非零向量b,有a·b≠0;③若a≠0,a·b=0,则b=0;④若a·b=0,则a,b至少有一个为0;⑤若a≠0,a·b=a·c,则b=c;⑥若a·b=a·c,且b≠c,当且仅当a=0时成立.其中真命题为____.答案①解析由数量积的定义逐一判断可知,只有①正确.三、解答题9.已知正方形ABCD的边长为1,分别求:(1)AB→·CD→;(2)AB→·AD→;(3)AC→·DA→.解如图,(1)〈AB→,CD→〉=π,∴AB→·CD→=-1.(2)〈AB →,AD→〉=π2,∴AB →·AD →=0.(3)〈AC →,DA →〉=3π4,∴AC →·DA →=2×1×cos 3π4=-1.10.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ.求θ的取值范围.解∵AB→·BC →=|AB →||BC →|cos θ=6>0,∴cos θ>0,∴θ为锐角,如图,过C 作CD ⊥AB ,垂足为D ,则|CD |=|BC |sin θ.由题意,知AB→·BC →=|AB →||BC →|cos θ=6,①S =12|AB ||CD |=12|AB →||BC →|sin θ.②由②÷①得S 6=12tan θ,即3tan θ=S .∵3≤S ≤3,∴3≤3tan θ≤3,即33≤tan θ≤1.又θ为AB →与BC →的夹角,θ∈[0,π],∴θ∈π6,π4.1.(多选)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高,给出以下结论,其中正确的是()A.AH→·(AC→-AB→)=0B.AB→·BC→<0⇒△ABC为钝角三角形C.AC→·AH→|AH→|=c sin BD.BC→·(AC→-AB→)=a2答案ACD解析因为AC→-AB→=BC→,且AH⊥BC,所以AH→·(AC→-AB→)=0,故A正确;在△ABC中,由AB→·BC→<0,只能得出角B为锐角,不能判断出△ABC的形状,故B不正确;AH→|AH→|是AH→的单位向量,依据数量积的几何意义可知AC→·AH→|AH→|为AC→在AH→方向上的投影,为b sin C=c sin B,故C正确;因为AC→-AB→=BC→,所以BC→·(AC→-AB→)=|BC→|2=a2,故D正确.2.已知a,b是两个非零向量.(1)若|a|=3,|b|=4,|a·b|=6,求a与b的夹角;(2)若|a|=|b|=|a-b|,求a与a+b的夹角.解(1)∵a·b=|a||b|cos〈a,b〉,∴|a·b|=||a||b|cos〈a,b〉|=|a||b||cos〈a,b〉|=6.又|a|=3,|b|=4,∴|cos〈a,b〉|=6|a||b|=63×4=12,∴cos〈a,b〉=±12.∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π3或2π3.(2)如图所示,在平面内取一点O ,作OA→=a ,OB →=b ,以OA →,OB →为邻边作平行四边形OACB ,使|OA →|=|OB →|,所以四边形OACB 为菱形,OC 平分∠AOB ,这时OC→=a +b ,BA →=a -b .由于|a |=|b |=|a -b |,即|OA→|=|OB →|=|AB →|,所以∠AOC =π6,即a 与a +b 的夹角为π6.8.1.2向量数量积的运算律(教师独具内容)课程标准:理解掌握数量积的性质和运算律.教学重点:向量数量积的性质与运算律及其应用.教学难点:平面向量数量积的运算律的证明.知识点平面向量数量积的运算律已知向量a ,b ,c 与实数λ,则交换律a ·b =01b ·a结合律(λa)·b=02λ(a·b)=03a·(λb)分配律(a+b)·c=04a·c+b·c对向量数量积的运算律的几点说明(1)向量数量积不满足消去律:设a,b,c均为非零向量且a·c=b·c,不能得到a=b.事实上,如右图所示,OA→=a,OB→=b,OC→=c,AB⊥OC于D,可以看出,a,b在向量c上的投影分别为|a|cos∠AOD,|b|cos∠BOD,此时|b|cos∠BOD=|a|cos∠AOD=OD.即a·c=b·c.但很显然b≠a.(2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a·b)c≠a(b·c),这是由于a·b,b·c都是实数,(a·b)c表示与c方向相同或相反的向量,a(b·c)表示与a方向相同或相反的向量,而a与c不一定共线.1.判一判(正确的打“√”,错误的打“×”)(1)对于向量a,b,c等式(a·b)·c=a·(b·c)恒成立.()(2)若a·b=a·c(a≠0),则b=c.()(3)(a+b)·(a-b)=a2-b2.()答案(1)×(2)×(3)√2.做一做(1)已知|a|=2,b在a上的投影的数量为-2,则a·(a-b)=____.(2)已知|a|=3,|b|=4,则(a+b)·(a-b)=____.(3)已知|a|=6,|b|=8,〈a,b〉=120°,则|a2-b2|=____,|a-b|=____,|a2+b2|=____.答案(1)8(2)-7(3)28237100题型一求向量的数量积例1已知|a|=2,|b|=3,a与b的夹角为120°,求:(1)a·b;(2)a2-b2;(3)(2a-b)·(a+3b).[解](1)a·b=|a||b|cos120°=2×3 3.(2)a2-b2=|a|2-|b|2=4-9=-5.(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|cos120°-3|b|2=8-15-27=-34.求向量的数量积的两个关键点求向量的数量积时,需明确两个关键点:相关向量的模和夹角.若相关向量是两个或两个以上向量的线性运算,则需先利用向量数量积的运算律及多项式乘法的相关公式进行化简.[跟踪训练1]在边长为1的正三角形ABC中,设BC→=2BD→,CA→=3CE→,则AD→·BE→=____.答案-14解析由已知得AD→=12(AB→+AC→),AE→=23AC→,BE→=BA→+AE→=23AC→-AB→,所以AD→·BE→=12(AB→+AC→)·-=12×→|2-|AB→|2-13AB→·=1 2×1-13cos60°=-14.题型二求向量的夹角例2已知单位向量e1,e2的夹角为60°,求向量a=e1+e2,b=e2-2e1的夹角.[解]设a,b的夹角为θ,∵单位向量e1,e2的夹角为60°,∴e1·e2=|e1||e2|cos60°=12.∴a·b=(e1+e2)·(e2-2e1)=e1·e2+e22-2e21-2e1·e2=e22-2e21-e1·e2=1-2-12=-32,|a|=a2=(e1+e2)2=|e1|2+|e2|2+2e1·e2=1+1+1=3.|b|=b2=(e2-2e1)2=|e2|2-4e1·e2+4|e1|2=1+4-4×12=3.∴cosθ=a·b|a||b|=-323×3=-12.∵θ∈[0,π],∴θ=120°.求向量a,b夹角θ的思路(1)解题流程求|a|,|b|→计算a·b→计算cosθ=a·b|a||b|→结合θ∈[0,π],求出θ(2)解题思想:由于|a|,|b|及a·b都是实数,因此在涉及有关|a|,|b|及a·b的相应等式中,可用方程的思想求解(或表示)未知量.[跟踪训练2]已知|a|=3,|b|=5,|a+b|=7,求a·b及a与b的夹角.解∵|a+b|=7,∴(a+b)2=a2+2a·b+b2=|a|2+2a·b+|b|2=34+2a·b=49,∴a·b=152.设a与b的夹角为θ,则cosθ=a·b|a||b|=1523×5=12又θ∈[0,π],故a与b的夹角θ=60°.题型三求向量的模例3已知x=1是方程x2+|a|x+a·b=0的根,且a2=4,〈a,b〉=120°.求:(1)向量b的模;(2)向量2b+a的模.[解](1)∵a2=4,∴|a|2=4,即|a|=2.把x=1代入方程x2+|a|x+a·b=0,得1+|a|+a·b=0,∴a·b=-3,则a·b=|a||b|cos〈a,b〉=2|b|cos120°=-3,∴|b|=3.(2)(2b+a)2=4b2+a2+4a·b=4×9+4+4×(-3)=28,∴|2b+a|=27.极化恒等式求模长(1)两个结论①(a+b)2=a2+2a·b+b2;②(a+b)·(a-b)=a2-b2.证明:①(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2.②(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.说明:下列结论也是成立的:(a-b)2=a2-2a·b+b2,(a+b)·(c+d)=a·c+a·d+b·c+b·d.(2)由上述结论,我们不难得到4a·b=(a+b)2-(a-b)2,即a·b=1[(a+b)2-(a-b)2].4我们把该恒等式称为“极化恒等式”.(3)应用向量数量积的运算律求向量的模的方法①求模问题一般转化为求模平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.②一些常见的等式应熟记,如(a±b)2=a2±2a·b+b2,(a+b)(a-b)=a2-b2等.提醒:向量的模是非负实数;一个向量与自身的数量积等于它的模的平方.,求|a-b|,|a+b|.[跟踪训练3]已知|a|=|b|=5,向量a与b的夹角为π3解解法一:|a+b|=(a+b)2=a2+b2+2a·b=|a|2+|b|2+2|a||b|cos〈a,b〉=53.=52+52+2×5×5×cosπ3|a-b|=(a-b)2=a2+b2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉=5.=52+52-2×5×5×cosπ3解法二:以a,b为邻边作▱ABCD,设AC,BD相交于点E,如图所示.∵|a|=|b|且∠DAB=π3,∴△ABD为正三角形,∴|a-b|=|DB→|=5,|a+b|=|AC→|=2|AE→|=2|AB→|2-|BE→|2=252-5 2253.题型四用向量数量积解决垂直问题例4已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角为120°,求证:(a-b)⊥c.[证明]证法一:∵|a|=|b|=|c|=1,且a,b,c之间的夹角均为120°,∴(a-b)·c=a·c-b·c=|a||c|·cos120°-|b||c|cos120°=0.∴(a-b)⊥c.证法二:如图,设OA→=a,OB→=b,OC→=c,连接AB,AC,BC,三条线段围成正三角形ABC,O为△ABC的中心,∴OC ⊥AB.又BA→=a-b,∴(a-b)⊥c.要解决的问题是用向量表示,它往往对应一个几何图形;如果是几何的形式表示,它往往对应一个向量关系式.要善于发现这二者之间的关系,从一种形式转化为另一种形式,用哪种形式解决问题方便就选用哪种形式.[跟踪训练4]如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明设AD→=a ,AB →=b ,则|a |=|b |,a ·b =0,又DE→=DA →+AE →=-a +b 2,AF →=AB →+BF →=b +a 2,所以AF →·DE →a 12a 2-34a ·b +b 22=-12|a |2+12|b |2=0.故AF →⊥DE→,即AF ⊥DE .1.若向量a 的方向是正北方向,向量b 的方向是西偏南30°方向,且|a |=|b |=1,则(-3a )·(a +b )等于()A.32B .-32C.23D .-23答案B解析由题意知a 与b 的夹角为120°,∴a ·b =-12.∴(-3a )·(a +b )=-3a 2-3a ·b =-32.2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a -b |等于()A.1 B.2C.3D.2答案A解析|a-b|=(a-b)2=a2+b2-2a·b=12+12-2·1·cos〈a,b〉=2-2cos60°=1.3.若O为△ABC所在平面内一点,且满足(OB→-OC→)·(OB→+OC→-2OA→)=0,则△ABC的形状为()A.正三角形B.直角三角形C.等腰三角形D.以上均不正确答案C解析由(OB→-OC→)·(OB→+OC→-2OA→)=0,得CB→·(AB→+AC→)=0,又CB→=AB→-AC→,∴(AB→-AC→)·(AB→+AC→)=0,即|AB→|2-|AC→|2=0.∴|AB→|=|AC→|.∴△ABC为等腰三角形.,则4.已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3实数λ=____.答案-8或5解析由3a+λb+7c=0,可得7c=-(3a+λb),则49c2=9a2+λ2b2+6λa·b.,即λ2+3λ-40由a,b,c为单位向量,得a2=b2=c2=1,则49=9+λ2+6λcosπ3=0,解得λ=-8或λ=5.5.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61,(1)求a与b的夹角θ;(2)求|a+b|和|a-b|.解(1)因为(2a-3b)·(2a+b)=61,所以4a2-4a·b-3b2=61,,所以4×42-4×4×3cosθ-3×32=61,cosθ=-12又因为θ∈[0,π],所以θ=120°.(2)因为|a+b|2=a2+2a·b+b2=16+2×4×3cos120°+9=13,所以|a+b|=13,同理可求得|a-b|=37.一、选择题1.已知向量a,b满足|a|=2,|b|=1,(a-b)·b=0,那么向量a与b的夹角为()A.30°B.45°C.60°D.90°答案C,解析由题意可得a·b-b2=0,设a与b的夹角为θ,则2cosθ=1,cosθ=12又θ∈[0,π],∴θ为60°.2.已知平面向量a,b满足|a|=3,|b|=2,a·b=-3,则|a+2b|=()A.1 B.7C.4+3D.27答案B解析根据题意,得|a+2b|=a2+4a·b+4b2=7.3.若AB →·BC →+AB →2=0,则△ABC 为()A .直角三角形B .钝角三角形C .锐角三角形D .等腰直角三角形答案A解析∵0=AB→·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →,∴AB →⊥AC →,∴∠BAC =90°.故选A.4.如图,O ,A ,B 是平面上的三点,C 为线段AB 的中点,向量OA→=a ,OB →=b ,设P 为线段AB 的垂直平分线上任意一点,向量OP →=p .若|a |=4,|b |=2,则p ·(a -b )=()A .1B .3C .5D .6答案D解析由题图知CP →⊥BA →,则CP →·BA →=0,p =OP→=OC →+CP →=12(OA →+OB →)+CP →,则p ·(a -b )=12(a +b )+CP →·(a -b )=12(a +b )·(a -b )+CP→·(a -b )=12(a 2-b 2)+CP →·BA →=12(|a |2-|b |2)+0=12×(42-22)=6.5.(多选)设a ,b ,c 是任意的非零向量,且它们相互不共线,则下列结论正确的是()A .a ·c -b ·c =(a -b )·cB .(b ·c )·a -(c ·a )·b 不与c 垂直C .|a |-|b |<|a -b |D .(3a +2b )·(3a -2b )=9|a |2-4|b |2答案ACD解析因为a ,b ,c 是任意的非零向量,且它们相互不共线,则由向量数量积的运算律,知A ,D 正确;由向量减法的三角形法则,知C 正确;因为[(b ·c )·a -(c ·a )·b ]·c =(b ·c )·(a ·c )-(c ·a )·(b ·c )=0.所以(b ·c )·a -(c ·a )·b 与c 垂直,B 错误.故选ACD.二、填空题6.若a ⊥b ,c 与a 及与b 的夹角均为60°,|a |=1,|b |=2,|c |=3,则(a +2b -c )2=____.答案11解析原式展开,得|a |2+4|b |2+|c |2+4|a ||b |cos90°-2|a ||c |cos60°-4|b ||c |cos60°=11.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 的夹角的余弦值为____.答案-13解析由|a |=3|b |,得|b ||a |=13.由|a |=|a +2b |,两边平方得|a |2=|a +2b |2=|a |2+4|b |2+4a ·b ,整理得a ·b =-|b |2.设a ,b 的夹角为θ,则cos θ=a ·b |a ||b |=-|b |2|a ||b |=-|b ||a |=-13.8.已知向量AB→与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为____.答案712解析因为向量AB→与AC→的夹角为120°,且|AB→|=3,|AC→|=2,所以AB→·AC→=|AB→||AC→|cos120°=3×2 3.由AP→⊥BC→,得AP→·BC→=0,即AP→·BC→=(λAB→+AC→)·(AC→-AB→)=0,所以AC→2-λAB→2+(λ-1)AB→·AC→=0,即4-9λ-3(λ-1)=0,解得λ=7.12三、解答题9.已知|a|=4,|b|=8,a与b的夹角是120°.(1)计算|4a-2b|;(2)当k为何值时,(a+2b)⊥(k a-b).解由已知,得a·b=4×816.(1)∵(4a-2b)2=16a2-16a·b+4b2=16×16-16×(-16)+4×64=3×162,∴|4a-2b|=16 3.(2)若(a+2b)⊥(k a-b),则(a+2b)·(k a-b)=0.∴k a2+(2k-1)a·b-2b2=0,即16k-16(2k-1)-2×64=0,∴k=-7.10.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足AP→=λPB→.(1)若λ=12,用向量OA →,OB →表示OP →;(2)若|OA→|=4,|OB →|=3,且∠AOB =60°,求OP →·AB →的取值范围.解(1)∵AP →=12PB →,∴OP →-OA →=12(OB →-OP →).∴32OP →=OA →+12OB →,即OP →=23OA →+13OB →.(2)OA→·OB →=|OA →||OB →|cos60°=6.∵AP→=λPB →,∴OP→-OA →=λ(OB →-OP →),(1+λ)OP →=OA →+λOB →,∴OP →=11+λOA →+λ1+λOB →.∵AB→=OB →-OA →,∴OP →·AB →+λ1+λOB OB →-OA →)=-11+λOA →2+λ1+λOB →2·OB →=-16+9λ+6-6λ1+λ=3λ-101+λ=3-131+λ.∵λ>0,∴3-131+λ∈(-10,3).∴OP→·AB →的取值范围是(-10,3).1.已知向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,OP→=tOA→,OQ→=(1-t)OB→,t∈R,|PQ→|在t=t0时取得最小值,当0<t0<15时,夹角θ的取值范围是()A.0,π3π3,π2C.π2,2π30,2π3答案C解析因为向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,所以OA→·OB→=2cosθ,由PQ→=OQ→-OP→=(1-t)OB→-tOA→,得|PQ→|2=PQ→2=(1-t)2OB→2-2t(1-t)·OA→·OB→+t2OA→2=(5+4cosθ)t2-(2+4cosθ)t+1,所以t0=1+2cosθ5+4cosθ,由0<1+2cosθ5+4cosθ<15,解得-1 2<cosθ<0,因为0≤θ≤π,所以π2<θ<2π3.故选C.2.平面四边形ABCD中,AB→=a,BC→=b,CD→=c,DA→=d,且a·b=b·c=c·d=d·a,试问四边形ABCD的形状.解∵AB→+BC→+CD→+DA→=0,即a+b+c+d=0,∴a+b=-(c+d),由上式可得(a+b)2=(c+d)2,即a2+2a·b+b2=c2+2c·d+d2.又a·b=c·d,故a2+b2=c2+d2.①同理可得a2+d2=b2+c2②由①②,得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA.∴四边形ABCD为平行四边形.故AB→=-CD→,即a=-c,∴a·b=b·c=-a·b,即a·b=0,∴a⊥b,即AB→⊥BC→.综上知,四边形ABCD为矩形.8.1.3向量数量积的坐标运算(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示.教学难点:用坐标法处理模、角度、垂直问题.知识点一向量数量积的坐标运算已知a=(x1,y1),b=(x2,y2),则a·b=01x1x2+y1y2,即两个向量的数量积等于02它们对应坐标乘积的和.知识点二向量的长度已知a=(x1,y1),则|a|=01x21+y21,即向量的长度等于02它的坐标平方和的算术平方根.知识点三两向量夹角的余弦设a=(x1,y1),b=(x2,y2),则cos〈a,b〉=01x1x2+y1y2x21+y21x22+y22.知识点四两点间的距离如果A(x1,y1),B(x2,y2),则|AB→|=01(x2-x1)2+(y2-y1)2.知识点五用坐标表示两向量垂直设a=(x1,y1),b=(x2,y2),则a⊥b⇔01x1x2+y1y2=0.1.两个向量垂直的条件已知a=(x1,y1),b=(x2,y2),如果a⊥b,则x1x2+y1y2=0;反之,如果x1x2+y1y2=0,则a⊥b.运用向量垂直的条件,既可以判定两向量是否垂直,又可以由垂直关系去求参数.如果a⊥b,则向量(x1,y1)与(-y2,x2)平行.这是因为a⊥b,有x1x2+y1y2=0(*),当x2y2≠0时,(*)式可以表示为x1-y2=y1x2,即向量(x1,y1)与向量(-y2,x2)平行.对任意的实数k,向量k(-y2,x2)与向量(x2,y2)垂直.2.不等式|a·b|≤|a||b|的代数形式若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,|a |=x 21+y 21,|b |=x 22+y 22.由|a·b |≤|a ||b |得|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22,当且仅当a ∥b ,即x 1y 2-x 2y 1=0时取等号,即不等式(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22)成立.1.判一判(正确的打“√”,错误的打“×”)(1)若a =(1,1),b =(-2,2),则a·b =0.()(2)若a =(4,2),b =(6,m )且a ⊥b ,则m =-12.()(3)若a·b >0(a ,b 均为非零向量),则〈a ,b 〉为锐角.()答案(1)√(2)√(3)×2.做一做(1)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为____.(2)已知a =(1,3),b =(-2,0),则|a +b |=____.(3)设a =(2,0),|b |=1,〈a ,b 〉=60°,则a·b =____.(4)已知a =(3,4),则与a 垂直的单位向量有________,与a 共线的单位向量有________.答案(1)π6(2)2(3)1-45,-35,-题型一向量数量积的坐标运算例1已知向量a 与b 同向,b =(1,2),a ·b =10,求:(1)向量a 的坐标;(2)若c=(2,-1),求(a·c)b.[解](1)∵a与b同向,且b=(1,2),∴a=λb=(λ,2λ)(λ>0).又a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+(-1)×4=0,∴(a·c)b=0.(1)通过向量的坐标表示实现向量问题代数化,应注意与方程、函数等知识的联系.(2)向量问题的处理有两种思路:一种是纯向量式,另一种是坐标式,两者互相补充.[跟踪训练1]已知a=(2,-1),b=(3,-2),求(3a-b)·(a-2b).解解法一:(3a-b)·(a-2b)=3a2-7a·b+2b2.∵a·b=2×3+(-1)×(-2)=8,a2=22+(-1)2=5,b2=32+(-2)2=13,∴(3a-b)·(a-2b)=3×5-7×8+2×13=-15.解法二:∵a=(2,-1),b=(3,-2),∴3a-b=(6,-3)-(3,-2)=(3,-1),a-2b=(2,-1)-(6,-4)=(-4,3),∴(3a-b)·(a-2b)=3×(-4)+(-1)×3=-15.题型二向量的夹角问题例2已知a+b=(2,-8),a-b=(-8,16),求a与b的数量积及a与b的夹角的余弦值.[解]+b =(2,-8),-b =(-8,16),=(-3,4),=(5,-12).∴a ·b =(-3,4)·(5,-12)=(-3)×5+4×(-12)=-63.cos 〈a ,b 〉=a ·b |a ||b |=-63(-3)2+42×52+(-12)2=-635×13=-6365.∴a 与b 的夹角的余弦值为-6365.利用数量积求两向量夹角的步骤特别提醒:已知两个非零向量的坐标,就可以利用该公式求得两个向量的夹角,因为向量的夹角范围为[0,π],故不存在讨论角的终边所在象限的问题.[跟踪训练2]设向量a =(-2sin α,2cos α)(0≤α≤π),b =(-25,0),则a 与b 的夹角为____.答案|π2-α|解析设a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22=45sin α2×25=sin α,∵α∈[0,π],∴θ=|π2-α|.题型三向量的长度、距离问题例3已知向量a,b满足|a|=|b|=1,且|3a-2b|=3.求|3a+b|的值.[解]设a=(x1,y1),b=(x2,y2).∵|a|=|b|=1,∴x21+y21=1,x22+y22=1,3a-2b=3(x1,y1)-2(x2,y2)=(3x1-2x2,3y1-2y2),∵|3a-2b|=(3x1-2x2)2+(3y1-2y2)2=3,∴9x21-12x1x2+4x22+9y21-12y1y2+4y22=9,∴13-12(x1x2+y1y2)=9.∴x1x2+y1y2=13.∵3a+b=3(x1,y1)+(x2,y2)=(3x1+x2,3y1+y2),∴|3a+b|=(3x1+x2)2+(3y1+y2)2=9x21+6x1x2+x22+9y21+6y1y2+y22=10+6(x1x2+y1y2)=10+6×13=23.(1)在上述解题过程中,根据|a|=|b|=1,可以设a=(cosβ,sinβ),b=(cosα,sinα).(2)利用本题的解法可解决下面的一般性问题:若向量a,b满足|a|=|b|=r1,及|λ1a+μ1b|=r2求|λ2a+μ2b|的值.(3)注意区别m=n与|m|=|n|,其中m=n表示的是向量关系,即(x1,y1)=(x2,y2),而|m|=|n|表示的是数量关系,即x21+y21=x22+y22.[跟踪训练3]若向量OA→=(1,-3),|OA→|=|OB→|,OA→·OB→=0,则|AB→|=____.答案25解析解法一:设OB→=(x,y),由|OA→|=|OB→|,知x2+y2=10.①由题意知OA→·OB→=x-3y=0.②=3,=1=-3,=-1.当x=3,y=1时,AB→=OB→-OA→=(2,4),则|AB→|=25;当x=-3,y=-1时,AB→=(-4,2),则|AB→|=25.故|AB→|=25.解法二:由题意知,|AB→|就是以OA→,OB→对应线段为邻边的正方形的对角线长,因为|OA→|=10,所以|AB→|=2×10=25.题型四两向量垂直条件的应用例4如图所示,以原点O和点A(5,2)为两个顶点作等腰直角三角形AOB,使∠B=90°,求点B的坐标.[解]设点B(x,y),则OB→=(x,y),AB→=(x-5,y-2).因为∠B=90°,所以x(x-5)+y(y-2)=0,又|AB→|=|OB→|,所以x2+y2=(x-5)2+(y-2)2,2+y 2-5x -2y =0,x +4y =29,1=72,1=-322=32,2=72.即点B利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算再将向量问题转化为代数问题来解决.[跟踪训练4]在等腰直角三角形ABC 中,∠ACB 是直角,AC =BC ,D 是BC 的中点,E 是AB 上一点,且AE =2EB .求证:AD ⊥CE .证明建立如图所示的平面直角坐标系,设CA =CB =2,则A (2,0),B (0,2),C (0,0),设E (x ,y ).∵D 为BC 的中点,∴D (0,1).∵AE =2EB ,∴AE →=23AB →,∴(x -2,y )=23(-2,2),-2=-43,=43,=23,=43,∴∴AD→·CE→=(-=-43+43=0,∴AD→⊥CE→,∴AD⊥CE.题型五向量数量积的综合应用例5若函数f(x)=-2<x<10)的图像与x轴交于点A,过点A的直线l与函数的图像交于B,C两点,O为坐标原点,则(OB→+OC→)·OA→=() A.-32B.-16C.16D.32[解析]令f(x)=0,得π6x+π3kπ,k∈Z,∴x=6k-2,k∈Z.∵-2<x<10,∴x=4,即A(4,0).设B(x1,y1),C(x2,y2),∵过点A的直线l与函数的图像交于B,C两点,∴B,C两点关于点A对称,即x1+x2=8,y1+y2=0.故(OB→+OC→)·OA→=(x1+x2,y1+y2)·(4,0)=4(x1+x2)=32.[答案]D与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点问题.解此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、夹角的坐标运算公式外,还应掌握三角函数的图像和性质等知识.[跟踪训练5]设O(0,0),A(1,0),B(0,1),点P是线段AB上的一个动点,AP→=λAB→.若OP→·AB→≥P A→·PB→,则实数λ的取值范围是()A.12≤λ≤1B.1-22≤λ≤1C.12≤λ≤1+22D.1-22≤λ≤1+22答案B解析设P(x,y),则由AP→=λAB→,得(x-1,y)=λ(-1,1),-1=-λ,=λ,∴x-1+y=0.①又OP→·AB→≥PA→·PB→,∴(x,y)·(-1,1)≥(1-x,-y)·(-x,1-y).整理,得x2+y2-2y≤0,即x2+(y -1)2≤1.②将①整理,得x=1-y,代入②中,得(y-1)2≤12.即-22≤y-1≤22.∴1-22≤y≤1+22.结合题意,得1-22≤y≤1,即1-22≤λ≤1.故选B.1.若a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.3 B.13C.-13D.-3答案C解析∵3a·b=(6,-9)·(x,2x)=-12x=4,∴x=-13.2.已知A(1,2),B(4,0),C(8,6),D(5,8)四点,则四边形ABCD是() A.梯形B.矩形C.菱形D.正方形答案B解析∵AB→=(3,-2),DC →=(3,-2),∴AB →=DC →,又AD→=(4,6),∴AB →·AD →=0,∴AB →⊥AD →.∵|AB→|≠|AD →|,∴选B.3.正三角形ABC 的边长为1,设AB →=c ,BC →=a ,CA →=b ,那么a ·b +b ·c +c ·a 的值是____.答案-32解析解法一:如图,以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则A (0,0),B (1,0),∴a -12,b -12,-c =(1,0),∴a ·b +32×=-12,同理b ·c =c ·a =-12,∴a ·b +b ·c +c ·a =-32.解法二:a·b +b·c +c·a =1×1×cos120°+1×1×cos120°+1×1×cos120°=3=-32.4.设向量a 与b 的夹角为α,且a =(3,3),2b -a =(-1,1),则cos α=____.答案31010解析∵a =(3,3),由2b -a =(-1,1)可得b =(1,2),∴cos α=a ·b |a ||b |=918×5=31010.5.如图,已知△ABC 的面积为32,AB =2,AB→·BC →=1,求边AC 的长.解以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0),因为AB =2,∴点B 的坐标是(2,0),∴AB→=(2,0),BC →=(x -2,y ).∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C AC →∴|AC→|==342,故边AC 的长为342.一、选择题1.已知a=(-3,4),b=(5,2),则a·b=()A.23B.7C.-23D.-7答案D解析a·b=(-3)×5+4×2=-7.2.已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案A解析∵AB→=(1,1),AC→=(-3,3),∴AB→·AC→=1×(-3)+1×3=0,∴AB→⊥AC→,∴A=90°,故选A.3.已知a=(2,-3),b=(1,-2),且c⊥a,b·c=1,则c的坐标为() A.(3,-2)B.(3,2)C.(-3,-2)D.(-3,2)答案C解析设c=(x,y)2x-3y=0,x-2y=1,x=-3,y=-2.4.与已知向量a 72,12,b12,-72的夹角相等,且模为1的向量是()-45,-223,答案B解析设与向量ab1的向量为(x,y)+y2=1,+12y=12x-72y,=45,=-35=-45,=35,故选B.5.(多选)设A(a,1),B(2,b),C(4,5)为坐标平面上的三点,O为坐标原点.若OA→与OB→在OC→方向上的投影相同,则a,b的取值可能为()A.a=2,b=1B.a=7,b=5C.a=9,b=6D.a=12,b=9答案ABD解析由图知,要使OA→与OB→在OC→方向上的投影相同,只需使AB→⊥OC→,即(2-a,b-1)·(4,5)=0,得4a-5b-3=0,则a,b需满足关系式4a-5b=3,结合选项可知,A,B,D中a,b的取值满足条件.故选ABD.二、填空题6.若a=(x,2),b=(-3,5),且a与b的夹角是钝角,则实数x的取值范围是____.答案103,+∞解析x应满足(x,2)·(-3,5)<0且a,b不共线.解得x>103且x≠-65,∴x>103.7.已知向量a=(1,2),b=(-2,-4),|c|=5,若(a+b)·c=52,则a与c的夹角为____.答案120°解析由已知,得a+b=-a,∴a与c的夹角与c与a+b的夹角互补.又cos〈a+b,c〉=(a+b)·c|a+b||c|=12.∴〈a+b,c〉=60°.∴a与c的夹角是120°.8.已知向量a=(cos2θ,sin2θ),向量b=(2,0),则|2a-b|的最大值是____.答案22解析令t=cos2θ(0≤t≤1),则a=(t,1-t),所以|2a-b|2=(2t-2)2+(2-2t)2=8(t-1)2.所以|2a-b|=22|t-1|=22(1-t),故当t=0时,|2a-b|取得最大值22.三、解答题9.在△ABC中,A(2,-1),B(3,2),C(-3,-1),AD是BC边上的高,求。

人教版高中数学必修5讲义 第1章章末分层突破

人教版高中数学必修5讲义 第1章章末分层突破

章末分层突破[自我校对]①asin A=bsin B=csin C②已知两角和其中一边③c2=a2+b2-2ab cos C④已知三边⑤S=12ac sin B利用正、余弦定理求解三角形的基本问题过程.三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形共包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).已知△ABC的内角A,B,C的对边分别为a,b,c,a sin A+c sin C -2a sin C=b sin B.(1)求角B的大小;(2)若A=75°,b=2,求a,c.【精彩点拨】(1)用正弦定理将已知关系式变形为边之间的关系,然后利用余弦定理求解.(2)先求角C,然后利用正弦定理求边a,c.【规范解答】(1)由正弦定理得a2+c2-2ac=b2.由余弦定理得b2=a2+c2-2ac cos B,故cos B=22,因此B=45°.(2)sin A=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+6 4.故a=b×sin Asin B=1+ 3.由已知得,C =180°-45°-75°=60°, c =b ×sin Csin B = 6. [再练一题]1.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,设a ,b ,c 满足条件b 2+c 2-bc =a 2和c b =12+3,求A 和tan B 的值.【解】 由余弦定理cos A =b 2+c 2-a 22bc =12,因此A =60°.在△ABC 中,C =180°-A -B =120°-B .由已知条件,应用正弦定理 12+3=c b =sin C sin B =sin (120°-B )sin B=sin 120°cos B -cos 120°sin B sin B=32tan B +12,从而tan B =12.正、余弦定理的综合应用正、角形的面积提供了依据,而三角形中的问题常与向量、函数、方程及平面几何相结合,通常可以利用正、余弦定理完成证明、求值等问题.(1)解三角形与向量的交汇问题,可以结合向量的平行、垂直、夹角、模等知识转化求解.(2)解三角形与其他知识的交汇问题,可以运用三角形的基础知识、正余弦定理、三角形面积公式与三角恒等变换,通过等价转化或构造方程及函数求解.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC→=2,cos B =13,b =3.求:(1)a 和c 的值;(2)cos(B -C )的值.【精彩点拨】 (1)由平面向量的数量积定义及余弦定理,列出关于a ,c 的方程组即可求解.(2)由(1)结合正弦定理分别求出B ,C 的正、余弦值,利用差角余弦公理求解.【规范解答】 (1)由BA →·BC →=2得c ·a cos B =2. 又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×6×13=13. 解⎩⎪⎨⎪⎧ ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧ a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2. (2)在△ABC 中, sin B =1-cos 2 B =1-⎝ ⎛⎭⎪⎫132=223, 由正弦定理,得sin C =c b sin B =23×223=429. 因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2 C =1-⎝⎛⎭⎪⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. [再练一题]2.如图1-1,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC=17.(1)求sin∠BAD;(2)求BD,AC的长.图1-1【解】(1)在△ADC中,因为cos∠ADC=17,所以sin∠ADC=437.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC cos B-cos∠ADC sin B=437×12-17×32=3314.(2)在△ABD中,由正弦定理得BD=AB·sin∠BADsin∠ADB=8×3314437=3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×12=49.所以AC=7.正、余弦定理的实际应用问题,测量高度问题,测量角度问题等.解决的基本思路是画出正确的示意图,把已知量和未知量标在示意图中(目的是发现已知量与未知量之间的关系),最后确定用哪个定理转化,用哪个定理求解,并进行作答,解题时还要注意近似计算的要求.图1-2如图1-2所示,某市郊外景区内有一条笔直的公路a经过三个景点A、B、C.景区管委会开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向上8 km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上.已知AB=5 km.(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(2)求景点C与景点D之间的距离.(结果精确到0.1 km)(参考数据:3=1.73,sin 75°=0.97,cos 75°=0.26,tan 75°=3.73,sin 53°=0.80,cos 53°=0.60,tan 53°=1.33,sin 38°=0.62,cos 38°=0.79,tan 38°=0.78)【精彩点拨】(1)以BD为边的三角形为△ABD和△BCD,在△ABD中,一角和另外两边易得,所以可在△ABD中利用余弦定理求解DB.(2)以CD为边的两个三角形中的其他边不易全部求得,而角的关系易得,考虑应用正弦定理求解.【规范解答】(1)设BD=x km,则在△ABD中,由余弦定理得52=82+x2-2×8x cos 30°,即x2-83x+39=0,解得x=43±3.因为43+3>8,应舍去,所以x=43-3≈3.9,即这条公路的长约为3.9 km.(2)在△ABD中,由正弦定理得ADsin∠ABD=ABsin∠ADB,所以sin∠ABD=sin∠CBD=ADAB·sin∠ADB=45=0.8,所以cos∠CBD=0.6.在△CBD中,sin∠DCB=sin(∠CBD+∠BDC)=sin(∠CBD+75°)=0.8×0.26+0.6×0.97=0.79,由正弦定理得CD=sin∠DBC×BDsin∠DCB≈3.9.故景点C与景点D之间的距离约为3.9 km.[再练一题]3.如图1-3,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路AD,DC,且拐弯处的转角为120°.已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).图1-3【解】法一:设该扇形的半径为r米,由题意,得CD=500米,DA=300米,∠CDO=60°.在△CDO中,CD2+OD2-2·CD·OD·cos 60°=OC2,即5002+(r-300)2-2×500×(r-300)×12=r2,解得r=4 90011≈445(米).法二:连接AC,作OH⊥AC,交AC于点H,由题意,得CD=500米,AD=300米,∠CDA=120°.在△ACD中,AC2=CD2+AD2-2·CD·AD·cos 120°=5002+3002+2×500×300×12=7002,∴AC=700(米).cos∠CAD=AC2+AD2-CD22AC·AD=1114.在Rt△HAO中,AH=350(米),cos∠HAO=1114,∴OA=AHcos∠HAO =4 90011≈445(米).转化与化归思想下,把一种状况转化为另一种状况,也就是转化为另一种情境,使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.本章主要是综合运用正、余弦定理解决较为复杂的与解三角形有关的问题,在判断三角形的形状的问题中,利用边、角之间的转化与化归的方法是解决这类问题的基本思路.在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos A sin B=sin C,试确定△ABC的形状.【精彩点拨】充分运用正弦定理和余弦定理,可利用边的关系判断,也可转化为角的关系来判断.【规范解答】法一:由正弦定理,得sin Csin B=cb.又2cos A sin B=sin C,所以cos A=sin C2sin B =c 2b.由余弦定理,有cos A=b2+c2-a22bc,所以c2b =b2+c2-a22bc,即c2=b2+c2-a2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,所以b=c,所以a=b=c.因此△ABC为等边三角形.法二:因为A+B+C=180°,所以sin C=sin(A+B).又因为2cos A sin B=sin C,所以2cos A sin B=sin A cos B+cos A sin B,所以sin(A-B)=0.因为A、B均为三角形的内角,所以A=B. 又由(a+b+c)(a+b-c)=3ab,得(a+b)2-c2=3ab,即a2+b2-c2=ab,所以cos C=a2+b2-c22ab=ab2ab=12.因为0°<C<180°,所以C=60°,因此△ABC为等边三角形.[再练一题]4.已知△ABC中,a3+b3-c3a+b-c=c2,且a cos B=b cos A,试判断△ABC的形状.【解】由a3+b3-c3a+b-c=c2,得a3+b3-c3=c2(a+b)-c3,∴a2+b2-ab=c2,∴cos C=12,∴C=60°.由a cos B =b cos A ,得2R sin A cos B =2R sin B cos A (R 为△ABC 外接圆的半径), ∴sin(A -B )=0,∴A -B =0,∴A =B =C =60°,∴△ABC 为等边三角形.1.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( ) A .5 B. 5 C .2 D .1【解析】 ∵S =12AB ·BC sin B =12×1×2sin B =12, ∴sin B =22,∴B =π4或3π4.当B =3π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2+2=5,∴AC =5,此时△ABC 为钝角三角形,符合题意;当B =π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2-2=1,∴AC =1,此时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意.故AC = 5.【答案】 B2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.【解析】 因为A ,C 为△ABC 的内角,且cos A =45,cos C =513, 所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =sin B sin A =6365×53=2113.【答案】 21133.如图1-4,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别是67°,30°,此时气球的高是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1-4【解析】 根据已知的图形可得AB =46sin 67°.在△ABC 中,∠BCA =30°,∠BAC=37°,由正弦定理,得AB sin 30°=BC sin 37°,所以BC ≈2×460.92×0.60=60(m).【答案】 604.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.【解析】 如图,在△ABD 中,由正弦定理,得AD sin B =AB sin ∠ADB,∴sin ∠ADB =22. ∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.∴∠BAC =30°,∠C =30°,∴BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BC sin A ,∴AC = 6.【答案】 65.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cosA)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.【解】(1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。

人教版【高中数学】选修2-1第三章直线与平面的夹角讲义

人教版【高中数学】选修2-1第三章直线与平面的夹角讲义

2 / 14
人教版【高中数学】选修 2-1 第三章直线与平面的夹角讲义
答案 如下图 , 作 AO⊥a,O 为垂足 , 连结 OB,OC,OD,则∠ ABO,∠ACO∠, ADO 分别为
AB,AC,AD与 a 所成的角 , 则
∠ABO=3°0 , ∠ACO=4°5 .

AO=h,则 AC= 2 h,AB=2h.
面的夹角为 , 当一条直线与个平面平行或在平面内时 , 这条直线与平面的夹角为 0. (4) 直线和平面所成角的求法 : ①几何法 : 用几何法求直线和平面所成角的步骤 :i) 找 ( 或作 )
出直线和平面所成的角; ii) 计算 , 即解三角形; iii) 结论 , 即点明直线和平面所成角的大
小. ②向量法 : 若直线 AB与平面 a 所成的角为 , 平面 a 的法向量为 n, 直线与向量 n 所成的
2
∴ AH=A1A AO 1 2
3.
A1O
63
2
AH
∴sin ∠AA1H=
A1 A
3
3
. ∠AA1H=arc sin.33 Nhomakorabea3
∴ A1A 平面 A1BD所成角的大小为 arc sin
.
3
解法二 : ∵AA1=AD=AB,
∴点 A 在平面 A1BD上的射影 H 为△A1BD中心 , 连结 A1H, 则 A1H 为正△A1BD外接圆半径 ,
成的角为 2,OA 与 OM所成的角为 , 则有 cos =
cos 1· cos 2, 我们简称此公式为三余弦公式 , 它反映了三个角的余弦值之间的关系 .
在上述公式中 , 因为 0≤cos 2≤ 1,所以 cos <cos 1, 因为 1 和 都是锐角 , 所以

人教版高中数学必修二教案

人教版高中数学必修二教案

人教版高中数学必修二教案篇一:人教版高中数学必修2教案讲义1:空间几何体一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.三、教学难点:柱、锥、台、球的结构特征的概括.四、教学过程:(一)、新课导入:1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、讲授新课:1. 教学棱柱、棱锥的结构特征:①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’④、讨论:埃及金字塔具有什么几何特征?⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:① 讨论:圆柱、圆锥如何形成?② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→结合图形认识:底面、轴、侧面、母线、高. → 表示方法③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.④ 观察书P2若干图形,找出相应几何体;三、巩固练习:1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.3.正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱.(四)、教学棱台与圆台的结构特征:① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③ 讨论:棱台、圆台分别具有一些什么几何性质? 22★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→ 球的表示.② 讨论:球有一些什么几何性质?③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 教学简单组合体的结构特征:① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.4. 练习:圆锥底面半径为1cmcm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)(五)、巩固练习:1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。

人教版高中数学选择性必修一讲义1.1 空间向量及其运算(精炼)(解析版)

人教版高中数学选择性必修一讲义1.1 空间向量及其运算(精炼)(解析版)

1.1 空间向量及其运算(精炼)【题组一 概念的辨析】1.(2020·辽宁沈阳.高二期末)在下列结论中:①若向量,a b 共线,则向量,a b 所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面;③若三个向量,,a b c 两两共面,则向量,,a b c 共面;④已知空间的三个向量,,a b c ,则对于空间的任意一个向量p 总存在实数x,y,z 使得p xa yb zc =++. 其中正确结论的个数是( )A .0B .1C .2D .3 【正确答案】A【详细解析】平行向量就是共线向量,它们的方向相同或相反,未必在同一条直线上,故①错. 两条异面直线的方向向量可通过平移使得它们在同一平面内,故②错,三个向量两两共面,这三个向量未必共面,如三棱锥P ABC -中,,,PA PB PC 两两共面,但它们不是共面向量,故③错.根据空间向量基本定理,,,a b c 需不共面,故④错.综上,选A .2(2019·全国高二)下列说法中正确的是( )A .若a b =,则a ,b 的长度相等,方向相同或相反B .若向量a 是向量b 的相反向量,则a b =C .空间向量的减法满足结合律D .在四边形ABCD 中,一定有AB AD AC +=【正确答案】B【详细解析】对于A,向量的模相等指的是向量的长度相等,方向具有不确定性,因而不一定方向相同或相反,所以A 错误.对于B,相反向量指的是大小相等,方向相反的两个向量.因而相反向量满足模长相等,所以B 正确. 对于C,减法结合律指的是()()a b c a b c --=--,因而由运算可得空间向量减法不满足结合律.所以C 错误.对于D 满足AB AD AC +=的一定是平行四边形,一般四边形是不满足的,因而D 错误.综上可知,正确的为B,故选:B3.(2020·陕西新城.西安中学高二期末(理))给出下列命题:①若空间向量,a b 满足a b =,则a b =;②空间任意两个单位向量必相等;③对于非零向量c ,由a c b c ⋅=⋅,则a b =;④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅.其中假.命题的个数是( ) A .1B .2C .3D .4 【正确答案】D 【详细解析】对于①,空间向量,a b 的方向不一定相同,即a b =不一定成立,故①错误;对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =,()1,0,0b =,()0,1,0c =,满足0a c b c ⋅=⋅=,且0c ≠,但是a b ≠,故③错误;对于④,因为a b ⋅和b c ⋅都是常数,所以()a b c ⋅⋅和()a b c ⋅⋅表示两个向量,若a 和c 方向不同则()a b c ⋅⋅和()a b c ⋅⋅不相等,故④错误.故选:D.4.(2019·长宁.上海市延安中学高二期中)给出以下结论:①空间任意两个共起点的向量是共面的;②两个相等向量就是相等长度的两条有向线段表示的向量;③空间向量的加法满足结合律:()()a b c a b c ++=++;④首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.请将正确的说法题号填在横线上:__________.【正确答案】①③④【详细解析】①中,两个向量共起点,与两向量终点共有3个点,则3点共面,可知两向量共面,①正确; ②中,两个相等向量需大小相等,方向相同,②错误;③中,空间向量加法满足结合律,③正确;④中,由向量加法的三角形法则可知④正确.故正确答案为:①③④【题组二 空间向量的线性运算】1.(2020·辽宁沈阳.高二期末)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线A 1B 与B 1D 1的中点,若DA =a ,DC =b ,1DD =c ,则MN =( )A .1()2c b a +- B .1()2a b c +- C .1()2a c - D .1()2c a - 【正确答案】D【详细解析】根据向量的线性运算 11MN MA A N =+ 1111122BA AC =+=()()111111122BA AA A B B C =+++()()1122b c b a =-++- ()12c a =-所以选D 2.(2020·全国高二)在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )A .112223EF AC AB AD =+- B .112223EF AC AB AD =--+ C .112223EF AC AB AD =-+ D .112223EF AC AB AD =-+- 【正确答案】B【详细解析】()1211223223EF EB BA AF AB AC AB AD AC AB AD =++=--+=--+.故选:B 3(2020·山东章丘四中高二月考)如图所示,在空间四边形OABC 中,OA a OB b OC c ===,,,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( )A .121232a b c -+ B .211322a b c -++ C .111222a b c +- D .221b 332a c -+- 【正确答案】B 【详细解析】由向量的加法和减法运算:12211()23322MN ON OM OB OC OA a b c =-=+-=-++. 故选:B4.(2020·山东德州.高二期末)如图,平行六面体1111ABCD A B C D -中,AC 与BD 的交点为M ,设AB a =,AD b =,1AA c =,则下列选项中与向量1MC 相等的是( )A .1122a b c --- B .1122a b c ++ C .1122a b c -- D .1122a b c +- 【正确答案】B【详细解析】如图所示,11MC MC CC =+,12M C C A =,AC AB AD =+,AB a =,AD b =,1CC c =, ()1111121122212MC AB CC AB AD AD b CC a c ∴=++=++++=, 故选:B .5.(2020·陕西王益.高二期末(理))如图,在空间四边形ABCD 中,E ,M ,N 分别是边BC ,BD ,CD 的中点,DE ,MN 交于F 点,则1122AB AC EF ++=( )A .ADB .AFC .FAD .EM 【正确答案】B【详细解析】E 是边BC 的中点,∴1122AB AC AE +=;∴1122AB AC EF AE EF AF ++=+=; 故选:B . 6.(2019·江苏省苏州实验中学高二月考)平行六面体1111ABCD A B C D -中,12,AM MC =1AM xAB yAD zAA =++,则实数x,y,z 的值分别为( )A .1,32,323B .2,31,323C .2,32,313D .2,31,223【正确答案】C【详细解析】12,A M MC =112,3A M AC ∴= ()111,AC AC AA AB AD AA -==+- 1112222,3333A M AC AB AD AA ∴=+-= 111221333AM AA A M AB AD AA +∴=+=+,221333x y z ==∴=,,.故选:C. 7.(2020·湖北黄石.高二期末)如图,已知空间四边形OABC ,其对角线为,OB AC ,,M N 分别是对边,OB AC 的中点,点G 在线段MN 上,2MG GN =,现用基向量,,OA OB OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( )A .111333x y z ===,, B .111336x y z ===,, C .111363x y z ===,, D .111633x y z ===,, 【正确答案】D 【详细解析】()1212121223232323OG OM MG OA MN OA MA AN OA OA AN =+=+=++=+⨯+()525221636332OA AB BN OA AB BC =++=++⨯()()521111633633OA OB OA OC OB OA OB OC =+-+-=++ 16x ∴=,13y =,13z =故选:D 8.(2020·全国高二课时练习)在正方体ABCD -A 1B 1C 1D 1中,已知下列各式:①(AB +BC )+CC 1;②(1AA +11A D )+11DC ;③(AB +1BB )+11B C ;④(1AA +11A B )+11B C .其中运算的结果为1AC 的有___个. 【正确答案】4【详细解析】根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB +BC )+1CC =AC +1CC =1AC ;②(1AA +11A D )+11DC =1AD +11DC =1AC ; ③(AB +1BB )+11B C =1AB +11B C =1AC ;④(1AA +11A B )+11B C =1AB +11B C =1AC . 所以4个式子的运算结果都是1AC .故正确答案为:4.9.(2020·江苏省如东高级中学高一月考)在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,若记→→=AB a ,AD b →→=,AC c →→=,则AG →=______.【正确答案】111244a b c →→→++ 【详细解析】在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,则AG AB BG →→→=+12AB BE →→=+11()22AB BC BD →→→=+⨯+1()4AB AC AB AD AB →→→→→=+-+-111442AB AC AD AB →→→→=++- 111244AB AD AC →→→=++.故正确答案为:111244a b c →→→++. 10.(2020·全国高二课时练习)已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且1AF AD mAB nAA =+-则m ,n 的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12【正确答案】A 【详细解析】由于11111()222AF AD DF AD DC DD AD AB AA =+=++=++,所以11,22m n ==-.故选:A 【题组三 空间向量的共面问题】1.(2020·涟水县第一中学高二月考),,,A B C D 是空间四点,有以下条件: ①11OD OA OB OC 23=++; ②111234OD OA OB OC =++; ③111OD OA OB OC 235=++; ④111OD OA OB 236OC =++, 能使,,,A B C D 四点一定共面的条件是______【正确答案】④ 【详细解析】对于④111OD OA OB 236OC =++,1111236++=,由空间向量共面定理可知,,,A B C D 四点一定共面,①②③不满足共面定理的条件.故正确答案为:④2.(2019·江苏海安高级中学高二期中(理))设空间任意一点O 和不共线三点A B C ,,,且点P 满足向量关系OP xOA yOB zOC =++,若,,,P A B C 四点共面,则x y z ++=______.【正确答案】1【详细解析】因为,,,P A B C 四点共面,三点A B C ,,不共线,所以,,,m n R PA mAB nAC ∃∈=+()(),(1)OA OP m OB OA n OC OA OP m n OA mOB nOC -=-+-∴=++--因为OP xOA yOB zOC =++,因为O 是任意一点,故,,OA OB OC 可不共面,所以1,,x m n y m z n =++=-=-,故1x y z ++=.故正确答案为:13.(2020·全国高二课时练习)对于空间任意一点O 和不共线的三点A ,B ,C ,有如下关系:623OP OA OB OC =++,则( )A .四点O ,A ,B ,C 必共面 B .四点P ,A ,B ,C 必共面C .四点O ,P ,B ,C 必共面D .五点O ,P ,A ,B ,C 必共面【正确答案】B 【详细解析】因为623OP OA OB OC =++,所以()()23OP OA OB OP OC OP -=-+-, 即23AP PB PC =+,根据共面向量基本定理,可得AP ,PB ,PC 共面,所以,P ,A ,B ,C 四点共面.故选:B .4.(2020·宁阳县第四中学高二期末)对于空间任意一点O 和不共线的三点A ,B ,C ,有如下关系:623OP OA OB OC =++,则( )A .四点O ,A ,B ,C 必共面 B .四点P ,A ,B ,C 必共面C .四点O ,P ,B ,C 必共面D .五点O ,P ,A ,B ,C 必共面【正确答案】B 【详细解析】由已知得111632OP OA OB OC =++,而1111632++=,∴四点P 、A 、B 、C 共面. 故选:B .5.(2020·四川阆中中学高二月考(理))O 为空间任意一点,,,A B C 三点不共线,若OP =111326OA OB OC ++,则,,,A B C P 四点( ) A .一定不共面B .不一定共面C .一定共面D .无法判断 【正确答案】C【详细解析】因为OP =111326OA OB OC ++,且1111326++=,所以,,,A B C P 四点共面. 6.(2019·建瓯市第二中学高二月考)已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A .OM OA OB OC =++B .111333OM OA OB OC =++ C .1123OM OA OB OC =++ D .2OM OA OB OC =--【正确答案】B 【详细解析】若111333OM OA OB OC =++, 故可得1111110333333OM OA OM OB OM OC -+-+-=即1110333AM BM CM ++=, 则AM BM CM =--,故AM AM AB AM AC =-+-+ 整理得1133AM AB AC =+ 又因为,AB AC 共面,故可得,,AM AM AM 共面,而其它选项不符合,即可得,,,A B C M 四点共面.故选:B.7.(2020·西夏.宁夏育才中学高二期末(理))已知O 为空间任意一点,若311488OP OA OB OC =++,则,,,A B C P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断【正确答案】B【详细解析】由若 OP a OA b OB c OC ⋅+⋅+⋅= ,当且仅当1a b c ++= 时,P A B C ,,, 四点共面. 311488OP OA OB OC =++ , 而 311 1 488++= 故P A B C ,,, 四点共面,故选B 【题组四 空间向量的数量积】1.(2020·山东新泰市第一中学高一期中)如图,平行六面体1111ABCD A B C D -中,11AB AD AA ===,1120BAD BAA ∠=∠=︒,160DAA ∠=︒,则1AC =( )A .1B .2CD 【正确答案】D【详细解析】11AC AB AD AA =++,2221111222AC AB AD AA AB AD AB AA AD AA ∴=+++⋅+⋅+⋅1111112112112112222⎛⎫⎛⎫=+++⨯⨯⨯-+⨯⨯⨯-+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,1AC ∴=故选:D2.(2020·四川遂宁.高三三模(理))如图,平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,则1AC 的长为_____.【详细解析】平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,11AC AB BC CC =++,()211221AC AC AB BC CC ==++2221112cos2cos2cos344AB BC CC AB BC BC CC AB CC πππ=+++⋅+⋅⋅+⋅12594925323725798222=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=+1198AC AC ∴==3.(2020·全国高二课时练习)如图,M N 、分别是四面体OABC 的棱OA BC 、的中点,P Q 、是MN 的三等分点.(1)用向量OA ,OB ,OC 表示OP 和OQ .(2)若四面体OABC 的所有棱长都等于1,求OP OQ 的值. 【正确答案】(1)111633OP OA OB OC =++,111366OQ OA OB OC =++(2)1336.【详细解析】(1)AB OB OA =-,BC OC OB =- ∴1111()2222MN MA AB BN OA AB BC OA OB OA OC OB =++=++=+-+- 111222OA OB OC =-++121111111232333633OP OM MP OA MN OA OA OB OC OA OB OC∴=+=+=-++=++111111111232666366OQ OM MQ OA MN OA OA OB OC OA OB OC ∴=+=+=-++=++(2)四面体OABC 的所有棱长都等于1,各面为等边三角形,,,,3OA OB OB OC OC OA π∴<>=<>=<>=,OB ,OC111111()()633366OP OQ OA OB OC OA OB OC ∴=++++222111111111++++++1818183636918918OA OB OC OA OB OA OC OB OA OB OC OC OA OC OB =++11111111113++++++18181872721836183636=++= 4..(2020·全国高二课时练习)如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ∠=∠=︒.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值. 【正确答案】(1)1BC a c b =+-;(2【详细解析】解:(1)111111111BC BB BC BB AC A B a c b =+=+-=+-, 又11cos 11cos602a b a b BAA ⋅=∠=⨯⨯︒=, 同理可得12a cbc ⋅=⋅=, 则221||()2222BC a c b a c b a c a b c b =+-=+++⋅-⋅-⋅=.(2)因为1AB a b =+, 所以221||()23AB a b a b a b =+=++⋅=,因为211()()1AB BC a b a c b a a c a b ba cb b ⋅=+⋅+-=+⋅-⋅+⋅+⋅-=,所以111111cos ,6||||2AB BC AB BC AB BC ⋅<>===.则异面直线1AB 与1BC5.(2020·全国高二课时练习)如图,三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为_____________【正确答案】6【详细解析】三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,设棱长为1,则111cos602AB AC ︒⋅=⨯⨯=,1111cos602AB AA ︒⋅=⨯⨯=, 1111cos602AC AA ︒⋅=⨯⨯=. 又11AB AB AA =+,11BC AA AC AB =+-,所以()()1111AB BC AB AA AA AC AB ⋅=+⋅+-22111111*********AB AA AB AC AB AA AA AC AA AB =⋅+⋅-++⋅-⋅=+-++-= 而()222111123ABAB AA AB AB AA AA =+=+⋅+=,()2111BC AA AC AB =+-==所以111111cos 62AB BC AB BC AB BC ⋅<⋅>===⋅. 故正确答案为 6.如图3­1­22所示,在空间四边形OABC 中,OA ,OB ,OC 两两成60°角,且OA =OB =OC =2,E 为OA 的中点,F为BC 的中点,试求E ,F 间的距离.图3­1­22【正确答案】2【详细解析】EF →=EA →+AF →=12OA →+12(AB →+AC →)=12OA →+12[(OB →-OA →)+(OC →-OA →)]=-12OA →+12OB →+12OC →,所以EF 2→=14OA →2+14OB →2+14OC →2+2×⎝⎛⎭⎫-12×12OA →·OB →+2×⎝⎛⎭⎫-12×12OA →·OC →+2×12×12OB →·OC →=2. ∴|EF →|=2,即E ,F 间的距离为 2.7.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在α的同侧,若AB =BC =CD =2,求A ,D 两点间的距离.【正确答案】22【详细解析】∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD →+2BC →·CD →=12+2(2·2·cos90°+2·2·cos120°+2·2·cos90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.。

人教版高中数学高一培优讲义第1讲集合

人教版高中数学高一培优讲义第1讲集合

第1讲集合理清双基1、集合的有关概念(1)、集合的含义与表示:研究对象的全体称为集合。

对象为集合的元素。

通常用大写字母A 、B 、C 、D 表示。

元素与集合的关系∈与∉(2)、集合元素的特征(三要素):①确定性:②互异性:③无序性:【例】1.设R b a ∈,,集合},,0{},,1{b aba b a =+,则=-a b ________.(3)、集合的分类:①有限集②无限集③空集:∅(4)、集合的表示方法:①自然语言②列举法③描述法④venne 法【例】2.分析下列集合间的关系}1{2+==x y y A }1{2+==x y x B }1),{(2+==x y y x C }1{2+==x t t D 3.集合}{抛物线=A }{直线=B ,则B A 的元素个数下列说法正确的是()一个(B )二个(C )一个、二个或没有(D )以上都不正确变式:集合})0(),{(2≠++==a c bx ax y y x A })0(|),{(≠+==k b kx y y x B ,则B A 的元素个数为()说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

2.集合间的关系(1)子集:(2)相等关系:(3)真子集:说明:任何一个集合是它本身的子集空集是任何集合的子集,是任何非空集合的真子集。

【例】4.设⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214,则M 与N 的关系正确的是()A.NM = B.NM ≠⊂ C.NM ≠⊃ D.以上都不对5.已知集合}.121|{},72|{-<<+=≤≤-=m x m x B x x A 。

若A B ⊆,则实数m 的取值范围是()A .43≤≤-m B .43<<-m C .42≤<m D .4≤m 3.集合的基本运算(1)交集(2)并集(3)补集全集【例】6.已知集合}1{2+==x y y M ,}9{2x y x N -==,则=N M ________4、集合运算中常用结论(1)等价关系B A A B A ⊆⇔= AB A B A ⊆⇔=【例】7.已知集合}{},1{a x x B x x A ≥=≤=,且R B A = ,则实数a 的取值范围为____(2)反演律(德摩根定律))()()(B C A C B A C U U U =)()()(B C A C B A C U U U =【例】8.设全集}5,4,3,2,1{=U ,集合S 与T 都是U 的子集,满足}2{=T S ,}4{)(=T S C U ,}5,1{)()(=T C S C U U 则有()A .TS ∈∈3,3B .TC S U ∈∈3,3C .TS C U ∈∈3,3D .TC S C U U ∈∈3,39.由)(+∈N n n 个元素组成的集合A 的子集个数:A 的子集有n2个,非空子集有)12(-n 个,真子集有)12(-n 个,非空真子集有)22(-n 个【考点分析】考点一集合的基本概念【例1】1.已知集合},,|),{(},5,4,3,2,1{A y x A y A x y x B A ∈+∈∈==则B 中所含元素的个数为()A .3B .6C .8D .102.集合A 是由形如()Z n Z m n m ∈∈+,3的数构成的,判断321-是不是集合A 中的元素.3.数集A 满足条件:若A a ∈,则)1(11≠∈-+a A a a .若A ∈31,求集合中的其他元素.4.已知},,2|{R k N x k x x P ∈∈<<=,若集合P 中恰有3个元素,则实数k 的取值范围是________.5.已知集合}023|{2=+-=x ax x A .(1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.►归纳提升解答集合的概念问题应关注两点(1)研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性。

人教版高中数学必修第一册同步讲义第一章 1.8 充分条件与必要条件

人教版高中数学必修第一册同步讲义第一章 1.8 充分条件与必要条件

1.8 充分条件与必要条件①课文三点专讲重点:(1)如果已知p ⇒q ,则说p 是q 的充分条件,同时也说q 是p 的必要条件。

如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,则说p 是q 的充要条件。

(2)从集合角度理解:①p ⇒q ,相当于Q P ⊆,即P ⊂≠Q 或P=Q 即:要使x ∈Q 成立,只要x ∈P 就足够了——有它就行。

②p ⇔q ,相当于P=Q , P 、Q 即:互为充要的两个条件刻画的是——同一事物“充要条件”的同义词语是“当且仅当”、“等价于”、“必须而且只需”、“…,反之也真”等.难点:充分条件与必要条件的判断:(1)定义法:①分清条件与结论,即分清哪一个是条件,哪一个是结论;②找推式,即判断p ⇒q 及q ⇒p 的真假; ③下结论,即根据推式及定义下结论.(2)等价法:将命题等价转化为另一个等价又便于判断真假的命题.(3)集合法:写出集合{|()}A x p x =及{|()}B x q x =,利用集合之间的包含关系加以判断.考点:(1)根据充要条件的定义,直接进行充要条件的判定.解此类问题需要根据充要条件的定义判定既有p ⇒q ,又有q ⇒p.(2)依据多个命题间的关系,判断其中两个命题之间的关系.解这类问题,需要明确两者之间的关系,可先用推出符号“⇒”作运载工具,将各命题之间的联系找出来,最后找到所求命题之间的关系.②练功篇典型试题分析例1.指出下列各组命题中,p 是q 的什么条件(在“充分而不必要条件”、“必要而不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种)?(1)p :(x-2)(x-3)=0;q :x-2=0.(2)p :同位角相等;q :两直线平行(3)p :x=3;q :x 2=9.(4)p :四边形的对角线相等;q :四边形是平行四边形.分析: 可以从命题的真假看充要条件.以p 与q 分别记作命题的条件与结论,则原命P P,QQ题与逆命题的真假同p 与q 的关系之间的关系如下:如果原命题真逆命题假,那么p 是q 的充分而不必要条件;如果原命题假逆命题真,那么p 是q 的必要而不充分条件;如果原命题与逆命题都真,那么p 是q 的充要条件;如果原命题与逆命题都假,那么p 是q 的既不充分又不必要条件。

人教版高中数学必修一精品讲义1.5 全称量词与存在量词(精炼)(解析版)

人教版高中数学必修一精品讲义1.5 全称量词与存在量词(精炼)(解析版)

1.5 全称量词与存在量词(精炼)【题组一全称命题判断】1.(2020·全国高一)下列命题中是全称命题的是( )A.圆有内接四边形B>C<D.若三角形的三边长分别为3,4,5,则这个三角形为直角三角形【正确答案】A【详细解析】A命题即为所有的圆都有内接四边形,是全称命题.其余三命题均不为全称命题.故选A.2.(2020·全国高一课时练习)下列命题中全称命题的个数为( )①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0B.1C.2D.3【正确答案】C【详细解析】①②满足“对所有的…都成立”的特点,是全称命题,③含有“存在”,是特称命题.3.(2019·全国高一课时练习)下列命题中,全称量词命题的个数为()①平行四边形的对角线互相平分;②梯形有两条边的长度不相等;③存在一个菱形,它的四条边不相等;④高二(1)班绝大多数同学是团员.A.0B.1C.2D.3【正确答案】C【详细解析】①可改写为“任意平行四边形的对角线互相平分”,为全称量词命题②可改写为“任意梯形均有两条边的长度不相等”,为全称量词命题③为存在量词命题④可改写为“高二(1)班有的同学不是团员”,为存在量词命题∴全称量词命题为:①②本题正确选项:C【题组二 特称命题的判断】1.(2019·鱼台县第一中学高一月考)下列语句是存在量词命题的是( ) A .整数n 是2和5的倍数 B .存在整数n ,使n 能被11整除 C .若370x -=,则73x = D .,()x M p x ∀∈【正确答案】B【详细解析】对于A,无特称量词. 对于B,命题:存在整数n ,使n 能被11整除,含有特称量词”存在” ,故B 是特称命题.对于C,无特称量词.对于D,无特称量词. 故选:B . 2.(2019·湖北十堰.高二期末(文))下列命题是特称命题的是( ) A .每个正方形都是矩形 B .有一个素数不是奇数 C .正数的平方必是正数 D .两个奇数之和为偶数 【正确答案】B【详细解析】选项A ,每个指所有,全称 选项C ,正数的平方指所有正数的平方,全称选项D ,两个奇数之和指任意两个两个奇数之和,全称 选项B ,有一个素数指存在一个素数,是特称命题.故选:B 。

人教版高中数学必修第一册同步讲义第一章 1.7 四种命题

人教版高中数学必修第一册同步讲义第一章 1.7 四种命题

1.7 四种命题①课文三点专讲重点:(1)四种命题及其关系.原命题:若p 则q 逆命题:若p 则q否命题:若⌝p 则⌝q 逆否命题:若⌝q 则⌝p(2)四种命题的关系.四种命题的关系如下表所示:(3)命题真假的判定.互为逆否命题具有相同的真假性.(4)反证法.要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法难点:反证法反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论考点:(1)考察逆命题、否命题与逆否命题.(2)四种命题的相互关系.应用四个重要结论解题.(3)反证法.该方法较为适用的题型为:①命题简单明了,没有更多的公理概念等依据可供论证的命题; ②结论本身是以否定形式出现的一类命题; ③有关结论是以“至多……”或“至少……”的形式出现的一类命题; ④关于惟一性、存在性的命题; ⑤结论的反面比原结论更具体、更容易研究和掌握.②练功篇典型试题分析例1. 写出命题“在△ABC 中,若∠C =90°,则c 2=a 2+b 2”的逆命题,否命题和逆否命题,并指出它们的真假.分析:此题的原命题中“在△ABC 中”是前提,在写这类命题的逆命题、否命题和逆否命题时一般保持不变.解析:原命题是真命题.逆命题为“在△ABC 中,若c 2=a 2+b 2,则∠C =90°.为真命题.否命题为:“在△ABC 中,若∠C ≠90°,则c 2≠a 2+b 2”,是真命题.逆否命题为:“在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°,是真命题.例2. 判断下列命题的真假,并说明理由.(1)设a ,b ∈N *,如果a +b 是偶数,那么a 、b 都是偶数.(2)如果A ⊆B ,B ⊆C ,那么A ⊆C.(3)如果一元二次方程ax 2+bx +c =0满足ac <0那么这个方程有实数根.(4)相似三角形一定是全等三角形.(5)合数必定是偶数.分析:在判断命题的真假时,应注意运用有关的概念、定理、公式等基本理论,对命题的条件和结论仔细分析,认真思考.并注意反例的运用. (1)取反例:a =1,b =3,(2)由集合的性质,可判定,(3)由ac <0⇒b 2-4ac ≥0,(4)相似三角形的对应边不一定相等,(5)反例:9是合数,但不是偶数.解析:(1)假命题.例如a =1,b =3,a +b =4为偶数.但a 、b 不是偶数.(2)真命题.设任x 0∈A ,∵A ⊆B .∴x 0∈B .又 ∵B ⊆C ,则x 0∈C .故A ⊆C 成立.(3)真命题.因方程中由ac <0⇒Δ=b 2-4ac ≥0.故一元二次方程ax 2+bx +c =0有实数根.(4)假命题.因相似三角形的对应边不一定相等.则不一定是全等三角形.(5)假命题.例如9是合数,但不是偶数.基础知识巩固1.有以下5个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;(5)所有男生都爱踢足球.其中命题(5)的否命题是 ( )A .(1)B .(2)C .(3)D .(4)2.下面三个命题:(1)“若3=b ,则92=b ”的逆命题;(2)“全等三角形的面积相等”的否命题;(3)“若1≤c ,则022=++c x x 有实根”的逆否命题.其中真命题的个数是 ( )A . 0B . 1C . 2 D..33.命题“能被4整除的数一定是偶数”,等价命题是()A.偶数一定能被4整除B.不能被4整除的数一定不是偶数C.不能被4整除的数不一定是偶数D.4.下列命题中,正确的是( )①“若x2+y2 =0,则x , y全是0”的否命题②“全等三角形是相似三角形”的否命题③“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题④若“a+5是无理数,则a是无理数”的逆否命题A.①②③B.①④C.②③④D.①③④5.用反证法证明命题的第二步中,得出的矛盾可以是与下列哪些内容产生的( )①命题已知②数学定义③定理,公理④推理、演算的规律A.①B.①③C.②D.①②③④6.用反证法证明命题“2+3是无理数”时,假设正确的是( )A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数7.给定下列命题:①“若k>0,则方程x2+2x-k=0”有实数根;②“若a>b,则a+c>b+c”的否命题;③“矩形的对角线相等”的逆命题;④“若xy=0,则x、y中至少有一个为0”的否命题.其中真命题的序号是______.8.写出命题p:“若m>0,则关于x的方程x2+x-m=0有实数根”的逆命题,否命题和逆命题,并分别判断它的真假.9.写出下列命题的否命题(1)有些三角形是直角三角形;(2)所有的质数都是奇数 .10.若x、y∈R+,且x+y>2,求证:y x+1<2与x y+1<2中,至少有一个成立.③升级篇典型试题分析例3:写出命题“若x≥2且y≥3,则x+y≥5”的逆命题、否命题,逆否命题.并判断其真假.分析:应注意分析清楚原命题的条件与结论,并充分利用四种命题的定义,还要注意条件和结论中“或”“且”“非”的否定的语句表述的准确性. 本题应注意理解掌握“p且q”的否定为“⌝p 或⌝q ”,“p 或q ”的否定为“⌝p 且⌝q ”.解析:原命题:“若x ≥2且y ≥3则x +y ≥5”为真命题.逆命题为:“若x +y ≥5,则x ≥2且y ≥3”,为假命题.否命题是:“若x <2或y <3,则x +y <5.”其为假命题.逆否命题是:“若x +y <5,则x <2或y <3”其为真命题.例4. 写出下列命题的否命题,并判断原命题及否命题的真假:(1)如果x >-3,那么x +8>0(2)如果一个三角形的三边都相等,那么这个三角形的三角都相等.(3)矩形的对角线互相平分且相等.(4)相似三角形一定是全等三角形.分析:将原命题的条件和结论同时加以否定,便得到其否命题. 一个命题的否定应当包含除了本身以外的所有情况.如:“都相等”的否定应为“不都相等”,即至少有两个元素不相等;“p 或q ”与“⌝p 且⌝q ”互为否定;“一定是”的否定是“一定不是”.解析:(1)否命题是:“如果 x ≤-3,那么x +8≤0”原命题为真命题,否命题为假命题.(2)否命题是:“如果一个三角形的三边不都相等,那么这个三角形的三角不都相等. 原命题为真命题,否命题也为真命题.(3)否命题是:“如果四边形不是矩形,那么对角线不互相平分或不相等”.原命题是真命题,否命题也是真命题.(4)否命题是“不相似的三角形一定不是全等三角形.”原命题是假命题,否命题是真命题.知识应用与提升11. 给出以下四个命题:其中真命题是( )①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1-≤q ,则02=++q x x 有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.A .①②B .②③C .①③D .③④ 12. 命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为A.a +b 不是偶数,则a 、b 不都是偶数B.a +b 不是偶数,则a 、b 都不是偶数C.a 、b 不都是偶数,则a +b 不是偶数D.a 、b 都不是偶数,则a +b 不是偶数13. 用反证法证明命题“若整数n 的立方是偶数,则n 也是偶数”如下:假设n 是奇数,则n =2k +1(k 是整数),n 3=(2k +1)3=______,与已知n 3是偶数矛盾,所以n 是偶数.14. 用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A. a ,b 都能被5整除B. a ,b 都不能被5整除C. a ,b 不都能被5整除D. a 不能被5整除15. 给出下列命题:①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题②命题“△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题③命题“若a >b >0,则3a >3b >0”的逆否命题其中真命题的序号为__________.16. 写出下列命题的逆命题,并判断原命题和逆命题的真假.(1)若x 2=1,则x =1.(2)对顶角相等.(3)等腰三角形的两腰相等.(4)x 2+2x +8>0的解集为空集.④闯关篇典型试题分析例5:若a 、b 、c 均为实数,且2222,2,2236a x y b y z c z x πππ=-+=-+=-+,求证:a 、b 、c 中至少有一个大于0.分析: 反证法是一种常用的数学方法,属于一种间接证法.当待证命题中出现“不可能”、“一定”、“至多”、“唯一”等词语时,常可考虑运用反证法.运用反证法时常见词语的否定方式有:“在”⇒“不在”;“是”⇒“不是”;“都是”⇒“不都是”;“大于”⇒“不大于”;“所有的…”⇒“至少有一个不…”;“至少一个” ⇒“一个也没有”;“任意一个”⇒“存在某个不…”,等等.证明: (用反证法)假设a 、b 、c 都不大于0,即0a ≤,0,0b c ≤≤,则有0a b c ++≤. 而222222236a b c x y y z z x πππ⎛⎫⎛⎫⎛⎫++=-++-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()222222x x y y z z π=-+-+-+()()()()2221113x y z π=-+-+-+-,所以 0a b c ++>,此与0a b c ++≤矛盾.故假设错误,从而原命题正确.评述:本题亦可直接转化为证明等价命题:0a b c ++>..例6.若()22f x x ax a a =++-在[-1,1]上至少存在一点C 使()0f C >,求实数a 的取值范围.分析: 利用否命题来求解这一类问题,可以简化运算步骤,回避分类讨论.解析:该题可利用其否命题来解.该命题的否命题是: ()22f x x ax a a =++-在[-1,1]不存在点C 使()0f C >即对任意x ∈[-1,1], ()f x ≤0 .∴有()()1010f f ≤⎧⎪⎨-≤⎪⎩解之得11a a ≥≤-或故实数a的取值范围为()1a ∈- ... 知识拔高与创新17. 否定结论“至多有两个解”的说法中,正确的是( )A.有一解B.有两解C.有三解D.至少有两解18. 已知两函数:2222132,3)31(2a x x y a ax x y ++=+--+=.求证:不论a 取怎样的实数,这两函数的图象至少有一个位于x 轴的上方.19. 已知a 、b 、c 是一组勾股数(即a 2+b 2=c 2),求证:a 、b 、c 不可能都是奇数.20. 假设p 、q 都是奇数,求证:关于x 的方程x 2+px +q =0无整数根.⑤行侠篇高考试题点击21.(2005江苏) 命题“若a >b ,则2a >2b -1”的否命题为 .22. (2004江苏)若命题p 的否命题为r ,命题r 的逆命题为s ,则s 是p 的逆命题t 的( )A.逆否命题 B.逆命题 C.否命题 D.原命题⑥娱乐广场开阔视野、趣味学习反证法小游戏三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了这时一个爱开玩笑的人用炭涂黑了他们的前额三个人醒来以后,彼此看了看,都笑了起来但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了答案:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了那么甲这样想:“我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到奇怪因为在这种情况下(甲、乙的脸都是干净的),丙是没有可笑的理由了然而现在的事实是乙对丙的发笑并不感到奇怪,可见乙是在认为丙在笑我由此可知,我的脸也给涂黑了这里应着重指出的是,甲并没有直接看到自己的脸是否给涂黑了,他是根据乙、丙两人的表情进行分析、思考,而说明了自己的脸给涂黑了简单地说,甲是通过说明脸被涂黑了的反面—没被涂黑是错误的,从而觉察了自己的脸被涂黑了因此这是一种间接的证明方法显然这种证明方法也是不可缺少的像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是通过说明它的反面是错误的,从而断定它本身是正确的方法,就叫做“反证法“参考答案:1.7 四种命题1. C 解析:“所有”的否定是“至少有一个不”.2. B解析:(3)“若1≤c ,则022=++c x x 有实根”的逆否命题为真命题.3. D 解析:其逆否命题为“不是偶数一定不能被4整除”.4. B 解析:“若x 2+y 2 =0,则x , y 全是0”的否命题与若“a +5是无理数,则a 是无理数”的逆否命题为真命题.5. D 解析:反证法证明命题的第二步中,得出的矛盾的可以是所有的条件或相关的结论.6. D 解析: “2+3是无理数”的否定是“2+3是有理数”.7. ①②④ 解析 ①Δ=4-4(-k )=4+4k >0 ∴是真命题 ;②否命题为“若a ≤b ,则a +b ≤b +b ”是真命题;③逆命题“对角线相等的四边形是矩形”是假命题;④否命题:“若xy ≠0,则x 、y 都不为零”是真命题.8. 逆命题:“若关于x 的方程x 2+x -m=0有实数根,则m >0”;否命题:“m ≤0,则关于x 的方程x 2+x -m=0没有实数根”;逆否命题:“若关于x 的方程x 2+x -m=0没有实数根,则m ≤0”.当m >0时,△=1+4m >0,方程x 2+x -m=0必有两个不等实根,故原命题及逆否命题是真命题.当方程x 2+x -m=0,有实数根时,△=1+4m ≥0,m ≥-41,而不一定要>0,故逆命题及否命题是假命题.9. 解析:(1)这是一个存在性命题,存在量词“有些”可以用“存在一个、至少有一个、某个”等词代替,故该命题的否命题为“所有三角形都不是直角三角形”.本题还可以写出它的逆否命题来判断原命题与否命题的真假.(2)这是一个全称命题,全称量词“所有的”可以用“任意的、对于一切、每一个”等词代替,故该命题的否命题为“存在一个质数不是奇数”或“所有的奇数不都是奇数”.10. 证明:假设都不成立,即yx +1≥2,x y +1≥2成立 ∵x ,y ∈R +,∴1+x ≥2y ,1+y ≥2x ,∴2+x +y ≥2x +2y ,∴x +y ≤2与已知x +y >2矛盾, ∴假设不成立,∴原结论成立.11. C 解析: “全等三角形的面积相等”的否命题;“不等边三角形的三内角相等”的逆否命题都是假命题.12. A 解析:命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为“a +b 不是偶数,则a 、b不都是偶数”13. 2(4k3+6k2+3k)+1解析: (2k+1)3=8k3+12k2+6k+1=2(4k3+6k2+3k)+114. B解析:“a,b中至少有一个能被5整除”的否定是“a,b都不能被5整除”15. ①②③以上均为真命题.16. 分析:应先将原命题改写成“如果……,那么……的形式”然后再构造它的逆命题. 解析:(1)逆命题是“若x=1,则x2=1.”原命题为假命题,逆命题是真命题.(2)逆命题是“如果两个角相等,那么这两个角是对顶角”.原命题为真命题,逆命题为假命题.(3)逆命题是“如果一个三角形有两边相等,那么这个三角形是等腰三角形.”原命题是真命题,逆命题也是真命题.(4)逆命题是“空集是x2+2x+8>0的解集”.原命题和逆命题都是假命题.17. C 解析: “至多有两个解”包括了无解、有一解、有两解三种情形,其否定可以选有三解.18.证明:假设这两函数的图象没有一个位于x轴的上方,则有22144(10,4120,a aa aa a⎧≤-≥⎧+-⎪⎪⇒⎨⎨-≥≤≤⎪⎪⎩⎩或此不等式组的解集为∅,所以假设不成立.故这两函数的图象至少有一个位于x轴的上方.19. 证明假设a、b、c都是奇数∵a、b、c是一组勾股数,∴a2+b2=c2 ①∵a、b、c都是奇数,∴a2、b2、c2也都是奇数 ∴a2+b2是偶数这样①式的左边是偶数,右边却是奇数,得出自相矛盾的结论.∴a、b、b不可能都是奇数.20. 分析:此题中含有否定用“无”,可考虑用反证法,另外关于有无整数根,可从已知方程的判别式与根和系数的关系入手分析证明之.证法一:只有在Δ=p2-4q=(p-m)2时((p-m)2表示完全平方数,其中由-4q=-2pm +m2可知m应为偶数)才可能有整数根.化简上式得出p与q的关系:q=p·2m-(2m)2,因p是奇数,不论2m是怎样的整数,都可得q为偶数,这与已知q为奇数相矛盾,则判别式Δ的值不会是一个完全平方数,故方程无整数根.证法二:假设方程有整数根α,无论α是奇数还是偶数,都必有α2+pα+q为奇数,这与α2+pα+q=0矛盾.故方程无整数根.21. 若122,-≤≤baba则解析:由题意原命题的否命题为“若122,-≤≤baba则”.22. B解析设p为“若A则B”,则r、s、t分别为“若﹁A则﹁B”“若﹁B则﹁A”“若B 则A”,故s是t的否命题.。

人教版高中数学必修一精品讲义1.5 全称量词与存在量词(精讲)(解析版)

人教版高中数学必修一精品讲义1.5 全称量词与存在量词(精讲)(解析版)

1.5 全称量词与存在量词(精讲)考点一 全称命题的判断【例1】(2020·全国高一课时练习)下列命题含有全称量词的是 ( ) A .某些函数图象不过原点 B .实数的平方为正数 C .方程2250x x ++=有实数解 D .素数中只有一个偶数【正确答案】B【详细解析】“某些函数图象不过原点”即“存在函数,其图象不过原点”;“方程2250x x ++=有实数解”即“存在实数x ,使2250x x ++=”;“素数中只有一个偶数”即“存在一个素数,它是偶数”,这三个命题都是存在量词命题,“实数的平方为正数”即“所有的实数,它的平方为正数”,是全称量词命题,其省略了全称量词“所有的”,所以正确选项为B.【一隅三反】1.(2020·全国高一)下列语句不是全称量词命题的是( )A .任何一个实数乘以零都等于零B .自然数都是正整数C .高一( 一)班绝大多数同学是团员D .每一个实数都有大小 【正确答案】C【详细解析】A 中命题可改写为:任意一个实数乘以零都等于零,故A 是全称量词命题; B 中命题可改写为:任意的自然数都是正整数,故B 是全称量词命题; C 中命题可改写为:高一( 一)班存在部分同学是团员,C 不是全称量词命题; D 中命题可改写为:任意的一个实数都有大小,故D 是全称量词命题.故选:C. 2.(2020·全国高一单元测试)(多选)下列命题中,是全称量词命题的有( ) A .至少有一个x 使2210x x ++=成立 B .对任意的x 都有2210x x ++=成立 C .对任意的x 都有2210x x ++=不成立 D .存在x 使2210x x ++=成立 E.矩形的对角线垂直平分 【正确答案】BCE 【详细解析】A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题;B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题; E 中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.故选:BCE考点二 特称命题的判断【例2】(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假. (1)∀x ∈N ,2x +1是奇数; (2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【正确答案】(1)是全称量词命题;是真命题;(2)是存在量词命题;是假命题;(3)是全称量词命题;是假命题.【详细解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题. (2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题. (3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题. 【一隅三反】1.(2020·全国高一课时练习)下列命题中:①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④对于任意x ∈R ,总有2111x +;存在量词命题的个数是( )A .0B .1C .2D .3【正确答案】B【详细解析】命题①中含有存在量词,是存在量词命题;命题②中全称量词省略,可以叙述为“所有的正方形都是菱形”,是全称量词命题;命题③中全称量词省略,可以叙述为“一切能被6整除的数也都能被3整除”,是全称量词命题;而命题④中有全称量词“总有”,是全称量词命题故有1个存在量词命题;故选:B . 2.(2020·全国高一课时练习)下列命题不是存在量词命题的是( ) A .有的无理数的平方是有理数 B .有的无理数的平方不是有理数 C .对于任意x ∈Z ,21x +是奇数 D .存在x ∈R ,21x +是奇数【正确答案】C【详细解析】A 、B 、D 中都有存在量词,是存在量词命题,C 中含有量词“任意”,为全称量词命题,故选:C .考点三 全称、特称命题真假的判断【例3】(2020·全国高一课时练习)判断下列命题是全称量词命题还是存在量词命题,然后写出对应的否定命题,并判断真假:( 1)不论m 取何实数,关于x 的方程20x x m +-=必有实数根; ( 2)所有末位数字是0或5的整数都能被5整除; ( 3)某些梯形的对角线互相平分; ( 4)函数y kx =图象恒过原点. 【正确答案】见详细解析【详细解析】( 1)即“所有m R ∈,关于x 的方程20x x m +-=都有实数根”,是全称量词命题,其否定为“存在实数m ,使得方程20x x m +-=没有实数解”,真命题;( 2)是全称量词命题,其否定为“存在末位数字是0或5的整数不能被5整除”,假命题; ( 3)是存在量词命题,其否定为“所有梯形的对角线不互相平分”,真命题;( 4)即“所有k ∈R ,函数y kx =图象都过原点”,是全称量词命题,其否定为“存在实数k ,使函数y kx =图象不过原点”,是假命题.【一隅三反】1.(2020·平罗中学高二期末(文))下列是全称命题且是真命题的是( ) A .∀x ∈R,x 2>0 B .∀x ∈Q,x 2∈Q C .∃x 0∈Z,x 20>1D .∀x,y ∈R,x 2+y 2>0【正确答案】BA 、B 、D 中命题均为全称命题,但A 、D 中命题是假命题.故选B .2.(2020·全国高一课时练习)关于命题“当[]1,2m ∈时,方程220x x m -+=没有实数解”,下列说法正确的是 ( )A .是全称量词命题,假命题B .是全称量词命题,真命题C .是存在量词命题,假命题D .是存在量词命题,真命题【正确答案】A【详细解析】原命题的含义是“对于任意[]1,2m ∈,方程2x 2x m 0-+=都没有实数解”,但当1m =时,方程有实数解1x =,故命题是含有全称量词的假命题,所以正确选项为A.3.(2020·全国高一)用符号“∀”与“∃”表示下列含有量词的命题,并判断真假: ( 1)任意实数的平方大于或等于0;( 2)对任意实数a ,二次函数2y x a =+的图象关于y 轴对称; ( 3)存在整数x ,y ,使得243x y +=; ( 4)存在一个无理数,它的立方是有理数. 【正确答案】( 1)2,0x R x∀∈.真命题;( 2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题; ( 3),,243x Z y Z x y ∃∈∈+=假命题;( 4)3,R x Q x Q ∃∈∈,真命题.【详细解析】( 1)2,0x R x ∀∈≥,是真命题;( 2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题,;( 3),,243x Z y Z x y ∃∈∈+=假命题,因为242(2)x y x y +=+必为偶数;( 4)3,R x Q x Q ∃∈∈.真命题,例如32x x Q ==∈.考点四 命题的否定【例4】(2020·全国高一课时练习)设A 是奇数集,B 是偶数集,则命题“x A ∀∈,2x B ∉”的否定是 ( ) A . x A ∃∈,2x B ∈ B .x A ∃∉,2x B ∈ C . x A ∀∉,2x B ∉ D .x A ∀∉,2x B ∈【正确答案】A【详细解析】“x A ∀∈,2x B ∉”即“所有x A ∈,都有2x B ∉”,它的否定应该是“存在x A ∈,使2x B ∈”,所以正确选项为A.【一隅三反】1.(2020·全国高一课时练习)下列命题的否定为假命题的是( ) A .x ∃∈Z ,143x << B .x ∃∈Z ,510x += C .x ∀∈R ,210x -=D .x ∃∈R ,2320x x ++=【正确答案】D【详细解析】对A,命题的否定为假命题等价于该命题是真命题,由143x <<得1344x <<,这样的整数x 不存在,故A 为假命题,其否定为真命题,故A 错误;对B,510x +=,15x =-∉Z ,故B 为假命题,其否定为真命题,故B 错误; 对C,210x -=⇒1x =±,故C 为假命题,其否定为真命题,故C 错误;对D,存在1x =-或2x =-,使232(1)(2)0x x x x ++=++=,故D 为真命题,从而D 的否定是假命题,故D 正确.故选:D.2.(2020·湖南天心.长郡中学高三其他(文))已知命题:p x R ∃∈,2230x x ++<,则命题p 的否定是( ) A .x R ∃∈,2230x x ++> B .x R ∀∈,2230x x ++≤ C .x R ∀∈,2230x x ++≥ D .x R ∀∈,2230x x ++>【正确答案】C【详细解析】命题p 为特称命题,其否定为:p x R ⌝∀∈,2230x x ++≥.故选:C.3.(2019·银川唐徕回民中学高三月考(理))命题“2,240x R x x ∀∈-+≤”的否定为( )A .2,240x R x x ∀∈-+≥B .2000,240x R x x ∃∈-+> C .2,240x R x x ∀∉-+≥ D .2000,240x R x x ∃∉-+>【正确答案】B【详细解析】根据全称命题的否定是特称命题,将全称量词∀换为存在量词∃,不等号≤换为>,可得命题“2,240x R x x ∀∈-+≤”的否定为“2000,240x R x x ∃∈-+>”,故选:B.考点五 全称特称求参数【例5】(1)(2020·湖南雁峰.衡阳市八中高二期中)命题“[]1,2x ∀∈,20x a -≤”为真命题的一个充分不必要条件是( ) A .4a ≥B .5a ≥C .3a ≥D .5a ≤(2)(2020·浙江高一课时练习)若命题“x R ∃∈,使21()10x a x <+-+”是假命题,则实数a 的取值范围为( ) A .13a ≤≤B .13a ≤≤-C .33a ≤≤-D .11a ≤≤-(3)(2019·四川省绵阳南山中学高三月考(理))已知函数2()2f x x x =-,()2(0)g x ax a =+>,若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得12()()f x g x =,则实数a 的取值范围是( )A .1(0,]2B .[0,3]C .(0,3]D .[3,)+∞【正确答案】(1)B (2)B (3)D【详细解析】(1)[]1,2x ∀∈,214x ≤≤,∴要使20x a -≤恒成立,则2a x ≥恒成立,即4a ≥, 本题求的是充分不必要条件,结合选项,只有B 符合.故选:B. (2)由题得,原命题的否命题是“x R ∀∈,使21()10x a x ≥+-+”, 即2(1)40a ∆=--≤,解得13a ≤≤-.选B. (3)由()22()211f x x x x =-=--,知 当1[1,2]x ∈-时,[]1()1,3f x ∈- 由()2(0)g x ax a =+>,知当[]21,2x ∈-时,[]2()2,22g x a a ∈-++ 由题意得:[][]1,32,22a a -⊆-++,即21223a a -+≤-+≥⎧⎨⎩ ,解得3a ≥综上,3a ≥.故选:D【一隅三反】1.(2020·浙江高一课时练习)若命题“2,10x R x ax ∃∈-+≤”是真命题,则实数a 的取值范围是( ).A .2{|}2a a -≤≤B .2{2}|a a a ≤-≥或C .2{|2}a a -<<D .2{}2|a a a <->或 【正确答案】B【详细解析】命题“2,10x R x ax ∃∈-+≤”是真命题,则需满足240a ∆=-≥,解得2a ≥或2a ≤-.故选:B . 2.(2020·全国高一课时练习)命题“已知1y x =-,x R ∀∈都有m y ≤”是真命题,则实数m 的取值范围是 ( ) A .1m ≥- B . 1m >- C . 1m ≤- D .1m <-【正确答案】C【详细解析】由已知1y x =-,得1y ≥-,要使x R ∀∈,都有m y ≤成立,只需1m ≤-,所以正确选项为C.3.(2020·广东高三其他(文))已知命题2000:,20p x R x x a ∃∈++≤,命题1:0,q x x a x∀>+>,若p 假q 真,则实数a 的取值范围为( ) A .(1,)+∞ B .(,2]-∞ C .(1,2) D .(1,2]-【正确答案】C【详细解析】命题0:p x R ∃∈,20020x x a ++≤为假命题,则2,20x R x x a ∀∈++>为真命题,满足2240a ∆=-<,解得1a >;命题1:0,q x x a x ∀>+>为真命题,由12x x +≥=,当且仅当1x =时等号成立,可知2a <,故实数a 的取值范围为(1,2), 故选:C.4.(2019·四川省绵阳南山中学高三月考(理))已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是___________. 【正确答案】(,2)-∞【详细解析】函数2y x ax =-+的对称轴为=2a x , 当12a<即2a <时,2y x ax =-+在(),1-∞上不是单调函数,则()f x 在R 上也不是单调函数,满足题意; 当12a>即2a >时,分段函数为R 上的单调增函数,不满足题意.故正确答案为:(,2)-∞。

人教版【高中数学】选修2-1第三章平面的法向量与平面的向量表示讲义

人教版【高中数学】选修2-1第三章平面的法向量与平面的向量表示讲义

案例(二)----精析精练课堂 合作 探究重点难点突破知识点一 平面的法向量1.平面法向量的定义(1)定义:已知平面a 如果向量n 的基线与平面a 垂直,则向量n 叫做平面a 的法向量或说向量n 与平面a 正交.(2)平面法向量的性质:①平面a 的一个法向量垂直于与平面a 共面的所有向量;②一个平面的法向量有无数个,一个平面的所有法向量互相平行.2.平面的法向量的求法方法一:找到一条与已知平面垂直的直线,则该直线的任意方向向量都是该平面的法向量方法二:待定系数法,即若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:①设出平面的法向量为n=(x,y,x);②找出(求出)平面内的两个不共线的向量的坐标a=(x 1,y 1,z 1),b=(x 2,y 2,z 2);③根据法向量的定义,建立关于x,y,z 的方程组⎩⎨⎧=∙=∙;0,0b n a n ④解方程组,取其中的一个解,即得法向量.这里需要说明的是:①方法二必须建立空间直角坐标系,而方法一却不一定要建立空间直角坐标系,视具体情况而定;②在求平面的法向量时,要先找有没有和平面垂直的直线,若没有则用待定系数法;③在利用方法二求解平面的法向量时,方程组⎩⎨⎧=∙=∙;0,0b n a n 有无数多个解,只需给x,y,之中的一个变量赋予一个特值,即可确定平面的一个法向量.赋予的值不同,所求平面的法向量就不同,但它们是共线向量.3.平面法向量的作用详解:设n 1,m 2分别是平面a,β的法向量,m 是直线l 的方向向量,则有:①l ∥a 或l ⊂a ⇔m ⊥n 1⇔m ·n 1=0;②l ⊥a ⇔m ∥n 1;③a ∥β或a 与β重合⇔n 1∥n 2;④a ⊥β⇔=n 1⊥n 2⇔n 1·n 2=0.知识点二 三垂线定理及其逆定理.三垂线定理及逆定理实际上反映的是斜线和射影的关系.①三垂线定理的符号描述如右图,PO 、PA 分别是平面a 的垂线、斜线,OA 是PA 在a 内的射影,a ⊂a,且a ⊥OA,则a ⊥PA.②三垂线定理的逆定理的符号描述如上图,PO 、PA 分别是平面a 的垂线、斜线,OA 是PA 在a 内的射影,a ⊂a,且a ⊥PA,则a ⊥OA.关于定理的应用,首先是找出平面的垂线,至于射影则是由垂足,斜足来确定的,因而是第二位的,由此,我们可以得出三垂线定理证明a ⊥b 的一个程序:一垂、二射、三证,即:第一:找平面及平面的垂线;第二:找射影线(或斜线),这时a,b 便成为平面内的一条直线及一条斜线(或射影);第三:证明射影(或斜线)与直线a 垂直,从而得出a,b 垂直.典型例题分析题型1 求平面的法向量【例1】已知平面a 经过三点A(1,2,3),B(2,0,-1),C(3,-2,0),试求平面a 的一个法向量.解析 用待定系数法求解平面a 的法向量.答案 因为A(1,2,3),B(2,0,-1),C(3,-2,0),所以=(1,-2,-4),=(2,-4,-3).设平面a 的法向量为n=(x,y,z),依题意,应有n ·=0,n ·=0,即有⎩⎨⎧=--=--,0342,042z y x z y x 解得⎩⎨⎧==.0,2z y x 令y=1,则x=2,所以平面a 的一个法向量为n=(2,1,0 方法指导 用待定系数法求解平面的法向量,关键是在平面内找两个不共线的向量,然后列出方程组,方程组有无数解取其中的一个解即可,但要注意在取方程组的一组解时,不能都取零,否则得到零向量,而零向量的方向不能确定,不能作为法向量.【变式训练1】 已知点A(3,0,0),B(0,4,0),C(0,0,5),求平面ABC 的一个单位法向量 答案 因为A(3,0,0),B(0,4,0),C(0,0,5),所以=(-3,4,0),=(-3,0,5).设平面ABC 的法向量为n=(x,y,z)依题意,应有n ·=0,n ·=0,即有⎩⎨⎧=+-=+-,053,043z x y x 解得⎪⎪⎩⎪⎪⎨⎧==,53,43x z x y ,即平面A 的法向量为n(x ,43x,53x),所以平面ABC 的单位向量为n 0=n n =(76920,76915,76912)或n 0=-n n =(-76920,-76915,-76912). 【例2】 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1的法向量n 和单位法向量n 0.解析 首先建立空间直角坐标系,再用待定系数法求解平面的法向量.答案 建立空间直角坐标系,如图,则A(1,0,0),C(0,1,0).设平面ACD1的法向量n=(x,y,1).得AC =(-1,1,0),AD =(-1,0,1).又n ⊥面ACD,得n ⊥,n ⊥,所以有⎩⎨⎧=-∙=-∙,0)1,0,1()1,,(,0)0,1,1()1,,(y x y x 得⎩⎨⎧==,1,1y x ∴n=(1,1,1), n 0=n n =111)1,1,1(++=⎪⎪⎭⎫ ⎝⎛33,33,33. 方法指导 用待定系数法求解平面的法向量,应该说是个基本方法,它具有操作简单的特点,应切实掌握其实,对于本题来说,却未必是一个好的方法,这是因为我们可以利用三垂线定理得出直线DB 1⊥AD 1,DB 1⊥CD 1,从而DB 1⊥平面ACD 1,所以1DB 就是平面ACD 1的一个法向量.【变式训练2】 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,在BC,DD 1上是否存在点E,F,使B 1是平面ABF 的法向量?若存在,请证明你的结论,并求出点E,F 满足的条件;若不存在,请说明理由.答案 建立如图所示的空间直角坐标系,则A(1,0,1),B(1,1,1),B 1(1,1,0).设F(0,0,h),E(m,1,1),则=(0,1,0),B 1=(m-1,0,1),=(1,0,1-h).∵·E B 1=0,∴AB ⊥B 1E. 若F B 1是平面ABF 的法向量,则F B 1·=m-1+1-h=m-h=0,∴h=m 即E,F 满足D 1F=CE 时,F B 1是平面ABF 的法向量.所以存在,且E,F 满足D 1F=CE.题型2 三垂线定理及其逆定理的应用【例3】 如下图,下列5个正方体图形中,线段l 是正方体的条对角线,点M 、N 、P 分别为其所在棱的中点,能得出l ⊥面MNP 的图形的序号是 .(写出所有符合要求的图形序号)① ② ③④ ⑤ 解析 本题以正方体为依托,主要考查直线与平面垂直的判定,比较深刻地考查了空间想象能力.为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l 位置固定,截面MNP 变动,l 与面MNP 是否垂直,可以从正、反两方面进行判断,MN 、NP 、MP 三条线中,若有一条不垂直l ,则可断定l 与面MNP 不垂直;若有两条相交直线与l 都垂直,则可断定l ⊥ 面MNP.答案 解法一:如果记正方体对角线l 所在的对角线截面为a,各图可讨论如下:在图①中,MN 、NP 在平面a 上的射影为同一直线,且与l 垂直故l ⊥面MNP.事实上,还可这样考虑:l 在上底面的射影是MP 的垂线,故l ⊥MP ;在左侧的射影是MN 的垂线,故l ⊥MN,从而l ⊥面MNP.在图②中,由MP ⊥面a,可证明MN 在平面a 上的射影不是l 的垂线,故l 不垂直于MN.从而l不垂直于面MNP.在图③中,点M在a上的射影是l的中点,点P在a上的射影是上底面的中点,知MP在a 上的射影不是l的垂线,得l不垂直于面MNP.在图④中,平面a平分线段MN,故l⊥MN,又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥平面MNP.在图⑤中,点N在平面a上的射影是对角线l的中点,故M、P在平面a上的射影分别是下、下底面对角线的4等分点,三个射影在同一条直线上,且l与这一直线垂直从而l⊥面MNP.至此,得①④⑤为本题答案.解法二:建立空间直角坐标系O-xyz,设正方体的棱长为2,则对角线l的方向向量可取为l=(2,2,-2).对图①,有=(0,1,0)-(1,0,0)=(-1,1,0),=(0,0,-1)-(1,0,0)=(-1,0,-1),由l·MP=0,l·=0,得l⊥面MNP.对图②,有MN=(2,2,-1)-(1,0,-2)=(1,2,1),由l·≠0知l与面MNP不垂直.对图③,有=(0,1,0)-(2,0,-1)=(-2,1,1),由l·MP≠0知与面MNP不垂直.对图④,有MP=(1,0,-2)-(2,0,-1)=(-1,0,-1),=(0,2,-1)-(2,0,-1)=(-2,2,0),由l·=0,l·=0,得l⊥面MNP.对图⑤,有MP=(2,1,0)-(1,0,-2)=(1,1,2),MN=(0,2,-1)-(1,0,-2)=(-1,2,1),由l·=0,l·=0,得l⊥面MNP综合得本题答案为①④⑤.方法指导从解法二可以看到:应用向量法讨论两直线是否垂直十分方便,操作也比较简单,无须多动脑筋,只需要计算正确即可.【变式训练3】已知正方体ABCD-A1B1C1D1中,E、F、G分别是棱AB、BC、BB1上的点,且BE=BF=BG,求证:BD1⊥平面EFG.答案如下图所示,因为四边形ABCD是正方形,BE=BF,所以EF∥AC,又因为AC⊥BD,所以EF ⊥BD.因为BD 为BD 1在平面AB 上的射影,所以BD 1⊥EF(三垂线定理).同理BD 1⊥EG,故BD 1⊥平面EFG.【例4】 如右图,P 是△ABC 所在平M 面外一点,且PA ⊥平面ABC,若O,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.解析 欲证线面垂直,只须证明OQ 垂直于面PBC中的两条相交线,据重心,结合PA ⊥面ABC,利用三垂线定理其逆定理及求解答案PAE BC PE BC PBC Q AE BC ABC O 平面的垂心是的垂心是⊥⇒⎭⎬⎫⊥⇒∆⊥⇒∆. 因为OQ ⊂平面PAE,所以OQ ⊥BC,因为PA ⊥平面ABC,BFC 平面ABC 所以BF ⊥PA,又因为O 是△ABC 的垂心,所以BF ⊥AC,所以BF ⊥平面PAC,则FM 是BM 在平面PAC 上的射影. 因为BM ⊥PC,根据三垂线定理的逆定理,可得FM ⊥PC,从而PC ⊥平面BFM,又OQ ⊂平面BFM,所以OQ ⊥PC,又PC ∩BC=C,所以OQ ⊥平面PBC.方法指导 三垂线定理及其逆定理是证明线线垂直,特别是异面直线垂直的常用工具. 利用三垂线定理及其逆定理证明线线垂直的问题时,解决问题的关键是找准“一面三线”.【变式训练4】如下左图,在正三棱柱ABC=A 1B 1C 1中,AB 1⊥BC 1,求证:A 1C ⊥BC 1.答案 如上右图,取BC 、B 1C 1的中点分别为D 、D 1,由正三棱柱的性质知AD ⊥面BCC 1B 1,A 1D 1⊥面BCC 1B 1,所以B 1D 、CD 1分别为AB 1、A 1C 在面BCC 1B 1上的射影.因为AB 1⊥BC 1,所以B 1D ⊥BC 1(三垂线定理的逆定理)又D 、D 1分别为BC 、B 1C 1的中点,所以B 1D ∥CD 1,所以CD 1⊥BC 1,所以BC 1⊥A 1C(三垂线定理).题型3 利用法向量证明平行与垂直【例5】已知正方体OABC-O 1A 1B 1C 1的棱长为1,E 是C 1O 1上的点,且C 1E=21EO 1,F 是CC 1上的点,且C 1F=21FC. (1)求平面A 1BC 1的一个法向量;(2)证明EF ∥平面A1BC1.解析 一建立恰当的空间直角坐标系,用待定系教法求出平面A 1BC 1的一个法向量n,然后证明EF ⊥n.答案 建立如右图所示的空间直角坐标系,则B(1,1,0),A 1(1,0,1),C 1(0,1,1).(1)设n=(x,y,z)是平面A 1BC 1的一个法向量,则n ⊥1,n ⊥1BC ,从而n ·1=0,n ·1BC =0 ∵1=(0,-1,1),1BC =(-1,0,1),∴⎩⎨⎧=+-=+-,0,0z x z y x=z=y.取x=y=z=1,则n=(1,1,1)为平面A 1BC 1的一个法向量.(2) 要证明EF ∥平面A 1BC 1只要证明⊥n.∵E(0,32,1)F(0,1,32),=(0,31,-31).∵n ·EF =31-31=0,∴n ⊥EF ,∴E ∥平面A 1BC 1. 又EF 不在平面A 1BC 1内,∴EF ∥平面A 1BC 1.方法指导 由于有了第(1)小题,所以产生了上面第(2)小题的证明方法对于第(2)小题的证明也可以由EF =F C 1-E C 1=31(C C 1-11O C )=31(B B 1-11A B )=31B A 1,得∥B A 1,∴∥平面A 1BC 1,又EF ⊄平面A 1BC 1,故EF ∥平面A 1BC 1.或由=(0,31,-31),B A 1=(0,1,-1)=3EF 来证明.【变式训练5】 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F.答案 如下图,建立空间直角坐标系D-xyz,则有D(0,0,0)、A(2,0,0)、C(0,2,0)、C 1(0,2,2)、E(2,2,1)、F(0,0,1),所以1FC =(0,2,1)、=(2,0,0)、=(0,2,1). 设n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2)分别是平面ADE 、平面B 1C 1F 的法向量,则n 1⊥,n 1⊥AE ,∴⎪⎩⎪⎨⎧=+=∙==∙,02,0211z y n x n∴⎩⎨⎧-==,2,0y z x 取y=1.则n 1=(0,1,-2).同理可求n 2=(0,1,-2).(1) ∵n1·1FC =(0,1,-2)·(0,2,1)=0,∴n 1⊥1FC ,又FC 1¢平面ADE,FC 1∥平面ADE.(2) n 1∥n 2,∴平面ADE ∥平面B 1C 1F.【例6】 在正方体ABCD 一A 1B 1C 1D 1中,E 是棱BC 的中点,试在棱CC 1上求一点P,使得平面A 1B 1P ⊥平面C 1DE.解析 若要在棱CC 1上求一点P,使得平面A 1B 1P ⊥平面C 1DE,需建立恰当的空间直角坐标系,并设出点P 的坐标,求出平面A 1B 1P 与平面C 1DE 的法向量,建立方程求出点P 的坐标,确定点P 的位置.答案 如右图,以D 为原点,建立如图所示的空间直角坐标系,设正方体的棱长为1,则P(0,1,a),A 1(1,0,1),B 1(1,1,1)E(21,1,0), C 1(0,1,1)∴11B A =(0,1,0,A 1=(-1,1,a-1) ,DE =(21,1,0)1DC =(0,1,1). 设平面A 1B 1P 的一个法向量为n 1=(x,y,z),则⎪⎩⎪⎨⎧=∙=∙,0,011111A n B A n ⇒⎩⎨⎧=-++-=.0)1(,0z a y x y 令z=1,则得x=a-1,所以平面A1BD 的一个法向量为n1=(a-1,0,1).设平面C1DE 的一个法向量为n2=(x,y,z), 则⎪⎩⎪⎨⎧=∙=∙,0,0122DC n n ⇒⎪⎩⎪⎨⎧=+=+.0,021z y y x 令y=1,则得x=-2,z=-1,所以平面CB 1D 1的一个法向量为n 2=(-2,1,-1).因为平面A 1B 1P ⊥平面C 1DE,所以n 1·n 2=0,⇒-2(a-1)-1=0,解得a=21,所以当P 为CC 1的中点时,平面A 1B 1P ⊥平面C 1DE.规律总结 此题是确定点P 的位置,但考查的是两个平面垂直的充要条件,解决本题的关键是建立恰当的空间直角坐标系,求出两个平面的法向量.这里法向量的坐标一个都不能求错,否则将得到错误答案.【变式训练6】 如下图,△ABC 是一个正三角形,EC ⊥平面ABC,BD ∥CE,且CE=CA=2BD,M 是EA 的中点.求证:平面DEA ⊥平面ECA.答案 不妨设CA=2,则CE=2,BD=1,C(0,0,0),A(3,1,0),B(0,2,0),E(0,0,2),D(0,2,1),EA =(3,1,-2),CE =(0,0,2),ED =(0,2,-1),设面CEA 与面DEA 的法向量是n 1=(x 1,y 1,z 1)、n 2=(x 2,y 2,z 3),所以得⎩⎨⎧==-+,02,0231111z z y x ⇒⎩⎨⎧=-=,0,3111z x y ⎩⎨⎧=-=-+,02,02322222z y z y x ⇒⎩⎨⎧==,2,32222y z y x 不妨取n 1=(1,-3,0),n 2=(3,1,2)从而计算得n 1·n 2=0,所以两个法向量相互垂直,两个平面就相互垂直.规律 方法 总结(1)求平面法向量的方法:求一个平面的法向量的坐标的方法步骤:①建立空间直角坐标系,设出平面的法向量为n=(x,y,z)②找出(求出)平面内的两个不共线的向量的坐标a=(a0,b1,c1),b=(a2,b2,c2).③根据法向量的定义建立关于x 、y 、x 的方程组⎩⎨⎧=∙=∙.0,0b n a n ④解方程组,取其中的一个解,即得法向量.由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.(2)用空间向量证明平行问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于平行的定理,再通过向量运算来解决.(3)用空间向量证明垂直问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于垂直的定理,再通过向量运算来解决.定时巩固检测基础训练1. 下列说法中不正确的是()A.平面a的法向量垂直于与平面a共面的所有向量B一个平面的所有法向量互相平行C.如果两个平面的法向量垂直,那么这两个平面也垂直D.如果a,b与平面a共面,且n⊥a,n⊥b,那么n就是平面a的一个法向量【答案】 D(点拨:a与b所在直线必须为相交直线时,n才是平面a的一个法向量,否则不是.)2. 给定下列命题:①若n1,n2分别是平面a,β的法向量,则n1∥n2⇔a∥β;②若n1,n2分别是平面a,β的法向量,则a∥β⇔n1·n2=0;③若n是平面a的法向量,且向量a与平面a 共面,则a·n=0;④若两个平面的法向量不垂直,则这两个平面定不垂直其中正确命题的个数是()A.1B.2C.3D.4【答案】 C(点拔:①③④正确,②中a∥p=mn∥m,)3. 给定下列命题:①若a是平面a的斜线,直线b垂直于a在平面a内的射影,则a⊥b;②若a是平面a的斜线,平面β内的条直线b垂直于a在平面a内的射影,则a⊥b;③若a是平面a的斜线,直线b⊂a,且b垂直于a在平面β内的射影,则a⊥b;④若a是平面a的斜线,直线b⊂a,且b垂直于a在平面a内的射影,则a⊥b.其中,正确命题的个数是()A.1B.2C.3D.3【答案】 B(点拨:根据三垂线定理及其逆定理判断只有④正确.)4. Rt△ABC的斜边BCC平面a,顶点A∉a,则△ABC的两条直角边在平面a内的射影与斜边所成的图形只能是 ( )A.一条线段或一个直角三角形B一条线段或一个锐角三角形C.一条线段或一个锐角三角形D.一个锐角三角形或一个直角三角形【答案】 C(点拨:当平面ABC ⊥平面a 时,Rt △ABC 在平面内的射影是一条线段.当平面ABC 与平面a 斜交时,如右图所示,过A 作AO ⊥a,连接BO,CO,在△BOC 中,AB 2一AO 2=BO 2,在Rt △AOC 中,AC 2-AO 2=CO 2,②在Rt △ABC 中,AB2+AC2=BC2,③在Rt △ABC 中,cos ∠BOC=COBO BC CO BQ ∙∙-+2222,④ 将①②③代入④,得cos ∠BOC=COBO AO ∙∙-22<0,所以∠BOC 是钝角,所以△BOC 是钝角三角形.)5. 设A 是空间任意一点,n 为空间任一非零向量,则适合条件·n=0的点M 的轨迹是 .【答案】 过点A 且与向量n 垂直的平面(点拨:AM ·n=0称为一个平面的向量表示式,这里考察的是基本概念.)能力提升6. 已知=(2,2,1),=(4,5,3),则平面ABC 的单位向量是 .【答案】 ±(31,-32,32)(点拨:设单位法向量n=(x,y,z), 则⎪⎩⎪⎨⎧=++=++=++,0354,022,1222z y x z y x z y x 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==32,32,31z y x 或⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=.32,32,31z y x ) 7. 如下图,PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上的一点,E 、F 分别是点A 在PB 、PC 上的射影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC.其中真命题的序号是 .【答案】①②③(点拨:利用三垂线定理及其逆定理判断即可.)8. 如右图所示,在四棱锥P一ABCD中,PA⊥底面ABCD,底面各边都相等,M是PC上的一动点,当点M满足时,平面MBD⊥平面PCD.(注:只要填写一个你认为正确的条件即可)【答案】 DM⊥PC(点拨:由三垂线定理可知BD⊥PC,当DM⊥PC(或BM⊥PC)时,即有PC⊥平面BMD.所以平面MBD⊥平面PCD.)9. 如右图,△ADB和△ADC都是以D为直角顶点的直角三角形,且AD=BD=CD,∠BAC=60°. (1)求证:BD⊥平面ADC; (2)若H为△ABC的垂心,求证:H是D在平面ABC内的射影【答案】 (1)因为AD=BD=CD,∠ADB=∠ADC=90°,所以△ADB≌△ADC,AB=AC,∠BAC=60°,所以△ABC为正三角形,所以AB=BC,所以△ABD≌△CBD,所以△BDC为直角三角形,∠BDC=90°,BD⊥CD.又BD⊥AD,所以BD⊥平面ADC.(2)如右图所示,设D在△ABC内的射影为H′,连接CH′并延长交AB于E,因为CD⊥AD,且CD⊥DB,所以CD⊥面ADB,所以CD⊥AB,由三垂线定理的逆定理得CE⊥AB.同理,连接BH′并延长交AC于F,可得BF⊥AC,所以H′为△ABC的垂心,即D在平面ABC内的射影为△ABC的垂心,所以H′与H重合,即H是D在平面ABC内的射影.。

人教版高中数学必修一全册整套教学课件438张

人教版高中数学必修一全册整套教学课件438张
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:0705班的全体同学组成一个集合,调整座位后 这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
思考3:集合
与集合
相同吗?
思考4:集合
的几何意义如何? y
x o
理论迁移 例1 用适当的方法表示下列集合:
(1)绝对值小于3的所有整数组成的集合; {-2,-1,0,1,2}或
(2)在平面直角坐标系中以原点为圆心,1为半径的圆 周上的点组成的集合;
(3)所有奇数组成的集合;
(4)由数字1,2,3组成的所有三位数构成的集合. {123,132,213,231,312,321}.
六、对数学学习有什么要求? 1.专注认真; 2.勤思多练; 3.常做笔记; 4.规范作业; 5.加强交流; 6.反思评价.
老师寄语 :
是花就要绽放,是树就要撑出绿荫,是 水手就要博击风浪,是雄鹰就要展翅飞翔。
很难说什么事情是难以办到的,昨天的 梦想就是今天的希望和明天的现实。我们要 以坚定的信心托起昨天的梦想,以顽强的斗 志,耕耘今天的希望,那我们一定能用我们 的智慧和汗水书写明天的辉煌。
知识探究(一)
考察下列集合:
(1)小于5的所有自然数组成的集合;
(2)方程
的所有实数根组成的集合.
思考1:这两个集合分别有哪些元素?
(1)0,1,2,3,4; (2)-1,0,1 思考2:由上述两组数组成的集合可分别怎样表示?

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精讲)(解析版)

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精讲)(解析版)

5.1 任意角和弧度制考点一 基本概念的辨析【例1】(2020·河南宛城·南阳中学高一月考)下列说法正确的个数是( ) ①小于90︒的角是锐角; ②钝角一定大于第一象限角;③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0︒. A .0B .1C .2D .3【正确答案】A【详细解析】对①,小于90︒的角不是锐角,如10-︒不是锐角,故①错; 对②,390角是第一象限的角,大于任何钝角()90180αα<<,故②错; 对③,第二象限角中的210-角小于第一象限角中的30角,故③错; 对④,始边与终边重合的角的度数是()360k k Z ⋅∈,故④错.故选:A . 【一隅三反】1.(2020·全国高一课时练习)下列说法正确的是( ) A .终边相同的角一定相等 B .钝角一定是第二象限角 C .第四象限角一定是负角 D .小于90︒的角都是锐角【正确答案】B【详细解析】终边相同的角不一定相等,所以该选项错误; 钝角一定是第二象限角,所以该选项正确; 第四象限角不一定是负角,如116π是第四象限的角,但是不是负角,所以该选项错误; 小于90︒的角不都是锐角,如3π-.所以该选项错误.故选B 2.(2020·浙江高一课时练习)下列命题中正确的是( ). A .终边与始边重合的角是零角 B .90°~180°间的角不一定是钝角 C .终边和始边都相同的两个角相等 D .第二象限的角大于第一象限的角【正确答案】B【详细解析】终边与始边重合的角还有360°角,720°角等,故A 错误;90°~180°间的角包括90°角,故90°~180°间的角不一定是钝角,故B 正确; 终边和始边都相同的两个角相差360,k k Z ︒⋅∈,故C 错误;120°角是第二象限角,它小于第一象限的角400°角,故D 错误.故选:B 3.(2020·陕西大荔·高一期末)下列说法正确的是( ) A .第二象限角大于第一象限角B .不相等的角终边可以相同C .若α是第二象限角,2α一定是第四象限角D .终边在x 轴正半轴上的角是零角 【正确答案】B【详细解析】A 选项,第一象限角36030120︒+︒>︒,而120︒是第二象限角,∴该选项错误; B 选项,36030︒+︒与30终边相等,但它们不相等,∴该选项正确; C 选项,若α是第二象限角,则()222k k k Z ππαππ+<<+∈,∴()4242k k k Z ππαππ+<<+∈是第三象限角或第四象限角或终边在y 轴负半轴上的轴线角,∴该选项错误;D 选项,360︒角的终边在x 轴正半轴上,但不是零角,∴该选项错误.故选:B .考点二 角度与弧度的转换【例2】(2020·汪清县汪清第六中学高一期中(文))把下列各角的弧度数化为度数,度数化为弧度数. (1)712π; (2)136π- ; (3)1125° ;(4)-225°. 【正确答案】(1)105; (2)390-; (3)254π; (4)54π-. 【详细解析】根据弧度制与角度制的互化公式,1801,1180rad rad ππ==,可得:(1)771801051212πππ=⨯=; (2)131366180390πππ⨯==---; (3)25112511251804ππ=⨯=rad ;(4)52252251804ππ-=-⨯=-rad .【一隅三反】1.(2020·全国高一课时练习)把下列角度化成弧度:(1)36︒; (2)150︒-; (3)1095︒; (4)1440︒. 【正确答案】(1)5π(2)56π-(3)7312π(4)8π 【详细解析】(1)361805ππ︒⨯=;(2)51501806ππ-︒⨯=-;(3)73109518012ππ︒⨯=;(4)14408180ππ︒⨯=. 2.(2020·甘肃城关·兰州一中高一期中)315︒=___________弧度,7π12弧度=________. 【正确答案】7π4105︒ 【详细解析】180π︒=73153151804ππ︒=⨯=,77180π=1051212⨯︒=︒,故正确答案为:7π4;105︒3.(2020·土默特左旗金山学校高一月考(理))下列转化结果错误的是( ) A .30化成弧度是6πB .103π-化成度是600-︒ C .6730'︒化成弧度是27π D .85π化成度是288︒ 【正确答案】C【详细解析】30化成弧度是6π,A 正确103π-化成度是600-︒,B 正确; 6730'︒是367.567.51808ππ︒=⨯=,C 错误;85π化成度是288︒,D 正确.故选:C. 考点三 终边相同【例3】(2020·全国高一课时练习)(1)把-1480°写成()2k k Z απ+∈的形式,其中02απ≤≤; (2)在[]0,720︒︒内找出与25π角终边相同的角. 【正确答案】(1)()16259ππ+⨯-;(2)72°,432°. 【详细解析】(1)∵74148014801809ππ-︒=-⨯=-, 而74161099πππ-=-+,且02απ≤≤,∴169πα=. ∴()161480259ππ-︒=+⨯-.(2)∵221807255πππ⎛⎫=⨯︒=︒ ⎪⎝⎭,∴终边与25π角相同的角为()72360k k θ=︒+⋅︒∈Z , 当0k =时,72θ=︒;当1k =时,432θ=︒. ∴在[]0,720︒︒内与25π角终边相同的角为72°,432°. 【一隅三反】1.(2020·汪清县汪清第六中学高一期中(文))已知角2025α=︒.(1)将角α改写成2k βπ+( k Z ∈,02βπ≤<)的形式,并指出角α是第几象限的角; (2)在区间[)5,0π-上找出与角α终边相同的角. 【正确答案】(1)5104παπ=+,是第三象限角;(2)19113,,444πππ---. 【详细解析】(1)2025α=︒=45520251018044ππππ⨯==+,54π是第三象限角,∴α是第三象限角.(2)由55204k πππ-≤+<得25588k -<<-,因为k Z ∈,∴3,2,1k =---,对应角依次为19113,,444πππ---. 2.(2020·全国高一课时练习)把下列各角度化为弧度,并写成02π-的角加上2()k k π∈Z 的形式. ( 1)64︒-; ( 2)400︒; ( 3)72230︒'-【正确答案】( 1)74245ππ-;( 2)229ππ+;( 3)143672ππ-+. 【详细解析】( 1)16746424545πππ︒-=-=-; ( 2)202400299πππ︒==+; ( 3)144528914372230722.5621807272ππππ︒'︒-=-=-⨯=-=-+. 3.(2019·陕西榆阳·榆林十二中高一月考)用弧度制写出角的终边在下图中阴影区域内的角的集合.(1)(2)【正确答案】(1)55{|22,}66x k x k k Z ππππ-+≤≤+∈;(2){|,}42x k x k k Z ππππ+≤≤+∈ 【详细解析】(1)51506π-=-,51506π=,用弧度制表示终边在图中阴影区域内的角的集合为 55{|22,}66x k x k k Z ππππ-+≤≤+∈.(2)454π=,52254π=,用弧度制表示终边在图中阴影区域内的角的集合为{|22,}42x k x k k Z ππππ+≤≤+∈53{|22,}42x k x k k Z ππππ+≤≤+∈{|,}42x k x k k Z ππππ=+≤≤+∈.考点四 象限的判断【例4】(2020·全国高一课时练习)已知下列各角:①120- ②240- ③180 ④495,其中第二象限角的是( ) A .①② B .①③C .②③D .②④【正确答案】D【详细解析】①120-表示由x 轴非负半轴绕原点顺时针旋转120,落在第三象限; ②240-表示由x 轴非负半轴绕原点顺时针旋转240,落在第二象限; ③180表示由x 轴非负半轴绕原点逆时针旋转180,落在x 轴非正半轴;④495表示由x 轴非负半轴绕原点逆时针旋转495,且495360135=+,495的终边和135的终边相同,所以落在第二象限.故选:D【一隅三反】1.(2020·周口市中英文学校高一期中)角2912π的终边所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【正确答案】A 【详细解析】因为295=21212πππ+,角512π是第一象限角,所以角2912π的终边所在的象限是第一象限. 故选A.2.(2020·全国高二)若α是第二象限角,则180α-是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【正确答案】A【详细解析】α为第二象限角,不妨取120α=,则180α-为第一象限角,故选A .3.(2020·全国高一课时练习)在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.【正确答案】(1)210︒,第三象限的角;(2)290︒,第四象限的角;(3)12945︒',第二象限的角; 【详细解析】(1)150360210-︒=-︒+︒,210︒是第三象限的角,150∴-︒是第三象限的角; (2)650360290︒=︒+︒,290︒是第四象限的角,650∴︒是第四象限的角;(3)95015108012945-︒'=-︒+︒',12945︒'是第二象限的角,95015∴-︒'是第二象限的角.考点五 扇形【例5】(2020·浙江高一课时练习)已知一扇形的圆心角为(0)αα>,所在圆的半径为R . (1)若60α︒=,10R cm =,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?【正确答案】(1)103cm π,()2503cm π⎛-⎝;(2)2rad α=. 【详细解析】(1)设扇形的弧长为l ,弓形面积为S ,则603πα︒==,10R =,101033l cm ππ=⨯=,()221105*********S cm ππ⎛=⨯⨯-=- ⎝.(2)设扇形弧长为l ,则220l R +=,即10202101l R R π⎛⎫=-<< ⎪+⎝⎭,∴扇形面积2211(202)10(5)2522S IR R R R R R ==-⋅=-+=--+, ∴当5R cm =时,S 有最大值225cm ,此时10l cm =,2rad lRα==.因此当2rad α=时,这个扇形面积最大.【一隅三反】1.(2020·赤峰二中)《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为4的弧田,按照上述方法计算出其面积是( )A .4+B .8+C .8+D .8+【正确答案】D【详细解析】设半径为r ,圆心到弦的距离为d ,则121cos 232d r r π⎛⎫=⋅⨯=⎪⎝⎭, 11422r d r r r -=-==8,4r d ∴==∴所以弦长为==∴弧田面积为()214482⨯+=+故选:D.2.(2020·辽宁沈阳·高一期中)一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( ) A .1B .3C .πD .3π 【正确答案】A【详细解析】设扇形的弧长为l ,则23R l R +=,得l R =,则扇形圆心角的弧度数为1lR=.故选:A. 3.(2020·上海高一课时练习)在扇形AOB 中,半径等于r . (1)若弦AB 的长等于半径,求扇形的弧长l ;(2)若弦AB ,求扇形的面积S【正确答案】(1)3r π; (2)213r π【详细解析】(1)如图所示:设AOB α∠=,若弦AB 的长等于半径,则3πα=所以扇形的弧长3παl r r(2)如图所示:若弦AB 倍,则32sin 2AC AOCOAr, 因为0απ<<,所以3AOC π∠=, 所以223παAOC, 所以扇形的面积为22111223απS lr r r .。

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

由 a>b>0,有 ab>0⇒aab>abb⇒1b>1a,故 B 为假命题;
a<b<0⇒-a>-b>0⇒-1b>-1a>0,
a<b<0⇒-a>-b>0
⇒ab>ba,故 C 为假命题;
a>b⇒b-a<0,
a1>1b⇒a1-b1>0⇒ba-ba>0⇒ab<0.
∵a>b,∴a>0,b<0,故 D 为真命题. 解析
答案
2
PART TWO
核心素养形成
题型一 作差法比较大小
例 1 比较下列各组中两个代数式的大小:
(1)x2+3 与 3x;
(2)设 x,y,z∈R,比较 5x2+y2+z2 与 2xy+4x+2z-2 的大小.
[解] (1)∵(x2+3)-3x=x2-3x+3=x-322+34≥34>0,∴x2+3>3x. (2)∵5x2+y2+z2-(2xy+4x+2z-2)=4x2-4x+1+x2-2xy+y2+z2-
第二章 一元二次函数、方程 和不等式
2.1 等式性质与不等式性质
(教师独具内容) 课程标准:1.梳理等式的性质,理解不等式的概念,掌握不等式的性质, 能运用不等式的性质比较大小.2.能运用不等式的性质证明不等式和解决实 际问题. 教学重点:1.不等式的性质.2.不等式性质的应用. 教学难点:用不等式的性质证明不等式. 核心素养:1.借助不等式性质的判断与证明,培养逻辑推理素养.2.通过 大小比较及利用不等式求范围,提升数学运算素养.
∴0<a-b<6,
故 2a+3b 的取值范围为-18<2a+3b<-5,a-b 的取值范围为 0<a-

人教版高中数学选择性必修一讲义3.2.1 双曲线(第一课时)(精练)(解析版)

人教版高中数学选择性必修一讲义3.2.1 双曲线(第一课时)(精练)(解析版)

3.2.1 双曲线【题组一 双曲线的定义】1.(2019·山东青岛二中高二月考)平面内,一个动点P ,两个定点1F ,2F ,若12PF PF -为大于零的常数,则动点P 的轨迹为( ) A .双曲线 B .射线C .线段D .双曲线的一支或射线【正确答案】D【详细解析】两个定点的距离为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线; 不存在1212PF PF F F ->的情况. 综上所述,P 的轨迹为双曲线的一支或射线. 故选:D2.(2019·上海市宜川中学高二期末)设P 是双曲线22143y x -=上的动点,则P 到该双曲线两个焦点的距离之差为( )A .4B .C .D .【正确答案】A【详细解析】由题得24,2a a =∴=.由双曲线的定义可知P 到该双曲线两个焦点的距离之差24a =. 故选:A3.已知点F 1(0,-13),F 2(0,13),动点P 到F 1与F 2的距离之差的绝对值为26,则动点P 的轨迹方程为( ) A .y =0 B .y =0(|x|≥13)C .x =0(|y|≥13) D .以上都不对 【正确答案】C【详细解析】∵||PF 1|-|PF 2||=|F 1F 2|,∴点P 的轨迹是分别以F 1,F 2为端点的两条射线.所以点P 的轨迹方程为x =0(|y|≥13).故正确答案为:C4.(2020·四川内江)一动圆与两圆x 2+y 2=1和x 2+y 2﹣8x +12=0都外切,则动圆圆心轨迹为( ) A .圆B .椭圆C .双曲线的一支D .抛物线【正确答案】C【详细解析】设动圆圆心(,)M x y ,半径为r ,圆x 2+y 2=1的圆心为(0,0)O ,半径为1, 圆x 2+y 2﹣8x +12=0,得22(4)4x y -+=,则圆心(4,0)C ,半径为2,根据圆与圆相切,则||1MO r =+,||2MC r =+,两式相减得||||1MC MO -=, 根据定义可得动圆圆心轨迹为双曲线的一支. 故选:C5.(2020·渝中)若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( ) A .11 B .9C .6D .5【正确答案】B【详细解析】由双曲线22:1916x y E -=,可得3a =,由双曲线的性质可得:126PF PF -=,可得29PF =或23PF =-(舍去),故选:B.6.双曲线的左右焦点为F 1,F 2,过点F 2的直线l 与右支交于点P,Q,若|PF 1|=|PQ|,则|PF 2|的值为( ) A .4B .6C .8D .10【正确答案】B【详细解析】因为双曲线的左右焦点为F 1,F 2,过点F 2的直线l 与右支交于点P,Q,若|PF 1|=|PQ|,利用双曲线的定义,以及直线与双曲线联立方程组得到弦长,得到|PF 2|的值为6选B 【题组二 双曲线定义的运用】1.(2020·四川省遂宁市第二中学校)已知双曲线221259x y -=上有一点M 到右焦点1F 的距离为18,则点M到左焦点2F 的距离是( ) A .8B .28C .12D .8或28【正确答案】D【详细解析】双曲线221259x y -=的5a =,3b =,c ==由双曲线的定义得12||||||210MF MF a -==,即为21810MF -=,解得28MF =或28.检验若M 在左支上,可得15MF c a ≥-=,成立;若M 在右支上,可得15MF c a ≥+=+,成立.故选:D2.(2020·全国高二课时练习)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .C .(0,3)D .)【正确答案】A【详细解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n-=+-表示双曲线,所以10{30n n +>->,解得1{3n n >-<,所以n 的取值范围是()1,3-,故选A . 3.(2020·全国)“35m -<<”是“方程22153x y m m -=-+表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】C【详细解析】可以直接求出方程22153x y m m -=-+表示双曲线的充要条件,即为(5)(3)035m m m -+>⇔-<<,因此可知条件和结论之间的关系是充要条件,因此选C.4.(2019·绥德中学高二月考(理))方程22111x y k k+=+-表示双曲线,则k 的取值范围是( )A .11k -<<B .0k >C .0k ≥D .1k >或1k <-【正确答案】D【详细解析】方程22111x y k k+=+-表示双曲线,则()()k k +-<110,解得1k >或1k <-.故选:D.5.(2019·黑龙江龙凤大庆四中高二月考(文))方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( ) A .-3<m <0 B .-3<m <2 C .-3<m <4 D .-1<m <3【正确答案】A【详细解析】由题意知,()()23032m m m -+<⇒-<<,则C,D 均不正确,而B 为充要条件,不合题意,故选A.6.(2020·山东青岛)已知曲线C 的方程为()222126x y k k k-=∈--R ,则下列结论正确的是( )A .当8k时,曲线C 为椭圆,其焦距为4+B .当2k =时,曲线C 为双曲线,C .存在实数k 使得曲线C 为焦点在y 轴上的双曲线D .当3k =时,曲线C 为双曲线,其渐近线与圆()2249x y -+=相切 【正确答案】B【详细解析】对于A ,当8k 时,曲线C 的方程为221622x y +=,轨迹为椭圆,焦距2c ==,A 错误;对于B ,当2k =时,曲线C 的方程为22124x y -=,轨迹为双曲线,则a =c ∴离心率==ce a,B 正确; 对于C ,若曲线C 表示焦点在y 轴上的双曲线,则26020k k -<⎧⎨-<⎩,解集为空集, ∴不存在实数k 使得曲线C 为焦点在y 轴上的双曲线,C 错误;对于D ,当3k =时,曲线C 的方程为22173x y -=,其渐近线方程为7y x =±,则圆()2249x y -+=的圆心到渐近线的距离4214323035214910d ±===≠+,∴双曲线渐近线与圆()2249x y -+=不相切,D 错误.故选:B .7.(2019·浙江高二期末)设F 1,F 2是双曲线x 25−y 24=1的两个焦点,P 是该双曲线上一点,且|PF 1|:|PF 2|=2:1,则ΔPF 1F 2的面积等于__________. 【正确答案】12 【详细解析】由于x 25−y 24=1,因此a =√5,c =3,故|F 1F 2|=2c =6,由于|PF 1|:|PF 2|=2:1即|PF 1|=2|PF 2|,而|PF 1|−|PF 2|=2a =2√5,所以|PF 1|=4√5,|PF 2|=2√5,cos∠F 1PF 2=PF 12+PF 22−F 1F 222PF 1⋅PF 2=45,所以sin∠F 1PF 2=35,因此S ΔPF 1F 2=12|PF 1||PF 2|sin∠F 1PF 2=12.8.(2019·湖北高二期中(文))已知双曲线2214x y -=的两个焦点分别为F 1、F 2,点P 在双曲线上且满足∠F 1PF 2=60°,则△F 1PF 2的面积为_______.【详细解析】因为22212121212||||||2||||cos F F PF PF PF PF F PF =+-∠212121212(||||)2||||2||||cos PF PF PF PF PF PF F PF =-+-∠,所以21212π4(41)(22)2||||2||||cos3PF PF PF PF +=⨯+-,12121π||||=44sin 23PF F PF PF S∴=⨯⨯=, 【题组三 双曲线标准方程】1.(2020·全国高三其他(文))已知双曲线221(0)6x y m m m -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程为( )A .22124x y -=B .22148x y -=C .2218y x -=D .22128x y -=【正确答案】D【详细解析】由题意可得:22,6a m b m ==+,则实轴长为:虚轴长为由题意有:2=,解得:2m =,代入2216x y m m -=+可得双曲线方程为22128x y -=.本题选择D 选项.2.(2020·全国高二月考(文))过双曲线C :22221x y a b -=的左焦点F ,恰好与圆222x y a +=相切,C 的右顶点为A ,且2AF =+则双曲线C 的标准方程为( )A .2213y x -=B .2213x y -=C .2214y x -=D .2214x y -=【正确答案】B【详细解析】设左焦点为(),0F c -,则直线方程)y x c =+,0y -+=,0y -+=恰好与圆222x y a +=相切,所以圆心()0,00y -+=的距离等于半径,即2a =,a c =,则2a c =.则22AF a c c =+=+=解得2c =,a =则1b ==.所以双曲线C 的标准方程为2213xy -=.故选:B .3.(2020·甘肃城关)已知双曲线C :22221x y a b-=,O 为坐标原点,直线x a =与双曲线C 的两条渐近线交于A ,B 两点,若OAB ∆是边长为2的等边三角形,则双曲线C 的方程为( )A .2213x y -=B .2213y x -=C .221124x y -=D .221412x y -=【正确答案】A 【详细解析】由图可知,a =且一条渐近线的倾斜角为30,所以b a =,解得1b =,所以双曲线C 的方程为2213x y -=.故选:A4.(2020·河南开封)已知双曲线的一条渐近线方程为2y x =,且经过点(2,,则该双曲线的标准方程为( )A .2214x y -=B .2214y x -=C .2214y x -=D .2214x y -=【正确答案】B【详细解析】对于A 选项,双曲线的渐近线为12y x =±,不符合题意.对于B 选项,双曲线的渐近线为2y x =±,且过点(2,,符合题意.对于C 选项,双曲线的渐近线为2y x =±,但不过点(2,,不符合题意.对于D 选项,双曲线的渐近线为12y x =±,不符合题意.综上所述,本小题选B.5.(2020·湖南)已知双曲线C 的中心为坐标原点,,点(P 在C 上,则C 的方程为()A .22142-=x yB .221714x y -=C .22124x y -=D .221147y x -=【正确答案】B【详细解析】当双曲线的焦点在x 轴,设双曲线的方程为:22221(a 0,b 0)x y a b-=>>.根据题意可得:22222821ca abc a b ⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩,解得22714a b ,==,所以221714x y -=.当双曲线的焦点在y 轴,设双曲线的方程为:22221(a 0,b 0)y x a b-=>>.根据题意可得:22222281ca abc a b ⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩,方程无解.综上C 的方程为221714x y -=.故选B.【题组四 双曲线的渐近线】1.(2020·河北石家庄二中高二月考)已知双曲线22142-=y x ,则其渐近线方程为( )A.y = B.2y x =±C .12y x =±D .2y x =±【正确答案】A【详细解析】双曲线方程为22142-=y x ,则渐近线方程为:02y =即y =.故选:A . 2.(2020·河北承德第一中学高二月考)设焦点在x 轴上的双曲线的虚轴长为2,焦距为则该双曲线的渐近线方程( ) A.y = B .2y x =±C.2y x =±D .12y x =±【正确答案】C【详细解析】因为焦点在x 轴上的双曲线虚轴长为2,焦距为所以22b =,2c =则有1b =,c =则a ==则双曲线的标准方程为:22121x y-= ,该双曲线的渐近线方程为为:2y x =±故选:C .3.(2019·福建省南安市侨光中学高三月考(文))设双曲线的中心在原点,焦点在x 轴上,离心率e =则该双曲线的渐近线方程为( ) A .12y x =±B .2y x =±C .4y x =±D .y x =±【正确答案】B【详细解析】由题可知c e a ==222c a b =+,解得2ba=,所以双曲线的渐近线方程为:2y x =±,选B. 4.(2020·全国高三其他(文))设双曲线()222210,0x y a b a b-=>>的左、右顶点分别为1A 、2A ,若点P 为双曲线左支上的一点,且直线1PA 、2PA 的斜率分别为1-,13-,则双曲线的渐近线方程为______________.【正确答案】y x = 【详细解析】1PA 的方程为()y x a =-+,2PA 的方程为()13y x a =--,则()2,P a a -,将点P 的坐标,代入双曲线,则222241a a a b -=,则2213b a =,则3b a =,则双曲线渐近线方程为y x =.故正确答案为:y x =. 5.(2019·黑龙江哈尔滨市第六中学校高二月考(文))已知双曲线22143y x -=,则焦点到渐近线的距离为 。

人教版高中数学必修一精品讲义5.4 三角函数的图象与性质(精练)(解析版)

人教版高中数学必修一精品讲义5.4 三角函数的图象与性质(精练)(解析版)

5.4 三角函数的图象与性质【题组一 五点画图】1.(2020·永州市第四中学高一月考)函数1sin y x =-,[]0,2x π∈的大致图像是( )A .B .C .D .【正确答案】B【详细解析】当0x =时,1y =;当2x π=时,0y =;当πx =时,1y =;当3π2x =时,2y =;当2x π=时,1y =.结合正弦函数的图像可知B 正确.故选B.2.(2020·全国高一课时练习)请用“五点法”画出函数1sin 226y x π⎛⎫=- ⎪⎝⎭的图象. 【正确答案】作图见详细解析. 【详细解析】令2X x π=-,则当x 变化时,y 的值如下表:描点画图:这是一个周期上的图像,然后将函数在13,1212ππ⎡⎤⎢⎥⎣⎦上的图像向左、向右平移周期的正整数倍个单位即得1sin 226y x π⎛⎫=- ⎪⎝⎭的图像. 3.(2020·全国高一课时练习)画出下列函数的简图: ( 1)1sin y x =+,[0,2]x π; ( 2)cos y x =-,[0,2]x π.【正确答案】(1)见详细解析(2)见详细解析( 1)按五个关键点列表:描点并将它们用光滑的曲线连接起来( 如图):( 2)按五个关键点列表:描点并将它们用光滑的曲线连接起来( 如图):5.(2020·全国高一课时练习)“五点法”作正弦函数、余弦函数在x ∈[0,2π]上的图象时是哪五个点?【正确答案】正确答案见详细解析. 【详细解析】6.(2020·全国高一课时练习)在同一直角坐标系中,画出函数sin y x =,[0,2]x π,cos y x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象.通过观察两条曲线,说出它们的异同. 【正确答案】见详细解析【详细解析】可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象,图象如图.两条曲线的形状相同,位置不同.【题组二 周期】1.(2020·永昌县第四中学高一期末)函数2cos 53y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .5πB .52πC .2πD .5π【正确答案】D【详细解析】由题意,函数2cos()53y x π=+,所以函数的最小正周期是:2525T ππ==.故选:D . 2.(2020·辽宁沈阳·高一期中)下列函数中最小正周期为π的是( )A .sin y x =B .1sin y x =+C .cos y x =D .tan 2y x =【正确答案】C【详细解析】对A 选项,令32x π=-,则33sin 122f ππ⎛⎫-=-=- ⎪⎝⎭3sin 122f πππ⎛⎫-+=-= ⎪⎝⎭,不满足3322f f πππ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭, 所以sin y x =不是以π为周期的函数,其最小正周期不为π; 对B 选项,1sin y x =+的最小正周期为:2T π=; 对D 选项,tan 2y x =的最小正周期为:2T π=;排除A 、B 、D 故选C3.(2020·河南洛阳·高一期末(文))tan 2y x =的最小正周期是( ) A .2πB .πC .2πD .3π【正确答案】A【详细解析】tan 2y x =的最小正周期是2T π=.故选:A.4.(2020·林芝市第二高级中学高二期末(文))函数()tan 23f x x ππ⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .1B .2C .3D .4【正确答案】B【详细解析】函数()tan 23f x x ππ⎛⎫=+ ⎪⎝⎭的最小正周期是22T ππ==,故选:B . 【题组三 对称性】1.(2019·伊美区第二中学高一月考)函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【正确答案】D【详细解析】函数的对称轴方程满足:()232x k k Z πππ+=+∈ ,即:()212k x k Z ππ=+∈ ,令0k = 可得对称轴方程为12x π= .本题选择D 选项. 2.(2020·山西省长治市第二中学校高一期末(文))函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π=B .2x π=C .4πx =-D .2x π=-【正确答案】C【详细解析】对称轴穿过曲线的最高点或最低点,把4πx =-代入后得到()1f x =-,因而对称轴为4πx =-,选C .3.(2020·江苏鼓楼·南京师大附中高三其他)曲线()π2sin 04y x ωω⎛⎫=+> ⎪⎝⎭的一个对称中心的坐标为()3,0,则ω的最小值为__________.【正确答案】π4【详细解析】令2sin(3)04πω+=,可得sin(3)04πω+=,3=,4πωπ+∈k k Z +,123ππω=-∈k k Z ,当1,4πω==k 最小故正确答案为:4π【题组四 单调性】 1.下列函数中,在0,2π⎡⎤⎢⎥⎣⎦内是增函数且以π为最小正周期的函数是 ( ) A .|sin |y x = B .tan 2y x =C .sin 2y x =D .cos 4y x =【正确答案】A【详细解析】由于最小正周期等于π,而tan 2y x =的周期为与cos 4y x =的周期为2π,故排除B 、D 两个选项;在0,2π⎡⎤⎢⎥⎣⎦内,sin 2y x =不是增函数,排除选项C,只有|sin |y x =在0,2π⎡⎤⎢⎥⎣⎦内是增函数且以π为最小正周期,故选A.2.(2020·全国高一课时练习)函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭B .()(),k k k Z πππ+∈C .()3,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D .()3,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【正确答案】C【详细解析】根据正切函数性质可知,当πππππ242k xk k Z 时,函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭单调递增,即3ππππ44k xk k Z ,故选:C.3.(2020·阜新市第二高级中学高一期末)设函数f ( x )=cos ( x +3π),则下列结论错误的是 A .f( x)的一个周期为−2π B .y=f( x)的图像关于直线x=83π对称 C .f( x+π)的一个零点为x=6πD .f( x)在(2π,π)单调递减 【正确答案】D【详细解析】f ( x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f ( x )的最小值,故B 正确; ∵f ( x +π)=cos ππ3x ⎛⎫++⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确;由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f ( x )的最小值,故f ( x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误.故选D.4.(2019·四川仁寿一中高三其他(文))已知函数π()sin()0,0||2f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且关于,08π⎛⎫⎪⎝⎭中心对称,则下列结论正确的是( ) A .(1)(0)(2)f f f << B .(0)(2)(1)f f f << C .(2)(0)(1)f f f << D .(2)(1)(0)f f f <<【正确答案】B【详细解析】根据()f x 的最小正周期为π,故可得2T ππω==,解得2ω=.又其关于,08π⎛⎫⎪⎝⎭中心对称,故可得sin 04πϕ⎛⎫+= ⎪⎝⎭,又0,2πϕ⎛⎫∈ ⎪⎝⎭, 故可得4πϕ=-.则()sin 24f x x π⎛⎫=-⎪⎝⎭. 令222,242k x k k Z πππππ-≤-≤+∈,解得()3,,88x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦. 故()f x 在3,88ππ⎡⎤-⎢⎥⎣⎦单调递增. 又()3224f f π⎛⎫=- ⎪⎝⎭,且30,?2,14π-都在区间3,88ππ⎡⎤-⎢⎥⎣⎦中, 且30214π<-<,故可得()()()021f f f <<. 故选:B .【题组五 奇偶性】1.(2020·全国高一课时练习)对于函数cos 22y x π⎛⎫=- ⎪⎝⎭,下列命题正确的是( ) A .周期为2π的偶函数 B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为π的奇函数【正确答案】D【详细解析】因为函数cos 2sin22y x x π⎛⎫=-=⎪⎝⎭,2ππ2T ==,且sin2y x =是奇函数,故正确答案为D. 2.(2020·山西省长治市第二中学校高一期末(文))函数()3sin(2)3f x x πϕ=-+,()0,ϕπ∈为偶函数,则ϕ的值为______ 【正确答案】56π【详细解析】因为()3sin(2)3f x x πϕ=-+为偶函数,故y 轴为其图象的对称轴,所以20,32k k Z ππϕπ⨯-+=+∈,故5,6k k Z πϕπ=+∈,因为()0,ϕπ∈,故56πϕ=,故正确答案为:56π.3.下列函数不是奇函数的是 A .y =sin x B .y =sin 2x C .y =sin x +2D .y =12sin x【正确答案】C【详细解析】当x =π2时,y =sin π2+2=3,当x =-π2时,y =sin( -π2)+2=1,∴函数y =sin x +2是非奇非偶函数.4.(2019·陕西高一期末)若函数()[]()3cos 0,223x f x πϕϕπ+⎛⎫=+∈⎪⎝⎭的图像关于y 轴对称,则ϕ=( ) A .34πB .32π C .23π D .43π 【正确答案】B【详细解析】∵函数f (x )=cos (323x πϕ++)=sin 3x ϕ+ (φ∈[0,2π])的图象关于y 轴对称,∴,32k k Zϕππ=+∈,由题知 φ32π=,故选:B .【题组六 定义域】1.(2020·全国专题练习)函数y =的定义域是( )A .{|22,}2x k x k k Z πππ≤≤+∈B .{|,}2x k x k k Z πππ≤≤+∈C .{|,}3x k x k k Z πππ≤≤+∈D .{|,}33x k x k k Z ππππ-≤≤+∈【正确答案】D【详细解析】要使原函数有意义,则2210cos x +≥ ,即122cos x ≥-, 所以2222233k x k k Z ππππ-≤≤+∈,.解得:33k x k k Z ππππ-≤≤+∈,. 所以,原函数的定义域为{|}33x k x k k Z ππππ-≤≤+∈,. 故选D . 2.(2020·内蒙古集宁一中高一期末(理))函数y =的定义域是( )A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【正确答案】C【详细解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z .所以函数y =()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈.故选:C. 3.(2020·全国高一课时练习)求函数f ( x )=lgsin x的定义域 .【正确答案】[4,)(0,)ππ--⋃【详细解析】由题意,要使f ( x )有意义,则2sin 0160x x >⎧⎨-≥⎩,由sin 0x >,得22,k x k k Z πππ<<+∈, 由2160x -≥,得44x -≤≤,所以4x π-≤<-或0πx <<所以函数f ( x )的定义域为[4,)(0,)ππ--⋃ 【题组七 值域】1.(2020·重庆高三其他(文))设函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤⎢⎥⎣⎦,则ω的取值范围为( ) A .24,33⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .2,13⎡⎤⎢⎥⎣⎦D .41,3⎡⎤⎢⎥⎣⎦【正确答案】A【详细解析】因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以,3323x ππππωω⎡⎤-∈--⎢⎥⎣⎦,所以0233πππω≤-≤,解得2433ω≤≤. 故选:A2.(2020·涡阳县第九中学高一月考)cos 6y x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为( )A .12⎡-⎢⎣⎦B .12⎡⎢⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .⎤⎥⎣⎦【正确答案】C 【详细解析】102x π≤≤,663x πππ∴-≤-≤,1cos 126x π⎛⎫∴≤-≤ ⎪⎝⎭即112y ≤≤,故选C .3.函数cos ,,62y x x ππ⎡⎤=∈-⎢⎥⎣⎦的值域是 ______. 【正确答案】[0,1]【详细解析】因为()cos f x x =在[,0]6π-上递增,在[0,]2π上递减,所以()cos f x x =有最大值()0cos01f ==,又因为0,06222f f ππ⎛⎫⎛⎫-==> ⎪ ⎪⎝⎭⎝⎭, 所以()cos f x x =有最小值0,函数()cos ,,62f x x x ππ⎡⎤=∈-⎢⎥⎣⎦的值域是[]0,1.故正确答案为[]0,1. 4.(2020·上海市进才中学高一期末)函数3cos 2,0,32y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的最小值为________.【正确答案】3-【详细解析】0,2x π⎡⎤∈⎢⎥⎣⎦,42,333x πππ⎡⎤∴+∈⎢⎥⎣⎦,1cos 21,32y x π⎛⎫⎡⎤∴=+∈- ⎪⎢⎥⎝⎭⎣⎦, 3cos 233y x π⎛⎫∴=+≥- ⎪⎝⎭所以函数的最小值为3-.故正确答案为:3-5.(2020·河南宛城·南阳中学高一月考)函数2()sin cos 2f x x x =+-的值域是________ 【正确答案】3[3,]4--【详细解析】22()sin cos 2cos cos 1f x x x x x =+-=-+-,设cos x t =,[]1,1t ∈-,则2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭, 当12t =时,函数有最大值为34-;当1t =-时,函数有最小值为3-.故函数值域为3[3,]4--.故正确答案为:3[3,]4--.6.(2020·永州市第四中学高一月考)设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 【正确答案】【详细解析】∵f (x )=cos 2x+sinx=1﹣sin 2x+sinx=﹣+,故当sinx=时,函数f (x )取得最大值为,故正确答案为. 7.(2020·河南林州一中高一月考)函数224sin 6cos 633y x x x ππ⎛⎫=+--≤≤ ⎪⎝⎭的值域________.【正确答案】16,4⎡⎤-⎢⎥⎣⎦【详细解析】224sin 6cos 64(1cos )6cos 6y x x x x =+-=-+-22314cos 6cos 24(cos )44x x x =-+-=--+, 233x ππ-≤≤,1cos 12x ∴-≤≤ ,故231164(cos )444x -≤--+≤,故正确答案为:16,4⎡⎤-⎢⎥⎣⎦ 8.(2020·广东广州·期末)已知函数f ( x )=sin( ωx +ϕ)( ω>0)的图象相邻两对称轴间的距离等于4π,若∀x ∈R .f ( x )≤6f π⎛⎫ ⎪⎝⎭,则正数ϕ的最小值为( ) A .6π B .3π C .23π D .56π 【正确答案】D 【详细解析】依题意得24T π=,所以2T π=,所以22ππω=,所以4ω=, 又对∀x ∈R .f ( x )≤6f π⎛⎫ ⎪⎝⎭,所以直线6x π=是函数()f x 的对称轴, 所以462k ππϕπ⨯+=+,k Z ∈,即6k ϕπ=π-,k Z ∈,又0ϕ>,所以1k =时,ϕ取得最小值56π.故选:D. 【题组八 正切函数性质】1.(2020·山东潍坊·高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>- ⎪⎝⎭ B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭ C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭ 【正确答案】C【详细解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+, 令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈,当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭.故选:C. 2.(2020·陕西渭滨·高一期末)函数tan(2)6y x π=-的一个对称中心是( ) A .(,0)12πB .2(,0)3πC .(,0)6πD .(,0)3π【正确答案】AD【详细解析】因为tan()01266f πππ⎛⎫=-= ⎪⎝⎭;24tan()tan 33663f ππππ⎛⎫=-== ⎪⎝⎭;tan 663f ππ⎛⎫== ⎪⎝⎭;当3x π=时, 2362πππ⨯-=. 所以(,0)12π、(,0)3π是函数tan(2)6y x π=-的对称中心.故选:AD 3.(2019·伊美区第二中学高一月考)求函数tan 23x y π⎛⎫=+⎪⎝⎭的定义域和单调区间. 【正确答案】定义域为{|2,}3x x k k Z ππ≠+∈,单调增区间为5{|22,}33x k x k k Z ππππ-<<+∈,无单调减区间. 【详细解析】令,232x k k Z πππ+≠+∈,解得2,3x k k Z ππ≠+∈, 故tan 23x y π⎛⎫=+⎪⎝⎭的定义域为{|2,}3x x k k Z ππ≠+∈; 令,2232x k k k Z πππππ-<+<+∈,解得522,33k x k k Z ππππ-<<+∈, 故tan 23x y π⎛⎫=+ ⎪⎝⎭的单调增区间为5{|22,}33x k x k k Z ππππ-<<+∈, 该函数没有单调减区间.4.(2020·全国高一课时练习)求函数1tan 24π⎛⎫=-+ ⎪⎝⎭y x 的单调区间及最小正周期.【正确答案】32,222ππππ⎛⎫-++⎪⎝⎭k k k Z∈,2Tπ=【详细解析】因为11tan tan2424ππ⎛⎫⎛⎫=-+=--⎪ ⎪⎝⎭⎝⎭y x x,又12242πππππ-+<-<+k x k,k Z∈,解得32222ππππ-+<<+k x k,k Z∈,所以1tan24π⎛⎫=-+⎪⎝⎭y x的单调减区间为32,222ππππ⎛⎫-++⎪⎝⎭k k k Z∈.因为1tan24π⎛⎫=-+⎪⎝⎭y x,所以212ππ==-T.。

高中数学教案讲义人教版

高中数学教案讲义人教版

高中数学教案讲义人教版主题:一次函数
一、教学目标:
1. 理解一次函数的概念及性质;
2. 能够绘制一次函数的图像;
3. 能够根据已知条件求解一次函数的参数值。

二、教学重点和难点:
1. 重点:掌握一次函数的化简及性质;
2. 难点:理解一次函数图像的特点及绘制。

三、教学内容安排:
第一节一次函数的定义及性质
1. 课前导入:复习直线方程的概念;
2. 一次函数的定义及表达形式;
3. 一次函数的性质:斜率、截距等。

第二节一次函数的图像
1. 课前导入:回顾坐标系及点的坐标表示;
2. 绘制一次函数的图像:通过斜率和截距确定直线的位置;
3. 图像的特点及注意事项。

第三节一次函数的应用
1. 课前导入:通过实际问题引入一次函数的应用;
2. 实例分析:根据已知条件求解一次函数的参数值;
3. 课后作业布置:完成相关习题,巩固所学知识。

四、教学方法:
1. 课堂讲解与示范;
2. 学生练习与互动;
3. 实例分析与解题讲解;
4. 课后作业巩固。

五、教学资源:
1. 教材《高中数学》人教版;
2. 教学课件及黑板;
3. 相关教学工具及示意图。

六、教学反馈:
1. 学生课堂表现评价;
2. 课后作业批改及订正;
3. 学生问题及困惑解答。

以上就是本节课程的教学内容安排及设置,希望能够引导学生深入理解一次函数的概念及性质,提高他们的数学分析与解题能力。

祝教学顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)任意两个基本事件是互斥事件; (2)任何事件(除不可能事件)都可以表示成这些事 件的和.
2020/7/10
2020/7/10
二、试验探究,引入概念
通过同学们对三个试验的分析研究,归纳 试验具有:
(1)试验中所有可能出现的基本事件只有 有限个;
(有限性)
(2)每个基本事件出现的可能性相等。 (等可能性)
我们将具有这两个特点的概率模型称为古 典概率模型,简称古典概型。
2020/7/10
2020/7/10
2020/7/10
2020/7/10
三、例题分析,巩固概念
思考一:从所有整数中任取一个数的试验 是否属于古典概型?
基本事件无限个,不满足古典概型的第一个条件 。
思考二:某同学随机地向一靶心进行射击, 结果有:命中10环、命中9环……命中5环和 脱靶。你认为这是古典概型吗?为什么?
2020/7/10
2020/7/10
四、课堂练习,深化概念
变式二:一中决定从1-12班中选两个班参加青年志 愿 者活动,由于某种原因一班必须去,另外再从2 至12班中选一个班,有人建议:掷两枚均匀的骰子 得到点数和是几就选几班,你认为用掷两个骰子的 点数和定班级公平吗?这试验是不是古典概型? 分析: 掷两枚骰子有36种基本事件(有限性) 两枚骰子点数和为5和7的概率不相等(不等可能的)
由此大家得出结论:不公平,此建议不满足古典 概型的等可能性.
2020/7/10
2020/7/10
2020/7/10
作业布置:
同时掷两均匀骰子,向上的点数 相等的概率是多少?
2020/7/10
感谢您的指导和宝贵意见
2020/7/10
三亚一中 陈 艳
人教版高中数学教程
选修 必修5
必修1 必修4
必修2 必修3
海南省
2020/7/10
三亚市第一中学 数 学 组
陈艳
3.2.1 古典概型
通往知识的殿堂
教学目标
教学重、 难点
板书设计
教学情景设计
回顾反思
教学流程
一、情景设置:分组试验
分析一:基本事件
二、试验探究:

引入概念
分析二:古典概型


分析三:古典概型概率计算公式

三、例题分析:巩固概念
四、课堂练习:深化概念
五、总结反思:强化概念
2020/7/10
二、试验探究,引入概念
试验一: 2个结果 正面朝上 反面朝上 试验二: 6个结果 1点 2点 3点 4点 5点 6点 试验三: 5个结果 牌A 牌2 牌3 牌4 牌5
我们把这些不能再分的最简单的随机事件叫基本事件 基本事件具有两个特征:
不重不漏
(3)向上的点数之和是5(事件A)的概基本事件总数共有36种 2020/7/10
2020/7/10
2020/7/10
三、例题分析,巩固概念
【例2】 同时掷均匀两个骰子,计算: (3)向上的点数之和是5(事件A)的概率是多少?
解: 同时掷两个均匀骰子总共有36个基本事件 向上点数和为5(事件A)的基本事件有4种 由古典概率公式得:
不是古典概型,因为试验的所有可能结果只有7 个,而命中10环、命中9环、…、命中5环和脱靶 的出现不是等可能的 ,不满足第二个条件。
2020/7/10
三、例题分析,巩固概念
【例2】 同时掷两个均匀的骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5 (记作事件A)的结
果有多少种?
相关文档
最新文档