小升初数学专项题-第十六讲 速算与巧算(加减混合)通用版

合集下载

小升初专练-计算问题-加减法中的巧算通用版(含答案)

小升初专练-计算问题-加减法中的巧算通用版(含答案)

计算问题-加减法中的巧算【知识点归纳】1、加法交换律:两个数相加交换两个加数的位置,和不变.形如:a+b=b+a2、加法结合律:三个数相加,先把前面两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.形如:(a+b)+c=a+(b+c)3、减法的运算性质:在减法中,被减数减去若干个减数,可以减去这些减数的和,差不变.形如:a-b-c=a-(b+c)4、以上运算定律、性质同样适用于多个加数或减数的计算中5、添去括号原则:在加减法运算中,如果给加号后面的算式添上或去掉括号,原运算符号不变;如果给减号后面的算式添上或去掉括号,其添上或去掉括号部分的运算符号要改变.即“+”变“-”,“-”变“+”常考题型:例1:1000+999-998-997+996+…+104+103-102-101=( )A、225B、900C、1000D、4000分析:将算式四个分为一组,然后找一下共有几组这样的数,然后根据规律解答.解:1000+999-998-997+996+…+104+103-102-101,=(1000+999-998-997)+(996+995-994-993)+…+(104+103-102-101),=4×225,=900.故选:B.点评:此题也可这样理解:此算式除了1000和后三项103-102-101,其它每四个数字为一组,结果为0,因此此算式的结果为1000+103-102-101=1000+(103-102)-101=1000+1-101=900.【经典题型】例2:899999+89999+8999+899+89分析:四个加数都加1减1,化成整百、整千、整万、…的数,然后再计算;解:①899999+89999+8999+899+89,=(900000-1)+(90000-1)+(9000-1)+(900-1)+(90-1),=999990-5,=999985;点评:考查了简便运算,灵活运用所学的运算律简便计算.【解题方法点拨】加减法的巧算方法有以下几种:1、几个数相加,利用加法的交换律和结合律,将加数中能凑成整十、整百、整千等的一些加数交换左右顺序,先进行结合,然后再与其他的一些加数相加,得出结果.2、在加减法混合算式与连减算式中.运用“减法的运算性质”进行简算,在简算过程中一定要注意,“+”号和“-”号的使用.3、几个相近的数相加,可以选择其中一个数,最好是整十、整百的数为“基准数”,再把大于基准数的数写成基准数与一个数的和,小于基准数的数,写成基准数与一个数的差,将加法改为乘法计算.4、几个数相加减时,如不能直接“凑整”,我们可以利用加整减零,减整加零变更被减数用减数来间接“凑整”.一.选择题1. A .3750B .233333C .233331D .23333102. A .1000B .10000C .100000D .10000003. A .55B .15C .50D .54.如果,那么 A .5B .15C .20D .255. A .225B .900C .1000D .40006.的和为 A .845B .945C .1005D .10257.的计算结果是 A .0B .1C .2D .20018.与表示相同结果的算式是 A .B .6C .D .二.填空题2345734572457235723472345(++++=)123100321(+++⋯++⋯+++=)99979593918931(-+-+-+⋯+-=)9919939959979995000N ++++=-(N =)1000999998997996104103102101(+--++⋯++--=)9091929399++++⋯+()20062005200420032002200119991998199787654321--++-++--++--++-()13579111397531+++++++++++()75+2275+2275-9. .10.计算: .11. .12. .13. .14. .15.求算式的和,可以看成求一个梯形的面积,这个梯形的上底是 ,下底是 ,高是 ,计算梯形面积的算式是 .16.计算: .三.计算题17.18.19.计算题。

小升初专题训练——常见速算与巧算

小升初专题训练——常见速算与巧算

小升初专题训练——常见的速算与巧算【例1】加减法中的凑整计算。

(1)52+78+38+22+19+81 (2)3168-159-341 (3)19+198+1997+19996 (4)3658-(169+658)(5)1362()575--(6)41425.69 2.3199-+-【练习1】计算下列各题。

(1)14+32+86+128+68-28 (2)1666-888+334 (3)11+103+999+9997 (4)5569-(569-337)(5)3452()7711+-(6)168.86 3.8141.145--+【例2】乘除法中5、25、125的凑整计算(1)125×64×25×5 (2)375×32 (3)1600÷25÷4 (4)3600÷25 (5)18000÷125÷8 (6)625000÷125【练习2】计算下列各题。

(1)12.5×16×2.5 (2)875×160 (3)5100÷25 (4)11000÷125【例3】一个数乘以11的计算:两头拉,中间加,满10进位。

(1)136⨯11 (2)3269⨯11【练习3】计算下列各题。

(1)25⨯11 (2)3579⨯11【例4】“头同尾合十”两数的乘法:“头同尾合十”一般指两个乘数的十位数字相同,个位数字相加等于10的特殊情况。

计算方法为:用两个乘数个位相乘的积直接写在积的末尾,如果积不满10,十位上写0,再用两个乘数十位上的数乘以它本身加1的和,用它们的积直接写在积的前面。

(1)19⨯11 (2)22⨯28(3)31⨯39 (4)58⨯52【练习4】计算下列各题。

(1)25⨯25 (2)77⨯73【例5】乘法分配律的应用。

(1)56×33+56×67 (2)13×101(3)13×13+13×26+ 13×61 (4)13×10101(注意找规律)(5)111()60345+-⨯ (6)4742139139⨯+⨯(7)53156464⨯+⨯ (8)7251616⨯(9)114187⨯ (10)202020222021⨯(11)13()3535+⨯⨯ (12)123345222124345123⨯+⨯-【练习5】计算下列各题。

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)方法Ⅰ:凑整求和【例1】大猩猩壮壮在做数学作业,它用了15分钟才做完下面几道题目,而且还错了2道!小朋友们,你有什么好办法又快又准的算出下面各题的答案?把你的好方法给壮壮讲一讲!也当一次小老师!(1)1234+5678+8766+159+4322(2)0.9+0.99+0.999+0.9999+0.99999(3)91.5+88.8+90.2+270.4+89.6+186.7+91.8(4)2000-77-41-59-23(5)617+271-43+83-157-71(6)3.17+7.48-2.38+0.53-3.48-1.62+5.3(7)889+395+17【例2】聪明宝宝快速解题,请你告诉老师你的巧妙方法!(1)75×12(2)125×2×8×25×5×4(3)0.125×32×0.25(4)1.125×64×0.75【例3】动脑想一想,找到好方法!(1)333333333×333333333(2)54+99×99+45(3)999×222+333×334(4)1999+999×999方法Ⅱ:找“基准数”【例4】四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75 .求这10名同学的总分.【例5】某小组有20人,他们的数学成绩分别是:87、91、94、88、93、91、89、87、92、86、90、92、88、90、91、86、89、92、95、88,求这个组的平均成绩?方法Ⅲ:分组求解【例6】计算(1+3+5+...+2007)-(2+4+6+ (2006)【例7】135******** (......)(......) 333333333333333333333 ++++-+++【例8】计算:2008+2007-2006-2005+2004+2003-2002-2001+2000+1999-1998-1997+……+4+3-2-1方法Ⅳ:自然数的分拆【例9】124.68+324.68+524.68+724.68+924.68【例10】计算:1234+2341+3412+4123方法Ⅴ:几个小小技巧【例11】2、4、6、8、10、12…是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【例12】动物园数学班的小朋友们在研究“日历中的数学”,我们一起来看看它们的问题吧!下面是某月的日历图(1)小熊用一个长方形框出了9个数字,这九个数字的和是189,那么这9个数字中第二大的数是多少?(2)妮妮听了小熊的方法也用一个长方形框出了9个数字,她说这九个数字的和是216,那么你能找到妮妮说的这9天吗?【例13】请你计算出下式结果,并观察总结规律。

小学数学《加减速算+加减混合+巧算》

小学数学《加减速算+加减混合+巧算》

加减速算+加减混合+巧算一、进位加法的简单计算方法不管多大的数相加其最基本的原则都是20以内的加法原则,20以内进位加法的速算口诀为:几加九进十减一、几加八进十减二、几加七进十减三、几加六进十减四。

由于加法具有交换律,所以我们只需要记住这几句就可以了,在100以内的加法中,先观察两个各位数字,找出他们中间较大的数,按口诀进行计算可以很快的算出答案。

[例1]: 26+39=[例2]: 38+54=下来我们进行几个对应的练习,看谁算的又对又快:9+5= 3+8= 26+55= 34+49= 67+25= 58+19=39+25= 26+38= 19+41= 28+47= 43+39= 36+56=来点高难度?225+218= 526+26= 97+535= 364+138= 479+254=459+242= 198+157= 287+76= 349+235= 405+206=574+397= 56+238= 679+497= 835+209= 374+226=二、退位减法的简答计算方法100以内数的退位减法也是以20以内数的退位减法为基础的,退位减法的速算口诀为:几减九退十加一、几减八退十加二、几减七退十加三、几减六退十加四、几减五退十加五、几减四退十加六、几减三退十加七、几减二退十加八、几减一退十加九。

由于减法中减数和被减数不能交换位置,所以在减法中,先观察两个个位数,当减数比被减数的个位大时,根据减数的各位选择口诀进行计算,即可以很快的算出答案。

[例3]: 54—29=[例4]: 63—16=下来我们进行几个对应的练习,看谁算的又对又快:14—9= 15—6= 23—18= 43—19= 54—35=31—22= 45—28= 88—39= 72—36= 66—38=来点高难度?560-384= 725-388= 292-187= 363-207= 900-405=629-240= 921-254= 622-255= 534-78= 411-223=723-404= 85-37= 602-336= 300-185= 900-461=(50题)练习一:时间:(50题)练习二:时间:503+108= 702-564= 205+89= 409+394= 340-153= 745-679= 549+867= 528-89= 301-84= 726+598= 500-453= 501+389= 963-804= 169+450= 800-695= 34+678= 517-348= 405-228= 746+163= 737-520= 352+135= 67+95= 43+88= 474+209= 800-507= 25+214= 21+26= 37+535= 366-137= 379-254= 450-242= 198+157= 283+76= 349+231= 400-206= 574-390= 56+238= 679-497= 835-209= 374+226= 39+57= 666+286= 702-173= 575+322= 85-39= 245-179= 49+867= 528-89= 201-84= 726+118=三、加减混合运算加减混合运算,从左往右依次计算就可以了哦!1、238+576-357=2、981-(657+185)=3、841+569-459=4、788+466-822=5、186+765-358=6、998+(567-246)=7、567-387+528=8、258+(369-147)=9、456+854-689=10、794-89+128 11、746-568+387 12、987-789+487 13、358+697-542 14、642+857-895 15、611-(386-145)36+35+25= 98-58+23= 45-26+64=56+24-35= 78-35+13= 89-45+27=78-69+56= 25+56-67= 89-34+17=23+54-60= 78-62+45= 69-65+78=76-68+39= 23+58-66= 28+65-67=四、加减巧算例题1:(1)175-59-41 (2)168-39+29练习1:(1)195-89-11 (2)167-95+35例题2:(1)62+38+79 (2)57+42-29-21 (3)431-52-75-48-25练习2:364+276-64-266例题3:(1)176+(15-76)(2)121-(45+21)练习3:(1)138-(38-49)(2)134-(34+95)例题4:(1)145+(55-78)-22 (2)162-(62-135)-35 (3)273-(173-76)+24 练习4:(1)123-(23-45)-45 (2)37+86+(63-56)课堂巩固习题专项4356+1287-356 526-73-27-264253-(253-158) 1457-(185+457)389-497+234 698-154+269+787(1)783+25+175 (2)2803+(2178+5497)+4722(3) 376+174+24 (4)864+(673+136)+227计算: 1654-(54+78) 计算: 2937-493-207 (3)1324―875―125 (4)3842―1567―433―842 497+334-297 7523+(653-1523) 9375-(2103+3375)874―(457―126) 3467―253―174―47―126446+72+154+328 857-294-306957+234-257 359-298+441534+(266-197)4480-(955+480)573-(242-127)187+(313-202)5570-(2870+570)597-(327-203)89+123+11+177 425-173-27 871+97-271 388-199+312 421+(297-125)785-(231+285)328-(198-172)。

小升初数学衔接训练计算与巧算

小升初数学衔接训练计算与巧算

小升初数学衔接训练计算与巧算数学是一门需要不断实践和巩固的学科,而小学阶段的数学内容相对简单,到了小升初,数学的难度会有一个明显的提升。

为了更好地帮助学生顺利过渡到中学数学学习,数学的计算与巧算是非常重要的。

下面将介绍小升初数学的计算与巧算内容。

一、计算训练1.四则运算:小升初数学中的四则运算是非常重要的基础知识。

学生需要掌握加法、减法、乘法和除法的运算方法,并能熟练运用到各种实际问题中。

在计算四则运算时,学生需要注意进位、退位、借位和除法取余等操作。

2.分数的计算:小学阶段的分数计算主要涉及分数的加减乘除运算。

学生需要熟练掌握分数相加减的方法,并能将分数化简为最简形式。

在分数的乘法和除法中,学生需要掌握分数相乘的乘法规则,以及分数的除法与整数的除法之间的关系。

3.百分数的计算:小升初数学中还需要学生掌握百分数的计算方法。

学生需要熟练掌握将百分数转化为小数的方法,以及百分数的加减乘除运算。

学生还需要了解百分数在实际生活中的应用,如计算比例、利率等。

二、巧算训练1.快速估算:巧算是指通过一些巧妙的方法,快速得出结果的计算方式。

在小升初数学中,快速估算是非常重要的技巧。

学生需要学会通过数学的近似原理,灵活运用一些基本计算规则,快速估算出结果。

2.简便运算:小升初数学还需要学生能够进行一些简便运算。

例如,在计算乘法时,学生可以利用乘法的交换律和结合律,通过分解因数计算,快速得出结果。

在计算除法时,学生可以利用除法的倒数和分子分母同乘或同除,简化计算过程。

3.预判和判断:在解决数学问题时,学生需要通过预测和判断的能力,在有限的时间内做出合理的选择。

例如,在解决应用题时,学生需要根据问题的描述,预判出可能的解法,并通过逻辑推理和计算判断出最终结果。

小升初数学的计算与巧算训练是非常重要的,它不仅能帮助学生提高计算速度和准确性,还能培养学生逻辑思维和解决问题的能力。

为了有效进行数学的计算与巧算训练,学生需要进行大量的练习,同时需要注重理论和实际操作的结合。

小升初—数的速算和巧算

小升初—数的速算和巧算

整数的速算和巧算(过关练习)一、+ -的速算和巧算1.823+92-232.823-92+1773.432+63+3456+37+568+65444.19+199+1999+19999+199999 (6+66+666+6666+66666)5.19+298+3997+49996+59999956.473+468+467+466+464+469+474+465+471+4737.3411-285-279-283-278-2768.100-99+98-97+96-……-3+2-19.100+99-98-97+96+95-94-93+……+8+7-6-5+4+3-2-110.560-559+558-557+556-555+……+444-443+442-44111.560-557+554-551+……+500-49712.1+2+4+7+11+16+……一共20项。

(思维发散)二、÷×的速算和巧算13.25×4×8×12514.25×4×64×12515.25×96×12516.218×730+7820×7317.42×35+35×61-3×3518.9999×2222+3333×333419.33333×6666620.66666×66666621.56×165÷7÷1122.4000÷125÷823.60000÷125÷2÷5÷824.8÷7+9÷7+11÷725.9÷13+13÷9+11÷13+14÷9+6÷1326.(1686+1683+1689+1681+1691+1685+1687+1678)÷827.1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)28.5÷(7÷11)÷(11÷16)÷(16÷35)小数速算和巧算(过关)1. 4.75-9.64+8.25-1.36=_____2. 3.17-2.74+4.7+5.29-0.26+6.3=_____.3. (5.25+0.125+5.75)⨯8=_____.4. 34.5⨯8.23-34.5+2.77⨯34.5=_____.5. 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6. 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7. 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8. 13.5⨯9.9+6.5⨯10.1=_____.9. 0.125⨯0.25⨯0.5⨯64=_____.10. 11.8×43-860×0.09=_____.11.32.14+64.28×0.5378×0.25+0.5378×64.28×0.75-8×64.28×0.125×0.5378.12. 0.888×125×73+999×3.13. 1998+199.8+19.98+1.998.14. 下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a×b, a b.1、用0、2、6和小数点写出所有的两位小数,并把他们从小到大的顺序排列起来.2、写出0~1之间一共有多少一位小数?有多少两位小数?请有规律地写下来:一位小数:、二位小数:3、用1、0、2、3和小数点一共可以排多少个三位小数?4、小马虎在做一道如一个三位小数×56乘法计算题时,不小心把小数点给忘了,结果答案是7000,请问正确的结果是多少? 这个三位小数又是多少?5、红红和妈妈一起上街,妈妈带了一些钱,红红带的钱正好是妈妈带的钱的小数点向左移动一位.她们的钱相差32.85元,请问妈妈和小红各带了多少钱?6、一只毛毛虫自出生时,每天长大一倍,第六天它已经长到4.8厘米.请问它刚出生时有多少厘米?7、小华买了一块橡皮和一把尺子共花了7角4分,已知一把尺比一块橡皮贵3角8分,那么一块橡皮和一把尺子各多少元?分数的巧算和速算:(过关练习)内容精要在分数的加减运算过程中,虽然掌握运算法则是关键,但是由于习题的类型较多,特点不一,因此在解题时,还要通过观察和分析,找出题目中数的特点,合理、有效地进行计算。

小学六年级数学小升初毕业计算与应用速算技巧训练 全国通用

小学六年级数学小升初毕业计算与应用速算技巧训练 全国通用

小学六年级数学(神奇速算)计算与应用速算技巧训练加法的神奇速算法一、加大减差法1.口诀前面加数加上后面加数的整数,减去后面加数与整数的差等于和。

2.例题1376+98=1474 计算方法:1376+100-23586+898=4484 计算方法:3586+1000-1025768+9897=15665 计算方法:5768+10000-103二、求只是数字位置颠倒两个两位数的和1.口诀一个数的十位数加上它的个位数乘以11等于和2.例题47+74=121 计算方法:(4+7)x 11=12168+86=154 计算方法:(6+8)x 11=15458+85=143 计算方法:(5+8)x 11=143减法的神奇速算法一、减大加差法1.例题321-98=223计算方法:减100,加28135-878=7257计算方法:减1000,加12291321-8987= 82334计算方法:减10000,加10132.总结被减数减去减数的整数,再加上减数与整数的差,等于差。

二、求只是数字位置颠倒两个两位数的差1.例题74-47=27计算方法:(7-4)x9=2783-38=45计算方法:(8-3)x9=4592-29=63计算方法:(9-2)x9=632.总结被减数的十位数减去它的个位数乘以9,等于差。

三、求只是首尾换位,中间数相同的两个三位数的差1.例题936-639=297计算方法:(9-6)x9=27注意!27中间必须加9,即为差297723-327=396计算方法:(7-3)x9=36注意!36中间必须加9,即为差396873-378=495计算方法:(8-3)x9=45注意!45中间必须加9,即为差4952.总结被减数的百位数减去它的个位数乘以9,(差的中间必须写9)等于差。

四、求互补两个数的差1.例题73-27=46计算方法:(73-50)x2=46613-387=226计算方法:(613-500)x2=2268112-1888=6224计算方法:(8112-5000)x2=62242.总结两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2;以此类推......乘法的神奇速算法一、十位数相同,个位数互补的两位数乘法1.口诀十位加一乘十位,个位相乘写后边(未满10补零)。

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)【复习1】(我爱数学夏令营)计算:6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78+1.89分析:原式=(6.11+1.89)+(9.22+2.78)+(8.33+3.67)+(7.44+4.56)+5.55=8+12+12+12+5.55=49.55【复习2】(06香港圣公会小学奥林匹克)计算:3.72-2.73+4.6+5.28-0.27+6.4分析:原式=(3.72+5.28)+(4.6+6.4)-(2.73+0.27)=9+11-3=17 .【复习3】(华罗庚学校五年级入学考试试题)8×(3.1-2.85)×12.5×(1.62+2.38)-3.27分析:初看这道题好像不能用简便方法进行计算.但是里面有特殊数8、12.5,所以可以先算一步,再用简便方法进行计算.原式=8×0.25×12.5×4-3.27=(8×12.5)×(0.25×4)-3.27=100-3.27=96.73【复习4】(04陈省身杯数学邀请赛)(56789+67895+78956+89567+95678)÷7分析:原式=(5+6+7+8+9)×11111÷7=5×11111=55555 . 观察可知5、6、7、8、9在万、千、百、十、个位各出现过一次 .【复习5】计算:l-2+3-4+5-6+…+2005-2006+2007分析:原式= l+3-2+5-4+7-6+…+2005+2007-2006=1+1×1003=1004 ,分组求和的思路.在速算的过程中,如果加入运算律的应用,会有意想不到的效果!我们一起先来看看常用的一些运算律和结论吧!在计算过程中,最常用的技巧之一是灵活熟练地运用运算律.运算律有:(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法交换律:ab=ba(4)乘法结合律:(ab)c=a(bc)(5)分配律: a(b+c)=ab+ac (反过来就是提取公因数)(6)减法(括号)的性质:a-b-c=a-(b+c)(7)除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变.商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变.【例1】(04陈省身杯数学邀请赛)计算:3.1415×252-3.1415×152分析:(法1):题中的三项都有因数34.5,容易想到把34.5作为公因数提取出来(把乘法分配律反过来用),从而使计算简便.原式=34.5×(8.23+2.77—1)=34.5×10=345.(法2):原式=3.1415×(252-152)=3.1415×(25+15)×(25-15)=3.1415×40×10=1256.6 应用下面的平方差公式【回忆巩固】a、b代表任意数字,(a+b)×(a-b)=a×a-b×b,这个公式在数学上称为平方差公式。

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)【例1】 用你的好办法算出下式结果:(1)1350+49+68+51+32+1650(2)33+105+18+95+57+56+12+114(3)378+26+609(4)66+218+79+87分析:(1)先观察算式,找能凑整的数,一般找能凑整的数看个位就可以了。

如右图,我们可以先把能凑整的数标出来,能“凑整”的先算,写成算式时一定要看清是不是每个数都写进去了,故有:(1)式=(1350+1650)+(49+51)+(68+32)=3000+100+100=3200(2)式 =(33+57)+(105+95)+(18+12)+(56+114)= 90+200+30+170 = 290+200 = 490分析:在许多情况下,我们没有如例1那么理想的“凑整”状态,这个时候我们可以自己创造条件,变成理想的“凑整”状态,而后进行计算。

(3)原式=(378+22)+(609+1)+(26-22-1)=400+610+3=1013或,原式=(378+2)+(26+4)+(609-2-4)=380+30+603=410+603=1013(4)原式=(66+4)+(218+2)+(87+3)+(79-4-2-3) =70+220+90+70=450方法不唯一,以上仅供参考!可鼓励学生多方位凑整求和。

【例2】 用你的好办法算出下式结果: (1)356+(84-36) (2)376-(87-24) (3)1000-90-80-20-10 (4)178-33-16-29分析:(1)原式=356+84-36=356-36+84=320+84=404注意:在加减运算中,改变运算顺序时要带着符号搬家。

(2)原式=376-87+24=376+24-87=400-87=313(3)式 =1000-(90+80+20+10)=1000-200=800(4)式 =178-(33+16+29)=178-78=100“添加括号,凑整求值”需要我们有较强的观察力,也许现在你会觉得这个方法并不那么简洁,但只要你领会思想,能较熟练运用,它会帮你算的又快又对!在计算时,我们一定要“先观察,再动手算”!去括号和添括号的法则:在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a +(b +c +d )= a +b +c +da -(b +a +d )= a -b -c -da -(b -c )= a -b +c【例3】用你的好办法算出下式结果:(1)1847-1928+628-136-64(2)1348-234-76+2234-48-24(3)323-189(4)467+997(5)987-178-222-390分析:(1)原式=1847-(1928-628)-(136+64)=1847-1300-200=347(2)原式=(1348-48)+(2234-234)-(76+24)=1300+2000-100=3200(3)式=323-200+11=123+11=134(4)式=467+1000-3(把多加的3再减去)=467-3+1000=1464(5)式=987-(178+222)-390=987-400-400+10=197注意从上面的计算中体会思路!【例4】用你刚才学过的好办法算出下式结果:1966+1976+1986+1996+2006分析:1966+1976+1986+1996+2006=(1986-21)+(1986-10)+1986+(1986+10)+(1986+20)=1986×5-(20+10-10-20)=9930【例5】挑战一下:我们动动脑子再来看看下面的题目:1234+2341+3412+4123分析:1234+2341+3412+4123=(1000+200+30+4)+(2000+300+40+1)+(3000+400+10+2)+(4000+100+20+3)=(1000+2000+3000+4000)+(200+300+400+100)+(30+40+10+20)+(4+1+2+3)=10000+1000+100+10=11110★★★乘11,101,1001的速算法:一个数乘以11,101,1001时,因为11,101,1001分别比10,100,1000大1,利用乘法分配律可得:a×11=a×(10+1)=10a+aa×101=a×(100+1)=100a+aa×1001=a×(1000+1)=1000a+a例如:38×101=38×100+38=3838★★★乘9,99,999的速算法:一个数乘以9,99,999时,因为9,99,999分别比10,100,1000小1,利用乘法分配律可得:a×9=a×(10-1)=10a-aa×99=a×(100-1)=100a- aa×999=a×(1000-1)=1000a-a例如:18×99=18×100-18=1782上面讲的两类速算法,实际就是乘法的凑整速算。

小学数学速算与巧算方法例解-小升初

小学数学速算与巧算方法例解-小升初

小学数学速算与巧算方法例解速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

速算与巧算

速算与巧算

【试题】计算9+99+999+9999+99999【解析】在涉及所有数字都是9的计算中,常使用凑整法。

例如将999化成1000—1去计算。

这是小学数学中常用的一种技巧。

9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105【试题】计算199999+19999+1999+199+19【解析】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整。

(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。

但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1)=500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500【试题】56×3+56×27+56×96-56×57+56【分析】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号。

速算与巧算

速算与巧算

一、速算基础在进行数学计算时,一般按“先乘除,后加减,括号优先”的顺序进行计算,但遇到一些计算题用常规运算比较麻烦时,就要考虑怎样更简便来计算。

这就要求学生打破传统思维,运用发散思维,找出更好的解决办法,更快完成计算任务。

在计算时,利用数与数之间的特殊关系进行较快的加减乘除运算。

这种运算方法称为速算法,也叫心算法。

1、速算要点(1)找出最熟悉的速算数或接近数;如0、1、10、100、1000、10000.。

(2)套用最基本的运算法则;如:交换律、结合律、分配律、提取公因素、平方差、完全平方差等。

(3)牢记特殊数的计算方法。

如:111.。

111 X 111.。

111=123.。

321(位数小于等于9)2、数学运算定律(1)加法运算定律与性质加法交换律:两个加数交换位置,和不变。

公式:a+b+c=(b+a)+c加法结合律:先把前两个数相加或先把后两个数相加,再和另一个数相加,和不变。

公式:a+b+c=(a+b)+c=a+(b+c)(2)乘法运算定律与性质乘法交换律:两个因数交换位置,积不变。

公式:a x b=b x a(3)乘法结合律:先把任意两个数相乘,再和另一个数相乘,积不变。

公式:a x b x c=(a x b) x c=a x (bxc)=(a x c)x b(4)乘法分配律两个数与一个数相乘,可以分别先把两个数分别与这一个数相乘,然后再要相加减。

公式:\(a+b) x c=a x c+b x c(a-b) x c=a x c-b x c2、减法运算定律与性质(1)减法性质:一个数连续减去两个数,可以先把两个数相加,再相减。

公式:A-B-C= A-(B+C)差不变的规律:字母公式:A-B=(AN-BN)=(A-B)/N N和B不等于0(2)除法的性质一个数连续除以两个数,可以先把后两个数相乘,然后再相除。

公式:A/B/C= A/(B X C)商不变的规律:被除数和除数同时乘上或除以相同的数(0除外),它们的商不变。

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)知识点:一、等差数列.二、定义新运算.三、速算与巧算的方法.等差数列我们仔细观察以下两个数列:可以发现它们有一个共同的特点,后一项减前一项的差都是一个定数,像上面这样一类数列,叫做等差数列,相邻两个数的差叫做公差,通常用字母d表示.如果有一个等差数列其公差是d,那么数列的每一项依次可表示为:例如:求15,25,35,45,55,65,75这一列数的和,利用公式计算就是:(1575)73152s+⨯==利用此求和公式以及通项an =a1+(n一1)d的表达式,将给计算带来很大的方便.【例1】按规律填数.(1)21,25,29,( 33 ),( 37 ),41,45,49,( 53 )(2)3,9,27,( 81 ),( 243 ),729【分析】(1)观察第一列数,这是一个等差数列,它的公差是4,所以括号里要添的数,都应该是前一个数加4.(2)观察第二列数,这是一个等比数列,它的公比是3,所以括号里面要添的数,都应该是前一个数乘3.【分析】根据定义x△y=62x yx y⋅⋅+于是有629829522920⨯⨯∆==+⨯【巩固】设a△b=a×a-2×b,那么,5△6=______,(5△2) △ 3=_____.【分析】(1)5△6=5×5-2×6=13(2)5△2=5×5-2×2=2121△3=21×21-6=435【例6】规定其中a、b表示自然数.(1)求的值;(2)已知,求.【分析】观察新定义的运算,可知表示首项是a,末项是的连续自然数之和,项数是b.所以,(1)(2)即:速算与巧算的方法1、利用凑整法计算.凑整法就是根据题中数据特点、借助数的组合、分解以及有关运算性质,把其凑成整十整百……的数,从而达到计算简便、迅速的一种方法.使用凑整法一般有以下几种情形:一、分组凑数 .二、拆数凑整 . 三、分解凑整.四、借数凑整 .五、性质凑整.凑整法常用到的定律和公式有:①加法交换律:a+b=b+a②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:a×b=b×a④乘法结合律:(a×b)×c=a×(b×c)⑤乘法分配律:(a+b) ×c=a×c+b×c⑥减法的性质:a-b-c=a-(b+c)⑦商不变的性质:a÷b=(a×c)÷(b×c);a÷b=(a÷c)÷(b÷c)⑧除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c⑨和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.【例12】 (第七届华杯赛复赛试题)计算:19+199+1999+…+.______9919991999=43421Λ个【分析】原式=20+200+2000+…+1999200019991-⨯L 14243个0=11999202221999⨯-43421Λ个 =43421Λ2199********个【例13】 (北京市第六届“迎春杯”决赛试题)1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101= _____【分析】原式=(1000+999-998-997)+…+(104+103-102-101) =4×900÷4 =900.【例14】 2002年“我爱数学”夏令营计算竞赛试题计算:222222221234979899100-+-++-+-Λ【分析】这个题要利用平方差公式()()b a b a b a -+=-22进行计算比较简单.()()()()()()()()()()()()12123434979897989910099100123497989910012349798991002222222222222222-⨯++-⨯++-⨯++-⨯+=-+-++-+-=-+-++-+-K K K()5050210011001234979899100=÷⨯+=+++++++=K【附1】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【分析】将每层圆木根数写出来,依次是:可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.故最下面的一层有32根.【附2】计算下列每组数的和:【分析】根据等差数列求和公式,必须知道首项、末项和项数,这里首项是105,末项是200,但项数不知道.若利用a n =a 1+据此可先求出项数,再求数列的和.解:数列的项数故数列的和是:【附3】规定:③=2×3×4,④=3×4×5 ⑤=4×5×6,…, ⑩=9×10×11,…如果⨯=-)8(1)8(1)7(1□,那么框内应填的数是_____·【分析】□=11111(8)7891()()(8)11.(7)(8)(8)(7)(8)(7)6782⨯⨯-=-⨯=-=-=⨯⨯ 故框内应填的数是21【附4】(04全国小学奥林匹克)计算:55 555 × 666 667 + 44 445 × 666 666 – 155 555【分析】原式=55 555 × 666 666 + 55 555 +44 445 × 666 666 -155 555=(55 555+44 445)× 666 666-100 000 = 66 666 500 000【附5】求{20073333333...33...3++++个的末三位数字.【分析】原式的末三位和每个数字的末三位有关系,有2007个3,2006个30,2005个300 ,则2007×3+2006×30+2005×300=6021+60180+601500=667701 ,原式末三位数字为701。

加减法速算与巧算

加减法速算与巧算

加减法速算与巧算在我们的日常生活和学习中,加减法的运算无处不在。

无论是在购物时计算价格,还是在考试中解决数学问题,快速而准确地进行加减法运算都能为我们节省时间,提高效率。

今天,就让我们一起来探索加减法速算与巧算的奇妙世界。

一、加法速算与巧算1、凑整法凑整法是加法速算中最常用的方法之一。

所谓凑整,就是将加数凑成整十、整百、整千等容易计算的数。

例如,计算 28 + 72 时,我们可以很快地得出结果为 100,因为 28 和 72 可以凑成 100。

再比如,计算 135 + 65 时,135 和 65 凑成 200,结果瞬间可得。

2、基准数法当多个相近的数相加时,可以选择一个基准数,先计算每个数与基准数的差值,然后将这些差值相加,最后再加上基准数与个数的乘积。

例如,计算 98 + 101 + 99 + 102 + 100 时,可以选择 100 作为基准数。

则 98 与基准数的差值为-2,101 的差值为 1,99 的差值为-1,102 的差值为 2,它们的差值之和为 0,所以结果就是 100×5 = 500。

3、交换律和结合律加法交换律:两个数相加,交换加数的位置,和不变。

例如 3 + 5 = 5 + 3 。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

例如(2 + 3)+ 5 = 2 +(3 + 5)。

利用交换律和结合律,可以将加数重新组合,使得计算更加简便。

比如计算 18 + 27 + 82 时,可以先计算 18 + 82 = 100,再加上 27,结果为 127 。

二、减法速算与巧算1、凑整法在减法中,同样可以使用凑整法。

例如,计算 100 38 时,可以将38 看作 40 2 ,那么 100 38 = 100 (40 2)= 100 40 + 2 = 62 。

2、减法的性质减法的性质:一个数连续减去两个数,等于这个数减去这两个数的和。

用字母表示为:a b c = a (b + c) 。

小升初数学专项题-第十六讲速算与巧算(减法)通用版

小升初数学专项题-第十六讲速算与巧算(减法)通用版

第十六讲速算与巧算(减法)【知识梳理】计算方法:1.减数中有互为补数的数,先把它们加起来,再用被减数减去它们的和。

2.减数与被减数有相同位数时,它们先相减。

3.算式中有接近整十、整百、整千……的数,先把它们变成整数,再把多加的数减去,把多减的数加上。

【典例精讲1】400-37-63思路分析:因为37与63互为补数,因此先把这两个数相加,可以简便。

解答:400-37-63=400-(37+63)=400-100=300小结:解决这类问题要先根据减数的特点与减法的性质,把互为补数的数加起来,凑成整十、整百、整千……的数,再相减。

【举一反三】1. 1000-90-80-20-102. 6725-(725+177)3. 4256-159-256【典例精讲2】607-496思路分析:先把两个数变成600-500,前一个数少加了7所以要加上7,后一个数多减了4,所以要加上4.。

解答:607-496=600-500+7+4=100+7+4=111小结:解决这类问题要注意是少加了还是少减了,是多加了还是多减了。

【举一反三】4. 521-1915. 887-288-222-2906. 377+897答案及解析:1.【解析】根据数字的特点可知:90+10=100,80+20=100,因此利用减法的性质可以先把减数加起来。

【答案】:1000-90-80-20-10=1000-(90+10)-(80+20)=1000-100-100=8002.【解析】:6725与725有相同的尾数,因此可以先相减,变成6725-725-177,先算6725-725,可以使计算简便。

【答案】: 6725-(725+177)=6725-725-177=6000-177=58233.【解析】4256与256有相同的尾数,因此可以先把159与256交换位置,变成4256-256-159再依次计算。

【答案】:4256-159-256=4256-256-159=4000-159=38414.【解析】先原式变成500-200,可以看出前者少加了21,后者多减了9,因此原式=500-200+21+9,依次再计算就可以了。

23.小升初数学专项题-第十六讲 速算与巧算(加减混合)通用版

23.小升初数学专项题-第十六讲  速算与巧算(加减混合)通用版

第十六讲速算与巧算(加减混合)【知识梳理】1.添加或去掉括号的原则:加减法同级运算,括号外面是减号的,添上或去掉括号,括号里的符号:加号要变成减号、减号要变成加号;括号外面是加号的,添上或去掉括号,括号里的符号不变。

当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号。

(1)A-B+C=A-(B-C); (2)A-B-C=A-(B+C);(1)A+B-C=A+ (B-C); (2)A+B+C=A+(B+C)。

2.两个数相同符号相反时可以“抵消”。

【典例精讲1】200-(20+40+60)思路分析:括号前面是减号,去掉括号时要变号:即变成200-20-40-60,再依次计算即可。

解答:200-(20+40+60)=200-20-40-60=180-40-60=80小结:解决这类问题的关键是:要注意括号前面是减号时,去掉或加上括号候,括号内数字前面运算的符号要变化。

【举一反三】1. 950-(10+20)2. 950-(20-10)3. 950-20-10【典例精讲2】1843+(157-32)思路分析:本题括号前面的加号,去掉括号后变成1843+157-32,再依次计算即可。

解答:1843+(157-32)=1843+157-32=2000-32=1968小结:解决此类问题的关键是:括号前面的加号,去掉括号后,括号内数字前面的运算符号不变。

【举一反三】4.936+(296-636)5. 78+459-2596. 773+368+227答案及解析:1.【解析】本题去掉后,括号内数字前的运算符号要变化。

【答案】:950-(10+20)=950-10-20=940-20=9202.【解析】:注意去掉括号后运算符号的变化。

【答案】:950-(20-10)= 950-20+10=930+10=9403.【解析】加上括号后,括号内数字前面的运算符号要变化。

【答案】:950-20-10=950-(20+10)=950-30=9204.【解析】先把936+(296-636)去掉括号,变成936+296-636,再交换数字的位置,变成936-636+296,要注意交换数字时,数字前面的符号要一起移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六讲速算与巧算(加减混合)
【知识梳理】1.添加或去掉括号的原则:加减法同级运算,括号外面是减号的,添上或去掉括号,括号里的符号:加号要变成减号、减号要变成加号;括号外面是加号的,添上或去掉括号,括号里的符号不变。

当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号。

(1)A-B+C=A-(B-C); (2)A-B-C=A-(B+C);
(1)A+B-C=A+ (B-C); (2)A+B+C=A+(B+C)。

2.两个数相同符号相反时可以“抵消”。

【典例精讲1】200-(20+40+60)
思路分析:括号前面是减号,去掉括号时要变号:即变成200-20-40-60,再依次计算即可。

解答:200-(20+40+60)
=200-20-40-60
=180-40-60
=80
小结:解决这类问题的关键是:要注意括号前面是减号时,去掉或加上括号候,括号内数字前面运算的符号要变化。

【举一反三】1. 950-(10+20)
2. 950-(20-10)
3. 950-20-10
【典例精讲2】1843+(157-32)
思路分析:本题括号前面的加号,去掉括号后变成1843+157-32,再依次计算即可。

解答:1843+(157-32)
=1843+157-32
=2000-32
=1968
小结:解决此类问题的关键是:括号前面的加号,去掉括号后,括号内数字前面的运算符号不变。

【举一反三】4.936+(296-636)
5. 78+459-259
6. 773+368+227
答案及解析:
1.【解析】本题去掉后,括号内数字前的运算符号要变化。

【答案】:950-(10+20)
=950-10-20
=940-20
=920
2.【解析】:注意去掉括号后运算符号的变化。

【答案】:950-(20-10)
= 950-20+10
=930+10
=940
3.【解析】加上括号后,括号内数字前面的运算符号要变化。

【答案】:950-20-10
=950-(20+10)
=950-30
=920
4.【解析】先把936+(296-636)去掉括号,变成936+296-636,再交换数字的位置,变成936-636+296,要注意交换数字时,数字前面的符号要一起移动。

【答案】:936+(296-636)
=936+296-636
=936-636+296
=300+296
=596
5.【解析】:由于459与259的尾数相同,所以加上括号可以使计算简便,注意加上括号时,括号内数字前的运算符号不变。

【答案】:78+459-259
=78+(459-259)
=78+200
=278
6.【解析】:773与227互为补数,所以把773与368交换位置,再加上括号计算即可,注意加上括号时括号内数字前的运算符号不变。

【答案】:773+368+227
=368+(773+227)
=368+1000
=1368。

相关文档
最新文档