0304静定拱结构(力学) PPT课件
《结构力学》第四章静定拱
受力特点概述
静定拱在荷载作用下,拱身主要承受 压力作用,这使得拱具有较好的受压 性能。
拱身受压力作用
由于拱的曲线形状和荷载作用位置的 不同,拱身内力分布通常不均匀,需 要进行详细的内力分析。
内力分布不均匀
静定拱在荷载作用下,其变形主要以 压缩变形为主,弯曲变形相对较小。
变形以压缩为主
影响因素分析
面内失稳
1
拱在面内发生屈曲,导致承载力急剧下降。
面外失稳
2
拱在面外方向发生侧倾或扭转,失去原有形状。
局部失稳
3
拱的局部区域发生失稳,如拱脚的局部压曲等。
提高稳定性的措施
合理选择拱的轴线形式 使拱在受力时能够均匀分布荷载,避 免应力集中。
加强拱的横向联系
通过设置横撑、横系梁等构件,增强 拱的横向稳定性。
贰
静定拱的受力特点
受力分析基本假设
拱身是理想弹性体 在分析中,假设拱身材料符合胡克定律, 即应力与应变成正比关系。 荷载作用在拱的节点上 为简化计算,通常将荷载(如均布荷载、 集中力等)作用在拱的节点上进行分析。 忽略拱身自重影响 在分析中,通常忽略拱身自重对受力的影 响,或将其简化为等效荷载进行处理。
增加拱的刚度
采用高强度材料、增加截面尺寸等措 施,提高拱的整体刚度。
考虑施工方法和顺序
合理的施工方法和顺序可以有效减少 拱在施工过程中的变形和应力,有利 于提高稳定性。
陆
静定拱的工程应用
桥梁工程中的应用
拱桥
静定拱是拱桥的主要结构形式,能够承受较大的竖向荷载和水平推 力,具有良好的经济性和美观性。
习题一
某静定拱的跨度为L,矢高为f,承受均布 荷载q作用,试求其拱脚处的水平推力H和 竖向反力V。
结构力学—拱结构(建筑力学)
拱结构应用——大跨度体育馆
拱结构应用——农业大棚
拱结构应用——农业大棚
筒拱
砌体结构的赵州桥如果改用水平砌体的梁,是否可行?
水平的梁为纯弯曲变形,在弯矩产生的拉应力作用下砌 体会断裂,因此赵州桥无法用砌体建造水平梁
古代拱结构的应用——砌体屋顶
欧洲教堂的石砌拱形屋顶同样利用了拱结构时石材受压 而不是受拉
拱结构应用——大跨度桥梁
拱结构应用——砌体桥梁
拱结构应用——大跨度体育馆
拱截面有弯矩、剪力、轴力三个内力,
实际是弯曲变形与轴压变形的组合变形
轴向压缩产生的压应力可以抵消或者减小弯矩产生的 拉应力,使得整个横截面处于压缩状态或者仅有很 小的拉应力
拱抵抗水平力的方式
拱的矢高对水平推力的影响
拱矢高越大,拱结构的水平推力越小
拱结构特点:
1) 由于推力的存在,三铰拱截面弯矩比简支梁弯矩小。
1、拱结构
悬索 拱
拱的受力机制
竖向支座反力在 截面上产生的弯矩
外力P
外力P在截面上 产生的弯矩MP
水平支座反力H在截面上 产生的弯矩MH
水平支座反力H
竖向支座反力
拱与梁最大的差别是拱的支座反力有水平力,任意截面的弯 矩由竖向支座反力产生的弯矩、外荷载产生的弯矩、水平 支座反力产生的弯矩,水平支座反力产生的弯矩可以抵消 前两者产生的弯矩使得拱结构没有弯矩或者使得前两者产 生的弯矩减小
5) 三铰拱受向内的推力,因此需给基础施加向外的推力。 所以三铰拱的基础要比基础大,或加拉杆,以减小对 墙的推力。
古代拱结构的应用——砌体桥梁
赵州桥
砌体结构由砖石等块材用砂是抗拉能力差,拱结构为弯曲变形和轴 压变形的组合变形,轴向压应力会抵消弯曲产生的拉应力 或者减小拉应力,使得砌体处于完全受压状态或者有拉应 力也很小,因此拱结构可以建造大跨度桥梁
结构力学(拱结构)
(VA P1)sinK HcosK
QK0 VA0 P1 VA P1
(4-5 NK QK0 sinK HcosK
三铰拱的内力计算
例4-1
杭
试作图示三铰拱的内力图。拱轴方程为
y
4f l2
(l
x)x
州
顶
q= 1kN/m
P=4kN
正
45
包
y
2 3C
6
材
1
4m
7
H =6kN A 0 VA =7kN
包
q
材
解法1:相应简支梁的弯矩方程为
y x
A
C f
M 0 1 qlx 1 qx2 1 qx(l x)
22
2
B
推力H为:
HLeabharlann M0 Cql 2
f 8f
l/2
l/2
令: M K
M
0 K
H
yK
0
q
可得三铰拱合理拱轴的轴线方程为 :
A
x
ql/2
l
17
B
y
M0 H
1 qx(l 2
ql 2
x)
4f l2
算简图 HA0 = 0 等代梁计 (4-2 7
A VA0
P1
2x、K
K
荷
C
载
与P跨2 此作度为时B一结,定H构H。MC01f
[V,Al1故 P瞬1(l1变a体1)] 系不能
VAl1 P1 (l1 a1)
时,水平推力与矢 VB0 高
成反比。
H
M
0 C
f
三铰拱的内力计算
a1
b1
杭
a2
州y 顶 正 H包A A
第4章 静定拱
§4—1概述 拱——曲线杆件, 竖向荷载作用下有水平反力。 常用形式: 三铰拱、两铰拱、无铰拱
重要特点: 竖向荷载产生水平推力(与梁相比)
优点: M减小,N为主 ——便于使用抗压材料:砖、石、混凝土
缺点: 水平反力要求 ——地基、支承结构、(墙、柱、墩等)
更坚固。 ——可称拱式结构或推力结构
y(x) x1=1.5,y1=1.75 tanφ=y’ sinφ,cosφ
3.M1=M10-FHy1 S1=S10*c-FH*s N1=S10*s+FH*c
4.表4-1,作图。
3.特点: (1)竖向荷载作用下,
有水平推力H (2)推力使拱M减小,
M = M0 - Hy (3)拱截面内轴力较大,
(梁N=0) 4.斜拱与一般荷载作用 ①斜拱
【例4—2】 均布荷载满跨 【解】
M 0 ql x qx2 qx (l x) 2 22
H
M
0 c
1
ql 2
f f8
y M 0 qx (l x) 8 f 4 f x(l x)
H2
ql 2 l 2
具有不同髙跨比的一组抛物线——合理拱轴线
[例4—3]q = qc+ γy 解:坐标系如图,
M=M0-H(f-y)=0
f y M0 H
求导二次:
y"
1 H
d2M 0 dx2
1 H
(q)
y q H
q=qc+γy
y " x y qc HH
微分方程解 边界条件
——二阶常系数线性非齐次方程 ——确定合理拱轴线方程
[例4-4] 静水压力 解:非竖向荷载,设M=0状态,
用微元平衡求合理拱轴线 微段:N 平衡:
结构力学-静定拱
H=M’C/f 2 内力计算:
截面K的弯矩: M=[Vax-P1(x-a1)]-Hy
即 M=M’-Hy
A
P1
P2
B
KC
剪力:
Q=VA cos --P1 cos--H sin V’A
V’B
=Q’ cos --H sin
轴力:
HA
P1 K
A
P2
B
HB
N=(VA--P1) sin+
Hcos
第四章 静定拱
§4--1 概述
拱:杆轴线为曲线并且有竖向荷载作用下会产生 水平反力的结构。
拱的常用形式有三种:
1、三铰拱
HA
A
P
HB B
VA
VB
2 两铰拱
3 无铰拱
拱的各部分名称如右图:拱 趾
起拱线
A
拱轴线
拱
拱高f
趾
B
跨度l
§4--2 三铰拱的数解法
1 支座反力计算
如右图: 由MB=0
a1
b1
VA
VB
=Q’sin +Hsin
综上所述,三铰平拱的内力计算公
式可写为:
M=M’--Hy
Q=Q’ cos --H sin
N=Q’ sin --H cos
§4--3 三铰拱的合理拱轴线
当拱上所有截面的弯矩都为零而只有轴力时,这
时的拱轴线为合理拱轴线。其方程为: y=M’/H
q
例4-2
y
a2
b2
P1
P2
MA=0
HA
A
HB B
HA=HB=H
l1
MC=0
VA
l2 VB
VAl1-P1(l1-a1)-Hf=0 l
4 静定拱
结构力学第四章 静定拱§4-1 概 述§4-2 三铰拱的数值解§4-3 三铰拱的合理拱轴线杆轴线为曲线,在竖向荷载拱式结构的特点:作用下会产生水平反力(称为推力)。
拱式结构又称为推力结构。
梁式结构在竖向荷载作用下是不会产生推力的。
BBACABC(c)BCAB有拉杆的三铰拱 两铰拱曲梁三铰拱各部分名称高跨比f/l 是拱的一个重要的几何参数。
工程实际中,高跨比在l ~1/10之间,变化的范围很大。
跨度矢高拱趾拱趾拱顶f l 拱轴线拱顶:拱的最高点。
拱趾: 支座处。
跨度:两支座之间的水平距离, 用l 表示。
矢高:拱顶到两拱趾间联线的竖向距离,用f 表示。
拱与其同跨度同荷载的简支梁相比其弯矩要小得多,所以拱结构适用于大跨度的建筑物。
它广泛地应用房屋桥梁和水工建筑物中。
由于推力的存在它要求拱的支座必须设计得足够的牢固,这是采用拱的结构形式时必须注意的。
一、三铰拱的反力和内力计算。
1.支座反力计算(与三铰刚架反力的求法类似)。
代梁代梁:同跨度、同荷载的简支梁,其反力、内力记为、 、 、0V AFV BF 0M 0S F 三铰拱BF F F F fFFF Ayxl/x KC2l/2V AH BH AV BF 1F 2F 3BACF a a a 123F K V AV BH H H F F F B A ==考虑整体平衡0V 332211=−++l F a F a F a F B ()()()[]332211V 1a l F a l F a l F lF A−+−+−=考虑C 铰左侧部分平衡 ⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−−⋅=2211H 2221a l F a l F l F fF yA 由∑X =0,得由∑M A =0()332211V 1a F a F a F lF B++=得由∑M B =0,得由∑M C =0,得B F F F F fFFF Ayx l/x K C2l/2V AH BH AV B与代梁相比较有:⎪⎪⎪⎭⎪⎪⎪⎬⎫===f M F F F F F C B B AA 0H 0V V 0V V 可见:三铰拱的竖向支座反力就等于代梁的反力; 水平推力就等于代梁C 截面的弯矩除以矢高; 拱的矢高对水平推力影响很大(矢高愈小即拱的形状愈扁平推力愈大)。
结构力学第4章静定拱(f)
FH
FH
由边界条件
x 0, y 0 : x 0, y 0 :
A qc
B0
合理拱轴线的方程为
y qc (cosh x 1)
FH
§4-3 三铰拱的合理拱轴线
例4-3 试求三铰拱在垂直于拱轴线的均布荷载作用下的合理 拱轴线。
解:由图a,荷载为非竖向荷载。
思路:假定拱处于无弯矩状态,根据平衡 条件推求合理拱轴线方程。
Fi ai l
Fx 0 FAH FBH FH
相应简支梁
取左半拱为隔离体
MC 0
FH
FAV l1 F1(l1 a1) f
可 得
FAV FBV
FA0V FB0V
FH
M
0 C
f
三铰拱的反力只与 荷载及三个铰的位置有 关,与拱轴线形状无关;
推力FH 与拱高 f 成反比。
§4-2 三铰拱的计算
§4-2 三铰拱的计算
2、内力的计算
压力为正
任一截面的轴力等于该截面一 侧所有外力在该截面法线方向 上的投影代数和。
FN FAV sin FH cos F1 sin (FAV F1) sin FH cos FS0 sin FH cos
相应简支梁
§4-2 三铰拱的计算
2、内力的计算
区别拱与梁的主要标志:推力的存在与否。
§4-1 概述
拉杆拱: 拱两支座间的拉杆代替支座承受水平推力
拉杆做成折线形可获得较大空间
高跨比:f/l
平拱: 两拱趾在同一水平线上 斜拱: 两拱趾不在同一水平线上
§4-2 三铰拱的计算
1、支座反力的计算
由拱的整体平衡
M B 0 FAV
Fibi l
M A 0 FBV
第四章结构力学静定拱
15kN
A
K左
A
K右
12.5kN
12.5kN
FºSK左=12.5kN
FºSK右=-2.5kN
( F H 1 0 k N ,F S 0 K 左 1 2 . 5 k N ,F S 0 K 右 2 . 5 k N )
( s i n 0 .4 4 7 ,c o s 0 .8 9 4 )
FSK左FS0K左cosFHsin12.50.894100.447
r FP1 90。 D D
C
FQD A
FP2 B
FRA
FRB
M D FRD rD
FQD FRD sin D FND FRD cos D
r D ——截面D形心到FRD作用线之距离。
D ——FRD作用线与截面D轴线切线的夹角。
由此看出,确定截面内力的问题归结为确定 截面一边所有外力的合力之大小、方向及作用线 的问题。
tgy'4l2f
(l2x)a b
F
V
0 A
FP1
D
F
0 SD
代梁
a2+b2 a
b
2) FºSD是代梁截面D的剪力,设为正方向。 故FºSD可能大于零、等于零或小于零。
下面用上述公式求FSK、FNK。
xK=4m y'41 624(1624)1 2 FºSK左=12.5kN
5
1 2
FºSK右=-2.5kN
FP2 E FP1
D
FRA A
o
C FP1 FP2
FRA
FRB
FP3
FP3 F
B
FRB
在上图所示力多边形中,射线1-2代表FRA与 FP1合力的大小和方向;射线2-3代表FRA与FP1、 FP2合力的大小和方向。
4静定拱
FF
CC
BB
F
V0BF
0 VB
FH FfH f
中南大学
退出
返回
11:03
§4-3 三铰拱的合理拱轴线
结构力学
三铰拱的合理拱轴线
三铰拱在竖向荷载作用下任一截面的弯矩为:
MK
M
0 K
FH y
拱合理拱轴线:若拱的所有截面上的弯矩都为零,
这样的拱轴线为合理拱轴线。
由 M M 0 FH y 0 得合理拱轴线方程
C
A B
B
A
B
有拉杆的三铰拱
两铰拱
(c)
梁式结构在竖向荷载作用下是不会产生推力的。
C
B
A
B
曲梁
中南大学
退出
返回
11:03
§4-1 概 述
结构力学
三铰拱各部分名称
拱顶
拱轴线
f 矢高
拱趾
拱趾
l 跨度
拱顶:拱的最高点。 拱趾: 支座处。 跨度:两支座之间的水平距离, 用l表示。 矢高:拱顶到两拱趾间联线的竖向距离,用f表示。
中南大学
退出
返回
11:03
§4-3 三铰拱的合理拱轴线
结构力学
例4-2 设三铰拱上作用沿水平向均布的竖向荷载q
试求拱的合理轴线。
q
M0
解:由式(4-5) y FH
Y
C
在均布荷载q作用下, 代梁的弯矩方程为
f
A l 2
X B l
2
M 0 ql x qx2 q x(l x)
q
2 22
中南大学
退出
返回
11:03
结构力学第4章 静定拱结构
一、工程中的拱结构轴线为曲线、仅在竖向荷载下能产生水平反力(推力)的结构称为拱。
图4-1所示为拱结构的工程实例。
图4-1工程中的拱结构二、拱式结构的特征及其应用1、定义:通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
2、特点:(1)弯矩比相应简支梁小,水平推力存在的原因。
(2)用料省、自重轻、跨度大。
(3)可用抗压性能强的砖石材料。
(4)构造复杂,施工费用高。
3、拱的种类:图4-2拱的种类4、拱各部分的名称:一、支座反力的计算C拱顶铰BA拱肋跨度拱趾铰(a) 等高三铰拱C高差hAB(b) 不等高三铰拱严格的来说,实体三铰拱支座反力的计算与一般三铰刚架结构反力计算相同。
本书介绍的是等代梁解法。
图4-4实体三铰拱第二节实体三铰拱的数解法图4-5等代粱ll 1l 2a 3b 3b 2b 1a 2a 1F P1F P2F P3F P1F P2F P3F A yF B yF A yF B yF B xF A x 00A CBAB C(b)(a )f0CH M F =HB A F F F ==x x 0Ay Ay F F =0ByBy FF =二、拱内截面内力的计算图4-6拱内截面内力1、拱的内力计算原理仍然是截面法。
2、拱通常受压力,所以计算拱时,规定轴力以受压为正。
对于竖向荷载作用三铰拱,其内力计算有简捷公式。
(c)CB A00F B yF A yF P3F P2F P1B F B xAF A x F A yF B y(a )C F P3F P2F P1a 1a 2b 1b 2b 3a 3lϕK F A y F A xF P1KM K F NKF QKx KK ϕy KxyK K(b)yF MM H 0-=ϕϕsin cos H 0Q Q F F F -=ϕϕcos sin H 0Q N F F F --=A0AyFQ F 0M (b) 代梁受力F Ax =F H F Ayx A y k F y FxyϕM(a) 截面k 坐标方向力图4-7拱内截面内力需要指出的是,非竖向荷载作用不等高三铰拱等情形,上述公式是不适用的。
4第四章静定拱
21
12:14
合理拱轴线小结: 1)不同荷载作用下三铰拱的合理拱轴 线不同。 2)实际工程中,尽可能使受力状态接 近无弯矩状态。通常是以主要荷载作用 下的合理拱轴线作为拱的轴线。
学 年 )
学 年 )
M y FH
M M FH y 0
0
0
只限于三铰平拱受 竖向荷载作用
在竖向荷载作用下,三 铰拱的合理拱轴线的纵 坐标与相应简支梁弯矩 图的竖标成正比。
§4-3三铰拱的合理拱轴线
12:14
结 试求图示对称三铰拱在均布荷载作用下的合理拱轴线 构 力 q MC0=ql2/8 学 ( C 2/8f y F = ql f H A B 学 x l M0=qlx/2-qx2 /2 年 =qx(l-x)/2 ) q 08-09
0 FP2=50kN FH= MC / f =50.25 KN
8.5 163.5 201
58.5 175.5
FQ(kN)
M(kN.m)
0 MK MK FH y 0 FQK FQK cos FHsin
FNK FQK 0sin FHcos
§4-2三铰拱的计算
17
y=4fx(l-x)/l2
x
抛物线
§4-3三铰拱的合理拱轴线
结 构 力 学 ( 08-09
18
12:14
试求,在填土重量作用下,三铰拱的合理 轴线。土的容重为γ,拱所受的竖向荷载 为q(x)=qc+ γy
学 年 )
§4-3三铰拱的合理拱轴线
结 构 力 学 ( 08-09
19
12:14
M f y FH
第四章 静定拱
静定拱结构(力学)
03
静定拱结构的分析方法
解析法
解析法是通过数学公式和定理来求解静定拱结构 的内力和变形的方法。
这种方法基于力学的基本原理和数学工具,能够 得到精确的解答。
解析法适用于简单形状和边界条件的静定拱结构, 但不适用于复杂结构和非线性问题。
有限元法
有限元法是一种数值计算方法, 通过将连续的结构离散化为有 限个小的单元,来求解结构的
02
静定拱结构的力学原理
力的平衡原理
总结词
静定拱结构在力的平衡原理下保持稳定,各部分受力相互抵消,不产生额外的 力矩或力。
详细描述
静定拱结构通过合理的设计,使得作用在结构上的外力(如重力、风载、雪载 等)在内部各部分之间相互抵消,没有产生额外的力矩或力,从而保持结构的 稳定。
力的分布原理
总结词
THANKS
感谢观看
静定拱结构(力学)
目录
• 静定拱结构概述 • 静定拱结构的力学原理 • 静定拱结构的分析方法 • 静定拱结构的优化设计 • 静定拱结构的稳定性分析 • 静定拱结构的案例分析
01
静定拱结构概述
定特定受力 特性的拱形结构,其受力状态仅 由其自身刚度和所受外力决定, 不依赖于其他结构部分。
静定拱结构能够将外力均匀地传递到结构的各个部分,以减小局部应力集中。
详细描述
静定拱结构的设计能够确保外力在结构中均匀分布,避免应力集中现象,从而减 小结构损坏的风险。这种力的分布原理有助于提高结构的承载能力和稳定性。
弹性力学基础
总结词
静定拱结构在弹性力学基础上进行分析和设计,考虑结构的 变形和应力分布。
优化变量
设计过程中需要优化的参数,如拱的形状、尺寸、材料等。
优化设计的数学模型
第4章:静定拱-结构力学课件
M FN
载及A 三三个x铰铰拱y的的位内f 置力有不关但,与B而荷 FH FH
FH且与拱轴l线1 的形状l有2x 关。
FAV
F1
FS
FAV 由于推力的l 存在,拱F的BV FAV0 弯矩比相应简支梁的弯矩要
FS0 M0
等小代。梁 F1 A
KC
F2
M=[FAV x– F1 (x-a1)] – FH y =M0 – FH y
F1
C
F2
结论:F1
A
f
B FBH三载铰及F拱 三H 的 个反 铰力 的只 位与 置荷 有
FAH
l1
FAV
等代梁
A
F1
l2 l
C
a1
b1
FAV0
a2
FBV
关关,。F与AV拱F轴1 线形状M无c0
F2
荷水载平与 推跨 力F度 与AV0一 矢定 高时 成, 反
B ∑Μ比。C=0
b2 FBV0 FH=1/ f [ FAV l1 – F1 (l1- a1 )]
FBV=FBV0 FAV=FAV0 FAH=FBH =F H
MC0= FAV0 l1 – F1 (l1- a1 )
FH= MC0 / f
2.内力的计算:
基本法—截面法
注: 拱的内力正负号的规定:
剪力以绕隔离体顺时针转动为正;
轴力以压力为正;
弯矩以使拱的下侧受拉为正。
y F1 K C
F2
F1
分析:本题为F非N +d竖FN向
荷载,我们可由假定拱
圆
F轴进N 处行于受R无力弯分矩析状,态建入立手平,
衡方程求出合理拱轴线。
M=0 → dM=FQ=0 因此横截面只有轴力FN ,FN+dFN. ∑MO=0 → FNR-(FN +d FN )R=0 → d FN=0 → FN=常数。 沿s-s轴投影方程:2FN sin(d/2)-qRd =0, sin(d/2)=d/2
拱结构ppt课件
1
拱结构的概念
什么是拱结构?
一般指杆的轴线为曲线形状,并且在竖向荷载作用下会产生水 平支座反力的结构。
特点?
拱结构比桁架结构具有更大的力学优点。在外荷作用下,拱主 要产生压力,使构件摆脱了弯曲变形。如用抗压性能较好的材 料(如砖石或钢筋混凝土)去做拱,正好发挥材料的性能。不 过拱结构支座(拱脚)会产生水平推力,跨度大时这个推力也 大,要对付这个推力仍是一桩麻烦而又耗费材料之事。由于拱 结构的这个缺点,在实际工程应用上,桁架还是比拱用得普遍。
17
拱的应用
• 拱在建筑结构中的应用十分广泛,如桥、屋顶、窗洞、门 洞、水坝、体育馆等大量采用拱结构。
18
拱的应用
土耳其索非亚大教堂 19
拱的应用
20
拱式桥
拱式桥的组成
21
拱式桥
22
23
24
力的平衡。
5
(一)水平推力直接由拉杆承担
• 拉杆既可用于搁置在墙、柱上的屋盖结构,也可用于落地 拱结构。
6
• 水平拉杆所承受的拉力等于拱的推力,两端自相平衡,与 外界之间没有水平向的相互作用力。
• 优点:经济合理,安全可靠,砖或柱子不承受拱的水平推 力,基础受力简单,节省材料。
• 缺点:室内有拉杆存在,房屋内景欠佳,浪费空间。
11
拱结构的受力特点
(一)、支座反力
1、在竖向荷载作用下,拱脚支座内将产生水平推力;
2、在竖向荷载作用下,
;
3、当结构跨度与荷载条件一定时 为定值,拱脚水平推力 (HA=HB)与拱的矢高f成反比。
12
• 拱结构是使构件摆脱弯曲变形的一种突破性发展,因此, 拱结构比桁架结构的力学优点更加显著,而且它为抗压性 能好的材料提供了一种理想的结构型式。
04第四章 静定拱
y A cosh
FH
x B sinh
FH
x
qc
由边界条件
x 0, y 0 : x 0, y 0 :
A
qc
B0
合理拱轴线的方程为
y
qc
(cosh
FH
x 1)
在填土重量作用下,三铰拱的合理拱轴线是一悬链线。
§4-3 三铰拱的合理拱轴线
例4-4 试求三铰拱在垂直于拱轴线的均布荷载作用下的合理 拱轴线。
受力特点 (1)在竖向荷载作用下有水平反力 FH ; (2)由拱截面弯矩计算式可见,比相应简支梁小得多 ; (3)拱内有较大的轴向压力FN.
§4-2 三铰拱的计算
q=2kN .m y
1 0 3 4 5
F=8kN
6 7 8
2
2 y2 x
f=4m
B
例1 三铰拱及其所受荷载如 图所示拱的轴线为抛物线方 程 y 4 2f xl x
MC 0
FAV
FB V
d
F1
A
F2
c
f
B
FAV l1 F1 d FH f 0
M MC FH f 0 FH C f
FAV
x
c
F
BV
FH FAV
l1
§4-2 三铰拱的计算
二、内力计算
F1
x-a1 FS
D
FH
FN
y
以截面D为例 截面内弯矩要和竖向力及水平力对D点构成 的力矩相平衡,设使拱内侧受拉为正。 MD 0 M FAV x F1 x a1 FH y
第四章 静定拱
第四章 静定拱
海南大学土木工程系
韩建刚
1
三 角 拱 三角拱的内力计算 三角拱的合理拱轴线
2
§4.1 三角拱
拱是在竖向荷载作用下能 产生水平反力的结构,如图。 水平反力 产生负弯矩, 可以抵消一 部分正弯矩
1、拱的特点
C ↓↓↓↓↓
矢高f
A
B
l跨度
与简支梁相比拱的弯矩、剪力较小,轴力较大(压力), 应力沿截面高度分布较均匀。 节省材料,减轻自重,能跨越大 跨度 , 宜采用耐压不耐拉的材料 , 如砖石混凝土等。有较大 的可利用空间。 其缺点是:拱对基础或下部结构施加水平推力,增加了下部结构的 拱具有曲线形状,施工不方便. 材料用量;
11
重复上述步骤,可求出各等分截面的内力,作出内力图。 8
0.5 1.5 12 0.71 M° 0.4 2 1.5 M图 (kN.m) 0 20 24 -0.49 24 -1 -6 -1.79 -5.81 -7.6 0.49 1.79 20 2
0.5
Hy -0.40
Q图 (kN) -9.19
其中 ∑MBP 是所 有荷载对B点的矩 VB=YB; H=MC0/f
二、内力计算
M P H VA x P M° YA d Q°Y A
x
P N ϕ H
C
f
↓↓↓↓↓
A
a l/2
B H
l/2
P VB
y
Q VA
c
d
↓↓↓↓↓
l
a
YB
注:1、该组公式仅用于两底铰在
VA ×x 0 MM= A×M-P×d =VM°-H×y x-P×d-H×y Q=Q°× cos ϕ- H×sinϕ Q=(VA-P)×cosϕ-H×sin ϕ N=-Q°sin ϕ -Hcos ϕ N=-(VA-P)sinϕ-Hcosϕ
结构力学第4章静定拱
y M0 H
三铰拱合理拱轴线的纵坐标y与相应简支梁弯矩图的竖标成 正比。当荷载已知时,只需求出相应简支梁的弯矩方程式,除 以常数H便得到合理拱轴线方程。
11
例 4-2 求图示对称三铰拱在均布荷载q作用下的合理拱轴线。
解:
相应简支梁的弯矩方程为
y
M 0 qL x qx2 1 qx(L x) 2 22
x
所以
H
M
0 C
qL2
f 8f
y
M0 H
4f L2
x(L x)
x
合理拱轴线为抛物线
12
本章小结
三铰拱是按三刚片规则组成的静定结构; 在竖向荷载作用下,产生竖向反力与水平推力; 拱的主要内力是轴力; 利用合理拱轴可以使拱的弯矩达到最小。
13
y
23
1
50.25kN
→H o
↑VA
75.5kN
4
x
50.25kN
←H ↑ VB
58.5kN
以1截面为例: L=12m、f=4m代入拱轴方程
y
44 122
x(12
x)
x 9
(12
x)
tg dy 2 (6 x) dx 9
9
1截面: x1=1.5m 1=450
y1=1.75m tg1=1 sin 1=0.707 cos 1=0.707
503
755
→H
↑ VA
kN 75.5kN
←H
↑VB
58.5kN
VB VB0 14 6 3 50 9 58 5 kN 12
↑VA0
↑VB0
H
M
0 C
75 5 6 14 6 3
50 25kN