七年级数学下册幂的运算

合集下载

沪科版数学七年级下册8.1《幂的运算》教学设计

沪科版数学七年级下册8.1《幂的运算》教学设计

沪科版数学七年级下册8.1《幂的运算》教学设计一. 教材分析《幂的运算》是沪科版数学七年级下册第8.1节的内容,主要介绍了同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。

这部分内容是初中学段数学的重要基础,也是后续学习代数式、函数等知识的前提。

教材通过具体的例子引导学生掌握幂的运算规律,培养学生的逻辑思维能力和运算能力。

二. 学情分析七年级的学生已经掌握了整数、分数和小数的四则运算,对于幂的概念和简单的幂运算可能还比较陌生。

因此,在教学过程中,需要通过生动的例子和生活中的实际问题,激发学生的学习兴趣,引导学生理解和掌握幂的运算规律。

同时,七年级学生的抽象思维能力正在发展,需要通过大量的练习和操作活动,来巩固和提高幂的运算能力。

三. 教学目标1.理解幂的运算概念,掌握同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。

2.培养学生的逻辑思维能力和运算能力。

3.能够运用幂的运算知识解决生活中的实际问题。

四. 教学重难点1.重点:同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等幂的运算规则。

2.难点:理解幂的运算规律,能够灵活运用幂的运算知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,通过设置问题和情境,引导学生探究幂的运算规律。

2.运用直观教具和多媒体辅助教学,帮助学生形象地理解幂的运算概念。

3.采用分组讨论和合作学习的方式,培养学生的团队协作能力和沟通能力。

4.注重练习和操作活动,提高学生的运算能力和解决问题的能力。

六. 教学准备1.准备相关的教学材料和课件,如PPT、教案、练习题等。

2.准备一些实际问题,用于引导学生运用幂的运算知识解决实际问题。

3.准备一些直观教具,如幂的运算图表、幂的运算模型等。

七. 教学过程1.导入(5分钟)通过设置一个实际问题,如“一个正方形的边长是2,求这个正方形的面积”,引导学生思考如何计算面积。

然后引出幂的运算概念,告诉学生,面积可以表示为边长的平方,即2的平方。

2022春七年级数学下册第8章幂的运算幂的乘方习题课件新版苏科版ppt

2022春七年级数学下册第8章幂的运算幂的乘方习题课件新版苏科版ppt

A.m5
B.m6
C.m8
D.m9
2 【2021·武汉】(-a2)3=( A )
A.-a6
B.a6
C.-a5
D.a5
3 x18不能写成( A ) A.(x2)16 C.(x3)6
B.(x2)9 D.x9·x9
4 【2021·南京鼓楼区模拟】计算-a2·(a2)3的结果是
(B) A.a8
B.-a8
A.0个
B.1个
C.2个D.3个来自14 计算: (1)(-a2)3·a3+(-a)2·a7-5(a3)3; 解:原式=-a2×3·a3+a2·a7-5a3×3= -a6+3+a2+7-5a9=-a9+a9-5a9=-5a9; (2)x5·x7+x6·(-x3)2+2(x3)4. 原式=x5+7+x6·x3×2+2x3×4=x12+x6+6+2x12= x12+x12+2x12=4x12.
7 【2021·广东】已知9m=3,27n=4,则32m+3n=( D )
A.1
B.6
C.7
D.12
8 已知4m=a,8n=b,其中m,n为正整数,则22m+6n=
( A) A.ab2
B.a+b2
C.a2b3
D.a2+b3
【点拨】 22m+6n=22m·26n=4m·(23n)2=4m·(8n)2=ab2.
【点拨】 利用幂的乘方比较大小的技巧:(1)底数比较法:运用幂
的乘方变形为指数相等,底数不同的形式进行比较;(2)指 数比较法:运用幂的乘方变形为底数相等,指数不同的形 式进行比较;(3)乘方比较法:将幂同时乘方化为同指数幂, 计算幂的结果,比较幂的大小,从而比较底数的大小.
12 已知275=9×3x,求x的值.
解:因为275=9×3x, 所以(33)5=32×3x. 所以315=32+x. 所以2+x=15.所以x=13.

8.幂的运算-----幂的乘方与积的乘方课件数学沪科版七年级下册(1)

8.幂的运算-----幂的乘方与积的乘方课件数学沪科版七年级下册(1)
=105×3
=(x4)·(x4) =x4+4 =x4×2 =x8
=1015
(3)(-a2)3.
=(-a²)·(-a²)·(-a²) =-a2+2+2 =-a2×3 =-a6
例1 计算:(1)(102)3 ; (4)-(x2)m ;
(2)(b5)5; (5)(y2)3·y;
(3)(an)3; (6)2(a2)6-(a3)4.
①同底数幂的乘法法则的逆用:am+n=am·an. ②幂的乘方法则的逆用:amn=(am)n=(an)m.
= am+m+…+m (根据_同__底__数__幂__的__乘__法__法__则___) = amn
幂的运算性质2:(am)n=amn(m,n都是正整数)
幂的乘方,底数不变,指数相乘.
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
正方体的体积比=棱长比的立方
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
太阳
地球
木星
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
木星的半径是地球的10倍,它的体积是地球的10³倍! 太阳的半径是地球的10²倍,它的体积是地球的(10²)³倍! 那么,你知道(10²)³等于多少吗?
例2 已知5x=m,5y=n,则52x+3y等于( D )
A.2m+3n
B.m2+n3
C.6mn
D.m2n3
解析:因为5x=m,5y=n,

浙教版初中数学七年级下册幂的运算(提高)知识讲解

浙教版初中数学七年级下册幂的运算(提高)知识讲解

幂的运算(提高)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【396573 幂的运算 知识要点】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质【396573 幂的运算 例1】1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+;(2)23(2)(2)x y y x -⋅- .【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+. (2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--.【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n nn a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n n n b a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则【396573 幂的运算 例2】2、计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=.(3)22412()()m m x x -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=.【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、(2015春•南长区期中)已知2x =8y+2,9y =3x ﹣9,求x+2y 的值.【思路点拨】根据原题所给的条件,列方程组求出x 、y 的值,然后代入求解.【答案与解析】解:根据2x =23(y+2),32y =3x ﹣9, 列方程得:, 解得:,则x+2y=11.【总结升华】本题考查了幂的乘方,解题的关键是灵活运用幂的乘方运算法则. 举一反三:【变式】已知322,3m m a b ==,则()()()36322m m m m a b a b b +-⋅= . 【答案】-5; 提示:原式()()()()23223232m m m m ab a b =+-⋅ ∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算.【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.举一反三:【变式1】下列等式正确的个数是( ).①()3236926x y x y -=- ②()326m m a a -= ③()36933a a = ④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯ A. 1个 B. 2个 C. 3个 D. 4个 【答案】A ; 提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3618327a a =;()()571213⨯⨯⨯=⨯=⨯5107103510 3.510【变式2】(2015春•泗阳县校级月考)计算:(1)a4•(3a3)2+(﹣4a5)2(2)(2)20•()21.【答案】(1)a4•(3a3)2+(﹣4a5)2=a4•9a6+16a10=9a10+16a10=25a10;(2)(2)20•()21.=(×)20•=1×=.5、(2016秋•济源校级期中)已知x2m=2,求(2x3m)2﹣(3x m)2的值.【思路点拨】根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得已知条件,根据已知条件,可得计算结果.【答案与解析】解:原式=4x6m﹣9x2m=4(x2m)3﹣9x2m=4×23﹣9×2=14.【总结升华】本题考查了幂的乘方与积得乘方,先由积的乘方得出已知条件是解题关键.。

北京课改版数学七年级下册6.2《幂的运算》说课稿1

北京课改版数学七年级下册6.2《幂的运算》说课稿1

北京课改版数学七年级下册6.2《幂的运算》说课稿1一. 教材分析北京课改版数学七年级下册6.2《幂的运算》这一节主要讲述了同底数幂的乘法、除法、幂的乘方与积的乘方,以及合并同类项。

这些内容是初中学段幂运算的基础,对于学生掌握幂的运算法则,以及为后续学习更复杂的幂运算公式和应用具有重要的意义。

二. 学情分析初中的学生已经具备了一定的幂运算基础,对于同底数幂的乘法、除法等有了一定的了解。

但是,对于幂的乘方与积的乘方,以及合并同类项这部分内容,学生可能还存在一定的困惑。

因此,在教学过程中,需要引导学生通过观察、思考、交流等方式,深入理解幂的运算法则,提高运算能力。

三. 说教学目标1.知识与技能目标:让学生掌握同底数幂的乘法、除法,幂的乘方与积的乘方,以及合并同类项的运算法则。

2.过程与方法目标:通过观察、思考、交流等过程,培养学生自主学习、合作学习的能力。

3.情感态度与价值观目标:激发学生学习幂运算的兴趣,培养学生的运算能力。

四. 说教学重难点1.教学重点:同底数幂的乘法、除法,幂的乘方与积的乘方,以及合并同类项的运算法则。

2.教学难点:幂的乘方与积的乘方,以及合并同类项的运算。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、交流互动。

2.教学手段:利用多媒体课件、教学道具等辅助教学,提高学生的学习兴趣和参与度。

六. 说教学过程1.导入新课:通过复习已学过的幂运算知识,引出本节课的内容,激发学生的学习兴趣。

2.自主学习:让学生自主探究同底数幂的乘法、除法,幂的乘方与积的乘方,以及合并同类项的运算法则。

3.合作交流:学生进行小组讨论,分享学习心得,互相解答疑惑。

4.教师讲解:针对学生的困惑和疑问,进行讲解,引导学生深入理解幂的运算法则。

5.巩固练习:布置练习题,让学生及时巩固所学知识。

6.课堂小结:对本节课的内容进行总结,强化学生的记忆。

七. 说板书设计板书设计如下:同底数幂的乘法:( a^m a^n = a^{m+n} )同底数幂的除法:( a^m a^n = a^{m-n} )幂的乘方:( (a m)n = a^{mn} )积的乘方:(ab)^n = a^n b^n合并同类项:( a^m b^m + a^n b^n )八. 说教学评价本节课的教学评价主要从学生的课堂表现、练习题的完成情况、以及学生的学习反馈等方面进行。

第1讲 幂的运算-七年级下册数学同步精品讲义

第1讲 幂的运算-七年级下册数学同步精品讲义

第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。

七年级下册数学幂的乘方与积的乘方

七年级下册数学幂的乘方与积的乘方

一、概述乘方是数学中常见的运算方式,而在七年级下册数学课程中,乘方的概念和运算更是重要的一部分。

其中,幂的乘方和积的乘方是学习乘方的重要内容,通过对这两个概念的深入理解和掌握,可以帮助学生更好地应用乘方运算解决实际问题,提高数学能力。

二、幂的乘方1. 幂的概念幂指的是将一个数自身相乘若干次,比如2的3次幂即为2乘以2乘以2,记作2^3。

2. 幂的运算规则a. 同底幂相乘:若a^n × a^m,即底数相同,指数相加,底数不变。

b. 同底幂相除:若a^n ÷ a^m,即底数相同,指数相减,底数不变。

c. 幂的乘方:(a^n)^m = a^(n×m),即一个数的幂再乘以一个数的幂等于这个数的幂的乘积。

3. 举例说明若有2^3 × 2^2,则根据同底幂相乘的规则,底数2不变,指数相加得到2^(3+2)=2^5,因此2^3 × 2^2=2^5。

三、积的乘方1. 积的概念积的乘方指的是将一个数的积自身相乘若干次,比如(2×3)的4次幂即为2×3乘以2×3乘以2×3乘以2×3,记作(2×3)^4。

2. 积的乘方运算规则a. 积的乘方展开:(a×b)^n = a^n × b^n,即括号中的积的乘方等于括号里的各项的乘方相乘。

b. 积的乘方合并:a^n × a^n = (a^n)^2 = a^(2n),即同底数的乘方相乘等于底数不变,指数相加。

3. 举例说明若有(2×3)^4,则根据积的乘方展开的规则,括号中的积的乘方等于2的4次幂乘以3的4次幂,即(2^4) × (3^4)。

四、应用举例1. 计算器计算通过计算器进行幂的乘方和积的乘方的计算。

2. 实际问题通过应用题来帮助学生更好地理解幂的乘方和积的乘方在解决实际问题中的应用。

五、总结通过对幂的乘方和积的乘方的理解和掌握,学生可以更好地进行乘方运算、解决实际问题。

七年级下册数学幂的运算

七年级下册数学幂的运算

七年级下册数学幂的运算一、幂的运算知识点。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n = a^m + n(a≠0,m、n为整数)。

- 例如:2^3×2^4 = 2^3 + 4=2^7 = 128。

- 推导:a^m表示m个a相乘,a^n表示n个a相乘,那么a^m· a^n就是(m + n)个a相乘,所以结果为a^m + n。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(a≠0,m、n为整数)。

- 例如:(3^2)^3 = 3^2×3=3^6 = 729。

- 推导:(a^m)^n表示n个a^m相乘,a^m中有m个a相乘,那么n个a^m相乘就有mn个a相乘,所以结果为a^mn。

3. 积的乘方。

- 法则:积的乘方等于乘方的积。

即(ab)^n=a^n b^n(a≠0,b≠0,n为整数)。

- 例如:(2×3)^2 = 2^2×3^2=4×9 = 36。

- 推导:(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)=⏟(a× a×·s× a)_n个a×⏟(b× b×·s×b)_n个b=a^n b^n。

4. 同底数幂的除法。

- 法则:同底数幂相除,底数不变,指数相减。

即a^m÷ a^n = a^m - n(a≠0,m、n为整数且m>n)。

- 例如:5^5÷5^3 = 5^5 - 3=5^2 = 25。

- 特殊情况:当m = n时,a^m÷ a^n=a^m - n=a^0,规定a^0 = 1(a≠0);当m < n时,a^m÷ a^n=(1)/(a^n - m)。

二、典型例题。

第八章 幂的运算(小结思考)(课件)七年级数学下册(苏科版)

第八章 幂的运算(小结思考)(课件)七年级数学下册(苏科版)
中的
①③④ ⁠(填序号).
11.若a=1.01×10-6,b=1.01×10-5,c=9.99×10-4,则a,b,c按从
解:∵a=1.01×10-6=0.00000101,
a<b<c
小到大的顺序排列为________________.
12.如果等式(2a-1)a+2=1,则a的值为
-2或1或0
____________.
A. x2m
B. x2m+1
C. x2m+2
D. xm+2
3.等式− = (−) ( ≠ )成立的条件是( A )
A. n是奇数 B. n是偶数
C.n是正整数
D. n是整数
课堂检测
4.生物学家发现一种病毒,用1015个这样的病毒首尾连接起来,
可以绕长约为4万km的赤道1周,一个这样的病毒的长度为( B )
加、减法
合并同类项(见七上第三章)
n个 am


同底数幂的乘法运算性质:
am·an=am+n (m、n是正整数)


同底数幂的除法运算性质:
am÷an=am-n (m、n是整数,a≠0)


am … am= amn
(am)n = am·
幂的乘方运算性质:
(am)n=amn (m、n是正整数)
积的乘方运算性质:
课堂检测
(2) 1+3+32+33+34+…+3n-1+3n(其中n为正整数).
解:(2) 设S=1+3+32+33+34+…+3n-1+3n①.
将等式两边同时乘3,
得3S=3+32+33+34+35+…+3n+3n+1②.
②-①,得3S-S=3n+1-1.

2023年北师大版七年级数学下册第一章《幂的运算》学案

2023年北师大版七年级数学下册第一章《幂的运算》学案

[]235223636532633224424432432153232333)().(102010.9.8)()().(76)2.(6)()().(5)(.4)(.3)(.22.1m m m a a a a y x x y y x x x a a a b b b x x x x x x x a a a m m m m m -=-÷--===÷-=-⋅--=-====-=-⋅-=-=-⋅=⋅-÷⨯⨯++ 新北师大版七年级数学下册第一章《幂的运算》学案复习目标:掌握幂的运算;并能运用幂的运算进行运算。

一、知识梳理:幂的运算性质:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘) 逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a aa a -==≠(底倒,指反)二、练习巩固: 判断以下各题是否正确填空题2.(-x )2·(-x )3=_________3.(a +b )·(a +b )4=_________4.0.510×211=_________5.化简:(x 2)4·x = .6.-(x 2)3=_________.7.(-21xy 2)2=_________. 8.(x 3)2·x 5=_________. 9. (-2)-2=________,(32)-3=________. 10.(-a )5÷(-a )=_____;选择题1.计算a -2·a 4的结果是( )A.a -2B.a 2C.a -8D.a 82.a 16可以写成( )A.a 8+a 8B.a 8·a 2C.a 8·a 8D.a 4·a 4 3.下列计算中,正确的有( )①x 3·x 3=2x 3; ②x 3+x 3=x 3+3=x 6; ③(x 3)3=x 3+3=x 6; ④[(-x )3]2=(-x )32=(-x )9. A.0个 B.1个 C.2个 D.4个4.下列计算中正确的是( )A.a 2·a 3=a 6B.(a 3)2=a 6C.(a 2b )3=a 6bD.a 8÷a 2=a 45.下列运算正确的是( )A.x 2+x 2=x 4B.x ·x 4=x 4C.x 6÷x 2=x 4D.(ab )2=ab 2 计算:1.32x x ⋅;2.m m ⋅7;3. (-1)5·[(-3)2]24.[(x 2)3·(-x )3]25. (x 2)3+[(-x )3]26. -12x 3y 4÷(-3x 2y 3)·(-31xy ).。

七年级幂的运算100道

七年级幂的运算100道

七年级幂的运算100道1. 计算 $2^3$。

2. 计算 $5^2$。

3. 计算 $(-3)^4$。

4. 计算 $(-2)^3$。

5. 计算 $10^0$。

6. 计算 $4^2$。

7. 计算 $(-5)^3$。

8. 计算 $3^4$。

9. 计算 $(-4)^2$。

10. 计算 $2^5$。

11. 计算 $(-6)^2$。

12. 计算 $7^3$。

13. 计算 $(-2)^4$。

14. 计算 $3^2$。

15. 计算 $(-8)^3$。

16. 计算 $5^4$。

18. 计算 $4^3$。

19. 计算 $(-7)^4$。

20. 计算 $2^6$。

21. 计算 $(-5)^2$。

22. 计算 $6^3$。

23. 计算 $(-2)^5$。

24. 计算 $8^2$。

25. 计算 $(-4)^3$。

26. 计算 $3^5$。

27. 计算 $(-6)^4$。

28. 计算 $9^2$。

29. 计算 $(-3)^3$。

30. 计算 $5^5$。

31. 计算 $(-7)^2$。

32. 计算 $2^7$。

33. 计算 $(-4)^4$。

35. 计算 $(-8)^3$。

36. 计算 $3^6$。

37. 计算 $(-5)^4$。

38. 计算 $7^2$。

39. 计算 $(-2)^6$。

40. 计算 $4^5$。

41. 计算 $(-6)^2$。

42. 计算 $8^3$。

43. 计算 $(-3)^5$。

44. 计算 $5^6$。

45. 计算 $(-7)^3$。

46. 计算 $2^8$。

47. 计算 $(-4)^2$。

48. 计算 $6^4$。

49. 计算 $(-8)^2$。

50. 计算 $3^7$。

52. 计算 $7^4$。

53. 计算 $(-2)^7$。

54. 计算 $4^6$。

55. 计算 $(-6)^3$。

56. 计算 $8^4$。

57. 计算 $(-3)^6$。

58. 计算 $5^7$。

59. 计算 $(-7)^5$。

苏科版七年级下册数学《幂的运算》课件

苏科版七年级下册数学《幂的运算》课件

你还记得吗?
4.同底数幂的除法法则
文字叙述: 同底数幂相除,底数不变,指数相减
字母表示: am÷an=am-n (a≠0 m,n是正整数 m>n)
扩大:
am÷an÷ap=am-n-p (a≠0 m,n,p是整数)
考考你
a8 ÷a3 =a8-3=a5
(½)5÷(½)3 =(1/2)5-3=(1/2)2=1/4 (-s)7÷(-s)2 =(-s)7-2=(-s)5=-s5
=4b4
(5) a8÷a4=a2 ×
=a4
(6) (-z)6÷(-z)2=-z4 ×
=z4
幂的运算中的方法与技能
类型一:熟练使用公式,正确进行各种计算
(1)m19÷m14·m3÷m2
=m5·m3÷m2 =m8÷m2
或=m19-14+3-2 =m6
=m6
(2)(x-y)8÷(x-y)4÷(y-x)3
am-n=am÷an amn= (an)m anbn= (ab)n
幂的运算中的方法与技能
类型二:逆用公式进行计算
例1.已知am=4,an=2.
求①am+n的值.②am-n的值.③ a3m+2n的值.④ a2m-n的值=am·an=m÷an=a3m·a2n
=a2m÷an
=4×2 =4÷2
=(am)3·(an)2
=(-x2n-2 ) ·(-x5) ÷x2n+1 =x2n+3÷x2n+1 =x2 (4)4-(-1/2)-2-32÷(-3)0 =4-4-9÷1 =4-4-9 =-9
注意:运算时第一确定
所含运算类型,理清运 算顺序,用准运算法则
幂的运算中的方法与技能
类型二:逆用公式进行计算

沪科版七年级数学下册8.1幂的运算8.1.1同底数幂的乘法优秀教学案例

沪科版七年级数学下册8.1幂的运算8.1.1同底数幂的乘法优秀教学案例
3.创设互动环节,让学生分享自己在生活中遇到的同底数幂乘法问题,增加学生之间的交流和合作。
(二)问题导向
1.设计具有启发性的问题,引导学生思考同底数幂乘法的规律,如“为什么同底数幂相乘时,指数要相加?”
2.鼓励学生提出问题,培养学生的疑问意识和批判性思维,引导学生主动探索同底数幂乘法的本质。
3.创设问题情境,让学生运用同底数幂的乘法知识解决实际问题,提高学生的应用能力。
3.鼓励学生分享自己的思路和方法,培养学生的团队合作能力和沟通能力。
(四)总结归纳
1.引导学生进行自我反思,总结自己在学习同底数幂乘法过程中的优点和不足,明确下一步的学习目标。
2.组织学生进行同伴评价,鼓励学生相互鼓励和肯定,培养学生的积极心态。
3.教师对学生的学习过程和结果进行评价,关注学生的思维过程和解决问题的能力,给予及时的反馈和指导。
2.组织学生进行同伴评价,鼓励学生相互鼓励和肯定,培养学生的积极心态。
3.教师对学生的学习过程和结果进行评价,关注学生的思维过程和解决问题的能力,给予及时的反馈和指导。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入同底数幂的乘法,例如计算一个正方体的体积,引导学生感受同底数幂乘法在实际生活中的应用。
2.通过多媒体展示同底数幂乘法的实际应用场景,如物理中的浮力计算、化学中的浓度计算等,让学生了解同底数幂乘法的重要性。
3.创设互动环节,让学生分享自己在生活中遇到的同底数幂乘法问题,增加学生之间的交流和合作。
(二)讲授新知
1.引导学生复习已学过的幂的定义和性质,为学生提供知识基础。
2.讲解同底数幂的乘法概念和运算法则,通过示例演示同底数幂相乘的规律。
3.小组合作学习:将学生分成小组,鼓励学生之间进行讨论和合作,共同探讨同底数幂乘法的规律。这种小组合作学习方式能够培养学生的团队合作能力和沟通能力,提高学生的学习效果。

七年级数学下册 7.2幂的运算教案 北京课改版 教案

七年级数学下册 7.2幂的运算教案 北京课改版 教案

第一节课:同底数幂的乘法
教学目标:
认知目标:了解同底数幂的乘法的性质
会利用同底数幂的乘法的性质进行计算
能力目标:通过幂的运算性质的形成和应用过程的教学,培养学生观察、归纳、猜想、论证的能力。

提高学生的计算和口算的能力。

教育目标:使学生了解和体会“特殊----一般----特殊”的认知规律,体验和学习研究问题的方法。

培养学生的思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯。

教学重点:了解同底数幂的乘法的性质的形成过程
会利用同底数幂的乘法的性质进行计算
教学难点:了解同底数幂的乘法的性质的形成过程
同底数幂乘法的运算性质与整式加法容易混淆
解决关键:在教学中强调每一个性质得来的根据不同,要引导学生在理解的基础上练习,培养学生的思维严谨性
教学方法:观察法,讨论法,启发式教育法
教学用具:多媒体辅助教学
教学过程:
板书设计:Array
课后记:。

七年级数学下册-第06讲 幂的运算(7大考点+7种题型+强化训练)(解析版)

七年级数学下册-第06讲 幂的运算(7大考点+7种题型+强化训练)(解析版)

【解答】解:由题意,得
2 23x 24 253x 223 , 5 3x 23 , 解得 x 6 ,
故答案为:6.
【点评】本题考查了同底数幂的乘法,利用幂的乘方得出同底数幂的乘法是解题关键.
6.(2023 春•江都区期末) ax 2 , a y 3 ,则 ax y 的值为 6 .
【分析】根据幂的乘方和同底数幂的乘法法则计算即可.
(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学 记数法表示一个数是否正确的方法.
五.同底数幂的除法
同底数幂的除法法则:底数不变,指数相减. am÷an=a m﹣n(a≠0,m,n 是正整数,m>n)
①底数 a≠0,因为 0 不能做除数; ②单独的一个字母,其指数是 1,而不是 0; ③应用同底数幂除法的法则时,底数 a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什 么.
f (a a a) f (a) f (a) f (a) 333 3111 33 , , f (10a) 310 , f (a) f (2a) f (3a) f (10a) 3 32 33 310 312310 355 . 【点评】本题主要考查同底数幂的乘法,数字的变化规律,解答的关键是理解清楚所给的新的运算. 9.(2023 春•仪征市期末)阅读材料,完成问题. 如果 ac b ,则 (a,b) c .例如: 32 9 ,则 (3,9) 2 . (1)填空: (4, 64) 3 , (2,1) , (3, 1 ) ;
【解答】解: ax 2 , a y 3 , axy ax ay , ax ay , 23, 6.
故答案为:6.
【点评】本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数

北京课改版数学七年级下册6.2《幂的运算》教学设计2

北京课改版数学七年级下册6.2《幂的运算》教学设计2

北京课改版数学七年级下册6.2《幂的运算》教学设计2一. 教材分析北京课改版数学七年级下册6.2《幂的运算》是学生在掌握了有理数的运算、整数的运算的基础上,进一步学习幂的运算。

这一节内容是整个初中数学的重要内容,也是后续学习代数、几何等知识的基础。

教材通过具体的例子,引导学生掌握幂的运算法则,并能够灵活运用。

二. 学情分析七年级的学生已经具备了一定的运算能力,对有理数、整数的运算比较熟悉。

但是,幂的运算是一个新的概念,对学生来说比较抽象,需要通过具体的例子和练习来理解和掌握。

同时,学生在这一阶段的学习中,需要培养逻辑思维能力和解决问题的能力。

三. 教学目标1.理解幂的运算法则,掌握幂的运算方法。

2.能够运用幂的运算解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.幂的运算法则的理解和运用。

2.幂的运算在实际问题中的应用。

五. 教学方法采用讲授法、示例法、练习法、讨论法等多种教学方法,通过教师的引导和学生的积极参与,使学生理解和掌握幂的运算。

六. 教学准备1.教学PPT或者黑板。

2.相关的教学案例和练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入幂的运算,例如:一个长方体的体积是2^3 * 3^2,问这个长方体的长、宽、高分别是多少?让学生思考和讨论,引出幂的运算。

2.呈现(10分钟)教师通过PPT或者黑板,展示幂的运算法则,并通过具体的例子来解释和说明。

让学生理解和掌握幂的运算方法。

3.操练(10分钟)让学生进行幂的运算练习,教师给予指导和反馈。

可以设置一些难度不同的问题,让学生根据自己的水平选择练习。

4.巩固(10分钟)通过一些综合性的问题,让学生运用幂的运算解决实际问题。

教师给予指导和反馈,帮助学生巩固幂的运算。

5.拓展(5分钟)通过一些拓展性的问题,让学生进一步理解和运用幂的运算。

可以设置一些开放性的问题,让学生进行思考和讨论。

6.小结(5分钟)教师引导学生对幂的运算进行小结,总结幂的运算法则,并强调幂的运算在实际问题中的应用。

沪科版七年级下册数学幂的运算第3课时课件

沪科版七年级下册数学幂的运算第3课时课件

15
-
2 3
12

解:原式=﹣215 312 315 212
﹣ 8 ; 27
(3)( (--xx22
y)7 y)4
;
(4)a2m1 a(m m是正整数).
解:原式=﹣xx184yy47 ﹣x6 y3;
解:原式=
a
m
am am
a
am1.
2.下面的计算对不对?如果不对,请改正.
(1)a5 a a5;
第8章 整式乘法与因式分解
8.1 幂的运算 第3课时
学习目标
1.经历同底数幂的除法法则的探索过程,理解同底 数幂的除法法则;
2.会用同底数幂的除法法则进行计算.(重点、难点)
回顾与思考 问题:幂的组成及同底数幂的乘法法则是什么?

an
指数
底数 同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加. 即aman=am+n(m,n都是正整数)
典例精析
例1 计算:
(1)x8 ; x5
解:(1)x8 =x85 x3; x5
(2)((xxyy))52 ;
(2)((xxyy))52 (xy)52 (xy)3 x3 y3;
(3)( (--xx) )94 ;
(4)xx2n33(n为正整数).
例2 计算:
(1)(x 1)3 (x 1)2; (2) 2x 2 y3 xy 2.
情境导入
一种液体每升含有1012个有害细菌,为了实验某 种杀菌剂的效果,科学家们进行了实验,发现1滴杀 菌剂可以杀死109个此种细菌.要将1升液体中的有害 细菌全部杀死,需要这种杀菌剂多少滴?
(1)怎样列式? 1012÷109
(2)视察这个算式,它有何特点?

初中数学初一数学下册《幂的运算》教案、教学设计

初中数学初一数学下册《幂的运算》教案、教学设计
学生在学习过程中,可能存在以下问题:1.对幂的运算性质理解不深刻,容易混淆同底数幂的乘除法则;2.在解决实际问题时,不能灵活运用幂的运算规律;3.部分学生对数学学习兴趣不足,学习积极性不高。
针对以上学情,教师在教学过程中应关注以下几点:1.通过生动有趣的实例引入幂的运算,激发学生的学习兴趣;2.注重启发式教学,引导学生自主探究、合作交流,提高学生对幂的运算规律的认知;3.设计有针对性的练习题,帮助学生巩固幂的运算法则,提高解题能力;4.关注学生的情感态度,鼓励学生积极参与课堂,培养良好的学习习惯。通过以上措施,使学生在掌握幂的运算知识的同时,提高数学素养,为后续学习奠定坚实基础。
初中数学初一数学下册《幂的运算》教案、教学设计
一、教学目标
(一)知识与技能
1.理解幂的概念,掌握幂的运算法则,包括同底数幂的乘法、除法、幂的乘方、积的乘方等基本运算法则。
2.能够运用幂的运算性质进行简便计算,解决实际问题,提高运算速度和准确率。
3.能够运用幂的运算规律进行数学推理,培养学生的逻辑思维能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:幂的概念、运算法则,以及在实际问题中的应用。
2.难点:同底数幂的乘除法则、幂的乘方、积的乘方的灵活运用。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过自主探究、合作交流,发现幂的运算规律。
(2)利用多媒体辅助教学,以生动形象的方式展示幂的运算过程,帮助学生理解幂的运算性质。
(4)拓展提高:结合实际问题,引导学生运用幂的运算规律解决问题,培养学生的数学应用意识。
(5)课堂小结:让学生总结幂的运算知识,形成知识体系,提高学生的概括能力。
3.教学评价:
(1)关注学生的学习过程,通过课堂表现、练习情况等多方面评价学生的学习效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册幂的
运算
--------------------------------------------------------------------------作者: _____________
同学个性化教学设计
年 级: 七年级 教 师: 王 科 目: 数学 班 主 任: 日 期: 时 段: 课题 幂的运算
教学目标
1.熟记幂的乘法的运算性质,了解法则的推导过程. 2.能熟练地进行幂的乘法运算. 3.通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想. 4.会逆用公式
重难点透视 幂的乘法的运算性质,幂的乘法计算;逆用公式
考点 幂的乘法运算;逆用公式
知识点剖析
序号 知识点
预估时间 掌握情况
1 同底数幂的乘法 30
2 幂的乘方 30
3 积的乘方 30 4
综合练习
30
教学内容
一:同底数幂的乘法
回顾:n a 表示 ,这种运算叫
做 ,
这种运算的结果叫 ,其中a 叫做 ,n
是 。

问题:一种电子计算机每秒可进行1210次运算,它工作310秒可进行多少次运算?
学一学: =⨯4222 =•42a a
=•m a a 2
议一议:通过上面的观察,你发现上述式子的指数和底数是怎样变化的? 【归纳总结】底数不变,指数相加 填一填:
知识点一、 乘方的概念
(3)硬盘容量为10G的计算机,大约能容纳多少亿字节?
总结:
(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论:
a m·a n表示同底数幂的乘法.根据幂的意义可得:
a m·a n=()
a a a
g gg g g
14243
m个a ·()
a a a
g gg g g
14243
n个a
=a a a
g gg g g
14243
(m+n)个a
=a m+n
a m·a n=a m+n(m、n都是正整数),
即为:同底数幂相乘,底数不变,指数相加
(3)分析:底数不变,指数相加。

底数不相同时,不能用此法则。

二:幂的乘方
知识回顾
1.32中,底数是___,指数是___,a n表示___________,那么29=________,(-2)9=________,52×53=________,32×34=________.
2.幂的乘方
(1)根据幂的意义解答:
①(32)3=____________________(幂的意义)
= _____________________(同底数幂相乘的法则)
= 32×3;
②(a m)2=________
= ________(根据a n·a m=a n+m);
③(a m)n= (幂的意义)个
= ______________(同底数幂相乘的法则)
= ________(乘法的意义).
(2)总结法则:(a m)n=________(m,n都是正整数).幂的乘方,底数________,指数________.
(1)(m2)m=________; (2)(a2)3=________.
探究点一幂的乘方
例1计算下列各题:
(1)(-a2)3; (2)(-a3)2; (3)(-a3)4·a12; (4)(-a3)2+a6.
规律总结:运用幂的乘方计算时,找准底数和指数很重要,然后底数不变,指数相乘.
●跟踪训练
1.(宿迁中考)计算(-a3)2的结果是()
A.-a5 B.a5 C.a6 D.-a6
2.下列运算中正确的是()
A.(x4)4=x8 B.x·(x2)3=x7 C.(x·x2)3=x6 D.(x10)10=x20
3.(102)3=________,-(b2)5=________, [(-n)2]3=________,(x3)4·x2=________.
4.计算:
(1)(102)3; (2)(a n-2)3; (3)(43)3;
(4)(-x3)5; (5)[(-x)2]3; (6)[(x-y)3]4.
究点二幂的乘方的逆用
例2已知a x=2,a y=3(x,y为正整数),求a3x+2y的值.
规律总结:考查幂的乘方公式的逆用的题目有很多种形式,关键是将指数进行合理的拆分,再结合同底数幂的乘法公式进行计算或化简.
●跟踪训练
5.x12=()6=()4=()3=()2.
6.填空:
(1)108=()2; (2)b27=(b3)(); (3)(y m)3=()m; (4)p2n+2=()2.
7.若x m·x2m=2,求x9m的值.
1.下列运算正确的是()
A.a2·a3=a4 B. (-a4)2=a4 C.a2+a3=a5 D.(a2)3=a6
2.下列各式错误的是()
A.(a3)m=a3+m B.[(a+b)2n]m=(a+b)2mn C.(a m)3=a3m D.(a+b)m(a+b)n=(a+b)m+n
3.a48=()6=( )3=( )2.
*4.若x n=3,则x3n=________.
5.(1)计算:
①(106)2;②(a m)4(m为正整数);③-(y3)2;④ (-x3)3.
(2)计算:
校长签字: ___________ 日期
----------THE END, THERE IS NO TXT FOLLOWING.------------。

相关文档
最新文档