果蝇的伴性遗传
果蝇伴性遗传
b
e
ⅢR 70.7
白眼
小翅
长翅
4、刚毛 卷 刚 毛
X
sn X
匙 状
直刚毛
三、材料、器具和药品:
1、材料: 红眼果蝇( 18号) 白眼果蝇( 22号) 2、用具和药品: 麻醉瓶、毛笔、培养基、大指 管、乙醚
四、实验步骤:
1、选处女蝇:选择红眼处女蝇和 白眼处女蝇各 5-10只。 2、杂交:准备好培养基,按正反 交组合,把已麻醉的红眼雌果蝇和白 眼雄果蝇 4 对与白眼雌果蝇和红眼雄 果蝇 4 对分别放入两个培瓶内培养, 贴好标签。第二天复查,死去的补上。 标签:伴性遗传:正交、日期、 姓名 或 反交、日期、姓名 。
计6-7天。
8、对比正反交结果并做χ2检验。
五、作业
对正反交结果作统计分析,并做χ2
检验 ,统计表见书,写出实验报告。
3、7-8天后,F1幼虫大量出现, 倒干净亲本。
4、3-4天后,观察F1成蝇的性状。
5 、 F1 代果蝇羽化后,麻醉,挑
选雌雄果蝇 3-5 对换入新的培养瓶内
继续培养。
6、6-7天后,F2幼虫大量出现,除
干净亲本。
7、3-4天后,F2代成蝇出现,麻醉
后,倒在白磁板上观察性状,雌雄分
开进行统计,每隔1-2天统计一次,统
实 验 七 果蝇伴性遗传
一、实验目的
1、正确认识伴性遗传的正,反交差
别,掌握伴性遗传的特点。
2、了解伴性性状与非伴性性状遗传
方式的差异。
二、实验原理:
1、伴性遗传:控制某性状的基因位 于性染色体上,该性状的遗传总是和性 别相关联的现象,称为伴性遗传或性连 锁。 2、果蝇的性染色体有 X 、 Y两种, 雌性为XX、雄性为XY。野生型红眼与 突变型白眼是由位于X染色体上的一对 等位基因(W-w)控制,此基因随X染 色体传递。野生型红眼与突变型白眼果 蝇杂交,正反交结果不同。
果蝇伴性遗传实验报告
果蝇伴性遗传实验报告实验目的本实验旨在通过果蝇的伴性遗传实验,探究某一特定基因的遗传规律。
实验材料和方法实验材料•成年果蝇•培养皿•饲料培养基•放大镜•显微镜•显微镜玻片实验方法1.在培养皿中准备饲料培养基。
2.选择一对成年果蝇作为父本,将其放入培养皿,供其产卵。
3.观察果蝇的产卵情况,等待卵孵化。
4.用显微镜观察孵化后的果蝇幼虫,记录其数量和特征。
5.将幼虫转移到新的培养皿中,继续观察其生长情况。
6.当果蝇幼虫变成成熟的果蝇时,用放大镜观察其性状,并记录下来。
7.重复上述步骤,进行多次实验,以便得到更准确的数据。
结果和分析通过多次实验,我们观察到了果蝇不同性状的表现,并得出以下结论:1.某些性状是具有显性遗传特征的,即只需一个基因即可表现出来。
2.另一些性状则是隐性遗传特征,需要两个相同的基因才能表现出来。
3.有一些性状表现出了伴性遗传的特点,即它们与其他基因的组合会影响其表现,而不仅仅取决于单个基因。
4.我们还观察到了一些变异现象,即基因突变导致了果蝇性状的变化。
通过这些观察和结论,我们可以推测果蝇的遗传规律并进行更深入的研究。
结论通过果蝇伴性遗传实验,我们成功地观察到了果蝇不同性状的遗传规律。
这对于进一步研究果蝇和其他生物的遗传特征具有重要意义。
通过深入研究果蝇的遗传规律,我们可以进一步理解基因在生物体内的作用和影响,并对人类的遗传疾病和基因治疗等方面提供有益的启示。
致谢感谢所有参与实验的人员以及提供实验材料的机构的支持和配合。
感谢实验过程中的帮助和指导。
果蝇的伴性遗传实验报告
一、实验目的1. 了解伴性遗传的基本原理和特点。
2. 通过果蝇的杂交实验,验证伴性遗传的规律。
3. 掌握伴性遗传的实验操作和数据分析方法。
二、实验原理伴性遗传是指位于性染色体上的基因在遗传过程中,其传递方式与性别有关。
在果蝇中,伴性遗传主要表现为X染色体上的基因遗传。
由于雌蝇有两个X染色体,而雄蝇有一个X染色体和一个Y染色体,因此伴性遗传的基因在雌雄个体之间的传递方式存在差异。
本实验以果蝇为材料,通过观察红眼和白眼性状的遗传规律,验证伴性遗传的规律。
三、实验材料1. 果蝇品系:野生型(红眼)XX、突变型(白眼)XWY2. 果蝇培养箱、培养皿、镊子、解剖针、酒精、蒸馏水、显微镜、载玻片、盖玻片等四、实验步骤1. 正交实验(1)将野生型雌蝇和突变型雄蝇放入同一培养皿中,进行交配。
(2)待果蝇产卵后,将卵收集并放入培养皿中孵化。
(3)观察F1代果蝇的性状,统计红眼和白眼的比例。
2. 反交实验(1)将突变型雌蝇和野生型雄蝇放入同一培养皿中,进行交配。
(2)待果蝇产卵后,将卵收集并放入培养皿中孵化。
(3)观察F1代果蝇的性状,统计红眼和白眼的比例。
3. F2代实验(1)将F1代果蝇进行自交,或将F1代果蝇与突变型雄蝇进行交配。
(2)待果蝇产卵后,将卵收集并放入培养皿中孵化。
(3)观察F2代果蝇的性状,统计红眼和白眼的比例。
五、实验结果与分析1. 正交实验F1代果蝇中,红眼和白眼的比例为1:1。
F2代果蝇中,红眼和白眼的比例为3:1。
结果表明,伴性遗传遵循孟德尔的分离定律。
2. 反交实验F1代果蝇中,红眼和白眼的比例为1:1。
F2代果蝇中,红眼和白眼的比例为1:1。
结果表明,伴性遗传遵循孟德尔的分离定律,且伴性遗传的基因位于X染色体上。
六、实验结论1. 伴性遗传是指位于性染色体上的基因在遗传过程中,其传递方式与性别有关。
2. 伴性遗传遵循孟德尔的分离定律。
3. 本实验通过果蝇的杂交实验,验证了伴性遗传的规律。
果蝇的伴性遗传杂交课件
要点二
展望
通过对果蝇伴性遗传现象的深入研究,不仅可以推动对性 别决定和性别分化机制的理解,也有助于解决一些社会问 题,如性别比例失调等。同时,果蝇作为重要的模式生物, 其研究成果也将有助于对其他生物性别决定和性别分化机 制的研究和理解。
1.谢谢聆 听
04
杂交实验的准备
实验材料准备
挑选健康且性成熟的果蝇,确保 其处于适宜的生理状态。同时准 备实验器材,如培养皿、盖玻片、
染色剂等。
实验设计
根据研究目的和要求,确定合适的 杂交组合和分组,制定实验方案。
实验场地选择
选择安静、无污染的实验场地,确 保实验过程中不受外界干扰。
杂交实验的操作流程
亲本选择
选择适合的果蝇亲本,要求其具有不 同的伴性遗传特征,以便产生具有特 定遗传特征的后代。
01
02
配对操作
将选择的亲本果蝇进行配对,根据实 验设计要求,可采用单对或群体配对 的方式。
03
交配诱导
通过食物或化学诱导方法,促进果蝇 进行交配,提高交配成功率。
后代筛选
根据伴性遗传的特征,对培养出的后 代进行筛选,选择具有特定遗传特征 的果蝇。
挑战所在
果蝇的伴性遗传机制复杂,涉及的基因和分 子调控网络庞大,对其实质的理解需要不断 深入。此外,由于果蝇的繁殖和饲养条件对 实验结果的影响不可忽视,因此需要严格控
制实验条件。
研究前景与展望
要点一
研究前景
随着技术的不断进步和研究手段的不断创新,对果蝇伴性 遗传的研究前景广阔。未来可以通过构建果蝇基因组数据 库、开发新的遗传筛选方法等手段,更深入地探究果蝇的 伴性遗传机制。
02
伴性遗传通常与性别决定和性别 分化有关,涉及到多个基因和环 境因素的相互作用。
果蝇的伴性遗传实验报告
果蝇的伴性遗传实验报告果蝇(Drosophila melanogaster)是遗传学研究中常用的模式生物,其简单的遗传特性使其成为理想的实验材料。
伴性遗传是指两个或多个基因位点在同一染色体上,由于其距离较近而难以在减数分裂过程中进行重组,从而导致这些基因的遗传特性表现出一定的关联性。
本实验旨在通过观察果蝇的眼色和翅膀形态的遗传规律,来探究伴性遗传的表现情况。
首先,我们选择了具有红眼睛和长翅膀的雄性果蝇(XRYR)与具有白眼睛和短翅膀的雌性果蝇(XrYr)进行交配。
根据伴性遗传的规律,我们预期会观察到红眼睛和长翅膀的表型会更多地与Y染色体相关联,而白眼睛和短翅膀的表型会更多地与X染色体相关联。
交配后的果蝇子代中,我们观察到了一定的规律。
其中,红眼睛和长翅膀的表型在雄性果蝇中占绝大多数,而白眼睛和短翅膀的表型在雌性果蝇中占绝大多数。
这一结果与我们的预期相符,说明了伴性遗传的存在。
接着,我们进行了进一步的实验,选择了具有红眼睛和长翅膀的雌性果蝇(XRXR)与具有白眼睛和短翅膀的雄性果蝇(XrY)进行交配。
根据伴性遗传的规律,我们期望会观察到红眼睛和长翅膀的表型在雌性果蝇中占绝大多数,而白眼睛和短翅膀的表型在雄性果蝇中占绝大多数。
在这一实验中,我们同样观察到了一定的规律。
红眼睛和长翅膀的表型在雌性果蝇中占绝大多数,而白眼睛和短翅膀的表型在雄性果蝇中占绝大多数。
这一结果再次验证了伴性遗传的存在,并且进一步加深了我们对伴性遗传规律的理解。
综上所述,通过对果蝇的伴性遗传实验,我们成功观察到了伴性遗传的表现情况。
实验结果表明,果蝇的眼色和翅膀形态的遗传特性与其性别和染色体有着密切的关联,符合伴性遗传的规律。
这一研究为我们进一步深入理解伴性遗传提供了重要的实验依据,也为果蝇作为遗传学模式生物的应用提供了有力支持。
希望本实验能够为遗传学领域的研究提供有益的参考和启发。
果蝇的伴性遗传
果蝇的伴性遗传摘要伴性遗传是指性染色体上的基因所控制的性状的遗传方式。
本实验通过来认识伴性遗传的正、反交的原理,从而确定果蝇的红白眼性状的基因位于X染色体上,而Y染色体上没有相应的等位基因,是x-连锁的伴性遗传。
前言当基因位于决定性别的性染色体上的时候,它的遗传就与性别密切联系起来,这种与性别相联系的遗传现象叫做伴性遗传,决定伴性遗传的基因位于性染色体上,叫伴性基因。
伴性遗传根据决定性状的基因的性质和所处的位置,可分为伴X染色体隐性遗传、伴X染色体显性遗传、伴Y染色体遗传三种。
果蝇为XY型的性别决定,雌蝇为XX,是同配性别;雄性为XY,是异配性别。
位于性染色体上的基因,其传递方式与位于常染色体上基因不同,它的传递方式将随着性染色体的移动而传递。
白眼性状是X连锁的隐性遗传方式;其相对的显性性状为红眼(野生型),这对相对性状也遵循孟德尔的分离定律。
材料与方法材料黑腹果蝇品系野生型(红眼) wild type (+)突变型(白眼)white eye(w)毛笔,乙醚,麻醉瓶、果蝇培养基、酒精灯、解剖针、解剖镜、玻璃板、恒温箱、显微镜。
方法1、第一周:选处女蝇,选择纯和红眼处女蝇(X+X+)和纯和白眼处女蝇(X w X w)将亲本处女蝇和雄蝇分别麻醉,取2只红眼处女蝇(X+X+)和两只白眼雄蝇(X w Y)为正交组,取2只白眼处女蝇(X w X w)和2只红眼雄蝇(X+Y)作为反交组,将以上两组移到新的杂交瓶中,贴好标签,于25℃培养;2、第二周:7d后,释放杂交亲本(一定要干净)再放回25℃培养。
制备新的培养基以备第三周使用。
3、第三周: F1成蝇出现,集中观察记录F1眼色和性别表型;从正反交中选取2对F1代果蝇,转入一新培养瓶,于25℃培养;4、第四周:将培养瓶中F1亲本全部处死,继续培养;5、第五周:F2成蝇出现,开始观察记录眼色和性别,再放回恒温箱中继续培养;6、第六周:继续统计F2的性状与数量。
医学:果蝇的形态鉴别和伴性遗传分析
03 果蝇的遗传分析方法
染色体数目和结构分析
染色体数目
果蝇的染色体数目是恒定的,通 过观察染色体的数目可以判断是 否存在染色体变异。
染色体结构
通过观察染色体的形态、大小、 着丝粒位置等特征,可以分析染 色体结构的变异。
基因定位和突变分析
基因定位
通过遗传标记和连锁分析,可以将基 因定位到特定的染色体上。
伴性遗传的机制
伴性遗传的机制主要包括基因突变、染色体变异和基 因重组等。
输标02入题
基因突变是指基因序列的改变导致基因表达的改变, 从而影响表型特征。
01
03
基因重组是指在有性生殖过程中,来自不同亲本的基 因在配子形成过程中发生交换或重排,导致后代出现
新的基因组合,从而影响表型特征。
04
染色体变异是指染色体数目或结构的改变导致基因表 达的改变,从而影响表型特征。
05 展望与未来发展
基因编辑和基因组编辑技术
基因编辑技术
CRISPR-Cas9系统是目前最常用的基因编辑 工具,它能够精确地定位和修改果蝇的基因 组,为研究果蝇的形态和伴性遗传提供了强 大的手段。
基因组编辑技术
随着技术的进步,未来可能会出现更加高效 和精确的基因组编辑技术,这将有助于更深 入地研究果蝇的遗传机制和伴性遗传规律。
人类红绿色盲
红绿色盲基因位于X染色体上,男性发病率高于女性,因为男性只有一个X染色 体,而女性有两个X染色体,只有当两个X染色体上都携带色盲基因时才会发病。
血友病
血友病基因也位于X染色体上,男性发病率高于女性,因为男性只有一个X染色 体,而女性有两个X染色体,只有当两个X染色体上都携带血友病基因时才会发 病。
毒理学研究
果蝇可以用于研究化学物质、环境污染物和药物的毒性和致畸作用,为人类健康风险评估提供依据。
果蝇伴性遗传实验报告
果蝇伴性遗传实验报告果蝇伴性遗传实验报告引言:伴性遗传是一种遗传现象,指的是一对基因位点位于同一染色体上,它们之间的距离较近,导致它们很少在减数分裂过程中发生重组。
果蝇(Drosophila melanogaster)作为一种常用的实验模式生物,因其繁殖快速、遗传特性明确而被广泛应用于伴性遗传研究。
本实验旨在通过果蝇伴性遗传实验,观察和分析果蝇的遗传特性。
材料与方法:实验所需材料包括果蝇、培养皿、标签、显微镜等。
首先,我们选择了具有不同表型特征的果蝇群体进行实验,其中包括正常翅膀和变异翅膀的果蝇。
然后,将这些果蝇分别放置在不同的培养皿中,并在每个培养皿上贴上标签以便于识别。
接下来,我们观察了果蝇的繁殖情况,并记录下每一代果蝇的表型特征。
最后,使用显微镜对果蝇的遗传特性进行进一步分析。
结果与讨论:通过观察果蝇的繁殖情况和表型特征,我们发现了一些有趣的现象。
首先,我们注意到正常翅膀的果蝇在繁殖过程中表现出明显的优势。
在每一代中,正常翅膀的果蝇数量明显多于变异翅膀的果蝇数量。
这表明正常翅膀的基因在果蝇群体中具有显著的优势。
进一步观察发现,正常翅膀的果蝇在繁殖中往往会产生更多的正常翅膀后代。
然而,我们也注意到,在正常翅膀果蝇的后代中,偶尔会出现一些变异翅膀的个体。
这可能是由于伴性遗传中的某些基因重组导致的。
通过显微镜的观察,我们进一步研究了果蝇的遗传特性。
我们发现果蝇的染色体结构与人类的染色体结构有一定的相似性。
果蝇的染色体呈现为条带状,其中包含了许多基因位点。
通过观察这些基因位点的分布情况,我们可以更好地理解果蝇的遗传特性。
结论:通过果蝇伴性遗传实验,我们得出了一些有关果蝇遗传特性的结论。
正常翅膀的果蝇在繁殖过程中具有明显的优势,并且在后代中产生更多的正常翅膀个体。
然而,由于伴性遗传中的基因重组,偶尔会出现一些变异翅膀的个体。
通过进一步观察果蝇的染色体结构,我们可以更好地理解果蝇的遗传特性。
本实验为果蝇伴性遗传研究提供了有价值的数据和结果。
实验六果蝇的伴性遗传
♀ +w
野生型
w♂
白眼
F1 代自交 F2 基因型
♀野生型 × 白眼♂
+w w
7
去
~
亲
8
本
天
F2
+
w
w
+w
ww
+
w
F2表型比例为 ♀ 野生型1:白眼1, ♂野生型1:白眼1
五、实验结果与分析
正交组合:F2果蝇数目统计
子代类型 统计日期
♂红眼 ♂白眼 ♀红眼 ♀白眼
合计 百分比
反交组合: F2果蝇数目统计
结论:P
,观察值与期望值之间的差异
〔不
显著/显著/极显著〕,实验结果
〔符合/不符合〕9:
3:3:3:1的别离比。
三. 实验材料、器具及试剂
1.实验材料:野生型果蝇〔+/+〕、白眼果蝇 〔w/w〕w在X染色体上。
2.器具:麻醉瓶、白瓷板,海绵,放大镜,毛笔, 镊子,培养瓶。
3. 药品:乙醚,玉米粉,琼脂,蔗糖.酵母粉, 苯甲酸。
四、实验步骤 1.正交:P ♀野生型 × 白眼♂
基因型 配子
++
w
蝇的伴性遗传
一. 实验目的
正确认识伴性遗传的正、反交的差异 记录交配结果和掌握统计处理方法
二. 实验原理
真核生物的染色体组中存在着一个或者 一对性别决定有关的染色体,称为性染色体。 性染色体上的基因在子代中的遗传方式称伴 性遗传,XY染色体仅在很小区域中配对,同 时Y染色体上所含的基因往往很少,使得X染 色体上的很多基因无论显隐性都能表现出来, 从而使性状在后代中的分布与性别有关并表 现穿插遗传的现象。
果蝇的伴性遗传
实验用品
材料 野生型果蝇(X+ X+, X+Y)、白眼果蝇 野生型果蝇( )、白眼果蝇 (XW X W , XWY) 显微镜、麻醉瓶、白纸、 用具 显微镜、麻醉瓶、白纸、毛笔 乙醚、 试剂 乙醚、培养基
实验步骤
1 、收集处女蝇 。 分别将用于杂交的两亲本果蝇麻醉,按正、 2 、杂交接种 分别将用于杂交的两亲本果蝇麻醉,按正、 反交设计,取所需雌、雄果蝇5 25℃ 反交设计,取所需雌、雄果蝇5-6对,置25℃恒温培养 箱中培养,做好标记。 箱中培养,做好标记。 25℃ 天后,放去亲本蝇。 3、弃去亲本蝇 25℃条件下培养 7-8天后,放去亲本蝇。 4 、 观察F1 代雌、 雄蝇的性状表现 收集5 - 6 对 F1 代果蝇 观察 F 代雌 、 收集 5 注意:正反交不能混杂)放入一新培养瓶, ( 注意 : 正反交不能混杂 ) 放入一新培养瓶 , 用以观 代的性状表现。 察F2代的性状表现。 继续培养7 移去F 代亲本。 5、继续培养7-8d后,移去F1代亲本。 再培养4 代成蝇出现,开始观察并统计F 6、再培养4-5d,F2代成蝇出现,开始观察并统计F2代的 性状表现类型及数目,连续统计7 性状表现类型及数目,连续统计7-8d。
实验结果
设计表格将F2代各表型个体数填入表中,进行 设计表格将 代各表型个体数填入表中,进行X2 检验 代各表型个体数填入表中 解释性连锁遗传中,正、反交结果不同的原因 解释性连锁遗传中,
果蝇的伴性遗传
实验目的
了解伴性遗传和常染色体遗传Fra bibliotek区别 进一步理解和验证伴性遗传和分离、连 锁交换定律
实验原理
生物某些性状的遗传常与性别联系在一起,这种现象 生物某些性状的遗传常与性别联系在一起, 称为伴性遗传(sexinheritance) 称为伴性遗传 ( sex-linked inheritance), 这是由于 支配某些性状的基因位于性染色体上。 支配某些性状的基因位于性染色体上。性染色体是指直 接与性别有关的一对或一个染色体。果蝇属XY型生物, XY型生物 接与性别有关的一对或一个染色体。果蝇属XY型生物, 共有四对染色体,雌果蝇的性性染色体构型为XX,、雄 XX,、 共有四对染色体,雌果蝇的性性染色体构型为XX,、雄 果蝇为XY。遗传上支配性状的基因位于X染色体上称作X 果蝇为XY。遗传上支配性状的基因位于X 染色体上称作X XY 连锁, 支配性状的基因位于Y 染色体上称作Y 连锁, 连锁 , 支配性状的基因位于 Y 染色体上称作 Y 连锁 , 但 Y 染色体上基因极少, 故一般为X 连锁。 染色体上基因极少 , 故一般为 X 连锁 。 控制果蝇眼色的 基因位于X染色体上, 基因位于X染色体上,在Y染色体则没有与之相应的等位 基因。将红眼( 果蝇和白眼( 果蝇杂交, 基因。将红眼(+)果蝇和白眼(w)果蝇杂交,其后代 眼色的表现与性别有关。而且,正反交的结果不同。 眼色的表现与性别有关。而且,正反交的结果不同。
果蝇的伴性遗传实验报告
果蝇的伴性遗传实验报告果蝇的伴性遗传实验报告引言:伴性遗传是指两个或多个基因位点在同一染色体上,并以非随机方式传递给后代。
果蝇是伴性遗传实验的经典模型生物,其短寿命、易于繁殖以及基因组的相对简单性使其成为遗传学研究的理想对象。
本实验旨在通过观察果蝇群体中特定基因的分离和联合现象,探究果蝇伴性遗传的机制。
材料与方法:实验所用果蝇为野生型(红眼白体)与突变型(紫眼黑体)的混合群体。
实验过程中,将果蝇分为实验组和对照组,每组各100只。
实验组果蝇的父本为突变型,母本为野生型,对照组果蝇的父本与母本均为野生型。
结果与讨论:实验结果显示,实验组果蝇的后代中出现了突变型果蝇(紫眼黑体)的比例明显高于对照组。
这一结果表明,突变型基因与野生型基因在同一染色体上,且以非随机方式传递给后代。
进一步观察发现,在实验组果蝇的后代中,突变型果蝇的性别比例也发生了变化。
突变型果蝇雄性的比例较高,而雌性的比例较低。
这表明,在果蝇伴性遗传中,基因与性别之间可能存在一定的关联性。
对于果蝇伴性遗传的机制,有几种可能的解释。
首先,伴性遗传可能是由于染色体的结构特点所导致。
果蝇的性染色体是一对不完全同源的染色体,其中一条染色体上携带着伴性基因。
这种染色体结构使得伴性基因与性别之间存在一定的联系。
其次,伴性遗传也可能与基因之间的连锁效应有关。
连锁效应是指位于同一染色体上的基因倾向于一起遗传给后代。
在果蝇伴性遗传实验中,突变型基因与野生型基因位于同一染色体上,因此它们具有连锁效应,导致突变型基因的传递率较高。
最后,果蝇伴性遗传还可能与基因间的相互作用有关。
某些基因在遗传过程中可能会相互影响,从而导致特定基因的传递率发生变化。
这种相互作用可能与基因的表达调控有关,但具体机制尚需进一步研究。
总结:通过果蝇的伴性遗传实验,我们观察到了突变型基因在果蝇群体中的传递规律。
结果表明,果蝇伴性遗传可能与染色体结构、连锁效应以及基因间的相互作用有关。
深入研究果蝇伴性遗传的机制,将有助于我们更好地理解遗传学中的连锁遗传现象,并为人类疾病的遗传机制研究提供有益的参考。
资料:果蝇系列杂交实验-果蝇的伴性遗传
果蝇的伴性遗传陈钧瑜08342045(中山大学生命科学学院08级生物技术广州510275)摘要:为了进一步了解伴性遗传,认识伴性遗传正、反交的差别,同时熟悉雌雄果蝇的鉴别方法和掌握伴性遗传的实验和统计方法,该实验选取了野生型的红眼果蝇和突变型的白眼果蝇作为亲本进行正交和反交,通过观察F1代与F2代的红、白眼形状,进行性状分离的统计,用χ2检验法检验果蝇伴性遗传定律。
关键词:黑腹果蝇;伴性遗传;χ2检验在很多生物中有性染色体,而性别与这些性染色体有密切的关系,如果基因位于染色体上,那么在性染色体上也会有基因,这些基因的遗传方式就会与性别有关。
遗传学上,将位于性染色体上的基因所控制的性状遗传方式,叫做伴性遗传(sex-linked inheritance)[1]。
伴性基因主要位于X染色体上,Y染色体上没有相应的等位基因。
决定红眼、白眼的基因位于X染色体上,是一对等位基因。
除了XY性别决定基因外,还有ZW性别决定基因,位于Z染色体上的基因的行为类似于X连锁基因的遗传[2]。
非伴性基因的F1代均表现显性性状,而伴性基因,在正交情况下,F1代和非伴性遗传相同,而在反交情况下,F1代会出现隐性性状。
由此可以看出,正交和反交后代(F1、F2)的性状表现是不同的,这反映出性染色体和常染色体基因的遗传方式的差别,子代雄性个体的X染色体均来自母本,而父本的X染色体总是传递给子代雌性个体,这是伴性遗传的一个重要特征。
1材料与方法1.1主要试剂和仪器1.1.1 实验仪器和用具恒温培养箱,培养瓶,麻醉瓶,白瓷板,毛笔,镊子,双目解剖镜。
1.1.2实验材料和试剂黑腹果蝇(Drosophila melanogaster)野生型(红复眼品系)(+)和突变型(白复眼品系)(w),乙醚,乙醇棉球,麸皮,红糖,琼脂,酵母,丙酸。
1.2实验方法与步骤1.2.1材料准备和处理挑选和收集雌性(♀)红眼[+]处女蝇,雌性(♀)白眼[w]处女蝇。
实验四 果蝇的杂交——伴性遗传
四. 实验步骤
• 选取处女蝇:选取12小时之内孵化出来 的贞蝇。
• 杂交:正交 红眼♀ Ⅹ 白眼♂ 反交 白眼♀ Ⅹ 红眼♂
• 每瓶放入3—5对果蝇,贴好标签,注明 杂交组合,杂交日期及实验者姓名。
野生型
红眼
白眼
白眼
五. 杂交实验安排
• 确定杂交组合并倒去父、母本亲蝇。 • 12小时之内挑选贞蝇,正交和反交管各
实验四 果蝇的杂交—伴性遗传
二. 原理
• 位于性染色体上的基因叫做伴性基因,其遗传方 式与位于常染色体上的基因有一定的差别,它在 亲代与子代之间的传递方式与雌雄性别有关。伴 性基因的这种传递方式就称为伴性遗传。
• 果蝇的性别决定类型是XY,具有X和Y两种性染色 体,雌性是XX,为同配性别,雄性是XY,为异配 性别。伴性基因主要位于X染色体上,而Y染色体 上基本没有相应的等位基因。所以这类遗传也叫 X连锁遗传。
思考题
• 如何选取处女蝇? • 做实验时为什麽要做正反交? • 列出一些果蝇的伴性遗传性状。
三. 材料与方法
1.材料: 2. 野生型果蝇: 3. 突变型果蝇:
红眼 白眼
2. 试剂: 100%乙醚、琼脂、红糖/蔗糖、玉米粉 、酵母粉、丙酸。
3. 用具: 解剖针、直管瓶、麻醉瓶、棉塞 灭菌锅。
4. 果蝇麻醉方法: 将直管瓶中的果蝇快速倒入麻醉瓶中并立即盖上棉塞, 向麻醉瓶的侧口滴加2-3滴100%乙醚,晃动麻醉瓶至果 蝇麻醉。性状观察实验果蝇深度麻醉,杂交实验则轻 度麻醉。
• 控制果蝇红眼和白眼性状的基因位于X染色体 上,在Y染色体上没有相应的等位基因,它们 随着X染色体而传给下一代。如以纯合红眼雌 蝇和纯合白眼雄蝇杂交,子代均为红眼,F2代 中雌蝇均为红眼,雄蝇中半数为红眼,半数为 白眼。以纯合白眼雌蝇与纯合红眼雄蝇杂交F1 代雌蝇均为红眼,雄蝇均为白眼,F2代中无论 雄蝇和雌蝇均有半数为红眼,半数为白眼。正 反交结果不同,这是伴性遗传的典型特点。
果蝇的伴性遗传
果蝇的伴性遗传【摘要】位于性染色体上的基因的遗传方式与位于常染色体上的基因有一定的差别,它在亲代与子代之间的传递方式与性别有关。
非伴性遗传基因的杂种一代均表现显性性状,而伴性基因,在特定的杂交组合中,杂种一代则会表现出隐形性状。
如果用红眼果蝇作母本,白眼果蝇作父本,子一代雌雄果蝇均表现为红眼。
相反,用白眼果蝇作母本,红眼果蝇作父本,子一代中,雌蝇全为红眼,雄蝇全为白眼。
由此可见,它的遗传与雌雄性别有关。
果蝇的性染色体有X和Y两种,雌蝇为XX,是同配性别;雄蝇为XY,是异配性别。
【关键词】果蝇正交反交伴性遗传遗传学统计处理方法【前言】果蝇属昆虫纲、双翅目、果蝇科、果蝇属。
至今仍是遗传学、细胞生物学、分子生物学等研究中最为成熟的模式生物。
遗传学研究材料经常用黑腹果蝇。
果蝇作为遗传学研究材料具有以下优点:(1)、个体小,易于饲养,培养成本低廉,生活周期短(25°左右,约10d反之一代)。
(2)、繁殖能力较强,在适宜的温度和营养条件下每只受精的雌蝇可产卵约几百乃至上千粒,在短时间内可产生较多的子代供统计及遗传分析。
(3)、突变类型多,且多数为外部形态特征的变异,易于观察。
(4)、染色体数目少(2n=8),具备唾腺染色体,可用于基因的染色体定位研究。
原理:由性染色体上基因所控制的遗传性状叫伴性遗传,因为这些性状的表现总是与性染色体的动态一致的所以又称性连锁。
依据:在一个物种中第一个有广泛实验证据的性连锁出自1910年Morgan所发现的白眼突变型果蝇。
一个基因发生了改变,导致了在果蝇的发育中引起终产物的变更。
结果,这种改变的本身表现为复眼呈白色而不是红色。
把白眼雄蝇和红颜雌蝇进行交配,F1代果蝇全为红眼,但F2代两种果蝇都有,其比例为3只红眼1只白眼。
更为细致的观察表明F2代白眼果蝇都是雄性的。
F2代雄蝇大约半数为白眼,半数为红眼,可所有的雌蝇都是红眼。
那么白眼雌蝇有可能发生吗?Morgan以这基因又X染色体携带假说为基础,预言应产生基因型为w w的白眼雌蝇。
实验六 果蝇的伴性遗传
χ2测定:
2 (观察值-理论值) 2 ∑ χ = 理论值
根据χ 2测定,查χ 2表,若P>5%,说明观察值与 理论值之间的偏差是没有意义的,可以认为观察值是 符合假设的。眼色这对性状是由位于性染色体X上的 一对等位基因控制的。
实验六 果蝇的伴性遗传
一、实验目的
1. 掌握果蝇的杂交技术。 2. 正确认识伴性遗传的正、反交差别。 3. 记录交配结果和熟练运用生物统计方法对试验数据 进行分析。
二、实验原理
位于性染色体上的基因,其传递方式与位于常染 色体上的基因不同,它的传递方式与雌雄性别有 关,因此称为伴性遗传。
果蝇的性染色体有X和Y两种,雌蝇为XX,是同 配性别;雄性为XY,是异配性别。
遗传上支配性状的基因位于 X 染色体上称作 X 连 锁,支配性状的基因位于 Y 染色体上称作 Y 连锁, 但 Y 染色体上基因极少,故一般为 X 连锁。
果蝇的性连锁遗传是由托马斯· 亨利· 摩尔根在 1910年首先报告的。摩尔根发现了一只白眼果蝇, 由之发展成为一个真实遗传的白眼株系,并证明 了白眼基因是与X染色体连锁的。
1
女性正常
X B Y X bY : 1 : 1
男性正常 色盲男性
三、实验材料、器具和药品
1. 试验材料 野生型(红眼)果蝇(X+X+,X+Y) 突变型(白眼)果蝇(XWXW,XWY)
2. 试验器具
双筒解剖镜、麻醉瓶、毛笔、镊子、培养瓶等 3. 试验药品
玉米面、干酵母、丙酸、乙醚等
四、实验方法及步骤
1.实验前4-5天收集雌果蝇品系的处女蝇。由于雌 蝇生殖器官中有贮精囊,一次交配可保留大量精 子,供多次排卵受精用,因此做杂交试验前必须 收集未交配过的处女蝇。由于孵化出的幼蝇在810h之内不交配,因此必须在这段时间内把 ♀、 ♂蝇分开培养,所得到的♀蝇即为处女蝇。
实验七:果蝇的伴性遗传
实验七果蝇的伴性遗传一、目的1、记录交配结果和掌握统计处理方法;2、正确认识伴性遗传的正、反交的差别。
二、原理1910年,摩尔根在实验室中无数红眼果蝇中发现了一只白眼雄蝇。
让这只白眼雄蝇与野生红眼雌蝇交配,F1全是红眼果蝇。
让F1的雌雄个体相互交配,则F2果蝇中有3/4为红眼,l/4为白眼,但所有白眼果蝇都是雄性的。
这表明,白眼这种性状与性别相连系,外祖父的性状通过母亲遗传给儿子。
这种与性别相连的性状的遗传方式就是伴性遗传。
摩尔根等对这种遗传方式的解释是:果蝇是XY型性别决定动物,控制白眼的隐性基因(W)位在X性染色体上,而Y染色体上却没有它的等位基因。
如果这种解释是对的,那么白眼雄蝇就应产生两种精子:一种含有X染色体,其上有白眼基因(W),另一种含有Y染色体,其上没有相应的等位基因;F1杂型合子(Ww)雌蝇则应产生两种卵子:一种所含的X染色体,其上有红眼基因(W);另一种所含的X染色体,其上有白眼基因(W);后者若与白眼雄蝇回交,应产生1/4红眼雌蝇,l/4红眼雄蝇,1/4白眼雌蝇,l/4白眼雄蝇。
实验结果与预期的一样,表明白眼基因(W)确在X染色体上。
果蝇的性染色体有X和Y 两种类型.雌蝇细胞内有2条X染色体,为同配性别(XX),雄蝇为XY是异配性别.性染色体上的基因在其遗传过程中,其性状表达规律总是与性别有关.因此,把性染色体上基因决定性状的遗传方式叫伴性遗传。
果蝇的红眼与白眼是一对由性染色体上的基因控制的相对性状。
用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代相互交配,F2代则雌性均为红眼,雄性红眼:白眼=1:1;相反用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼,F1相互交配得F2代,雌蝇红眼与白眼比例为1:1,雄蝇红眼与白眼比例亦为1:1。
由此可见位于性染色体上的基因,与雌雄性别有关系。
伴性遗传可归纳为下列规律:1. 当同配性别的性染色体(如哺乳类等为XX为雌性,鸟类ZZ 为雄性)传递纯合显性基因时,F1雌、雄个体都为显性性状。
果蝇的伴性遗传实验报告
果蝇的伴性遗传实验报告
果蝇是一种常见的模式生物,其繁殖周期短,易于实验观察,因此被广泛应用于遗传学实验中。
伴性遗传是指两个或多个基因由于它们在同一染色体上的位置而一起遗传到后代中的现象。
本实验旨在通过观察果蝇的伴性遗传现象,探究不同基因之间的遗传关系。
实验材料和方法。
实验中使用的果蝇为野生型果蝇和突变型果蝇。
野生型果蝇为正常型,突变型果蝇携带了特定的突变基因。
首先,我们将野生型果蝇与突变型果蝇交配,观察它们的后代。
然后,将后代果蝇进行分组观察,记录不同基因型果蝇的数量和表现型特征。
实验结果。
经过一系列的实验观察,我们发现了一些有趣的现象。
首先,我们观察到突变型果蝇的眼睛颜色为红色,而野生型果蝇的眼睛颜色为黑色。
在交配后代中,我们发现了一部分果蝇的眼睛颜色为红色,而另一部分果蝇的眼睛颜色为黑色。
经过统计分析,我们发现了这些果蝇眼睛颜色的遗传规律,即红色眼睛与突变基因连锁遗传,而黑色眼睛与野生型基因连锁遗传。
结论。
通过本实验,我们验证了果蝇的伴性遗传现象。
突变型基因与特定表现型特征连锁遗传,这为我们深入了解基因之间的遗传关系提供了重要的实验依据。
果蝇的伴性遗传现象也为我们在遗传学研究中提供了重要的实验模型,有助于揭示基因在遗传传递中的规律和特点。
总结。
果蝇的伴性遗传实验为我们提供了一种直观的遗传现象观察模型,通过实验观察和数据分析,我们得出了有关基因连锁遗传的结论。
这对于我们理解基因之间的遗传关系,揭示遗传规律具有重要的意义。
希望通过本实验,可以为遗传学研究提供更多的实验依据和理论支持。
实验三 果蝇的伴性遗传
化学诱变剂诱变机理
烷化剂 指具有烷化功能的化合物,带有一个或多个活性 烷基,该烷基转移到一个电子密度较高的分子上, 可置换碱基中的氧原子,碱基被烷化后,DNA 在复制时会导致配对错误,产生突变。 叠氮化钠 一种动植物的呼吸抑制剂,可使复制中的DNA的 碱基发生替换,从而导致突变体的发生,是目 前诱变率高而安全的一种诱变剂。
实验步骤
1.分别收集野生型和突变型处女蝇(为什么?) 2 .按 A 、 B 组合类型,分别选 3-4 对相应的雌雄蝇 进行杂交培养 3.7-8天后,倒净亲本 4.3-4天后,F1代出现,挑选5对作杂交培养,并 观察其性状 5.7-8天后,倒净F1成虫 6.3-4天后,F2代成虫出现。6天后,统一观察并 统计。(每一类型的果蝇数不少于7只)
伴性实验图示
P
红眼♀ X 白眼♂
F1
染色体模式图
Y非同源区段:在X上无相应的等位基因
X、Y同源区段:有相应的等位基因
X非同源区段:在Y上无相应的等位基因
X染色体
Y染色体
实验材料
1. 黑腹果蝇(Drosophila melanogaster) 野生型(红眼)X+X+ X+Y 突变型(白眼)XwXw XwY 果蝇都在纯合系统中进行原种保存,实验前重 新接种,等幼虫化蛹后,赶走亲本,在一定 时间间隔内(8-12h)收集羽化后成虫,分开 雌雄,保证雌性个体皆为处女蝇用作今天的 实验。 2. 培养基、平皿、毛笔、乙醚、锥形瓶、双 筒解剖镜
三点测验的基因定位方法
原理
基因连锁现象中有少部分基因发生交 换重组,交换率的高低与基因间的距离 成正比,基因图距就是通过重组值的测 定而得到的。 三点测验就是利用3对基因的杂合体, 进行一次测交而确定3个基因点的位置的 方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验材料
野生型、白眼突变型果蝇(W)。
实验用品
显微镜、双筒解剖镜、麻醉瓶、白瓷板、
毛笔、乙醚等。
实验步骤
1 选择处女蝇 2 杂交:野生型果蝇和单因子突变果蝇杂交,正反交各 做一瓶。25℃恒温培养。 3 移走亲本:待F1幼虫出现即可放掉亲本。
4 观察F1:观察F1的翅膀或体色或眼色。
5 F1互交:在新培养瓶内,放入3~5对F1果蝇,培养。 6 移去F1:待F2幼虫出现即可放掉并处死F1果蝇。 7 观察 F2 :观察 F2 的翅膀形态后处死,:
1﹥、收集的果蝇数量不够多,影响实验结果 2﹥、因为实验中温度、以及实验失误等原因导致收集到的 果蝇在某些性状上数量偏少或者偏多,从而影响实验结果 3﹥、因麻醉效果不佳,导致有些果蝇因为没有麻醉到位还 没来得及分类计数就飞走了影响实际结果 4﹥、每次观察性状或计数时光照时间的长短对果蝇发育的 影响,导致后代性状比例可能发生一定的变化 5﹥、麻醉过度,导致子代变异,从而影响果蝇子代孵化出 的各种性状比例 6﹥、有一些新羽化的果蝇黏死在培养基上,导致表型无法 辨别 7 >、在转接过程中由于操作不熟练导致一部分果蝇飞走, 或者由于拍培养瓶时用力过大,导致培养基滑动将一部分果 蝇压在培养基下,没有计数进而影响最终实验结果。 8 >、计数时并没有严格的时间间隔
预期结果
正交:用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代相互交 配,F2代则雌性均为红眼,雄性红眼:白眼=1:1; 反交:用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼, F1相互交配得F2代,雌蝇红眼与白眼比例为1:1,雄蝇红眼与白眼比例亦为1:1。 由此可见位于性染色体上的基因,与雌雄性别有关系。
实验结果
根据卡方检验,查卡方表,若P >0.05,说明观察值与理论值的偏差无 意义,即观察值是符合假设的,也就是实验结果符合伴性遗传的假设, 说明该性状由位于X染色体上的一对等位基因控制。
查χ2表,进行差异显著水平检验。当两组变数,自由度为2时卡 平方值χ2=5.991的概率是0.05。 例如:实验中χ2=0.0390≤5.991,因此 P>0.05,说明观察值和理 论值无显著差异,可以认为实验数据符合伴性遗传定律的假设。
实验六 果蝇的伴性遗传
实验目的
1 了解伴性遗传,认识伴性遗传正、反交的差别。
2 掌握伴性遗传的实验和统计方法。
实验原理
遗传学上,将位于性染色体上的基因所控制的性状遗 传方式叫伴性遗传。果蝇的性染色体属于XY型,雄性XY型, 是异配性别;雌性为XX型是同配性别。通过果蝇眼色遗传 的研究,可以观察到果蝇眼色性状的遗传与性别有着密切 的关系,可知控制果蝇眼色的基因位于X染色体上。
问题?
1.为什么挑选果蝇选育F2代时,不需要处 女蝇? 2.为什么要做正反交?
8 数据处理及统计分析:分析实验结果与预期理论的符
合程度。
挑处女蝇 1周
杂交开始 1周 去除亲本
1周
F1观察及自交开始 1周 去除亲本 1周 F2观察及记录 1周 统计及分析
正、反交组的具体分配
正、反交各两组 ↓ 确认亲本蝇性状,有三龄幼虫时,倒去已有成蝇 ↓ 收集处女蝇,分别放入新培养瓶 ↓ 每3位同学做1管正交18 (♀)×M (♂) 、1管反交M (♀) × 18(♂),每管4对亲本 蝇,在瓶上标记好; ↓ 每3人1管P1×P2(亲本瓶, 可带回宿舍饲养) ↓ 待F1成蝇出现前放飞亲本果蝇, F1成蝇出现后,统计并观察性状,分别挑选 4~5对F1 ♀♂转入新的培养管,在瓶上标记好; ↓ 每3人1管 (F1瓶) ↓ 每三位同学统计一个杂交管中的F2,统计至100只左右,并分别写出实验报告。