高中物理解题方法大全
高中物理68个解题技巧
高中物理68个解题技巧1.熟悉公式:掌握物理公式是解题的基础,要多复习公式,熟记公式。
2. 看清题目要求:在做题之前,先仔细阅读题目要求,明确题目所要求的目标。
3. 理清思路:在解题之前,要先理清思路,分析题目,确定解题的方向。
4. 关注单位:在计算过程中,要特别注意单位,确保单位的一致性。
5. 划重点:在解题过程中,要注意把重点内容划出来,以便更好地理解和记忆。
6. 善于分析图片:物理题目中常常涉及到图片,要善于分析图片,理清物理关系。
7. 运用数学技巧:物理题目中常涉及到数学计算,要善于运用数学技巧,简化计算。
8. 熟练运用计算器:在计算过程中,要熟练使用计算器,提高精度和效率。
9. 多问问题:在解题中,要多问问题,理解问题的本质和关键点。
10. 重视实验数据:物理实验是物理学的基础,要重视实验数据的分析和应用。
11. 掌握矢量运算:矢量运算是物理学的基础,要掌握矢量运算的方法和规律。
12. 熟悉机械运动:机械运动是物理学的重要内容,要熟悉机械运动的规律和公式。
13. 理解电路原理:电路是物理学的重要内容,要理解电路原理和电路的分析方法。
14. 熟悉光学知识:光学是物理学的重要内容,要熟悉光学知识和光学原理。
15. 掌握热学知识:热学是物理学的重要内容,要掌握热学知识和热学公式。
16. 理解原子结构:原子结构是物理学的基础,要理解原子结构和原子核的组成。
17. 熟悉波动现象:波动是物理学的重要内容,要熟悉波动的规律和公式。
18. 理解相对论:相对论是物理学的重要分支,要理解相对论的基本原理和应用。
19. 熟悉量子力学:量子力学是物理学的重要分支,要熟悉量子力学的基本原理和应用。
20. 熟练使用手册:在解题过程中,要熟练使用手册,查找问题的解决方法和答案。
21. 注意单位换算:在解题过程中,要注意单位换算,将不同单位之间的数值进行转换。
22. 熟练使用公式表:在解题过程中,要熟练使用公式表,查找需要的公式和定理。
高中物理必修一解题方法与技巧
高中物理必修一解题方法与技巧高中物理必修一是整个高中物理的基础,掌握好这一部分的解题方法与技巧对于后续的学习至关重要。
以下是一些常用的解题方法与技巧:1. 受力分析:这是解决物理问题的第一步,要明确研究对象所受的力,包括重力、弹力、摩擦力等。
根据物体的运动状态,分析其受力情况,建立平衡方程。
2. 运动学公式:要熟练掌握速度、加速度、位移等基本物理量的定义及计算公式,这些公式是解决运动学问题的基石。
同时,还要理解速度-时间图和位移-时间图的含义及绘制方法。
3. 牛顿第二定律:这是动力学部分的核心,要理解力和加速度的关系,会根据受力分析结合牛顿第二定律列方程求解。
4. 动量定理与动量守恒:对于涉及时间变化或冲量的物理问题,可以使用动量定理。
对于两个或多个物体相互作用的问题,如果系统不受外力或所受外力的矢量和为零,则系统的动量守恒。
5. 动能定理:对于涉及功和能的问题,动能定理是一个非常有用的工具。
它表示一个过程的合外力所做的功等于该过程中物体动能的改变。
6. 周期性和圆周运动:对于涉及周期性运动或圆周运动的问题,要理解向心力的概念,掌握向心加速度的计算公式。
同时,还要理解开普勒定律(特别是第一定律)的含义及应用。
7. 实验与测量:物理是一门以实验为基础的学科,实验数据的处理和误差分析非常重要。
要掌握基本的实验技能,理解误差产生的原因及减小误差的方法。
8. 解题策略与技巧:模型法:将复杂的物理现象抽象化,建立物理模型,有助于理解和解决问题。
隔离法与整体法:在分析系统问题时,有时需要将整个系统视为一个整体来考虑,有时又需要将系统中的某个部分隔离出来单独分析。
假设法:对于一些难以直接判断的问题,可以通过假设法进行反证,从而找到答案。
图象法:利用图象描述物理过程和状态,直观地反映物理量之间的关系,便于找到问题的解决方案。
9. 日常生活中的物理应用:物理与日常生活紧密相关。
通过观察生活中的物理现象,可以加深对物理概念和规律的理解,同时也能提高解决实际问题的能力。
高中物理25种解题方法
高中物理25种解题方法1. 分析力学方法:使用牛顿第二定律和牛顿第三定律解决力学问题。
2. 能量守恒法:使用能量守恒定律解决机械能问题。
3. 动量守恒法:使用动量守恒定律解决碰撞问题。
4. 圆周运动方法:使用圆周运动公式解决物体在圆周运动中的问题。
5. 匀加速直线运动法:使用匀加速直线运动公式解决物体在直线上的运动问题。
6. 周期运动方法:使用周期公式解决周期性运动问题。
7. 熵变方法:使用热力学基本公式解决热力学问题。
8. 热力学循环方法:使用热力学循环定理解决热力学问题。
9. 电路分析法:使用基尔霍夫电路定律解决电路问题。
10. 磁场分析法:使用安培定理和法拉第电磁感应定律解决磁场问题。
11. 声波分析法:使用声波传播公式解决声学问题。
12. 光学分析法:使用光线追踪法和光的反射和折射定律解决光学问题。
13. 物态变化分析法:使用热力学基本公式和相变公式解决物态变化问题。
14. 原子物理分析法:使用玻尔模型和量子力学解决原子物理问题。
15. 核物理分析法:使用核反应公式和质能方程解决核物理问题。
16. 热力学系统分析法:使用热力学系统的状态方程和热力学基本公式解决热力学系统问题。
17. 液体静压力分析法:使用液体静压力定律解决液体静压力问题。
18. 斯涅尔定律分析法:使用斯涅尔定律和菲涅尔公式解决光的反射和折射问题。
19. 拉普拉斯定理分析法:使用拉普拉斯定理解决电势问题。
20. 壳层模型分析法:使用壳层模型解决原子结构问题。
21. 磁通量分析法:使用磁通量和法拉第电磁感应定律解决磁场问题。
22. 电场强度分析法:使用库伦定律和高斯定律解决电场问题。
23. 电势能分析法:使用电势能公式解决电势能问题。
24. 特殊相对论分析法:使用洛伦兹变换解决特殊相对论问题。
25. 一维气体分析法:使用理想气体状态方程解决一维气体问题。
高中物理解题方法
【解析】小球受到竖直向上的电场力 为F=qE=2×10-3N =2G,重力和电场合 力大小等于重力G,方向竖直向上,这 里可以把电场力与重力的合力等效为 一个竖直上的“重力”,将整个装置 在竖直平面内旋转180°就变成了常见 的物理模型——小球在V型斜面上的运 动.如图所示,
(1)小球开始沿这个“V”型玻璃筒运动的加速度为
Mv02/2=Mv2/2+M(2R/L)gR
v0 Rg 4R / L
2
三、等效法
等效法是物理思维的一种重要 方法,其要点是在效果不变的前提 下,把较复杂的问题转化为较简单 或常见的问题.应用等效法,关键 是要善于分析题中的哪些问题(如 研究对象、运动过程、状态或电路 结构等)可以等效.
【例4】如图,娱乐场空中列车由许多节 完全相同的车厢组成,列车先沿水平轨 道行驶,然后滑上半径为R的空中圆环形 光滑轨道.若列车全长为L(L>2R),R远 大于一节车厢的长度和高度,那么列车 在运行到圆环前的速度v0至少多大,才 能使整个列车安全通过圆环轨道?
【解析】滑上轨道前列车速度的最小值 v0与轨道最高处车厢应具有的速度的最 小值v相对应.这里v代表车厢恰能滑到 最高处,且对轨道无弹力的临界状态. 由:
【例1】如图所示,跨过滑轮细绳的 两端分别系有m1=1kg、m2=2kg的物 体A和B.滑轮质量m=0.2kg,不计绳 与滑轮的摩擦,要使B静止在地面上, 则向上的拉力F不能超过多大?
【解析】(1)先以B为研究对象,当B即 将离开地面时,地面对它的支持力为0. 它只受到重力mBg和绳子的拉力T的作用, 且有:T-mBg=0. (2)再以A为研究对象,在B即将离 地时,A受到重力和拉力的作用,由于 T=mBg>mAg,所示A将加速上升.
高中物理总复习 15种快速解题技巧
技巧一、巧用合成法解题【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度.解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ根据牛顿第二定律有mgsin θ=ma 1所以a 1=gsin θ(2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ根据牛顿第二定律有mg /sin θ=ma 2所以a 2=g /sin θ.【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单.技巧二、巧用超、失重解题【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足A.F=MgB.Mg <F <(M+m )gC .F=(M+m )g D.F >(M+m )g解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D.【方法链接】对于超、失重现象大致可分为以下几种情况:θ 图2-2-1 θ mg TF 合 图2-2-2 θ mgF 合 T 图2-2-3 图2-2-4(1)如单个物体或系统中的某个物体具有竖直向上(下)的加速度时,物体或系统处于超(失)重状态.(2)如单个物体或系统中的某个物体的加速度不是竖直向上(下),但有竖直向上(下)的加速度分量,则物体或系统也处于超(失)重状态,与物体水平方向上的加速度无关.在选择题当中,尤其是在定性判断系统重力与支持面的压力或系统重力与绳子拉力大小关系时,用超、失重规律可方便快速的求解.技巧三、巧用碰撞规律解题【典例3】 在电场强度为E 的匀强电场中,有一条与电场线平行的几何线,如图2-2-5虚线所示.几何线上有两个可视为质点的静止小球A 和B.两小球的质量均为m ,A 球带电量+Q ,B 球不带电.开始时两球相距L ,释放A 球,A 球在电场力的作用下沿直线运动,并与B 发生正碰,碰撞中A 、B 两球的总动能无损失.设在每次碰撞中,A 、B 两球间无电量转换,且不考虑重力及两球间的万有引力.求(1)A 球经多长时间与B 球发生第一次碰撞. (2)第二次碰撞前,A 、B 两球的速率各为多少? (3)从开始到第三次相碰,电场力对A 球所做的功. 解析:(1)设A 经时间t 与B 球第一次碰撞,根据运动学规律有L=at 2/2A 球只受电场力,根据牛顿第二定律有QE=ma∴(2)设第一次碰前A 球的速度为V A ,根据运动学规律有V A 2=2aL碰后B 球以速度V A 作匀速运动,而A 球做初速度为零的匀加速运动,设两者再次相碰前A 球速度为V A1,B 球速度为V B .则满足关系式V B = V A1/2= V A∴V B = V A =V A1=2 V A =2(3)第二次碰后,A 球以初速度V B 作匀加速运动,B 球以速度V A1作匀速运动,直到两者第三次相碰.设两者第三次相碰前A 球速度为V A2,B 球速度为V B1.则满足关系式V B1= V A1=(V B + V A2)/2∴V B1=2 V A ;V A2=3 V A第一次碰前A 球走过的距离为L ,根据运动学公式V A 2=2aL设第二次碰前A 球走过的距离为S 1,根据运动学公式V A12=2aS 1∴S 1=4L设第三次碰前A 球走过的距离为S 2,有关系式V A22-V A12=2aS 2∴S 2=8L即从开始到第三次相碰,A 球走过的路程为S=13L此过程中电场力对A 球所做的功为W=QES=13 QEL .【技巧点拨】 利用质量相等的两物体碰撞的规律考生可很容易判断出各球发生相互作用前后的运动规律,开始时B 球静止,A 球在电场力作用下向右作匀加速直线运动,当运m m L B A 图2-2-5图2-2-6 动距离L 时与B 球发生相碰.两者相碰过程是弹性碰撞,碰后两球速度互换,B 球以某一初速度向右作匀速直线运动,A 球向右作初速度为零的匀加速运动.当A 追上B 时两者第二次发生碰撞,碰后两者仍交换速度,依此类推.技巧四、巧用阻碍规律解题【典例4】 如图2-2-6所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,小灯泡的亮度如何变化A 、不变B 、变亮C 、变暗D 、不能确定解析:将软铁棒插入过程中,线圈中的磁通量增大,感应电流的效果要阻碍磁通量的增大,所以感应电流的方向与线圈中原电流方向相反,以阻碍 磁通量的增大,所以小灯泡变暗,C 答案正确.【方法链接】 楞次定律“效果阻碍原因”的几种常见形式.(1)就磁通量而言:感应电流的磁场总是阻碍引起感应电流的磁通量(原磁通量)的变化.即当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,简称口诀“增反减同”.(2)就相对运动而言:感应电流的效果阻碍所有的相对运动,简称口诀“来拒去留”,从运动效果上看,也可形象的表述为“敌进我退,敌逃我追”.(3)就闭合电路的面积而言:致使电路的面积有收缩或扩张的趋势.收缩或扩张是为了阻碍电路磁通量的变化.若穿过闭合电路的磁感线都为同一方向,则磁通量增大时,面积有收缩趋势;磁通量减少时,面积有扩张趋势.简称口诀“增缩减扩”.若穿过回路的磁感线有两个相反的方向,则以上结论不一定成立,应根据实际情况灵活应用,总之要阻碍磁通量的变化.(4)就电流而言:感应电流阻碍原电流的变化,即原电流增大时,感应电流与原电流反向;原电流减小时,感应电流与原电流同向,简称口诀“增反减同”.技巧五、巧用整体法解题【典例5】 如图2-2-7所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为A 、5mg 3μB 、4mg 3μC 、2mg 3μ D 、mg 3μ解析:以上面2个木块和左边的质量为2m 的木块整体为研究对象,根据牛顿第二定律有μmg=4ma再以左边两木块整体为研究对象,根据牛顿第二定律有T=3ma∴T=4mg 3μ B 答案正确. 【技巧点拨】 当系统内各物体有相同加速度时(一起处于静止状态或一起加速)或题意要求计算系统的外力时,巧妙选取整体(或部分整体)为研究对象可使解题更为简单快捷.技巧六、巧用几何关系解题图2-2-7图2-2-9 图2-2-10 图2-2-11 【典例6】 如图2-2-8所示,在真空区域内,有宽度为L 的匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,MN 、PQ 是磁场的边界.质量为m ,带电量为-q 的粒子,先后两次沿着与MN 夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B 中,第一次,粒子是经电压U 1加速后射入磁场,粒子刚好没能从PQ 边界射出磁场.第二次粒子是经电压U 2加速后射入磁场,粒子则刚好垂直PQ 射出磁场.不计重力的影响,粒子加速前速度认为是零,求:(1)为使粒子经电压U 2加速射入磁场后沿直线运动,直至射出PQ 边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向.(2)加速电压12U U 的值. 解析:(1)如图答2-2-9所示,经电压2U 加速后以速度2v 射入磁场,粒子刚好垂直PQ 射出磁场,根据几何关系可确定粒子在磁场中做匀速圆周运动的圆心在PQ 边界线的O 点,半径2R 与磁场宽L 的关系式为2cos L R θ=又因为22mv R Bq =所以2cos BqL v m θ= 加匀强电场后,粒子在磁场中沿直线运动射出PQ 边界的条件为Eq =Bq 2v ,电场力的方向与磁场力的方向相反. 所以2cos B qL E m θ=,方向垂直磁场方向斜向右下,与磁场边界夹角为2παθ=-,如图答2-2-10所示.(2)经电压1U 加速后粒子射入磁场后刚好不能从PQ 边界射出磁场,表明在磁场中做匀速圆周运动的轨迹与PQ 边界相切,要确定粒子做匀速圆周运动的圆心O 的位置,如图答2-2-11所示,圆半径1R 与L 的关系式为:111cos ,1cos L L R R R θθ=+=+ 又11mv R Bq= 所以1(1cos )BqL v m θ=+ 根据动能定理有21112U q mv =,22212U q mv =, 所以22112222cos (1cos )U v U v θθ=+. 【方法链接】 解决带电粒子在匀强磁场中匀速圆周运动问题,关键是确定圆心的位置,正确画出粒子运动的草图,利用几何关系结合运动规律求解.技巧七:巧用可逆原理解题【典例7】 某同学在测定玻璃折射率时得到了多组入射角i 与折射角r ,并作出了sini 与sinr 的图象如图2-2-12所示.则下列说法正确的是 A . 实验时,光线是由空气射入玻璃 B . 实验时,光线是由玻璃射入空气C . 利用sini /sinr 可求得玻璃的折射率D . 该玻璃的折射率为1.5解析:由图象可知入射角的正弦值小于折射角的正弦值.根据折射定律可知光线是从光密介质射向光疏介质,即由玻璃射向空气,B 答案正确;根据折射定律n=sini /sinr 可求得介质的折射率,但一定要注意此公式一定要满足光线从空气射向介质,而本题中光线是由玻璃射入空气,所以不能直接利用sini /sinr 求介质的折射率,根据光路可逆原理,当光线反转时,其传播路径不变,即光从空气中以入射角r 射到该玻璃界面上时,折射后的折射角一定为i ,根据折射定律可得玻璃的折射率n= sinr / sini=1.5(这里要注意很容易错选C ),C 错误,D 正确.正确答案为B 、D.【方法链接】 在光的反射或折射现象中,光路具有可逆性.即当光线的传播方向反转时,它的传播路径不变.在机械运动中,若没有摩擦阻力、流体的粘滞阻力等耗散力做功时,机械运动具有可逆性.如物体的匀减速直线运动可看作反向的加速度不变的匀加速运动.方法八:巧用等效法解题【典例8】 如图2-2-13所示,已知回旋加速器中,D 形盒内匀强磁场的磁感应强度B =1.5T ,盒的半径R =60 cm ,两盒间隙d =1.0 cm ,盒间电压U =2.0×104 V ,今将α粒子从近于间隙中心某点向D 形盒内以近似于零的初速度垂直B 的方向射入,求粒子在加速器内运行的总时间.解析:带电粒子在回旋加速器转第一周,经两次加速,速度为v 1,则根据动能定理得:0.1 0.2 sinrsini0.3 0.4 0.5 0.2 0.1 0.40.3 0.5 图2-2-122qU =21mv 12 设运转n 周后,速度为v ,则:n 2qU =21 mv 2 由牛顿第二定律有qvB =m Rv 2粒子在磁场中的总时间:t B =nT =n ·qB m π2=qmU R q B 4222·qB m π2 =UB R 22π 粒子在电场中运动就可视作初速度为零的匀加速直线运动,由公式:t E =a v v t 0-,且v 0=0,v t = ,a =dmqU 得:t E =UBRd 故:t =t B +t E =U BR (2R π+d )=4.5×10-5×(0.94+0.01) s =4.3×10-5s.【技巧点拨】 粒子在间隙处电场中每次运动时间不相等,且粒子多次经过间隙处电场,如果分段计算,每一次粒子经过间隙处电场的时间,很显然将十分繁琐.我们注意到粒子离开间隙处电场进入匀强磁场区域到再次进入电场的速率不变,且粒子每在电场中加速度大小相等,所以可将各段间隙等效“衔接”起来,把粒子断断续续在电场中的加速运动等效成初速度为零的匀加速直线运动.技巧九:巧用对称法解题【典例9】 一根自由长度为10 cm 的轻弹簧,下端固定,上端连一个质量为m 的物块P ,在P 上放一个质量也是m 的物块Q.系统静止后,弹簧长度为6 cm ,如图2-2-14所示.如果迅速向上移去Q ,物块P 将在竖直方向做简谐运动,此后弹簧的最大长度为A .8 cmB .9 cmC .10 cmD .11 cm 解析:移去Q 后,P 做简谐运动的平衡位置处弹簧长度8 cm ,由题意可知刚移去Q 时P 物体所处的位置为P 做简谐运动的最大位移处.即P 做简谐运动的振幅为2 cm.当物体P 向上再次运动到速度为零时弹簧有最大长度,此时P 所处的位置为另一最大位移处,根据简谐运动的对称性可知此时弹簧的长度 为10 cm ,C 正确.【方法链接】在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性.方法十:巧用假设法解题假设法是解决物理问题的一种常见方法,其基本思路为假设结论正确,经过正确的逻辑推理,看最终的推理结果是否与已知条件相矛盾或是否与物理实际情境相矛盾来判断假设是否成立.【典例10】如图2-2-15,abc 是光滑的轨道,其中图2-2-14 P Q 6cmdd 21 ab 是水平的,bc 为与ab 相切的位于竖直平面内的半圆,半径R =0.3m.质量m =0.2kg 的小球A 静止在轨道上,另一质量M=0.6kg ,速度V 0=5.5m/s 的小球B 与小球A 正碰.已知相碰后小球A 经过半圆的最高点C ,落到轨道上距b 为L = 处,重力加速度g =10m/s 2,试通过分析计算判断小球B 是否能沿着半圆轨道到达C 点.解析 :A 、B 组成的系统在碰撞前后动量守恒,碰后A 、B 运动的过程中只有重力做功,机械能守恒,设碰后A 、B 的速度分别为V 1、V 2,由动量守恒定律得M V 0=M V 2+m V 1A 上升到圆周最高点C 做平抛运动,设A 在C 点的速度为V C ,则A 的运动满足关系式2R=gt 2/2 V C t=LA 从b 上升到c 的过程中,由机械能守恒定律得(以ab 所在的水平面为零势面,以下同)m V 12/2= m V C 2/2+2mgR∴V 1=6 m/s ,V 2=3.5 m/s方法1:假设B 球刚好能上升到C 点,则B 球在C 点的速度V C '应满足关系式Mg=M V C '2/R所以V C '=1.73 m/s则B 球在水平轨道b 点应该有的速度为(设为V b )由机械能守恒定律得M V b 2/2=M V C '2/2+2MgR则由V b 与V 2的大小关系可确定B 能否上升到C 点若V 2≥V b ,B 能上升到C 点若V 2<V b ,B 不能上升到C 点代入数据得V b =3.9 m/s >V 2 =3.5 m/s ,所以B 不能上升到C 点.【方法链接】 假设法在物理中有着很广泛的应用,凡是利用直接分析法很难得到结论的问题,用假设法来判断不失为一种较好的方法,如判断摩擦力时经常用到假设法,确定物体的运动性质时经常用到假设法.技巧十一、巧用图像法解题【典例11】 部队集合后开发沿直线前进,已知部队前进的速度与到出发点的距离成反比,当部队行进到距出发点距离为d 1的A位置时速度为V 1,求(1)部队行进到距出发点距离为d 2的B 位置时速度为V 2是多大? (2)部队从A 位置到B 位置所用的时间t 为多大.解析:(1)已知部队前进的速度与到出发点的距离成反比,即有公式V =k/d (d 为部队距出发点的距离,V 为部队在此位置的瞬时速度),根据题意有V 1=k / d 1 V 2=k / d 2 ∴ V 2=d 1 V 1 / d 2. (2)部队行进的速度V 与到出发点的距离d 满足关系式d =k/V ,即d -图象是一条过原点的倾斜直线,如图2-2-16所示,由题意已知,部队从A 位置到B 位置所用的时间t 即为图中斜线图形(直角梯形)的面积.由数学知识可知t =(d 1 + d 2)(1/V 2-1/V 1)/2∴t =(d 22-d 12)/2 d 1 V 1【方法链接】1.此题中部队行进时速度的变化即不是匀速运动,也不是匀变速运动,很图2-2-16V 图2-2-18难直接用运动学规律进行求解,而应用图象求解则使问题得到简化.2.考生可用类比的方法来确定图象与横轴所围面积的物理意义.v-t图象中,图线与横轴围成图形的面积表示物体在该段时间内发生的位移(有公式S =v t ,S 与v t 的单位均为m );F -S 图象中,图线与横轴围成图形的面积表示F 在该段位移S 对物体所做的功(有公式W =FS ,W 与FS 的单位均为J ).而上述图象中t =d ×1/V (t 与d ×1/V 的单位均为s ),所以可判断出该图线与横轴围成图形的面积表示部队从出发点到此位置所用的时间.技巧十二、巧用极限法解题【典例12】 如图2-2-17所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力F 拉绳上一点,使物体处于图中实线位置,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F 、环与杆的摩擦力F 摩和环对杆的压力F N 的变化情况是A.F 逐渐增大,F 摩保持不变,F N 逐渐增大B.F 逐渐增大,F 摩逐渐增大,F N 保持不变C.F 逐渐减小,F 摩逐渐增大,F N 逐渐减小D.F 逐渐减小,F 摩逐渐减小,F N 保持不变解析:在物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种减小状态推到无限小,即细绳与竖直方向的夹角θ=0;此时系统仍处于平衡状态,由平衡条件可知,当θ=0时,F=0,F 摩 =0.所以可得出结论:在物体缓慢下降过程中,F 逐渐减小,F 摩也随之减小,D 答案正确. 【方法链接】 极限法就是运用极限思维,把所涉及的变量在不超出变量取值范围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的一种解题方法,在一些特殊问题当中如能巧妙的应用此方法,可使解题过程变得简捷.方法十三、巧用转换思想解题【典例13】 如图2-2-18所示,电池的内阻可以忽略不计,电压表和可变电阻器R 串联接成通路,如果可变电阻器R 的值减为原来的1/3时,电压表的读数由U 0增加到2U 0,则下列说法中正确的是A .流过可变电阻器R 的电流增大为原来的2倍B .可变电阻器R 消耗的电功率增加为原来的4倍C .可变电阻器两端的电压减小为原来的2/3D .若可变电阻器R 的阻值减小到零,那么电压表的示数变为4U 0确 解析: 在做该题时,大多数学生认为研究对象应选可变电阻器,因为四个选项中都问的是有关R的问题;但R 的电阻、电压、电流均变,判断不出各量的定量变化,从而走入思维的误区.若灵活地转换研究对象,会出现“柳暗花明”的意境;分析电压表,其电阻为定值,当它的读数由U 0增加到2U 0时,通过它的电流一定变为原来的2倍,而R 与电压表串联,故选项A 正确.再利用P =I 2R 和U =IR ,R 消耗的功率P ′=(2I )2R/3=4P/3;R 后来两端的电压U =2IR/3,不难看出C 对B 错.又因电池内阻不计,R 与电压表的电压之和为U 总,当R 减小到零时,电压表的示数也为总电压U总;很轻松地列出U 总=IR +U 0=2 IR/3+2U 0,解得U 总=4U 0,故D 也对.图2-2—17图2-2-22 2-2-19【方法链接】 常见的转换方法有研究对象的转换、时间角度的转换、空间角度的转换、物理模型的转换,本例题就是应用研究对象的转换思想巧妙改变问题的思考角度,从而达到使问题简化的目的.技巧十四、巧用结论解题【典例14】如图2-2-19所示,如图所示,质量为3m 的木板静止放在光滑的水平面上,木板左端固定着一根轻弹簧.质量为m 的木块(可视为质点),它从木板右端以未知速度V 0开始沿木板向左滑行,最终回到木板右端刚好未从木板上滑出.若在小木块压缩弹簧的过程中,弹簧具有的最大弹性势能为E P ,小木块与木板间的动摩擦因数大小保持不变,求: (1)木块的未知速度V 0(2)以木块与木板为系统,上述过程中系统损失的机械能解析:系统在运动过程中受到的合外力为零,所以系统动量定恒,当弹簧压缩量最大时,系统有相同的速度,设为V ,根据动量守恒定律有m V 0=(m+3m )V木块向左运动的过程中除了压缩弹簧之外,系统中相互作用的滑动摩擦力对系统做负功导致系统的内能增大,根据能的转化和守恒定律有m V 02/2-(m+3m )V 2/2=E P +μmgL (μ为木块与木板间的动摩擦因数,L 为木块相对木板走过的长度)由题意知木块最终回到木板右端时刚好未从木板上滑出,即木块与木板最终有相同的速度由动量守恒定律可知最终速度也是V.整个过程中只有系统内相互作用的滑动摩擦力做功(弹簧总功为零),根据能量守恒定律有m V 02/2-(m+3m )V 2/2=2μmgL∴有 , E P =μmgL故系统损失的机械能为2 E P .【误点警示】根据能的转化和守恒定律,系统克服滑动摩擦力所做的总功等于系统机械能损失,损失的机械能转化为系统的内能,所以有f 滑L 相对路程=△E (△E 为系统损失的机械能).在应用公式解题时,一定要注意公式成立所满足的条件.当系统中只有相互作用的滑动摩擦力对系统做功引起系统机械能损失(其它力不做功或做功不改变系统机械能)时,公式f 滑L 相对路程=△E 才成立.如果系统中除了相互作用的滑动摩擦力做功还有其它力对系统做功而改变系统机械能,则公式f 滑L 相对路程=△E 不再成立,即系统因克服系统内相互作用的滑动摩擦力所产生的内能不一定等于系统机械能的损失.所以同学们在应用结论解题时一定要注意公式成立的条件是否满足,否则很容易造成错误.方法十五、巧用排除法解题【典例15】 如图2-2-22所示,由粗细均匀的电阻丝制成的边长为L 的正方形线框abcd ,其总电阻为R .现使线框以水平向右的速度v匀速穿过一宽度为2L 、磁感应强度为B 的匀强磁场区域,整个过程中ab 、cd 两边始终保持与磁场边界平行.令线框的cd 边刚好与磁场左边界重合时开始计时(t =0),电流沿abcda 流动的方向为正,U o =BLv .在下图中线框中a 、b 两点间电势差U ab 随线框cd 边的位移x 变化的图像正确的是下图中的x x解析:当线框向右穿过磁场的过程中,由右手定则可判断出总是a点的电势高于b点电势,即U ab>0,所以A、C、D错误,只有B项正确.【方法链接】考生可以比较题设选项的不同之外,而略去相同之处,便可得到正确答案,或者考生能判断出某三个选项是错误的,就没必要对另外一个选项做出判断而应直接把其作为正确答案.对本例题,考生只需判断出三个过程中(进磁场过程、全部进入磁场过程、出磁场过程)中a、b两点电势的高低便可选择出正确答案,而没有必要对各种情况下a、b 两点电势大小规律做出判断.。
高中物理12种解题方法与技巧与操作
高中物理12种解题方法与技巧1直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.2物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.3运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。
(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
4抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解5圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.6牛顿运动定律的综合应用问题题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。
高中物理12种解题方法与技巧与操作
高中物理12种解题方法与技巧与操作高中物理作为一门基础科学课程,在考试中是必不可少的一部分,而掌握一定的物理解题方法和技巧是成功解决物理问题的关键。
下面将介绍十二种高中物理解题方法与技巧与操作,希望能够对大家的学习和成绩有所帮助。
1. 充分理解物理概念与理论: 在解决物理问题时,首先需要对物理概念与理论有充分的理解。
如果没有理解这些基本的概念和理论,就难以理解问题以及问题的解决方法。
2. 注重物理公式的推导与理解: 物理公式是解题的基础,因此需要掌握常用物理公式并能够进行合理的推导。
此外,还需要关注公式的物理意义,并能够将公式应用到实际问题中。
3. 处理物理量与单位的关系: 在解决物理问题时,需要熟悉物理量与单位之间的转换关系,以保证数据的一致性和正确性。
4. 质量守恒与能量守恒原理: 在解决物理问题时,需要注意保持质量和能量的守恒原理,以确保所得到的解决方案是可信的和正确的。
5. 将物理问题转化为实践问题: 在解决物理问题时,需要将其转化为具体的实践问题,并将其与实际生活和工作相关联。
6. 利用物理实验数据进行数据分析: 物理实验数据是解决物理问题的重要依据,需要对物理实验数据进行充分的分析和处理,以达到解决问题的目的。
7. 着重掌握基本计算方法: 在解决物理问题时,需要掌握基本的计算方法,并能够熟练运用这些方法进行计算。
8. 关注近似方法与误差估计: 在解决物理问题时,需要关注近似方法和误差估计,以避免出现不必要的误差和错误。
9. 处理组合问题与对称问题: 在解决物理问题时,需要处理组合问题和对称问题,以简化问题的计算和求解过程。
10. 运用物理图像解决问题: 物理图像通常是解决物理问题的有效方法,需要学会如何利用物理图像解决物理问题。
11. 做好笔记与总结: 在学习和解决物理问题时,需要做好笔记和总结,以便后续复习和掌握。
12. 多做物理题并检查解题步骤: 在学习物理中,多做物理题很有益处。
高中物理51个解题技巧
高中物理51个解题技巧高中物理是一门理论性和实践性都很强的学科,对于学生来说,掌握解题技巧是非常重要的。
下面将为大家介绍51个高中物理解题技巧,帮助大家在学习物理的过程中更加高效地掌握知识。
1.完善基础知识。
高中物理是建立在中学物理基础之上的,所以首先要完善基础知识,包括力学、光学、热学等方面的知识。
2.多做思维导图。
可以通过制作思维导图来整理和梳理知识结构,让自己更容易理解和记忆知识点。
3.学会画图。
物理问题通常需要图示来辅助解题,因此掌握画图的技巧非常重要。
4.掌握标准符号。
在物理学习中,标准符号是非常重要的,所以要牢记各种符号的含义。
5.熟练掌握计算方法。
物理问题通常需要进行计算,所以要熟练掌握常见的计算方法。
6.注意公式推导。
有些问题需要通过公式推导来解决,所以要熟练掌握各种物理公式的推导方法。
7.注意单位换算。
物理问题中单位换算是一个常见的问题,因此要注意单位之间的换算。
8.多读物理题。
通过多读物理题,可以加深对问题的理解并提高解题能力。
9.多画示意图。
画示意图有助于问题的理解和分析,提高解题效率。
10.练习分类解题。
将物理问题进行分类解题有助于整理知识点,提高解题效率。
11.注意文字说明。
在解题过程中要注意文字说明,将问题的解题过程写清楚。
12.多与同学讨论。
结对学习是一种很好的学习方法,通过与同学讨论可以更加深入地理解和掌握知识点。
13.注重实验操作。
实验是物理学习的重要组成部分,通过实验操作可以增加对物理现象的理解,提高解题能力。
14.学会利用数据和图表。
物理问题通常需要利用数据和图表来解答,所以要学会分析和利用数据和图表。
15.多模拟题。
通过模拟题可以锻炼解题能力,提高应对各种物理问题的能力。
16.多理解题目。
在解析物理问题的时候要多理解问题的意思,而不是死记硬背。
17.提高计算速度。
物理问题往往要进行大量的计算,所以熟练的计算速度是很重要的。
18.注意物理现象的解释。
在解题中要注意对物理现象的解释,理解现象背后的原理。
高中物理解题方法技巧汇总(非常实用)
高中物理解题方法技巧汇总(非常实用)高中物理解题方法技巧汇总(非常实用)
一、问题分析
1. 阅读题目:认真阅读题目,理解题目所要求解决的问题。
2. 辨析问题类型:确定题目属于哪种类型的物理问题,如力学、热学、光学等。
3. 提取信息:从题目中提取相关信息,建立问题的数学模型。
二、知识应用
1. 规定符号:在解决问题前,明确各物理量的符号表示。
2. 应用公式:根据问题要求和所学物理知识,选取适当的公式
进行计算。
3. 计算精度:注意计算精度,确保结果的准确性。
三、概念理解
1. 弄清物理概念:对于涉及物理概念的问题,先弄清楚相关概
念的含义和特点。
2. 探究概念关系:分析不同概念之间的关系,帮助理解和解答
问题。
3. 熟悉常用公式:掌握常用的物理公式,能够熟练地根据问题
进行转化和运用。
四、问题求解
1. 充分利用已知条件:利用已知条件填入公式,进行问题求解。
2. 分步推理:对于较复杂的问题,采用分步推理的方法逐步求解。
3. 反思并修正:在解答过程中,对结果进行反思和验证,及时
纠正错误。
五、拓展思考
1. 做好总结:对解题过程进行总结,整理归纳掌握的物理解题
方法和技巧。
2. 拓展思考:从已知条件和解题过程中提取物理规律,拓展解
题思路,进一步探索问题。
六、实践应用
1. 多做题:通过做更多的练题,加深理解并熟练掌握解题方法。
2. 实践应用:将所学的物理知识应用于日常问题和实际场景中,提高解决实际问题的能力。
以上是高中物理解题方法技巧的汇总,希望对你的学习有所帮助!。
高中生必须掌握的9大物理解题思维方法
高中生必须掌握的9大物理解题思维方法包括:
1.转化和归结思维:把问题化繁为简、化难为易,把具体情况转化为典型情境,将未
知问题归结为已知问题。
2.隔离思维:将物理问题中的几个物体或一个物体的几个部分隔离开来,分别研究,
分析求解。
3.整体思维:把几个物体或事物的各个部分、各个方面、各种因素联系起来加以研
究,从而在整体上认识事物、解决问题。
4.假设思维:根据已知的科学事实和科学原理,对未知的自然现象及其规律提出猜想
与假设,是科学研究中的一种重要方法。
5.类比思维:把形式、性质、特征类似的问题放在一起研究,有助于揭示问题的本质
特征和规律。
6.极限思维:把某个物理量推向极端,从而得出有关结论的方法。
7.逆向思维:从结论或现象开始,反向分析问题的原因或条件,从而找到解决问题的
方法。
8.等效思维:在保证效果相同的前提下,将复杂的物理现象、物理过程转化为简单的
物理现象、物理过程来研究和处理的方法。
9.对称思维:利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接
抓住问题的实质,出奇制胜,快速简便地求解问题。
这些思维方法可以帮助高中生更好地理解和掌握物理知识,提高解题效率和准确性。
高中物理题解答技巧及常用方法
高中物理题解答技巧及常用方法关键词:选择题实验题计算题技巧方法一、如何解答选择题选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理.1.解答选择题时,要注意以下几个问题:(1)每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选.(2)解选择题时应仔细阅读题干和备选择项,抓住关键字、词、句(题眼),寻找有效信息,排除干扰信息,对有效信息进行分析、联想、处理,切忌凭直觉、生活经验等想当然,或带有猜测性做答.注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”.(3)相信第一判断:凡已作出判断的题目,要作改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能作出改动,而当你拿不定主意时千万不要改.2.解选择题的常用方法:(1)筛选(排除)法根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,。
最后逼近正确答案.(2)特值(或特例)法让某些物理量取特殊值,通过简单的分析、计算进行判断.它仅适用于以特殊值代人各选项后能将其余错误选项排除的选择题.(3)解析法对于计算型的选择题,主要用来考查学生运用物理公式、规律和数学知识进行定量分析和推理的能力.解答这类试题的常用方法是:依据题意以及给定的条件,列出有关方程,然后进行计算推导,得出结果,与题目给出的选项进行对照便可得出正确答案.(4)图象法此类选择题要求我们会看、会用、会画图象,会看懂图象的物理意义,会用图象所反映的信息处理问题;会将物理问;题通过图象反映出来,以便更巧妙更灵活地解决物理问题.(5)极限分析法将某些物理量推向极端,并根据一些显而易见的结果或熟悉的物理现象进行计算(如摩擦系数取零或无穷大或电源内阻取零或无穷大等)(6)几何图解法该法常用于处理动态力平衡问题,优点是巧妙、直观而准确地将各作用力大小、方向等变化趋势形象地用图象形式反映,大大降低了思维强度和计算分析强度.(7)模型类比法如果通过分析研究,发现某一物理问题的研究对象与某一常见的简单的物理模型在某方面是等效的,则在求解这方面的有关问题时,可通过对比处理,直接利用那些原有模型的已知结论,以简化求解.二、如何解答实验题1.填空作图题作为填空题,数值、指数、单位,方向或正负号都应填全面;作为作图题:①对函数图象应注明纵、横轴表示的物理量、单位、标度及坐标原点.②对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全.③对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位,实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要用铅笔(有利于修改).2.常规实验题主要考查课本实验,几年来考查比较多的是实验的器材、原理、步骤、读数、注意问题、数据处理和误差分析,这种题目考得比较细,解答常规实验题时,要在细、实、全上下功夫..3.设计性买验重在考查实验的原理.要求同学们能审清题意,明确实验目的,应用迁移能力,联想相关实验原理.一定要强调四性(科学性、安全性、准确性、简便性),如在设计电学实验时,要尽可能减小实验的误差,避免出现大量程测量小数值的情况.三、如何解综合计算题1.综合计算题的特点综观近几年的高考,高考综合计算题对学生的能力要求越来越高,特别是分析综合能力.要求学生具有较强的接受信息、鉴别、选择信息的能力,分析、推理能力,综合应用知识的能力,物理学科综合题是一种含有多个物理过程、多个研究对象、运用到多个物理概念和规律、难度较大的题目,它的特点就在于知识的综合与能力的综合上.要能够正确、熟练求解物理学科综合题,首先应是对力学综合题及电学综合题的解题方法及途径要有清楚的认识和把握,事实上很多的物理综合计算题往往是力学综合题、电学综合题或力、电综合题的有机组合.2.力学综合题求解要领(1)包含的规律:力学的知识总的来说是力和运动问题,因而它包含了两大方面的规律:一是物体的受力规律,二是物体的运动规律.(2)解题途径:在认真审题、做好受力分析和运动分析的基础上,选取一个相对较好的解题途径.①题目中如果要求的是始、末状态的量,而它们又满足守恒条件,这时应优先运用守恒定律解题.②如问题涉及的除始、末状态外,还有力和受力者的位移,可优先选用动能定理.③若题目要求加速度或要列出各物理量在某一时刻的关系式,则只能用牛顿第二定律进行求解.④若过程中的力是变力(不能用牛顿第二定律了),而且始末动量不齐全(又不能用动量定理),则惟一的解题途径就是应用动能定理,此时变力的功可用“P·t”求得(P为功率).3.电学综合题求解要领(1)包含的规律:电磁学是物理学中研究电磁现象规律的分支学科,高中阶段电磁学的内容包括静电场、恒定电流、磁场、电磁感应和电磁场等方面的知识,概括起来,一是“场”,二是“路”.所谓“场”是指研究电场、磁场和它们之间的联系以及它们对电荷的作用;所谓“路”,研究的是直流电路及交流电路的有关规律.(2)解题途径:电磁学中的“场”与“路”知识既各自独立,又相互联系,表现为“荷与场”、“场与场”间的关系,全部电磁学知识以“场”为基础,进而研究“场与路”关系.在学习中要“以场带路”、“场、路结合”.4.求解物理综合题的常规步骤(1)审题①看懂题目的文句;②弄清题目所描述的物理现象;③选定研究对象,涉及到力学问题的,要对对象进行受力分析(同时作受力图);④依次分清要研究的对象所经历的前后物理过程或状态(即力学方面的运动分析,电学方面的电路分析与场况分析等).可同时画出示意图;⑤明确每个过程或状态所对应的物理模型,所联系的物理知识,物理量和物理规律;⑥注意寻找出隐含条件,明确已知量和所求量;⑦找出各个物理过程或状态之间的联系.(2)寻求合理的解题思路和方法:明确每个过程或状态所对应的物理模型,所联系的物理知识、物理量和物理规律;明确已知量、待求量,注意寻找隐含条件;分析物理过程或状态之间的联系;通过联想和类比,建立起问题的物理模型,进一步思考各物理过程所遵循的基本规律,从而确定正确的解题思路和方法.(3)力求表述得当:要有物理模型建立的准确表述;要有对所使用的物理量符号的意义说明;要对物理模型的状态或过程所遵循的物理规律列出正确的方程(组);要对物理方程(组)做出正确的推导、运算(单纯的数字计算和推导可省略);要对运算所得到结果的物理意义作讨论.四、物理解答题一定要规范1.解题过程中,要有必要、简要的说明(1)对非题设字母、符号的说明.使字母、符号所代表的物理意义明确.(2)对于物理关系的说明和判断.如在光滑水平面上的两个物体用弹簧相连,“在两物体速度相等时弹簧的弹性势能最大”,“在弹簧为原长时物体的速度有极大值”.(3)说明方程的研究对象或者所描述的过程,即说明某个方程是关于“谁”的,是关于“哪个过程”的.阅卷时常见有考生只列几个干巴巴的式子,把“对号入座”的工作留给阅卷人.(4)说明作出判断或者列出方程的根据,这是展示学生思维逻辑严密性的重要步骤.比如,先求出甲受乙物体施的某力F,一定要用“牛顿第三定律”才能得出此处甲给乙施的力大小为F.(5)说明计算结果中负号的物理意义,说明矢量的方向.有时画图作辅助,说明某矢量方向如图所示.(6)对于题目所求、所问的答复,结论或者结果的说明.2.高考阅卷多采用“见式给分”的方法,因此方程式的书写要规范为叙述方便,以下面一题为例:例题:如图1所示,物质质量m=3.0kg,置于水平地面上,在F=4.0N的水平恒力作用下, t=0时刻由静止开始运动,已知物体与水平地面间的动摩擦因数µ=0.10,求t=5.0s时的速度和它离出发点的距离.( 1)要用字母表达的方程,不要掺有数字的方程.例如,要“F-Ff =ma”,不要“4.0-Ff=3.0a”.(2)要原始方程,不要变形后的方程,不要方程套方程.例如,要“F-Ff =ma”,“Ff=µFN”,“FN=mg”,“v2=2as”;为要“v2=2s”.(3)要方程,不要公式,公式的字母常会带来混乱.例如,本题若写出“F=ma”就是错的.(4)要用原始方程组联立求解,一般情况下不要用连等式,不断地“续”进一些东西.例如,本题的解答中,不要“vt=”(5)方程要完备,忌漏掉方程:例如写了“F-Ff =ma”“Ff=µFN”,而漏写了“FN-mg=0”.(6)一些例题、习题中推出的结论解题过程中不要直接应用,如R=,y=(L+)tanθ.要先推导,再应用.3.在解题过程中运用数学的方式要讲究(1)“代人数据”、解方程的具体过程可以不写出.(2)解题过程中涉及的几何关系只需说出判断不必证明:例如,指出三角形ABC相似于三角形DEF即可,不必说明为什么相似.指出三角形ABC与三角形DEF全等即可,,不必说出为什么全等.(3)重要的中间结论的文字表达式要写出来.(4)一元二次方程的两个解,都要写出来,然后,该舍去的舍去.(5)数字相乘,数字之间不要用“·”,要用“×”;不要“·lO·32”而要“×10×32”.(6)卷面上不能“约分”.例如不能在G上打“/”或者“×”相约,写出(7)文字式做答案的,所有字母应是已知量.(8)解题过程中常数的取值与课本一致,如没有特别说明g=9.8m/s2,在估算或题目有说明时,可取g=10m/s2.4.使用各种字母符号要规范①尊重题目所给的符号,题目给了符号一定不再另立符号,题目给出半径是r,你写成R就是错的;②一个字母在一个题中只能用来表示一个物理量,忌一字多用,例如物体在第一阶段的时间用t1表示,第二阶段的时间在用t2表示,不能都用t.一个物理量在同一题中不能用多个符号,以免混乱;③注意延用习惯用法,拉力用F,摩擦力用Ff,阅卷人一看就明白,如果用反了就会用误解。
高中物理15种快速解题方法
高中物理15种快速解题方法
一、直接解法:
1. 根据题目的条件或结论条件,在知识点或解答技巧上直接得出结论;
2. 利用类比、数学归纳法、守恒原理等解题;
3. 利用位移定理解决静力学中摩擦、外力等问题;
4. 通过定理、公式求解正方形时,利用特殊条件重新推导公式;
5. 利用代数、极限、导数、积分等解寻解;
6. 利用坐标变换、向量矢量分析等方法进行求解;
7. 利用量纲统一法解决透视、弹性、统计等问题;
8. 常数参数求解思路可做到快速求解;
9. 分变量求解,保持未知量恒定、常数简化问题;
10. 原地移动,多次试验,利用观察结果进行解答;
11. 坐标变换可用于消元去除模糊不确定性;
12. 利用反证法得出结论;
13. 利用假设证明法--“贝叶斯——假设证明[贝叶斯模式]”等方法求解;
14. 利用统计、概率等解决统计、随机变量的计算问题;
15. 利用几何、拓扑的相关知识解决相关问题。
高中物理的44种解题方法研究
高中物理的44种解题方法研究高中物理28个最佳突破口1.“圆周运动”突破口——关键是“找到向心力的来源”。
2.“平抛运动”突破口——关键是两个矢量三角形(位移三角形、速度三角形)。
3“类平抛运动”突破口——合力与速度方向垂直,并且合力是恒力!4“绳拉物问题”突破口——关键是速度的分解,分解哪个速度。
(“实际速度”就是“合速度”,合速度应该位于平行四边形的对角线上,即应该分解合速度)5.“万有引力定律”突破口——关键是“两大思路”。
(1)F万=mg 适用于任何情况,注意如果是“卫星”或“类卫星”的物体则g应该是卫星所在处的g.(2)F万=Fn 只适用于“卫星”或“类卫星”6.万有引力定律变轨问题突破口——通过离心、向心来理解!(关键字眼:加速,减速,喷火)7.求各种星体“第一宇宙速度”突破口——关键是“轨道半径为星球半径”!8.受力分析突破口——“防止漏力”:寻找施力物体,若无则此力不存在。
“防止多力”:按顺序受力分析。
(分清“内力”与“外力”——内力不会改变物体的运动状态,外力才会改变物体的运动状态。
)9.三个共点力平衡问题的动态分析突破口——(矢量三角形法)10.“单个物体”超、失重突破口——从“加速度”和“受力”两个角度来理解。
11.“系统”超、失重突破口——系统中只要有一个物体是超、失重,则整个系统何以认为是超、失重。
12.机械波突破口——波向前传播的过程即波向前平移的过程。
“质点振动方向”与“波的传播方向”关系——“上山抬头,下山低头”。
波源之后的质点都做得是受迫振动,“受的是波源的迫”(所有质点起振方向都相同波速——只取决于介质。
频率——只取决于波源。
)13.“动力学”问题突破口——看到“受力”分析“运动情况”,看到“运动”要想到“受力情况”。
14.判断正负功突破口——(1)看F与S的夹角:若夹角为锐角则做正功,钝角则做负功,直角则不做功。
(2)看F与V的夹角:若夹角为锐角则做正功,钝角则做负功,直角则不做功。
高中物理68个解题技巧
高中物理68个解题技巧1.熟悉物理公式,掌握基本计算方法。
2. 想象物理现象,画出示意图,有助于理解和解决问题。
3. 善于利用物理学原理,尤其是能量守恒定律和动量守恒定律。
4. 注意物理量的单位,在计算中进行单位换算。
5. 对于复杂的计算问题,可以采用近似计算的方法,简化计算过程。
6. 计算时注意保留有效数字,避免四舍五入带来的误差。
7. 注意物理实验的误差,进行误差分析和处理。
8. 对于物理实验中的测量数据,可以进行平均值计算和标准差计算。
9. 针对物理实验的不同要求,选择合适的实验方法和装置。
10. 学习并掌握物理中的基本概念和定律,如洛伦兹力、浮力、牛顿定律等。
11. 对于一些比较难理解的概念,可以通过举例或比喻来帮助理解。
12. 学习并熟悉物理实验中的常见仪器和设备,如电子秤、光学仪器、电器元件等。
13. 学习并掌握物理实验中的实验方法和实验技巧,如精密调节、测量数据处理等。
14. 了解物理学的发展历程和最新研究进展,有助于更好地理解物理学知识。
15. 总结、归纳和应用物理知识,可以提高解题能力和应用能力。
16. 注意物理学习的连续性,及时复习和总结学过的知识。
17. 利用各种资源和工具,如物理学习网站、视频资料、模拟实验软件等,增加学习效果。
18. 学习时要尊重老师、尊重知识,认真听课、认真思考、认真完成作业。
19. 保持兴趣和好奇心,探索物理学的奥秘,不断提高自己的物理学水平。
20. 在解决问题时,要注意分析问题的本质,理清思路,找出解题方法。
21. 遇到困难时,不要气馁,要勇于尝试、积极解决。
22. 在解题过程中,要注意题目中的关键词、条件和限制。
23. 要注重物理学习的实践性,多进行物理实验和实践操作。
24. 在物理实验和操作中,要注意安全和规范操作,避免意外伤害。
25. 要注重物理学习的实用性,学会将物理知识应用到实际问题中。
26. 学习时要注意多角度、多层次地理解和应用物理学知识。
高中物理解题49种方法
高中物理解题49种方法1. 利用公式计算2. 利用图像分析3. 利用物理实验数据4. 利用基本物理原理5. 利用万有引力定律6. 利用牛顿第二定律7. 利用牛顿第三定律8. 利用动量守恒定律9. 利用能量守恒定律10. 利用气体状态方程11. 利用光的折射和反射定律12. 利用光的干涉和衍射定律13. 利用电场和电势能14. 利用电势差和电位差15. 利用电场线和电荷密度16. 利用静电力和电容17. 利用磁感应强度和磁通量18. 利用洛伦兹力和电磁感应定律19. 利用电路中的欧姆定律20. 利用交流电路中的功率和频率21. 利用透镜的成像公式22. 利用热力学定律23. 利用热传导和热辐射24. 利用声波和共振25. 利用核反应和辐射26. 利用半导体和电子器件27. 利用电磁波的传播和反射28. 利用相对论和时空29. 利用量子力学和微观世界30. 利用黑洞和宇宙学31. 利用光电效应和波粒二象性32. 利用原子结构和化学反应33. 利用光合作用和生物光学34. 利用人体力学和生物电学35. 利用地球物理和大气物理36. 利用机械波和弹性体37. 利用材料力学和强度学38. 利用流体力学和气体动力学39. 利用光学仪器和测量技术40. 利用电子学和通信技术41. 利用能源转换和储存技术42. 利用环境保护和可持续发展43. 利用科技创新和应用发展44. 利用历史和哲学思考45. 利用文化和社会影响46. 利用文学和艺术表达47. 利用个人经验和感悟48. 利用跨学科综合思考49. 利用创造性思维和解决问题能力。
高中物理解题方法和技巧典例
高中物理解题方法和技巧典例
1.确定所求量和已知量,画出物理图像
在解题前,要明确题目中所给出的已知量和所求量,然后画出相应的物理图像,这有助于理清思路和确定解题方向。
例如:一辆汽车以10m/s的速度向东行驶,经过5秒后速度变为20m/s,求汽车的加速度。
已知量:初速度v1=10m/s,末速度v2=20m/s,时间t=5s
所求量:加速度a
物理图像:汽车向东行驶
2. 利用物理公式和定理,列出方程式
在明确已知量和所求量以及画出物理图像后,需要根据相应的物理公式和定理列出方程式,然后代入已知量的数值进行求解。
例如:一辆汽车以10m/s的速度向东行驶,经过5秒后速度变为20m/s,求汽车的加速度。
已知量:初速度v1=10m/s,末速度v2=20m/s,时间t=5s
所求量:加速度a
物理公式:a=(v2-v1)/t
方程式:a=(20-10)/5=2m/s^2
3. 注意单位的换算和精度的保留
在解题过程中,需要注意单位的换算和精度的保留。
有时候,题目中给出的单位和公式中的单位不一致,需要进行相应的换算。
同时,在计算过程中需要保留相应的精度,避免出现误差。
例如:一个物体以10m/s的速度向上抛出,求物体的最高点离地面的高度。
已知量:初速度v0=10m/s,重力加速度g=9.8m/s^2
所求量:最高点离地面的高度h
物理公式:h=v0^2/2g
方程式:h=10^2/2×9.8=5.1m
在计算过程中,需要将结果保留一定的小数位,例如保留一位小数,即5.1m。
高中物理解题方法和步骤
高中物理解题方法和步骤高中物理解题方法和步骤高中物理解题篇一:高一物理解题方法技巧一、解答物理问题的常用方法方法一隔离法和整体法1.所谓隔离法,就是将物理问题的某些研究对象或某些过程、状态从系统或全过程中隔离出来进行研究的方法.隔离法的两种类型:(1)对象隔离:即为寻求与某物体有关的所求量与已知量之间的关系,将某物体从系统中隔离出来.(2)过程隔离:物体往往参与几个运动过程,为求解涉及某个过程中的物理量,就必须将这个过程从全过程中隔离出来.2.所谓整体法,是指对物理问题的整个系统或过程进行研究的方法,也包括两种情况:(1)整体研究物体体系:当所求的物理量不涉及系统中某个物体的力和运动时常用.(2)整体研究运动全过程:当所求的物理量只涉及运动的全过程时常用.例:如下图所示,两个完全相同的球,重力大小均为G,两球与水平地面间的动摩擦因数均为μ,一根轻绳两端固定在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两绳间的夹角为α.问当F至少为多大时,两球会发生滑动?【解析】设绳子的拉力为FT,水平面对球的支持力为FN,选其中某一个球为研究对象,发生滑动的临界条件是FTsin=μFN① 又FT cos②2μG再取整体为研究对象,由平衡条件得F+2FN=2G③ 联立①②③式得F=. αtanμ2方法二等效法等效法是物理学中一个基本的思维方法,其实质是在效果相同的条件下,将复杂的情景或过程变换为简单的情景或过程.1.力的等效:合力与分力具有等效性,将物体所受的多个恒力等效为一个力,就把复杂的物理模型转化为相对简单的物理模型,大大降低解题难度.2.运动的等效:由于合运动和分运动具有等效性,所以平抛运动可看作是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
“小船过河”中小船的运动可以看作是沿水流的方向的匀速直线运动和垂直于河岸方向的匀速直线运动的合运动。
在计算大小不变方向变化的阻力做功时,如空气阻力做功的时候,可以应用公式W=fS,只是式中的S是路程而不是位移,不管物体的运动方向如何变,均可等效为恒力f作用下的单向直线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理解题方法大全物理题解常用的两种方法:分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。
这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。
综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。
综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。
实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。
正确解答物理题应遵循一定的步骤第一步:看懂题。
所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。
”要养成这样一个习惯:不懂题,就不要动手解题。
若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。
第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。
第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。
一、静力学问题解题的思路和方法1.确定研究对象:并将“对象”隔离出来-。
必要时应转换研究对象。
这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。
2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。
以受力图表示。
3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。
4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。
5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。
静力学习题可以分为三类:①力的合成和分解规律的运用。
②共点力的平衡及变化。
③固定转动轴的物体平衡及变化。
认识物体的平衡及平衡条件对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α为零,则称为平衡,欲使质点平衡须有∑F=0。
若将各力正交分解则有:∑F X=0,∑F Y=0 。
对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F=0,∑M=0。
这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F =0可以引伸得出以下结论:① 三个力必共点。
② 这三个力矢量组成封闭三角形。
③ 任何两个力的合力必定与第三个力等值反向。
对物体受力的分析及步骤(一)、受力分析要点:1、明确研究对象2、分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法”3、作图时力较大的力线亦相应长些4、每个力标出相应的符号(有力必有名),用英文字母表示5、物体或结点:⎩⎨⎧解法。
受四力以上:用正交分成法或正交分解法。
受三个力作用:力的合 6、用正交分解法解题列动力学方程①受力平衡时⎩⎨⎧=∑=∑0F 0F YX ②受力不平衡时⎩⎨⎧∑∑ymax F X X ma F == 7、一些物体的受力特征: ⎩⎨⎧均可传。
杆或弹簧:拉力、压力(张力)不能传压力。
绳或橡筋:不能受拉力 8、同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。
(二)、受力分析步骤:1、判断物体的个数并作图:①重力;②接触力(弹力和摩擦力);③场力(电场力、磁场力)2、判断力的方向:①根据力的性质和产生的原因去判;②根据物体的运动状态去判;a 由牛顿第三定律去判;b 由牛顿第二定律去判(有加速度的方向物体必受力)。
二、运动学解题的基本方法、步骤运动学的基本概念(位移、速度、加速度等)和基本规律是我们解题的依据,是我们认识问题、分析问题、寻求解题途径的武器。
只有深刻理解概念、规律才能灵活地求解各种问题,但解题又是深刻理解概念、规律的必需环节。
根据运动学的基本概念、规律可知求解运动学问题的基本方法、步骤为(1)审题。
弄清题意,画草图,明确已知量,未知量,待求量。
(2)明确研究对象。
选择参考系、坐标系。
(3)分析有关的时间、位移、初末速度,加速度等。
(4)应用运动规律、几何关系等建立解题方程。
(5)解方程。
三、动力学解题的基本方法我们用动力学的基本概念和基本规律分析求解动力学习题.由于动力学规律较复杂,我们根据不同的动力学规律把习题分类求解。
1、应用牛顿定律求解的问题,这种问题有两种基本类型:(1)已知物体受力求物体运动情况,(2)已知物体运动情况求物体受力.这两种基本问题的综合题很多。
从研究对象看,有单个物体也有多个物体。
(1)解题基本方法根据牛顿定律ma F =合解答习题的基本方法是① 根据题意选定研究对象,确定m 。
② 分析物体受力情况,画受力图,确定合F 。
③ 分析物体运动情况,确定a 。
④ 根据牛顿定律、力的概念、规律、运动学公式等建立解题方程。
⑤ 解方程。
⑥ 验算,讨论。
以上①、②、③是解题的基础,它们常常是相互联系的,不能截然分开。
应用动能定理求解的问题动能定理公式为k 1k 2E E W -=合,根据动能定理可求功、力、位移、动能、速度大小、质量等。
应用动能定理解题的基本方法是 ·① 选定研究的物体和物体的一段位移以明确m 、s 。
② 分析物体受力,结合位移以明确总W 。
③ 分析物体初末速度大小以明确初末动能。
然后是根据动能定理等列方程,解方程,验算讨论。
(例题)如图4—5所示,木板质量千克10m 1=,长3米。
物体质量千克=2m 2。
物体与木板间摩擦系数05.01=μ,木板与水平地面间摩擦系数1.02=μ,开始时,物体在图4-5F m 2 m 1木板右端,都处于静止状态。
现用33F =牛的水平恒力拉木板,物体将在木板上滑动,问经过2秒后(1)力F 作功多少?(2)物体动能多大?(10g =米/秒2)应用动量定理求解的问题从动量定理12P P I -=合知,这定理能求冲量、力、时间、动量、速度、质量等。
动量定理解题的基本方法是① 选定研究的物体和一段过程以明确m 、t 。
② 分析物体受力以明确冲量。
⑧ 分析物体初、末速度以明确初、末动量。
然后是根据动量定理等建立方程,解方程,验算讨论。
【例题8】 质量为10千克的重锤从3.2米高处自由下落打击工件,重锤打击工件后跳起0.2米,打击时间为0.01秒。
求重锤对工件的平均打击力。
应用机械能守恒定律求解的问题机械能守恒定律公式是p2k 2p1k 1E E E E +=+知,可以用来求动能、速度大小、质量、势能、高度,位移等。
应用机械能守恒定律的基本方法是① 选定研究的系统和一段位移。
② 分析系统所受外力、内力及它们作功的情况以判定系统机械能是否守恒。
③ 分析系统中物体初末态位置、速度大小以确定初末态的机械。
然后根据机械能守恒定律等列方程,解方程,验算讨论。
四、电场解题的基本方法本章的主要问题是电场性质的描述和电场对电荷的作用,解题时必须搞清描述电场性质的几个物理量和研究电场的各个规律。
1、如何分析电场中的场强、电势、电场力和电势能(1)先分析所研究的电场是由那些场电荷形成的电场。
(2)搞清电场中各物理量的符号的含义。
(3)正确运用叠加原理(是矢量和还是标量和)。
下面简述各量符号的含义:①电量的正负只表示电性的不同,而不表示电量的大小。
②电场强度和电场力是矢量,应用库仑定律和场强公式时,不要代入电量的符号,通过运算求出大小,方向应另行判定。
(在空间各点场强和电场力的方向不能简单用‘+’、‘-’来表示。
)③电势和电势能都是标量,正负表示大小.用qU =ε进行计算时,可以把它们的符号代入,如U 为正,q 为负,则ε也为负.如U 1>U 2>0,q 为负,则021<<εε。
④ 电场力做功的正负与电荷电势能的增减相对应,W AB 为正(即电场力做正功)时,电荷的电势能减小,B A εε>;W AB 为负时,电荷的电势能增加B A εε<。
所以,应用B A B A AB U U q W εε-)=-(=时可以代人各量的符号,来判定电场力做功的正负。
当然也可以用)-(B A U U q 求功的大小,再由电场力与运动方向来判定功的正负。
但前者可直接求比较简便。
2、如何分析电场中电荷的平衡和运动电荷在电场中的平衡与运动是综合电场;川力学的有关知识习·能解决的综合性问题,对加深有关概念、规律的理解,提高分析,综合问题的能力有很大的作用。
这类问题的分析方法与力学的分析方法相同,解题步骤如下:(1)确定研究对象(某个带电体)。
(2)分析带电体所受的外力。
(3)根据题意分析物理过程,应注意讨论各种情况,分析题中的隐含条件,这是解题的关键。
(4)根据物理过程,已知和所求的物理量,选择恰当的力学规律求解。
(5)对所得结果进行讨论。
【例题4】 如图7—3所示,如果H 31 (氚核)和He 24(氦核)垂直电场强度方向进入同—偏转电场,求在下述情况时,它们的横向位移大小的比。
(1)以相同的初速度进入,(2)以相同的初动能进入; (3)以相同的初动量进入; (4)先经过同一加速电场以后再进入。
分析和解 带电粒子在电场中所受电场力远远大于所受的重力,所以重力可以忽略。
带电粒子在偏转电场受到电场力的作用,做类似于平抛的运动,在原速度方向作匀速运动,在横向作初速为零的匀加速运动。
利用牛顿第二定律和匀加速运动公式可得202)m qE 21at 21y v l (== (1)以相同的初速度v 0进入电场, 因E 、l 、v 0都相同,所以m q y ∝323241=⨯⨯==H e H e H H e H H m q m q y y (2)以相同的初动能E k0进入电场,因为E 、l 、mv 2都相同,所以q y ∝21==e H H e H q q y yH V 0(3)以相同的初动量p 0进入电场,因为E 、l 、mv 0都相同,由qm mv qEml v l m qE y ∝==202202)(221 834231=⨯⨯==H e H H H e H H m q m q y y (4)先经过同一加速电场加速后进入电场,在加速电场加速后,粒子的动能12021qU mv = (U 1为加速电压) 由 12122024421U El qU qEl v l m qE y === 因E 、l 、U 1是相同的,y 的大小与粒子质量、电量无关,所以:11=e H H y y 注意 在求横向位移y 的比值时,应先求出y 的表达式,由题设条件,找出y 与粒子的质量m 、电量q 的比例关系,再列出比式求解,这是求比值的一般方法。