2021年高中数学《3.1 直线的倾斜角与斜率》学案 新人教A版必修

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高中数学《3.1 直线的倾斜角与斜率》学案新人教A版必修2

学习目标

1.理解直线的倾斜角的定义、范围和斜率;

2.掌握过两点的直线斜率的计算公式;

3.能用公式和概念解决问题.

学习过程

一、课前准备

(预习教材P90~ P91,找出疑惑之处)

复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?

复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?

二、新课导学

※学习探究

新知1:当直线与轴相交时,取轴作为基准,轴正向与直线向上方向之间所成的角叫做直线的倾斜角(angle of inclination).

关键:①直线向上方向;②轴的正方向;③小于平角的正角.

注意:当直线与轴平行或重合时,我们规定它的倾斜角为0度..

试试:请描出下列各直线的倾斜角.

反思:直线倾斜角的范围?

探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?

新知2:一条直线的倾斜角的正切值叫做这条直线的斜率(slope).记为.

试试:已知各直线倾斜角,则其斜率的值为

⑴当时,则;

⑵当时,则;

⑶当时,则;

⑷当时,则 .

新知3:已知直线上两点的直线的斜率公式:.

探究任务三:

1.已知直线上两点运用上述公式计算直线的斜率时,与两点坐标的顺序有关吗?

2.当直线平行于轴时,或与轴重合时,上述公式还需要适用吗?为什么?

※典型例题

例1 已知直线的倾斜角,求直线的斜率:

⑴;

⑵;

⑶;

变式:已知直线的斜率,求其倾斜角.

⑴;

⑵;

⑶;

⑷不存在.

例2 求经过两点的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.

※动手试试

练1. 求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角.

⑴;

⑵.

练2.画出斜率为且经过点的直线.

练3.判断三点的位置关系,并说明理由.

三、总结提升

※学习小结

1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是.

2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点的坐标来求;⑶当直线的倾斜角时,直线的斜率是不存在的

3.直线倾斜角、斜率、斜率公式三者之间的关系:

学习评价

※自我评价你完成本节导学案的情况为().

A. 很好

B. 较好

C. 一般

D. 较差

※当堂检测(时量:5分钟满分:10分)计分:

1. 下列叙述中不正确的是().

A.若直线的斜率存在,则必有倾斜角与之对应

B.每一条直线都惟一对应一个倾斜角

C.与坐标轴垂直的直线的倾斜角为或

D.若直线的倾斜角为,则直线的斜率为

2. 经过两点的直线的倾斜角().

A. B. C. D.

3. 过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为( ).

A.1

B.4

C.1或3

D.1或4

4. 直线经过二、三、四象限,的倾斜角为,斜率为,则为角;的取值范围 . 5.已知直线l1的倾斜角为1,则l1关于x轴对称的直线l2的倾斜角为________.

课后作业

1.已知点,若直线l过点

且与线段相交,求直线l的斜率的取值范围. 2. 已知直线过两点,求此直线的斜率和倾斜角.

相关文档
最新文档