人教版平方差公式课件
合集下载
14.2.1+平方差公式+课件+2024—2025学年人教版数学八年级上册
五、练习小测
运用平方差公式计算下面各题。
(1) (a+3b)(a-3b) (2) (3+2a)(-3+2a) (3) 51×49 (4) (3X+4)(3X-4)-(2X+3)(3X-2)
六、应用思考
你能根据图中的阴影面积说明平方差公式吗?
a米
b米
a米
b米
相等吗?
(a-b)
七、问题解决
学校设计花园,起初被设计为边长为a米的正方形,后铅球场 地原因,设计修改为:北边往南平移2.5米,而东边往东平移2.5米。 试问修改后的花园面积和原先设计的花园面积相差多少?如果不 相等,相差多少?
((3x-x++22y)(3-xx--2y2)。) ; 解解:: ==(3(-xx))22--(22y2)2
==9xx22-- 44y;2.
练习:第108页的第1题
1.下面各式的计算对不对?如果不对,应当怎样改正?
(x+2)(x-2)=x²-2
(-3a-2)(-3a-2)=(-3a)²-2²=9a²-4
设计修改为:北边往南平移x(x≤a)米,而西边往西平移x米。 试问: (1)修改后的花园面积和原先设计的花园面积相差多少? (2)上述两种设计的面积之差与的大小有什么关系? (3)在周长为定值4a的矩形中,什么时候其面积最大? (4)计算周长均为4a的圆的面积,正六边形的面积。由此你有什么新的 发现?
四、巩固新知
例2计算: (1)102×98
小 贴
尝试用上平方差公
士 式进行变形计算。
(2) (y+2) (y-2) – (y-1) (y+5)
解: =(100+2)(100-2) = 1002-22 =10000 – 4 =9996
(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.2.1 平方差公式教学课件
(1)(a–2)(a+2)(a2 + 4) 解:原式=(a2–4)(a2+4)
=a4–16.
(2) (x–y)(x+y)(x2+y2)(x4+y4). 解:原式=(x2–y2)(x2+y2)(x4+y4)
=(x4–y4)(x4+y4) =x8–y8.
课堂检测
能力提升题
先化简,再求值:(x+1)(x–1)+x2(1–x)+x3, 其中x=2.
1. 公式中的a和b,既可以是具体的数,也可以是单项 式或者多项式;
2. 左边是两个二项式的积,并且有一项完全相同,另 一项互为相反数;
3. 右边是相同项的平方减去相反项的绝对值的平方.
探究新知
(a–b)(a+b)
(1+x)(1–x) (–3+a)(–3–a) (1+a)(–1+a) (0.3x–1)(1+0.3x)
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
1.(a – b ) ( a + b) = a2 – b2 2.(b + a )( –b + a ) = a2 – b2
探究新知
平方差公式
相同为a
=a4–16.
(2) (x–y)(x+y)(x2+y2)(x4+y4). 解:原式=(x2–y2)(x2+y2)(x4+y4)
=(x4–y4)(x4+y4) =x8–y8.
课堂检测
能力提升题
先化简,再求值:(x+1)(x–1)+x2(1–x)+x3, 其中x=2.
1. 公式中的a和b,既可以是具体的数,也可以是单项 式或者多项式;
2. 左边是两个二项式的积,并且有一项完全相同,另 一项互为相反数;
3. 右边是相同项的平方减去相反项的绝对值的平方.
探究新知
(a–b)(a+b)
(1+x)(1–x) (–3+a)(–3–a) (1+a)(–1+a) (0.3x–1)(1+0.3x)
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
1.(a – b ) ( a + b) = a2 – b2 2.(b + a )( –b + a ) = a2 – b2
探究新知
平方差公式
相同为a
人教版八年级数学 利用平方差公式因式分解PPT课件
2 2=(
–
+
)(
-
)
问题:观察平方差公式:a2-b2=(a+b) (a-b)的项、指数、符号有什么特点?
【练一练】一: 4a2=( )2
0.16a4=( x4 y2=( ) )2
25b2=( )2
2
a b =(
2
2
)
2
【练一练】二:
下列多项式可以用平方差公式去分 解因式吗? 为什么?
(1) 4x2+y2
(2) a b–ab=____________________
特殊说明:平方差公式中的字母a、b,可以表示数、含字母的 代数式(单项式、多项式).
4
4
3
小结:
平方差公式:
a b
2
2
(a b)(a b)
平方差公式因式分解特征: (1)两部分相减
(2)两部分都可写成某数(式)的平方
(3)结果是两数之和与这两数之差的积
公式法因式分解(一)
1.理解平方差公式的意义,弄清平方差 公式的形式和特点;
2.掌握运用平方差公式分解因式的方法, 能正确运用平方差公式把多项式分解 因式(直接用公式不超过两次)
情景导入:
1、同学们,你能很快知道992-1是100 b)(a-b)=__________ 3.你能将a2-b2 分解因式吗? 你是如 何思考的?
注意:
1.因式分解的步骤是首先提取公因式,然后考 虑用公式.
2.因式分解进行到每一个因式不能分解为止. 3.计算中应用因式分解,可使计算简便.
(3) -4x2-y2
(2) 4x2-(-y)2
(4) -4x2+y2
(5) a2-4
–
+
)(
-
)
问题:观察平方差公式:a2-b2=(a+b) (a-b)的项、指数、符号有什么特点?
【练一练】一: 4a2=( )2
0.16a4=( x4 y2=( ) )2
25b2=( )2
2
a b =(
2
2
)
2
【练一练】二:
下列多项式可以用平方差公式去分 解因式吗? 为什么?
(1) 4x2+y2
(2) a b–ab=____________________
特殊说明:平方差公式中的字母a、b,可以表示数、含字母的 代数式(单项式、多项式).
4
4
3
小结:
平方差公式:
a b
2
2
(a b)(a b)
平方差公式因式分解特征: (1)两部分相减
(2)两部分都可写成某数(式)的平方
(3)结果是两数之和与这两数之差的积
公式法因式分解(一)
1.理解平方差公式的意义,弄清平方差 公式的形式和特点;
2.掌握运用平方差公式分解因式的方法, 能正确运用平方差公式把多项式分解 因式(直接用公式不超过两次)
情景导入:
1、同学们,你能很快知道992-1是100 b)(a-b)=__________ 3.你能将a2-b2 分解因式吗? 你是如 何思考的?
注意:
1.因式分解的步骤是首先提取公因式,然后考 虑用公式.
2.因式分解进行到每一个因式不能分解为止. 3.计算中应用因式分解,可使计算简便.
(3) -4x2-y2
(2) 4x2-(-y)2
(4) -4x2+y2
(5) a2-4
14-2-2方差公式(课件)-2022-2023学年人教版八年级上学期
解:原方程可化为:9-4x2+9x=3x-4x2
移项,得:-4x2+9x-3x+4x2=-9
合并同类项,得:6x=-9
系数化为1,得:x=
19
平方差公式
例6:王大伯家把一块边长为a米的正方形土地租给了邻居李大妈。
今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增
加4米,继续租给你,你看如何?”李大妈一听,就答应了。你认
为李大妈吃亏了吗?为什么?
解:李大妈吃亏了。理由如下:
原正方形的面积为a2,
改变边长后面积为(a+4)(a-4)=a2-16,
∵a2>a2-16,
∴李大妈吃亏了。
20
平方差公式
方法总结:
解决实际问题的关键是根据题意列出算式,
然后根据公式化简算式,解决问题。
21
拓展延伸
我们在计算:(2+1)(22+1)(24+1)(28+1)(216+1)时,
12
练习巩固
1.计算(1+y)(1-y)的结果是(
A.1+y2
B.-1-y2
C.1-y2
C
)
D.-1+y2
2.下列不能运用平方差公式计算的是(
A.(m-n )( -m-n )
B.(-1+mn )( 1+mn )
C.(-m+n )( m-n )
D.(2m-3 )( 2m+3 )
C
)
13
典例精析
例2:计算:(1)103×97; (2)(y+2)(y-2)–(y-1)(y+5)
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的整数倍。
移项,得:-4x2+9x-3x+4x2=-9
合并同类项,得:6x=-9
系数化为1,得:x=
19
平方差公式
例6:王大伯家把一块边长为a米的正方形土地租给了邻居李大妈。
今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增
加4米,继续租给你,你看如何?”李大妈一听,就答应了。你认
为李大妈吃亏了吗?为什么?
解:李大妈吃亏了。理由如下:
原正方形的面积为a2,
改变边长后面积为(a+4)(a-4)=a2-16,
∵a2>a2-16,
∴李大妈吃亏了。
20
平方差公式
方法总结:
解决实际问题的关键是根据题意列出算式,
然后根据公式化简算式,解决问题。
21
拓展延伸
我们在计算:(2+1)(22+1)(24+1)(28+1)(216+1)时,
12
练习巩固
1.计算(1+y)(1-y)的结果是(
A.1+y2
B.-1-y2
C.1-y2
C
)
D.-1+y2
2.下列不能运用平方差公式计算的是(
A.(m-n )( -m-n )
B.(-1+mn )( 1+mn )
C.(-m+n )( m-n )
D.(2m-3 )( 2m+3 )
C
)
13
典例精析
例2:计算:(1)103×97; (2)(y+2)(y-2)–(y-1)(y+5)
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的整数倍。
人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2
初二数学平方差公式1[人教版](PPT)5-4
3) (-2xy+z)(-2xy-z) 4) (a2-3bc)(3bc+a2) =(z-2xy)[-(z+2xy)]
5) (a+b)(b-c) 6) (a+b)(-a-b)
乘法公式:
(x+a)(x+b)= x2+(a+b)x+ab 1.当a=-b时
(a+b)(a-b) =a2+[b+(-b)]-b2 =a2 -b2
——平方差公式
蛮横,不通情理。 【不可名状】不能够用语言形容(名:说出)。 【不可逆反应】-在一定条件下,几乎只能向一定方向(即生成物方向)进行的化学反应。 【不可收拾】?原指事物无法归类整顿,后借指事情坏到无法挽回的地步。 【不可思议】ī不可想象,不能理解(原来是佛教用语,含有神秘奥妙的意思)。 【不可同日而语】不能放在同一;香港保险 https:// 香港保险 ;时间谈论,形容不能相比,不能相提并论。 【不可向迩】不能接近:烈火 燎原,~。 【不可一世】ī自以为在当代没有一个人能比得上,形容极其狂妄自大。 【不可知论】ī名一种唯心主义的认识论,认为除了感觉或现象之外,世 界本身是无法认识的。它否认社会发展的客观规律,否认社会实践的作用。 【不可终日】一天都过不下去,形容局势危急或心中惶恐:惶惶~。 【不克】 〈书〉动不能(多指能力薄弱,不能做到):~自拔|~分身。 【不快】形①(心情)不愉快:怏快~。②(身体)不舒服:几天来身子~。 【不愧】副当 之无愧;当得起(多跟“为”或“是”连用):郑成功~为一位民族英雄。 【不赖】〈方〉形不坏;好:字写得~|今年的庄稼可真~。 【不郎不秀】比喻 不成材或没出息(元明时代官僚、贵族的子弟称“秀”,平民的子弟称“郎”)。 【不劳而获】自己不劳动而取得别人劳动的成果。 【不力】形不尽力;不 得力:办事~|打击~。 【不利】形没有好处;不顺利:扭转~的局面|地形有利于我而~于敌。 【不良】形不好:~现象|消化~|存心~。 【不良贷 款】指银行不能按期收回的贷款。 【不了】动没完(多用于动词加“个”之后):忙个~|大雨下个~。 【不了了之】ī该办的事情没有办完,放在一边不 去管它,就算完事。 【不料】连没想到;没有预先料到。用在后半句的开头,表示转折,常用“却、竟、还、倒”等呼应:今天本想出门,~竟下起雨来。 【不吝】动客套话,不吝惜(用于征求意见):是否有当,尚希~赐教。 【不露声色】不动声色。 【不伦不类】不像这一类,也不像那一类,形容不成样子 或不规范:翻译如果不顾本国语言的特点,死抠原文字句,就会弄出一些~的句子来,叫人看不懂。 【不论】①连表示条件或情况不同而结果不变,后面往
5) (a+b)(b-c) 6) (a+b)(-a-b)
乘法公式:
(x+a)(x+b)= x2+(a+b)x+ab 1.当a=-b时
(a+b)(a-b) =a2+[b+(-b)]-b2 =a2 -b2
——平方差公式
蛮横,不通情理。 【不可名状】不能够用语言形容(名:说出)。 【不可逆反应】-在一定条件下,几乎只能向一定方向(即生成物方向)进行的化学反应。 【不可收拾】?原指事物无法归类整顿,后借指事情坏到无法挽回的地步。 【不可思议】ī不可想象,不能理解(原来是佛教用语,含有神秘奥妙的意思)。 【不可同日而语】不能放在同一;香港保险 https:// 香港保险 ;时间谈论,形容不能相比,不能相提并论。 【不可向迩】不能接近:烈火 燎原,~。 【不可一世】ī自以为在当代没有一个人能比得上,形容极其狂妄自大。 【不可知论】ī名一种唯心主义的认识论,认为除了感觉或现象之外,世 界本身是无法认识的。它否认社会发展的客观规律,否认社会实践的作用。 【不可终日】一天都过不下去,形容局势危急或心中惶恐:惶惶~。 【不克】 〈书〉动不能(多指能力薄弱,不能做到):~自拔|~分身。 【不快】形①(心情)不愉快:怏快~。②(身体)不舒服:几天来身子~。 【不愧】副当 之无愧;当得起(多跟“为”或“是”连用):郑成功~为一位民族英雄。 【不赖】〈方〉形不坏;好:字写得~|今年的庄稼可真~。 【不郎不秀】比喻 不成材或没出息(元明时代官僚、贵族的子弟称“秀”,平民的子弟称“郎”)。 【不劳而获】自己不劳动而取得别人劳动的成果。 【不力】形不尽力;不 得力:办事~|打击~。 【不利】形没有好处;不顺利:扭转~的局面|地形有利于我而~于敌。 【不良】形不好:~现象|消化~|存心~。 【不良贷 款】指银行不能按期收回的贷款。 【不了】动没完(多用于动词加“个”之后):忙个~|大雨下个~。 【不了了之】ī该办的事情没有办完,放在一边不 去管它,就算完事。 【不料】连没想到;没有预先料到。用在后半句的开头,表示转折,常用“却、竟、还、倒”等呼应:今天本想出门,~竟下起雨来。 【不吝】动客套话,不吝惜(用于征求意见):是否有当,尚希~赐教。 【不露声色】不动声色。 【不伦不类】不像这一类,也不像那一类,形容不成样子 或不规范:翻译如果不顾本国语言的特点,死抠原文字句,就会弄出一些~的句子来,叫人看不懂。 【不论】①连表示条件或情况不同而结果不变,后面往
人教版教材《平方差公式》课件ppt1
多项式与多项式是如何相乘的?
多项式与多项式是如何相乘的?
(a+b)(m+n) =am+an +bm+bn
(x + 3)( x+5) =x2+5x +3X +15 =x2 +8x +15
多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加.
计算下列多项式的积:
(1) (x+1)(x-1) = X2-1 =x2 - 12
( x4 y)4 (x4+y4) x8 y8
人教版八年级上册数学课件:14.2.1 平方差 公式
人教版八年级上册数学课件:14.2.1 平方差 公式
小结
平方差公式
相同为a
适当交换
(a+b)(a-b)=(a)2-(b)2
B.(a-b)(b-a)
C.(100+8)(100-7)
D.(x+y-1)(x+y-1)
C
2.下列多项式相乘,不能用平方差公式计算的是( )
A.(x-2y)(2y+x)
B.(-x+2y)(-x-2y)
C.(-2y-x)(x+2y)
人教版八年级上册数学课件:14.2.1 平方差 公式
D.(-2b-5)(2b-5)
人教版八年级上册数学课件:14.2.1 平方差 公式
例2 运用平方差公式计算:
(1) (3x+2 )( 3x-2 ) ;
(2) (b+2a)(2a-b); (3) (-x+2y)(-x-2y).
解:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b)
=(3x)2-22
=(2a+b)(2a-b)
多项式与多项式是如何相乘的?
(a+b)(m+n) =am+an +bm+bn
(x + 3)( x+5) =x2+5x +3X +15 =x2 +8x +15
多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加.
计算下列多项式的积:
(1) (x+1)(x-1) = X2-1 =x2 - 12
( x4 y)4 (x4+y4) x8 y8
人教版八年级上册数学课件:14.2.1 平方差 公式
人教版八年级上册数学课件:14.2.1 平方差 公式
小结
平方差公式
相同为a
适当交换
(a+b)(a-b)=(a)2-(b)2
B.(a-b)(b-a)
C.(100+8)(100-7)
D.(x+y-1)(x+y-1)
C
2.下列多项式相乘,不能用平方差公式计算的是( )
A.(x-2y)(2y+x)
B.(-x+2y)(-x-2y)
C.(-2y-x)(x+2y)
人教版八年级上册数学课件:14.2.1 平方差 公式
D.(-2b-5)(2b-5)
人教版八年级上册数学课件:14.2.1 平方差 公式
例2 运用平方差公式计算:
(1) (3x+2 )( 3x-2 ) ;
(2) (b+2a)(2a-b); (3) (-x+2y)(-x-2y).
解:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b)
=(3x)2-22
=(2a+b)(2a-b)
人教版八年级数学上册14.平方差公式说课课件
八、说作业布置
作业本:课本112页 习题14.2 第1题 思考题:用平方差公式计算:
(1) (a 1)(a 1)(a2 1)(a4 1)(a8 1)
(2) 102 92 82 72 22 12
习题14.2第1题是使用平方差公式计算,适合学生独立完成; 思考题是对平方差公式的拓展应用,适合小组合作、交流得 出答案。
以是单项式或多项式。
注:必须符合平方差公式特征的代数式才能用平方
差公式!
(三)巩固练习
例(1)选择简 单的题,教师讲解,
例:利用平方差公式计算。
规范用平方差公式
(1)(5 6x)(5 - 6x);
计算的解题过程;
(2)(x 2 y)(x - 2 y); (3)(-m n)(-m - n).
(2)、(3)学生 可独立完成。
• 问题解决:在探索平方差公式的过程中提高学生灵活运用公式 解决问题的能力。
• 情感态度:让学生感受到数学源于生活,又可应用于生活,提 高学习兴趣和信心。
四、说教学重难点
基于以上分析,我将本课重难点确定如下: • 重点:理解和掌握平方差公式; • 难点:灵活应用平方差公式(变式)。
五、说教学方法
练习3
• 回顾思考计算10.2×9.8
• 练习3,回归思考,紧扣课前导入,同时也是对平方差公式的拓 展应用。
(四)课堂小结
1、试用语言表述平方差公式
(a b)(a b) a2 b2.
2、应用平方差公式时要注意一些什么?
通过两个问题,培养学生及时巩固、归纳总结的良好学习习惯。
七、说板书设计
二、说学情
• 学生已掌握了整式的概念、整式的加减和乘法运算;个性活泼, 思维活跃,已初步具有观察、分析、概括、归纳的能力,有一 定的抽象思维能力。
《平方差公式》PPT优质课件
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米
(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.2.1 平方差公式教学课件
探究新知
归纳总结 对于平方差中的a和b可以是具体的数, 也可以是单项式或多项式.在探究整除性或 倍数问题时,一般先将代数式化为最简, 然后根据结果的特征,判断其是否具有整 除性或倍数关系.
巩固练习
4. 如果两个连续奇数分别是2n–1,2n+1(其中n为 正整数),证明两个连续整数的平方差是8的倍数.
不符合平方差公式运
=10000 – 4
= y2–4–y2–4y+算5 条件的乘法,按乘法法
则进行运算.
=9996;利用通平过方合差理公变式形,,可= – 4y + 1.
以简化运算.
巩固练习
2. 计算:
(1) 51×49; 解: (1) 原式=(50+1)(50–1)
= 502–12 =2500 – 1 =2499;
(2)(3x+4)(3x–4)–(2x+3)(3x–2) . (2) 原式=(3x)2–42–(6x2+5x–6)
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
人教版 数学 八年级 上册
14.2 乘法公式
14.2.1 平方差公式
导入新知
观察与思考
某同学在计算97×103时将其变成(100–3)(100+3) 并很快得出结果,你知道他运用了什么知识吗?这 节课,我们就来一起探讨上述计算的规律.
素养目标
2. 了解平方差公式的几何意义,体会数 形结合的思想方法. 1. 掌握平方差公式的推导及应用.
1.(a – b ) ( a + b) = a2 – b2 2.(b + a )( –b + a ) = a2 – b2
人教版《平方差公式》ppt
想一想:(2) 中相同项,相反 项分别是什么?
初中数学
例 运用平方差公式计算:
(1)(x 1)( x 1);
22
(3)(x 2y)(x 2y);
(2)(3x 2)(3x 2); (4)(3 2a)(3 2a).
分析:(2)(3x 2)(3x 2) (3x)2 22.
注意此处为3x整体
(2)102 98 ;
分析:(2)是两个数字相乘,通过观察发现这两个数字很有特 点,一个是102=100+2,98=100-2,可以利用平方差公式 进行简便运算.
解: (2) 102 98
(100 2)(100 2)
1002 22
9996
初中数学
例 计算:
(3)(xn 4)(xn 4) ;
(4)(3a2 1 b)(3a2 1 b)(9a4 1 b2 ) .
2
2
4
分析:(4)需要先把前两项利用平方差公式计算出来,然
后利用结果二次利用平方差公式,从而得到最终结果.
解: (4)
(3a2 1 b)(3a2 1 b)(9a4 1 b2 )
2
2
4
[(3a2 )2 ( 1 b)2 ](9a4 1 b2 )
两个数的平方差.
符号语言: (a+b)(a-b)= a2-b2
归纳: (a b)(a b) a b . (3)
(4)
文字描述:“两个数的和与这两个数差的积,等于这
22
平方差公式
在括号中填入适当的整式
(1)
; (2)
;
. (3)
代数(推4) 导:(a b)(a b) a2 ab ab b2
平方差公式
2021/8/31
人教版八年级数学上册课件:14.3.2公式法(第一课时)
解:(1)72-52=8×3,152-132=8×7. (2)规律:任意两个奇数的平方差是8的倍数.
(3)证明这个规律的正确性.
(3)设两奇数为2m+1和2n+1,则 (2m+1)2-(2n+1)2 =(2m+2n+2)(2m-2n) =4(m+n+1)(m-n). 当m、n同为奇数或偶数时,4(m-n)一定为8的倍数; 当m、n为一奇一偶时,m+n+1为偶数, 4(m+n+1)一定为8的倍数. 综上,任意两奇数的平方差是8的倍数.
(2x+5y)(2x-5y)
12.已知a、b、c为△ABC的三边长,且满足a2c2b2c2=a2b2-a4,则△ABC的形状是 等腰三角.形
13.老师在黑板上写出几个算式: 52-32=8×2,92-72=8×4,152-32=8×27, 王华接着又写了两个具有同样规律的算式: 112-52=8×12,152-72=8×22,… (1)请再写出两个具有上述规律的算式(不同于上面算式); (2)用文字写出上述算式的规律;
(2)m3-m; 解:原式=m(; 解:原式=(4m2+3n)(4m2-3n);
(4)3ax2-3ay2; 解:原式=3a(x+y)(x-y);
(5)(x+2)2-9. 解:原式=(x+5)(x-1).
10.将下列各式因式分解. (1)(2x+3)2-25x2; 解:原式=(2x+3+5x)(2x+3-5x) =(7x+3)(3-3x) =-3(x-1)(7x+3);
4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
(3)证明这个规律的正确性.
(3)设两奇数为2m+1和2n+1,则 (2m+1)2-(2n+1)2 =(2m+2n+2)(2m-2n) =4(m+n+1)(m-n). 当m、n同为奇数或偶数时,4(m-n)一定为8的倍数; 当m、n为一奇一偶时,m+n+1为偶数, 4(m+n+1)一定为8的倍数. 综上,任意两奇数的平方差是8的倍数.
(2x+5y)(2x-5y)
12.已知a、b、c为△ABC的三边长,且满足a2c2b2c2=a2b2-a4,则△ABC的形状是 等腰三角.形
13.老师在黑板上写出几个算式: 52-32=8×2,92-72=8×4,152-32=8×27, 王华接着又写了两个具有同样规律的算式: 112-52=8×12,152-72=8×22,… (1)请再写出两个具有上述规律的算式(不同于上面算式); (2)用文字写出上述算式的规律;
(2)m3-m; 解:原式=m(; 解:原式=(4m2+3n)(4m2-3n);
(4)3ax2-3ay2; 解:原式=3a(x+y)(x-y);
(5)(x+2)2-9. 解:原式=(x+5)(x-1).
10.将下列各式因式分解. (1)(2x+3)2-25x2; 解:原式=(2x+3+5x)(2x+3-5x) =(7x+3)(3-3x) =-3(x-1)(7x+3);
4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑶ 59.8×60.2=(60-0.2)(60+0.2)=3599.96
⑷ 5678×5680-56792 =(5679-1)(5679+1)-56792
= 56792-1- 56792
=-1
(1) (x+3)( X-3)=x2-9 (2) (-1-2x)( 2x-1)= 1-4x2 (3) (m+n)( n-m )=n2-m2 (4) (-1+y )(-y-1)=1-y2 (5) (-3a2+2b2)( -3a2-2b2 )=9a4-4b4
平方差公式
长一中 尹伟燕
用语言叙述平 方差公式
2 2 (a+b)(a-b)=a -b
两数和与这两数差的积பைடு நூலகம்等于它们的平方差。
a
a
b
a
2
b2
a
b 长方形的面积=(a+b)(a-b)
剩下的面积=a2-b2
⑴ (a+1)(a-1)= a2-1
⑵ (3+x)(3-x)= 9-x2 ⑶ (a+2b)(a-2b)= a2-(2b)2 =a2-4b2 ⑷ (3x+5y)(3x-5y)= (3x)2-(5y)2 =9x2-25y2 ⑸ (10s-3t)(10s+3t)= (10s)2-(3t)2 =100s2-9t2 ⑹ (-m+n)(-m-n)= (-m)2-n2 =m2-n2
2-(3y)2 =4x2-9y2 (-2x) ⑺ (-2x-3y) (-2x+3y)= ( a)21 2 2 1 2 1 1 = a -4b (2b) ⑻ ( 2 a-2b)(2b+ 2a)= 2 4
1 2-( 1 b)2 =a2-1 b2 ⑼ (1 b+a)(b+a)= a 2 2 2 4
⑽ (-4x+y)(y+4x)= y2-(4x)2 =y2-16x2
问题:利用平方差公式计算的关键是: 准确确定a和b
怎样确定a与b: 符号相同的看作a,符号不同的看作b
同桌间每人利用平方差公式出两道题, 然后交换解答,找出对方做错的地方,并 通过互助共同解决问题。
⑴ 102×98= (100+2)(100-2)=9996
2 2 5 1 2 (50 + )(50 - )=2499 ⑵ 50 3 ×49 3 = 3 3 9
下列各式能否用平方差公式进行计算 ⑴ (7ab-3b)(7ab+3b) ⑵ (-8+a)(a-8) ⑶ ( 2a 3b)( 2a 3b) ⑷ (x+3)(y-3) ⑸ (-3-m)(m-3) ⑹ (a-b)(b-a)
⑺ (a2+b2)(a2-b2)
(a-1)(a+1)(a2+1)(a4+1)(a8+1) (2+1)(22+1)(24+1)(28+1)+1
1. 本节课你学会了什么?它有什
么作用? 2.利用公式计算需要注意什么? 你还有什么疑惑吗?
3.你对自己的表现满意吗?为什么?
再见