PID参数整定 经验(DOC)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID参数的工程整定方法培训教材
2005年12月20日
目录
第一节基本控制规律及其作用效果 (1)
第二节实用的控制规律 (2)
第三节PID参数的工程整定方法 (3)
第四节复杂调节系统的参数整定 (8)
附录一各厂家DCS系统PID相关数据统计 (8)
附录二相关的名词解释 (9)
第一节基本控制规律及其作用效果
在工业生产过程控制中,常用的基本调节规律大致可分为:
1 位式调节
也就是常说的开/关式调节,它的动作规律是当被控变量偏离给定值时,调节器的输出不是最大就是最小,从而使执行器全开或全关。在实际应用中,常用于机组油箱恒温控制、水塔以及一些储罐的液位控制等。在实施时,
只要选用带上、下限接点的检测仪表、位式调节器或PLC、再配一些继电器、电磁阀、执行器、磁力起动器等即可构成位式控制系统。因此,位式控制的过渡过程必然是一个持续振荡的过程。如图0所示。
图0 位式控制的过渡过程
2 比例调节
它依据“偏差的大小”来动作。它的输出与输入偏差的大小成比例,调节及时,有力,但是有余差。用比例度δ来表示其作用的强弱,用%表示。例如比例度60%,即表示当偏差为量程的60%时,输出变化值为量程的100%。δ越小,调节作用越强,调节作用太强时,会引起振荡。比例调节作用适用于负荷变化小,对象纯滞后不大,时间常数
较大而又允许有余差的控制系统中,常用于塔和储罐的液位控制以及一些要求不高的压力控制中。使用时应注意,当负荷变化幅度较大时,为了平衡负荷变化所需的调节阀开度变化也将较大,待稳定后,被控变量的余差就可能较大。比例控制规律的动态方程为:
其中:y(t)——输出变化量。
e(t)——输入变化量。
Kp ——比例增益。
δ——比例度,它是Kp的倒数。
3 积分调节
它依据“偏差是否存在”来动作。它的输出与偏差对时间的积分成比例,只有当余差完全消失,积分作用才停止。其实质就是消除余差。但积分作用使最大动偏差增大,延长了调节时间。用积分时间Ti 表示其作用的强弱,单位用分(或秒)表示。Ti越小,积分作用越强,积分作用太强时,也会引起振荡。积分控制规律的动态方程为:
其中:TI ——积分时间。
4 微分调节
它依据“偏差变化速度”来动作。它的输出与输入偏差变化的速度成比例,其实质和效果是阻止被调参数的一切变化,有超前调节的作用。对滞后较大的对象有很好的效果。使调节过程动偏差减少,余差也减少(但不能消除)。用微分时间Td表示作用的强弱,单位用分
(或秒)表示。Td大,作用强,Td太大,会引起振荡。微分控制规律的动态方程为:
其中:TD ——微分时间。
第二节实用的控制规律
由于位式调节及易引起振荡,所以除特定场合外,一般应用较少,使用较多的是比例、积分、微分调节作用。但实际上单纯使用比例、积分、微分作用的场合也较少,最多使用的是三种调节规律的组合。组合后的调节规律由图1所示,PID三作用调节质量最好、PI次之,积分最差因此很少单用。其中:
PI作用的传递函数为:
注意:δTi即为积分控制规律的动态方程中TI。
PD作用的传递函数为:
注意:KpTd即为微分控制规律的动态方程中TD。
PID作用的传递函数为:
图1 各种调节规律比较
1—比例微分作用;2—比例积分微分作用;3—比例作用;
4—比例积分作用;5—积分作用;
第三节 PID参数的工程整定方法
调节器参数的整定,是自动调节系统中相当重要的一个问题。在调节方案已经确定,仪表及调节阀等已经选定并已装好之后,调节对象的特性也就确定了,调节系统的品质就主要决定于调节器参数的整定。因此,调节器参数整定的任务,就是对已选定的调节系统,求得最好的调节质量时调节器的参数值,即所谓求取调节器的最佳值,具体讲就是确定最合适的比例度、积分时间和微分时间。
把参数整定工作放在怎样的位置,存在两种片面的看法:
一种看法是过分强调了参数整定的作用,把调节器参数整定看作自动化理论的核心,这当然是错误的。因为调节器参数只能在一定范围内起作用,如果方案不合理,工况改变、或属于仪表和调节阀故障,
则不论怎样去调整比例度,积分时间和微分时间,仍然达不到预定的调节质量要求。同时,调节器参数在目前很难单纯依靠计算的方法来求取,因为计算法要遇到两个很大的困难,一是缺乏足够的对象动态特性资料,实验测试也不容易,二是计算方法繁琐,工作量大,而且对象往往有非线性或改变工艺参数的情况,所以化了不少力气算出来的结果仍不可靠。
另一种看法是过分地贬低参数整定的作用,我们会遇到三类不同的系统情况。第一类是较容易调节的系统:比例度、积分时间和微分时间可以放在很宽的范围,调节质量都能满足。第二类是方案选择不当的系统,不论怎样去整定参数,系统仍不能良好的运行。如果只看到以上两种情况,是会产生不必重视调节器参数整定的错觉。实际上有相当多数量的系统介于这两种极端情况之间,这可以说是第三类的系统,它们在整定参数选择得当的时候,可以运行得很好,反之,在整定参数不合适时,调节质量就达不到要求。我们不要将它们与第二类系统混同起来,错当成不能投入自动的系统。另外,对第一类系统来说也有使调节质量进一步完善的要求。
因此,我们应当重视调节器参数整定的工作,而不要片面地看问题。
参数整定的方法很多,我们只介绍几种工程上最常用的方法。
1 临界比例度法
这是目前使用较广的一种方法,具体作法如下:
先在纯比例作用下(把积分时间放到最大,微分时间放到零),在闭合的调节系统中,从大到小地逐渐地改变调节器的比例度,就会得
到一个临界振荡过程,如图2所示。这时的比例度叫临界比例度δk,周期为临界振荡周期Tk。记下δk和Tk,然后按表1的经验公式来确定调节器的各参数值。
图2 临界振荡示意图
表1 临界比例度法数据表
这种方法在下面两种情况下不宜采用:
1)、临界比例度过小,因为这时候调节阀很容易处于全开及全关位置,对于工艺生产不利,举例来说,对于一个用燃料油(或瓦斯)