飞思卡尔智能车比赛电磁组路径检测设计方案

合集下载

基于飞思卡尔芯片电磁引导智能车设计

基于飞思卡尔芯片电磁引导智能车设计

基于飞思卡尔芯片的电磁引导智能车设计飞思卡尔智能车竞赛是由教育部高等自动化专业教学指导分委员会主办的全国大学生智能汽车竞赛。

所使用的车模是一款带有差速器的后轮驱动模型车,由组委会统一提供。

比赛跑道为表面白色,中心有0.1 mm~0.3mm直径的连续漆泡线作为引导线,其中漆泡线通有100ma交流电流。

比赛规则限定了跑道宽度50cm和拐角最小半径50cm。

飞思卡尔智能车竞赛一、硬件设计1.电磁传感器对于电磁组来说,传感器的选择是尤为重要的,最原始的办法用线圈产生磁场的办法去切割跑到上的磁场来检测道路信息,开始因为线圈的缠绕是有要求的,电感的大小也是有要求的,漆泡线的粗细也是有要求的,基于上面的问题,我们实验没有成功。

后来,围绕传感器做了很多的实验,做了两个传感器:一个是用三极管做放大的,另一个是用运放做放大的,但结果用运放成本高,运放要双电源而且一般的放大器频带窄满足不了要求,所以选择用三极管做放大。

在距离导线50mm的上方放置垂直于导线的10mh 电感,为了能够更加准确测量感应电容式的电压,还需要将上述感应电压进一步放大,一般情况下将电压峰峰值放大到1v~5v左右,就可以进行幅度检测,所以需要放大电路具有100倍左右的电压增益(40db)。

最简单的设计,可以只是用一阶共射三极管放大电路就可以满足要求。

2.速度传感器车模的驱动力来源于一个直流电动机,为了能很好地控制车模的速度,我们引入了闭环控制系统,这就需要车体能实时地或者尽可能快地了解到速度变化,从而对驱动的电压电流进行调整,尽可能快地达到设定速度并且稳定在设定速度上。

从往届的参赛队伍经验得知,使用一个增量编码器能很好地解决以上问题,终选择了欧姆龙的180线增量型光电编码器。

这款编码器为2相输出。

在实际的测试中,让单片机每10ms返回一次传感器的值,当车模在1米/秒左右速度时能返回60~70多个脉冲,当大于2.5米能返回170多个脉冲,反复测试反馈准确,稳定。

飞思卡尔智能车 电磁组 技术报告

飞思卡尔智能车 电磁组 技术报告
#defineZSPEED130//100
//#define K10
//#define Kp 1;//PID的//#define Kd 1;
#include <hidef.h>
#include <stdio.h>
#include <math.h>
#include <MC9S12XS128.h>
3.1.3
考虑到适当增加力臂来提高舵机的灵敏度和为了赛车布局的的紧凑,采取了如图3.2所示的安装方法。
图3.2舵机安装结构
3.1.4
采用接插件与焊接结合的方式连接传感器、主控板、编码器、电机驱动电路、电机、赛道起始检测等单元,既考虑可靠性,又兼顾结构调整与安装的便利性。具体安装结构如图3.3所示,
图3.3主控板安装结构
[6]卓晴.基于磁场检测的寻线小车传感器布局研究[J].清华大学.2009
[7]杨延玲.载流直导线的电磁场特性分析[J].山东师范大学.2007
[8]王毅敏.马丽英等.一种改进的数字PID控制算法及其在励磁系统中的应用电网技术[J].1998
[9]高金源,夏洁.计算机控制系统[M].清华大学出版社.2007
本校积极组队参加第六届“飞思卡尔”杯全国大学生智能汽车竞赛。从2010年底着手准备,历时半年多,经过不断试验设计,最终设计出较为完整的智能赛车。在赛区比赛中获得了较好的综合性能和成绩。
在本次比赛中,采用大赛组委会统一提供的竞赛车模,采用飞思卡尔16位微控制器MC9S12XS128作为核心控制单元,构思控制方案及系统设计,进行包括机械结构的调整与优化,硬件的设计与组装、软件控制算法的编写与改进等过程(小车上的具体方案模块有传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等)从而实现小车智能化的识别道路,最终实现智能化竞速。

飞思卡尔电磁组

飞思卡尔电磁组

智能车简介
飞思卡尔智能车大赛分三种赛组:
摄像头组
光电组
电磁组
调试视频
调试视频
电磁组原理概述
车模直立行走比赛是要求仿照两轮自平衡电动车的行进模式,让车模以两
个后轮 驱动进行直立行走。 在电磁组比赛中,利用 车模双后轮驱动的特点,实现两轮自平衡行走。相 对于传统的四轮行走的车 模竞赛模式,车模直立行走在硬件设计、控制软件开发 以及现场调试等方面提出了更高 的要求。
原理篇
原理篇
• 1.路径检测 • 2.直立控制 • 3.算法设计
• 路径检测的整体思路流程:
• 磁场感应 选频 放大 检波 A/D采集(单片机萨法尔定律可求得通电的导线周 围空间上某一定点的磁场强度。
• 再由法拉利定律和楞次定律可得处在该点处磁感线圈的感应 电动势大小
算法设计
• 在车模控制中的直立、速度和方向控制三个环节中,都使用 了比例微分(PD)控制,这三种控制算法的输出量最终通过 叠加通过电机运动来完成。 • (1)车模直立控制:使用车模倾角的PD(比例、微分)控 制;
• (2)车模速度控制:使用PD(比例、微分)控制; • (3)车模方向控制:使用PD(比例、微分)控制。
单 管 共 射 交 流 放 大 电 路
检波电路
• 测量放大后的感应电动势的幅值E可以有多种方法。最简单的 方法就是使用二极管检波电路将交变的电压信号检波形成直 流信号,然后再通过单片机的AD采集获得正比于感应电压幅 值的数值。
A/D输入
单片机
检测部分的系统框图
直立行走的原理
• 车模直立行走比赛是要求仿照两轮自平衡电动车的行进模式, 让车模以两个后轮驱动进行直立行走。
车模控制任务分解图
• 三个分解后的任务各自独立进行控制。由于最终都是对同一 个控制对象(车模的电机)进行控制,所以它们之间存在着 耦合。这三个任务中保持车模平衡是关键。由于车模同时受 到三种控制的影响,从车模平衡控制的角度来看,其它两个 控制就成为它的干扰。因此对车模速度、方向的控制应该尽 量保持平滑,以减少对于平衡控制的干扰

飞思卡尔智能车竞赛策略和比赛方案综述

飞思卡尔智能车竞赛策略和比赛方案综述

飞思卡尔智能车竞赛策略和比赛方案综述一、竞赛简介起源:“飞思卡尔杯”智能车大赛起源于韩国,是韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办的以HCSl2单片机为核心的大学生课外科技竞赛。

组委会提供一个标准的汽车模型、直流电机和可充电式电池,参赛队伍要制作一个能够自主识别路径的智能车,在专门设计的跑道上自动识别道路行驶,谁最快跑完全程而没有冲出跑道并且技术报告评分较高,谁就是获胜者。

其设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械、能源等多个学科的知识,对学生的知识融合和实践动手能力的培养,具有良好的推动作用。

全国大学生“飞思卡尔”杯智能汽车竞赛是在规定的模型汽车平台上,使用飞思卡尔半导体公司的8位、16位微控制器作为核心控制模块,通过增加道路传感器、电机驱动电路以及编写相应软件,制作一个能够自主识别道路的模型汽车,按照规定路线行进,以完成时间最短者为优胜。

因而该竞赛是涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的比赛。

该竞赛以飞思卡尔半导体公司为协办方,自2006年首届举办以来,成功举办了五届,得到了教育部吴启迪副部长、张尧学司长及理工处领导、飞思卡尔公司领导与各高校师生的高度评价,已发展成全国30个省市自治区200余所高校广泛参与的全国大学生智能汽车竞赛。

2008年第三届被教育部批准列入国家教学质量与教学改革工程资助项目中9个科技人文竞赛之一(教高函[2007]30号文,附件2),2009年第四届被邀申请列入国家教学质量与教学改革工程资助项目。

分赛区、决赛区比赛规则在分赛区、决赛区进行现场比赛规则相同,都分为初赛与决赛两个阶段。

在计算比赛成绩时,分赛区只是通过比赛单圈最短时间进行评比。

决赛区比赛时,还需结合技术报告分数综合评定。

1.初赛与决赛规则1)初赛规则比赛场中有两个相同的赛道。

参赛队通过抽签平均分为两组,并以抽签形式决定组内比赛次序。

(整理)飞思卡尔智能车比赛电磁组路径检测设计方案

(整理)飞思卡尔智能车比赛电磁组路径检测设计方案

精品文档电磁组竞赛车模路径检测设计参考方案(竞赛秘书处2010-1,版本 1.0)一、前言第五届全国大学生智能汽车竞赛新增加了电磁组比赛。

竞赛车模需要能够通过自动识别赛道中心线位置处由通有100mA 交变电流的导线所产生的电磁场进行路径检测。

除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。

具体要求请参阅《第五届智能汽车竞赛细则》技术文档。

本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。

本方案通过微型车模实际运行,证明了它的可行性。

微型车模运行录像参见竞赛网站上视频文件。

二、设计原理1、导线周围的电磁场根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。

智能汽车竞赛使用路径导航的交流电流频率为20kHz,产生的电磁波属于甚低频(VLF)电磁波。

甚低频频率范围处于工频和低频电磁破中间,为3kHz~30kHz,波长为100km~10km。

如下图所示:图1:电流周围的电磁场示意图导线周围的电场和磁场,按照一定规律分布。

通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。

由于赛道导航电线和小车尺寸l远远小于电磁波的波长 ,电磁场辐射能量很小(如果天线的长度l远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。

为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。

精品文档由毕奥-萨伐尔定律知:通有稳恒电流I长度为L的直导线周围会产生磁场,距离导线距离为r处P点的磁感应强度为:精品文档图 2 直线电流的磁场⎝1 4 r由此得: B =  cos⎝4 r对于无限长直电流来说,上式中⎝1 = 0 ,⎝ 2 = ,则有B = (1)。

图3:无限长导线周围的磁场强度在上面示意图中,感应磁场的分布是以导线为轴的一系列的同心圆。

基于电感的智能小车电磁循迹方案

基于电感的智能小车电磁循迹方案

基于电感的智能小车电磁循迹方案作者:罗茜唐鼎明来源:《中小企业管理与科技·中旬刊》2020年第06期【摘; 要】在飞思卡尔智能车竞赛中,传感器的不同,对于赛道的识别方式也就不同,常用的循迹方式有摄像头循迹和电磁循迹。

摄像头循迹主要依靠摄像头收集赛道信息完成比赛,摄像头小车速度快但极易受周围因素的影响。

电磁循迹主要依靠电感收集导线周围产生的磁场信息,跟随电磁引导线完成比赛,电磁小车的速度可能没有摄像头小车的速度,但不会受除电磁场以外的影响,而且电磁循迹有原理简单、价格便宜、体积小等优点,因此,电磁循迹小车比摄像头小车更有优势。

【Abstract】In Freescale intelligent car race, the different sensors, the way to identify the track is different. The common tracking methods include camera tracking and electromagnetic tracking. The camera tracking mainly relies on the camera to collect track information to complete the race. The camera car is fast but vulnerable to the influence of surrounding factors. Electromagnetic tracking mainly relies on the inductance wires of the magnetic field generated around information collection, follow the electromagnetic guide line finished the race. The speed of electromagnetic car may not have the speed of camera car, but will not be affected in addition to electromagnetic field,and the electromagnetic tracking has the advantages of simple principle, cheap price and small size, so the electromagnetic tracking car has more advantages than the camera car.【關键词】电磁循迹;智能小车;感应线圈【Keywords】electromagnetic tracing; intelligent car; induction coil【中图分类号】TP23; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 【文献标志码】A; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;【文章编号】1673-1069(2020)06-0172-021 引言随着飞思卡尔智能车竞赛的发展,赛道元素越来越多,竞赛项目也是越来越精彩,电磁循迹是飞思卡尔智能车竞赛经典项目之一,近年来几乎每一届飞思卡尔智能车竞赛都会有电磁循迹的身影。

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计⽅案“神马”队设计⽅案摘要本⽂以“飞思卡尔”杯全国⼤学⽣智能车竞赛为主题,介绍了智能赛车从机械结构设计到控制系统的软硬件设计流程。

本次⽐赛使⽤竞赛秘书处统⼀指定的竞赛车模及套件,采⽤飞思卡尔半导体公司的16位微控制器作为核⼼控制单元,配合不同类型的传感器、驱动电机、转向舵机、直流电池、以及相应的驱动电路,使赛车能够⾃主识别路径,并控制模型车⾼速稳定地在跑道上运⾏,在规定时间内完成跑完赛道的任务。

第⼀章背景1.1“飞思卡尔”杯背景介绍“飞思卡尔”杯全国⼤学⽣智能车竞赛是在飞思卡尔半导体公司资助下举办的以S12 单⽚机为核⼼的⼤学⽣课外科技竞赛。

使⽤⼤赛组委会统⼀提供的竞赛车模、转向舵机、直流电机和可充电式电池,采⽤飞思卡尔 16 位微控制器MC9S12DB128B作为核⼼控制单元,⾃主构思控制⽅案及系统设计,包括传感器信号采集处理、控制算法及执⾏、电机驱动、转向舵机控制等,完成智能车⼯程制作及调试,于指定⽇期与地点参加场地⽐赛。

⽐赛成绩主要由赛车在现场成功⾏驶完赛道的时间为主。

全国⼤学⽣智能汽车竞赛所使⽤的车模是⼀款带有差速器的后轮驱动模型赛车,它由⼤赛组委会统⼀提供。

参赛队伍通过设计单⽚机的⾃动控制器控制模型车在封闭的跑道上⾃主循线运⾏。

在保证模型车运⾏稳定,即不冲出跑道的前提下,跑完两圈的时间越⼩成绩越好。

设计⾃动控制器是制作智能车的核⼼环节。

⾃动控制器是以单⽚机为核⼼,配合有传感器、电机、舵机、电池、以及相应的驱动电路,它能够⾃主识别路径,控制模型车⾼速稳定运⾏在跑道上。

⽐赛跑道表⾯为⽩⾊,中⼼有连续⿊线作为引导线,⿊线宽 25cm。

⽐赛规则限定可赛道宽度和拐弯最⼩半径等参数,赛道具体形状在⽐赛当天现场公布。

控制器⾃主识别引导线并控制模型车沿着赛道运⾏。

在严格遵守规则中对于电路限制条件,保证智能车可靠运⾏前提下,电路设计尽量简洁紧凑,以减轻系统负载,提⾼智能车的灵活性,同时坚持充分发挥创新原则,以简洁但功能完美为出发点,并以稳定性为⾸要前提,实现智能车快速运⾏。

飞思卡尔智能车电磁组分区算法介绍

飞思卡尔智能车电磁组分区算法介绍

飞思卡尔智能车电磁组分区算法介绍写在之前的话:1、⽬前我是⼀名在校学⽣,这也是我第⼀次写博客,不周之处,请多谅解;2、此算法并⾮原创,借鉴⾃⼭东德州学院第⼋届⽩杨队(PS:个⼈看法,对于⼀些⼈把别⼈的开源东西改头换⾯⼀下就说是⾃⼰的原创⾏为⼗分鄙视);3、对于此算法的理解和说明并⾮纸上谈兵,算法已经被我运⽤到了⼩车⽐赛中并取得好的成绩(具体就不多说了,⽐赛时车莫名其妙坏了,⽐赛前调试的速度绝对能进国赛,⽐较遗憾),总之这算法是我尝试过的最好的算法;4、这⼀次所介绍的只是路径算法和⼀些知识普及,后⾯有时间会介绍其余部分算法及许多好的思路(舵机电机控制思路(不只是简单的PID),双车策略);5、希望对于这⽅⾯有涉及的⼈能与我联系并交流或指出不⾜之处。

---------------------------------------------------------------分割线-----------------------------------------------------------------------------⼀、没有这⽅⾯了解的可以看看 飞思卡尔智能车分为三组:摄像头、光电、电磁,我做的是电磁车,三种车队区别在于传感器的不同,所以获得路径信息的⽅法也不⼀样,摄像头和光电识别的是赛道上的⿊线(⽩底赛道),⽽电磁车则是检测埋在赛道下的通⼊100mh电流的漆包线,摄像头和光电采⽤的是摄像头和ccd作为传感器,电磁则是⽤电感放在漆包线周围,则电感上就会产⽣感应电动势,且感应电动势的⼤⼩于通过线圈回路的磁通量成正⽐,⼜因为漆包线周围的磁感应强度不同,因此不同位置的电感的感应电动势就不同,因此就可以去确定电感位置;因此在车⼦前⾯设置了50cm的前瞻,电感布局如下(怎么发不了图⽚):分为两排,前排3个,编号0,1,2(前期还加了两个竖直电感⽤来帮助过直⾓弯,后来改为了⼋字电感);后排2个,编号3,4;现在车⼦获得了不同位置的感应电动势的⼤⼩了,但这些值是不能处理的:1、感应电动势太微弱;2、是模拟信号,信号太微弱就放⼤它;这就涉及到模拟电路的知识了,就不多说了(因为要把这讲完到PCB绘制的篇幅就⾜够写另开⼀号专门写这些⽅⾯来(PS:题外话(我的题外话⽐较多)):放⼤部分外围你设计的再好也抵不过⼀个更好的芯⽚,有两个例⼦,⼀个是我⾃⼰的:之前⽤的是NE5532,但是效果不理想,加了好多什么滤波,补偿,都⽤上,没⽤,软件⾥处理后⾯再说,后来⼀狠⼼换了AD620,感觉像是春天来了,因为它是仪⽤放⼤器,还有就是贵。

飞思卡尔智能车-电磁传感器与实践

飞思卡尔智能车-电磁传感器与实践

电磁传感器与实践
电磁传感器与实践
由毕奥-萨伐定律有: 0 I B 4 r
其中u为真空磁导率:
所以不难想象磁场强度 非常的弱,难以使用测 磁场的方式检测。
电磁传感器与实践
我们有很多测量磁场的方法,磁场传感器 利用了物质与磁场之间的各种物理效应:磁电效 应(电磁感应、霍尔效应、磁致电阻效应)、磁 机械效应、磁 光效应、核磁共振、超导体与电 子自旋量子力学效应。 我们选取最为传统的电磁感应线圈的方案。 它具有原理简单、价格便宜、体积小(相对小)、 频率响应快、电路实现简单等特点,适应于初学 者快速实现路经检测的方案。
电磁传感器与实践
从上面检测原理可以知道,测量磁场核心是检测线圈的感应电动 势 E 的幅 值。电磁传感器的设计主要包括:感应线圈的选择、信号 选频放大、整流与检测等几个方面,将会涉及到电磁场与波、高频、 模电等相关学科的知识点,这里不再详细的给出各个方案的具体论证 过程,直接给出电路设计系统框图:
电磁传感器与实践
电磁传感器与实践
对于实际传感器摆放位置的说明: 1、水平方向两个平行的线圈
2、水平方向两个内八字的线圈
电磁传感器与实践
3、水平方向两个垂直的线圈 4、水平和竖直方向两个线圈
电磁传感器与实践
使用色环电感制作的传感器:
电磁传感器与实践
使用多排传感器:
电磁传感器与实践
当然传感器的安装方法还有非常多的方法,要靠我们自 己去探索实验,在寻找时,也是一种乐趣,当找的更好 的方法时,你会感到一种满足 感! 由于本人的水平有限,PPT中可能有不少漏洞,有不全 面的地方,详细内容可以参照《智能小车设计指导》第 二版,本人已上传到QQ群的共享文件中。
h h Ed E1 E2 2 2 2 h 为两传感器之间的距离 x为其中一个传感器到中间导线的距离

飞思卡尔智能车路径算法

飞思卡尔智能车路径算法
码器反馈回来的速度没有达到目标速度,那么正转占空比自加,反之则自减。只要调节自
加和自减的步进就能很好的对速度进行控制。
北科定位算法:
某一时刻,采五个“一”字排布的电感的
感应电动势,找出一个感应电动势最大的电感(计为M),导线必然会离这个电
感最近。然后读出该电感相邻左右两个电感的值(分别计为L和R)。会有以下
三种情况:
当L值大于R值,说明导线在L和M之间;
当L值小于R值,说明导线在R和M之间;
当L值约等于R值,说明导线在M正上。
对于特殊情况,如M在最左或最后,缺相邻的L或R,可直接将导线位置
定位于M,且由M值大小得出远离程度。该情况说明传感器偏离赛道很严重。
北科弯Байду номын сангаас算法:
入弯时急减速,以得到足够的调整时间,获得正确的转向角度;在弯道内适当
提速,并保持角度不变,为出弯时的加速节约时间;出弯时,先准确判断标志,
然后加速,虽然会耗费一些时间,但是面对连续变向弯道可以减少判断出错的
概率,保证行驶状态的稳定性,而且弯道内的有限加速对后面的提速也有很大
的帮助。综合考虑用可以接收的额外时间换回行驶稳定性还是值得的。
很多学校两个就上2m了,这是真的
回想调车的点点滴滴,如果你对他好,他跑的就会特别好,绝对不会让你失望。
计算出PWMDTY—PRE之后并不是直接将数值赋值给舵机的占空比寄存器,而是保存起来,并进行PD 控制
速度控制:
一个好的速度控制就是能十分准确的给出目标速度,电机对目标速度响应迅速,系统在干扰
到底什么方法可以提前预判弯道以及算出弯道半径?
曲率用交叉45度的两个电感可以求的,但是要做一些误差修正。

满足磁导航智能车信号检测的调理电路设计

满足磁导航智能车信号检测的调理电路设计

满足磁导航智能车信号检测的调理电路设计磁导航组是即将举办的2010年第五届全国大学生飞思卡尔杯智能汽车竞赛中首次引入,新赛制规定,在赛道中心线下铺设漆包线,其中通有f=20 kHz,I=100 mA 的交变电流,频率为(202)kHz,电流为50~150 mA,要求电磁组不允许通过获取道路的光学信息进行路径检测,只能通过检测漆包线周围的磁场来引导小车沿着载流线行驶。

从工作频率、输出信号的大小、器件成本、磁场强度等方面综合考虑,最适合用于磁导航赛道检测的传感器就是感应线圈。

检测线圈安装在智能车体上后,智能车前进过程中线圈与导航载流线之间的空间方位决定了线圈输出的感应电动势,再配接适当的信号调理电路,将检测线圈输出的电信号经过放大、检波等处理,最终转换为智能车单片机能接收的信号,为智能车提供导航依据,这是磁导航智能车能够正确寻道、高速行进的重要基础性工作。

而到目前为止,磁导航的检测研究还很少,本文将对检测线圈配接的信号调理电路进行探讨。

1 检测线圈中的感应电动势由于比赛用车的尺度远小于赛道长度,可将载流导线近似看作无限长直导线。

载流长直导线周围的磁感应线是以导线为轴的同心圆环,B的方向为电流i的右螺旋切向,距离导线a的P点磁感应强度式中0为真空磁导率,i为直导线中的交变电流,以正弦电流激励(若为非正弦波,可看作是一系列正弦波的线性迭加),i=Ipsin2ft,故B为交变磁场,通过放置在导线周围的检测线圈将交变磁场转化为感应电动势。

假设在载流导线正上方竖直放置面积为S,匝数为N的矩形检测线圈,此时磁感应强度与线圈平面垂直,以线圈中心P点处的磁感应强度可估算出通过线圈的磁通量式(4)表明,当线圈绕制成型后,线圈匝数Ⅳ和面积S已确定。

检测线圈输出的感应电动势还与激励电流的幅值,Ip和频率f成正比。

赛制规定的激励电流频率为(202)kHz,变化不超过10%。

但电流范围50~150 mA,变化可达3倍,这将对线圈输出的感应电动势产生很大影响。

第七届全国大学生“飞思卡尔”杯智能汽车竞赛电磁组直立行车参考设计方案(版本2.0)官方方案2.0

第七届全国大学生“飞思卡尔”杯智能汽车竞赛电磁组直立行车参考设计方案(版本2.0)官方方案2.0

第七届全国大学生“飞思卡尔”杯智能汽车竞赛电磁组直立行车参考设计方案(版本2.0)目 录目录 (2)图表索引 (3)一、前言 (7)二、原理篇 (9)2.1直立行走任务分解 (9)2.2车模直立控制 (11)2.3 车模角度和角速度测量 (19)2.3车模速度控制 (26)2.4车模方向控制 (33)2.6车模直立行走控制算法总图 (36)三、电路设计篇 (37)3.1整体电路框图 (37)3.2 DSC介绍与单片机最小系统 (39)3.3倾角传感器电路 (42)3.4电机驱动电路 (44)3.5速度传感器电路 (45)3.6电磁线检测电路 (46)3.7 角度计算电路 (50)3.8 车模控制电路全图 (55)四、机械设计篇 (57)4.1车模简化改装 (57)4.2传感器安装 (59)4.3注意事项 (63)五、软件开发篇 (64)5.1软件功能与框架 (65)5.2 DSC的硬件资源配置 (68)5.3主要算法及其实现 (69)六、车模调试篇 (82)6.1 调试参数 (82)6.2调试条件 (85)6.3 桌面静态参数调试 (91)6.4 现场动态参数调试 (101)6.5 方案改进与车模整体水平提高 (101)七、结束语 (102)附录: (103)图表索引第一章图1- 1 电磁组车模直立运行模式 (7)图1- 2参考设计方案内容 (8)图1- 3 车模制作路线图 (9)第二章图2- 1 车模控制任务分解 (10)图2- 2 车模倾角会引起车速速度变化 (10)图2- 3 三层控制之间相互配合 (11)图2- 4 保持木棒直立的反馈控制 (12)图2- 5 通过车轮运动保持车模直立 (12)图2- 6 车模简化成倒立的单摆 (13)图2- 7 普通单摆受力分析 (13)图2- 8 不同阻尼力下的单摆运动 (14)图2- 9 在车轮上的参照系中车模受力分析 (14)图2- 10 车模控制两个系数作用 (16)图2- 11 车模运动方程 (16)图2- 12 加入比例微分反馈后的系统框图 (17)图2- 13 电机在不同电压下的速度变化曲线 (18)图2- 14 加速度传感器原理 (19)图2- 15 MMA7260三轴加速度传感器 (20)图2- 16 车模运动引起加速度信号波动 (21)图2- 17 实际测量MMA7260Z轴信号 (21)图2- 18 车模运动引起加速度Z轴信号变化 (22)图2- 19角速度传感器及参考放大电路 (22)图2- 20 角速度积分得到角度 (23)图2- 21 角速度积分漂移现象 (23)图2- 22 通过重力加速度来矫正陀螺仪的角度漂移 (24)图2- 23 双加速度传感器获得车模角加速度 (25)图2- 24 角度控制框图 (25)图2- 25 电机速度检测 (26)图2- 26 车模倾角给定 (27)图2- 27 车模倾角控制速度中的正反馈 (28)图2- 28 车模倾角控制分析 (29)图2- 29 车模运动速度控制简化模型 (29)图2- 30 增加微分控制后的系统 (30)图2- 31 改进的微分控制 (30)图2- 32 车模角度和速度控制框图 (31)图2- 33 速度角度控制方案的改进 (32)图2- 34 改进后的速度和角度控制方案 (32)图2- 35 检测道路中心电磁线方式 (33)图2- 36 通过电机驱动电压的差动控制控制车模方向 (34)图2- 37 检测车模转动速度的陀螺仪 (34)图2- 38 电感线圈的偏角影响感应电动势 (35)图2- 39 车模方向控制算法 (35)图2- 40 车模运动控制总框图 (36)第三章图3- 1 直立车模控制电路整体框图 (39)图3- 2 56F8013内部资源示意图 (40)图3- 3 F8013最小系统电路 (41)图3- 4 F8013最小系统电路实物 (42)图3- 5 陀螺仪、加速度传感器电路 (43)图3- 6 车模倾角传感器电路实物图 (43)图3- 7 双电机驱动电路 (44)图3- 8单极性PWM、双极性PWM (45)图3- 9 两片33886组成的电机驱动电路 (45)图3- 10 速度传感器电路 (46)图3- 11 基于三极管的电磁信号放大检波电路 (47)图3- 12 基于三极管的电磁放大检波电路实物图 (48)图3- 13 使用R-R运放进行电磁信号放大检波 (49)图3- 14 LMV358放大检波输出波形 (49)图3- 15 基于LMV358放大检波电路实物图 (50)图3- 16 双加速度测量角速度电路 (51)图3- 17 双加速度计测量角度波形图 (51)图3- 18 简化角速度电路 (52)图3- 19 实测车模角速度信号波形 (52)图3- 20 角度信号处理电路 (53)图3- 21 不同角速度比例情况下输出波形 (53)图3- 22 角度计算环节的传递函数 (54)图3- 23 一个运算放大器实现角度计算 (54)图3- 24 不同P1阻值对应的输出波形 (55)图3- 25 简化的角度和角速度处理电路 (55)图3- 26 车模控制电路全图 (56)第四章图4- 1 完整的C型车模底盘 (57)图4- 2 简化后的C型车模底盘 (57)图4- 3 使用热熔胶固定电机支架与车模底盘 (58)图4- 4 去掉后轮之后的车模底盘 (58)图4- 5 电机引线转接板 (59)图4- 6 使用复合胶水固定光电编码盘 (59)图4- 7 固定好的光电码盘和光电检测管 (60)图4- 8 电磁传感器支架 (61)图4- 9 车模组装全图 (64)第五章图5- 1 主程序框架 (65)图5- 2 中断服务程序 (66)图5- 3 任务中断时间波形 (67)图5- 4 算法框图中与控制相关的软件函数 (70)图5- 5 控制函数调用与参数传递关系 (71)图5- 6 程序中变量命名规范 (72)图5- 7 电机死区补偿 (78)第六章图6- 1 调试车模参数复杂而关键 (82)图6- 2 需要调整的参数和相关的单位 (84)图6- 3 车模运动坐标定义 (85)图6- 4 电源检查 (86)图6- 5 单片机串口通信 (86)图6- 6 PWM信号输出 (87)图6- 7 采集电机光电码盘信号 (87)图6- 8 陀螺仪、加速度传感器AD采集信号 (88)图6- 9 车模静态参数调整桌面 (88)图6- 10车模动态参数调试场地 (89)图6- 11 监控软件界面 (89)图6- 12 无线遥控开关 (90)图6- 13 无线通信模块进行参数监控 (90)图6- 14 F8013内部FLASH应用划分 (91)图6- 15 需要整定的传感器参数 (91)图6- 16 车模保持垂直静止 (92)图6- 17 测量加速度传感器的极值 (92)图6- 18测量陀螺传感器比例因子,角度补偿回路断开 (93)图6- 19 几种不同陀螺仪比例因子角度输出 (94)图6- 20 车模控制参数 (95)图6- 21 角度参数调整过程 (96)图6- 22 速度参数调整过程 (97)图6- 23 方向参数调整过程 (98)图6- 24 角度补偿时间常数调整 (99)图6- 25 Z轴附加信号分析 (100)图6- 26 死区常数调整 (100)附录图7- 1 参考设计方案视频截图 (103)图7- 2 参数整定与调试指南 (104)图7- 3 软件控制算法全图 (106)图7- 4 参考方案电路全图 (107)第一章、前言为了提高全国大学生智能汽车竞赛创新性和趣味性,激发高校学生参与比赛的兴趣,提高学生的动手能力、创新能力和接受挑战能力,智能汽车竞赛组委会将电磁组比赛规定为车模直立行走,如图1- 1所示。

基于电磁传感器识别路径的智能车设计

基于电磁传感器识别路径的智能车设计

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

摘要本文以第七届“飞思卡尔”杯全国大学生智能汽车竞赛为背景,对两轮直立行走智能小车硬件和软件进行了深入的分析与设计,以参与制作的智能小车为例介绍智能小车设计制作的全过程。

该智能车系统所用车模型号为N-286。

采用16位单片机MC9S12XS128作为主控制单元,设计、制作一辆能够自动识别路径并能两轮自平衡直立行走的智能小车。

整个智能车系统主要包括三大方面:机械结构安装,硬件电路设计,软件算法设计。

本系统在设计中采用模块化设计,其中,路径检测模块采用LC谐振回路作为选频网络,然后对其信号进行放大、滤波;角度检测模块利用陀螺仪和加速度传感器分别测量车模的角速度、角度,然后将角速度积分信号与角度信号整合得到车模的精确角度信号;电机驱动模块采用四片BTS7960驱动芯片,两两级联构成全桥驱动电路,利用PWM进行速度控制;速度检测模块采用增量式光电编码器;电源模块通过稳压芯片提供3.3V、5V电压。

系统应用PID控制算法,构成一个闭环控制系统。

通过对赛道信息、角度信号和速度信号的综合分析,利用N-286型车模双后轮驱动的特点,实现小车两轮自平衡直立行走。

关键字:直立行走;PID;MC9S12XS128;电机控制AbstractOn the background of the Seventh Freescale Cup Intelligent Auto-mobile Competition for national college students, this paper conducts deep analysis and design on the hardware and software of the two walking upright intelligent automobiles, and briefly introduces the whole processes of designing and making the automobile through the example of making the intelligent automobile.This intelligent auto-mobile system adopts the model N-286 as its type. By taking the 16 bits single chip microcontroller MC9S12XS128 as its main control unit, we can design and make an intelligent auto-mobile, which can recognize certain road automatically and run upright with its two wheels. The entire system contains three main parts: the installation of mechanical structure, the design of hardware circuit and the design of the software algorithm. The system adopts the modular design. Among them, the path detection module uses LC resonance loop as the frequency selective network, and then has its signal amplified and filtered. The angle detection module uses the gyroscope and angle acceleration sensor to measure the angular velocity and angle of models respectively. Then it integrates angle speed signal and angle signal to get precise angle signal of the models. Motor driver module uses four pieces of BTS7960 drive chips and two cascades to construct the whole bridge driving circuit. The system adopts PWM speed control algorithm to form a close loop control system. Speed detection module uses the solid-axes photoelectric encoder. Power module supplies voltage of 3.3V and 5V through regulated chips. The system applies the PID control algorithm to form a closed loop control system. Through a comprehensive analysis of track information, angle signal and speed signal and by using the characteristics of dual rear-wheel drive of N-286 auto-mobile models, it realizes the self-balanced upright walking with its two wheels. Key Words:Walk upright, PID, MC9S12XS128, Motor control目录摘要..................................................................................................... 错误!未定义书签。

第五届飞思卡尔智能汽车竞赛电磁组设计参考方案

第五届飞思卡尔智能汽车竞赛电磁组设计参考方案

第五届全国大学生智能汽车竞赛20KHz 电源参考设计方案(竞赛秘书处技术组版本1.0)第五届全国大学“飞思卡尔杯”智能汽车竞赛新增加了“电磁组”。

根据比赛技术要求,电磁组竞赛,需要选手设计的智能车能够检测到道路中心线下电线中20KHz交表电流产生的磁场来导引小车沿着道路行驶。

在平时调试和比赛过程中需要能够满足比赛技术要求的20KHz的交流电源驱动赛道中心线下的线圈。

本文档给出了电源设计参考方案,参赛队伍可以根据这些参考设计方案自行设计制作所使用电源。

一、 电源技术指标要求:根据《竞赛比赛细则》附件三关于电磁组赛道说明,20KHz电源技术要求如下:1、驱动赛道中心线下铺设的0.1-0.3mm直径的漆包线;2、频率范围:20K±2K;3、电流范围:50-150mA;下图是赛道起跑区示意图,在中心线铺设有漆包线。

图1 竞赛跑道起跑区示意图首先分析赛道铺设铜线的电抗,从而得到电源输出的电压范围。

我们按照普通的练习赛道总长度50,使用直径为0.2mm漆包线。

在30摄氏度下,铜线的电阻率大约为 0.0185欧姆平方毫米/米。

计算可以得到中心线的电阻大约为29.4欧姆。

按照导线电感量计算机公式:42ln0.75()lL l nHd⎛⎞=×−⎜⎟⎝⎠。

其中l, d的单位均为cm。

可以计算出直径为0.2mm,长度50米的铜线电感量为131微亨。

对应20KHz下,感抗约为16.5欧姆。

可以看出,线圈的电感量小于其电阻值。

由于导线的电感量与铺设的形状有关系,上述计算所得到的电感量不是准确数值。

另外,我们可以在输出时串接电容来抵消电感的感抗。

所以估算电源电压输出范围的时候,我们不再特别考虑线圈的电感对于电流的影响。

为了方便设计,我们设计电源输出电压波形为对称方波。

由于线圈电感的影响,线圈中的电流为上升、下降沿缓变的方波波形。

如下图所示图2 线圈驱动电压与电流示意图对于电阻为29.4欧姆的赛道导线,流过100mA的电流,电压峰值应该大于3V。

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计方案清晨的阳光透过窗帘,洒在书桌上那厚厚一摞方案草稿上。

我泡了杯咖啡,打开电脑,准备着手写这个“飞思卡尔智能车竞赛设计方案”。

10年的方案写作经验告诉我,这是一个充满挑战的任务,但也是展示自己才华的舞台。

一、项目背景飞思卡尔智能车竞赛是一场针对大学生的科技竞赛,旨在培养创新精神和实践能力。

参赛队伍需要设计一款智能车,通过传感器、控制器、执行器等部件,使车辆在规定的赛道上自主行驶,完成各种任务。

这场比赛既考验技术,也考验团队协作。

二、设计方案1.车辆整体设计车辆整体设计要兼顾美观、实用和稳定性。

外观上,我们采用流线型设计,减少空气阻力;内部结构紧凑,降低重心,提高稳定性。

车辆尺寸符合比赛规定,确保在赛道上行驶自如。

2.传感器配置(1)激光雷达:用于实时获取车辆周围环境信息,绘制三维地图。

(2)摄像头:用于识别赛道标志、障碍物等。

(3)超声波传感器:用于检测前方障碍物距离,避免碰撞。

(4)红外传感器:用于检测赛道边缘,防止车辆出轨。

3.控制器设计(1)路径规划:根据传感器信息,实时规划车辆行驶路径。

(2)速度控制:根据赛道状况,调整车速,确保稳定行驶。

(3)避障策略:当检测到前方有障碍物时,及时调整行驶方向。

4.执行器设计(1)电机驱动:驱动车辆前进、后退、转向。

(2)舵机:用于调整摄像头角度,获取更多赛道信息。

(3)电磁阀:用于控制车辆制动。

三、团队协作一个优秀的团队是项目成功的关键。

我们团队成员各司其职,密切配合:1.项目经理:负责整体进度把控,协调各方资源。

2.硬件工程师:负责车辆整体设计和传感器、执行器选型。

3.软件工程师:负责控制器设计和程序编写。

4.测试工程师:负责车辆调试和性能测试。

四、项目实施1.初期准备:收集比赛相关信息,了解赛道状况,确定设计方案。

2.设计阶段:根据设计方案,绘制图纸,选型采购。

3.制作阶段:组装车辆,调试传感器、控制器和执行器。

4.测试阶段:进行多次试验,优化控制策略,提高车辆性能。

飞思卡尔智能车电磁组技术报告

飞思卡尔智能车电磁组技术报告

第十届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告摘要本文以第十届全国大学生智能车竞赛为背景,介绍了基于电磁导航的智能赛车控制系统软硬件结构和开发流程。

该系统以Freescale半导体公司32 位单片机MK60DV510ZVLQ100为核心控制器,使用IAR6.3程序编译器,采用LC选频电路作为赛道路径检测装置检测赛道导线激发的电磁波来引导小车行驶,通过增量式编码器检测模型车的实时速度,配合控制器运行PID控制等控制算法调节驱动电机的转速和转向舵机的角度,实现了对模型车运动速度和运动方向的闭环控制。

同时我们使用集成运放对LC选频信号进行了放大,通过单片机内置的AD采样模块获得当前传感器在赛道上的位置信息。

通过配合Visual Scope,Matlab等上位机软件最终确定了现有的系统结构和各项控制参数。

实验结果表明,该系统设计方案可使智能车稳定可靠运行。

关键字:MK60DV510ZVLQ100,PID控制,MATLAB,智能车第十届全国大学生智能汽车邀请赛技术报告目录第一章引言 (5)第二章系统方案设计 (6)2.1系统总体方案的设计 (6)2.2系统总体方案设计图 (6)电磁传感器模块 (7)控制器模块 (7)电源管理模块 (7)编码器测速模块 (7)舵机驱动模块 (8)起跑线检测模块 (8)人机交互模块 (8)测距模块 (8)第三章机械结构调整与优化 (8)3.1智能车前轮定位的调整 (8)主销后倾角 (9)3.1.2主销内倾角 (9)3.1.3 前轮外倾角 (10)3.1.4 前轮前束 (10)3.2 舵机的安装 (11)3.3编码器安装 (12)3.4车体重心调整 (12)3.5传感器的安装 (13)3.6测距模块的安装 (14)第四章硬件电路设计 (15)4.1单片机最小系统 (15)4.2电源管理模块 (16)4.3电磁传感器模块模块 (17)4.3.1 电磁传感器的原理 (17)4.3.2 信号的检波放大 (18)4.4编码器接口 (19)4.5舵机驱动模块 (20)4.6电机驱动模块 (20)4.7人机交互模块 (21)第五章控制算法设计说明 (22)5.1主要程序流程 (22)5.2赛道信息采集及处理 (23)5.2.1 传感器数据滤波及可靠性处理 (23)5.2.2 位置偏差的获取 (25)5.3 控制算法实现 (27)5.3.1 PID算法原理简介 (27)5.3.2基于位置式PID的方向控制 (31)5.3.3 基于增量式PID和棒棒控制的速度控制 (31)5.3.4 双车距离控制和坡道处理 (33)第六章系统开发与调试 (34)6.1开发环境 (34)6.2上位机显示 (35)6.3车模主要技术参数 (36)第七章存在的问题及总结 (37)7.1 制作成果 (37)7.2问题与思考 (37)7.3不足与改进 (37)参考文献 (38)附录A 部分程序代码 (39)第十届全国大学生智能汽车邀请赛技术报告第一章引言随着科学技术的不断发展进步,智能控制的应用越来越广泛,几乎渗透到所有领域。

飞思卡尔杯全国大学生智能汽车竞赛技术报告_电磁组

飞思卡尔杯全国大学生智能汽车竞赛技术报告_电磁组

参赛队员签名: 带队教师签名: 日
刘凯 杨珏
期:2015 年 8 月 19 日
引言
引言
自从第五届出现磁导组开始到今年第十届比赛,电磁小车已经在智能车的 赛道上奔驰了 6 年,从第六届取消了前瞻长度的限制,电磁车速度开始有了质 的飞跃,第七届改成直立状态行走后,虽然对速度有一定的影响,但也以其独 特魅力和新的技术挑战让参赛者向往不已, 第八届改回四轮行进方式并采用了 A 车模,小车的速度再次出现大幅提升。到如今第十届同样是四轮行进并采用了 B 车模进行双车追逐,小车的观赏性与难度都增加许多。经过六年的探索,电磁 小车的传感器及传感器布局都已经几近相同,考验车手的更多的将是细节和控 制算法。 本文中,我们小组通过对小车设计制作整体思路、电路、算法、调试、车 辆参数的介绍,详尽地阐述了我们的思想和创意,具体表现在电路的创新设计, 以及算法方面的独特想法,而对单片机具体参数的调试也让我们付出了艰辛的 劳动。这份报告凝聚着我们的心血和智慧,是我们共同努力后的成果。 在准备比赛的过程中,我们小组成员涉猎控制、模式识别、传感技术、汽 车电子、电气、计算机、机械等多个学科,这次磨练对我们的知识融合和实践 动手能力的培养有极大的推动作用,在此要感谢清华大学,感谢他们将这项很 有意义的科技竞赛引入中国;也感谢北京科技大学相关学院对此次比赛的关注, 我们的成果离不开学校的大力支持及指导老师悉心的教导;还要感谢的是和我 们一起协作的队员们,协助,互促,共勉使我们能够走到今天。
-1-
第十届全国大学生智能汽车总决赛赛技术报告
目录
引言 ...................................................................................................... - 1 目录 ...................................................................................................... - 2 第一章 方案设计 ................................................................................. - 5 1.1 系统总体方案的设计 ........................................................................ - 5 1.2 系统总体方案设计图 ........................................................................ - 5 第二章 智能车机械结构调整与优化 .................................................... - 7 2.1 智能车车体机械建模 ........................................................................ - 7 2.2 智能车前轮定位的调整 .................................................................... - 8 2.2.1 主销后倾角 ............................................................................ - 9 2.2.2 主销内倾角 ............................................................................ - 9 2.2.3 车轮外倾角 .......................................................................... - 10 2.2.4 前轮前束 ............................................................................. - 10 2.3 智能车转向机构调整优化 .............................................................. - 11 2.4 智能车后轮减速齿轮机构调整 ...................................................... - 12 2.5 编码器的安装 ................................................................................. - 13 2.6 智能车重心位置的调整 ................................................................. - 14 2.7 其它机械结构的调整 ...................................................................... - 14 第三章 电路设计说明........................................................................ - 15 3.1 主控板和驱动板的硬件设计 ......................................................... - 15 3.1.1 电源管理模块 ..................................................................... - 15 3.1.2 电机驱动模块 ..................................................................... - 16 -2-

基于电磁场检测巡线智能车系统的设计

基于电磁场检测巡线智能车系统的设计

基于电磁场检测巡线智能车系统的设计本文介绍了基于飞思卡尔32位微控制器的基于电磁场检测巡线智能车系统。

针对比赛的具体情况,我们建立了赛车、赛道和自主控制系统的基本模型,给出了理论分析、仿真计算、在线调试的基本开发方法,在比较各种算法的性能特点后,我们确定最终方案,并完成了智能车的制作和调试。

本系统以M4系列微控制器K60为核心,软件平台为IAR EWARM开发环境,车模为组委会统一提供的E车模。

论文介绍了整个智能车系统的硬件和软件设计开发过程。

使用K60作为主控芯片,用安装在车头的电感来检测赛道信息,用陀螺仪和加速度计检测小车姿态,用光电编码器检测车模速度,用干簧管检测起跑线信息。

整个系统的工作原理是由磁感应传感器采集赛道信息并经放大处理,与陀螺仪和加速度计采集的车模姿态信息和光电编码器采集的车模速度信息一起送给单片机,通过程序设计控制优化算法,控制电机的转速以达到车模在赛道上的稳定高速行驶。

关键字:智能车K60 循迹速度1.1 概述随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。

同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。

第十一届“恩智浦”杯全国大学生智能汽车竟赛就是在这个背景下举行的。

比赛要求在大赛组委会统一提供的竞赛车模,我们选择了飞思卡尔微控制器K60为核心控制单元的基础上,自主构思控制方案及系统设计,包括传感器信号采集处理、控制算法及执行、动力电机驱动等,最终实现能够自我识别路线,并且可以实时输出车体状态的智能车控制硬件系统。

本文先从总体上介绍了智能车的设计思想和方案论证,然后分别从机械、硬件、软件等方面的设计进行论述,重点介绍了芯片的选择和路径识别的方法,接着描述了智能车的制作及调试过程,其中包含本队在制作和调试过程中遇到的问题及其解决方法。

整体结构框图如图1-1 所示:图 1.1 整体结构框图1.2 整车设计思路本组电磁车使用山外K60作为核心控制单元,使用多传感器大前瞻进行巡线控制,并且检测起跑线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞思卡尔智能车比赛电磁组路径检测设计方案电磁组竞赛车模路径检测设计参考方案(竞赛秘书处 2010-1,版本 1.0)一、前言第五届全国大学生智能汽车竞赛新增加了电磁组比赛。

竞赛车模需要能够通过自动识别赛道中心线位置处由通有 100mA 交变电流的导线所产生的电磁场进行路径检测。

除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。

具体要求请参阅《第五届智能汽车竞赛细则》技术文档。

本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。

本方案通过微型车模实际运行,证明了它的可行性。

微型车模运行录像参见竞赛网站上视频文件。

二、设计原理1、导线周围的电磁场根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。

智能汽车竞赛使用路径导航的交流电流频率为 20kHz,产生的电磁波属于甚低频(VLF) 电磁波。

甚低频频率范围处于工频和低频电磁破中间,为 3kHz,30kHz,波长为100km,10km。

如下图所示:图 1:电流周围的电磁场示意图导线周围的电场和磁场,按照一定规律分布。

通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。

由于赛道导航电线和小车尺寸 l 远远小于电磁波的波长,,电磁场辐射能量很小(如果天线的长度 l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。

为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。

由毕奥-萨伐尔定律知:通有稳恒电流 I 长度为 L 的直导线周围会产生磁场,距离导线距离为 r 处 P 点的磁感应强度为:图 2 sin直线电流的磁场 , d, ,(0 , 4 10, 7 TmA 1 ) B , ,, cos,12 ,。

(1) ,1 4 r 由此得: B , cos, 4 r 4 r。

对于无限长直电流来说,上式中,1 , 0 ,, 2 , ,则有 B ,图 3:无限长导线周围的磁场强度在上面示意图中,感应磁场的分布是以导线为轴的一系列的同心圆。

圆上的磁场强度大小相同,并随着距离导线的半径 r 增加成反比下降。

2、磁场检测方法:人类对于磁场的认识和检测起源很早,我国古代人民很早就通过天然磁铁来感知地球磁场的方向,从而发明了指南针。

但是对于磁场定量精确的测量以及更多测量方法的发现还是在二十世纪初期才得到了突飞猛进的进展。

现在我们有很多测量磁场的方法,磁场传感器利用了物质与磁场之间的各种物理效应:磁电效应(电磁感应、霍尔效应、磁致电阻效应)、磁机械效应、磁光效应、核磁共振、超导体与电子自旋量子力学效应。

下面列出了一些测量原理以及相应的传感器:(1) 电磁感应磁场测量方法:电磁线磁场传感器,磁通门磁场传感器,磁阻抗磁场传感器。

(2) 霍尔效应磁场测量方法:半导体霍尔传感器、磁敏二极管,磁敏三极管。

(3) 各向异性电阻效应(AMR)磁场测量方法。

(4) 载流子自旋相互作用磁场测量方法:自旋阀巨磁效应磁敏电阻、自旋阀三极管磁场传感器、隧道磁致电阻效应磁敏电阻。

(5) 超导量子干涉(SQUID)磁场测量方法:SQUID 薄膜磁敏元件。

(6) 光泵磁场测量方法:光泵磁场传感器。

(7) 质子磁进动磁场测量方法。

(8) 光导纤维磁场测量方法。

以上各种磁场测量方法所依据的原理各不相同,测量的磁场精度和范围相差-11-107G。

我们需要选择适合车模竞赛的检测方法,除了检测磁场的也很大,10精度之外,还需要对于检测磁场的传感器的频率响应、尺寸、价格、功耗以及实现的难易程度进行考虑。

在下面所介绍的检测方法中,我们选取最为传统的电磁感应线圈的方案。

它具有原理简单、价格便宜、体积小(相对小)、频率响应快、电路实现简单等特点,适应于初学者快速实现路经检测的方案。

通电导线周围的磁场是一个矢量场,场的分布如图四所示。

如果在通电直导线两边的周围竖直放置两个轴线相互垂直并位于与导线相垂直平面内的线圈,则可以感应磁场向量的两个垂直分量,进而可以获得磁场的强度和方向。

图 4:导线周围的感应电磁场导线中的电流按一定规律变化时,导线周围的磁场也将发生变化,则线圈中将感应出一定的电动势。

根据法拉第定律,线圈磁场传感器的内部感应电压 E 与, 磁场 B(t N 、截面积 A 的关系有: ) 、电磁线圈的圈数dB(t) d ,(t )E , ( NA ,) (,0 ,r ) dt dt感应电动势的方向可以用楞次定律来确定。

由于本设计中导线中通过的电流频率较低,为 20kHz,且线圈较小,令线圈E , , , 中心到导线的距离为 r ,认为小范围内磁场分布是均匀的。

再根据图 3 所示的导线周围磁场分布规律,则线圈中感应电动势可近似为:d ,(t ) k dI K (2) dt r dt r即线圈中感应电动势的大小正比于电流的变化率,反比于线圈中心到导线的距离。

其中常量 K 为与线圈摆放方法、线圈面积和一些物理常量有关的一个量,具体的感应电动势常量须实际测定来确定。

3、双水平线圈检测方案不同的线圈轴线摆放方向,可以感应不同的磁场分量。

我们先讨论一种最简单的线圈设置方案:双水平线圈检测方案。

在车模前上方水平方向固定两个相距 L 的线圈,两个线圈的轴线为水平,高度为 h ,如下图所示:引脚线圈磁性 10mH 材料运动方向 Lh模型车赛道中心线电流/100mA图5 双水平线圈检测方案为了讨论方便,我们在跑道上建立如下的坐标系,假设沿着跑道前进的方向为z轴,垂直跑道往上为y轴,在跑道平面内垂直于跑到中心线为x轴。

xyz轴满足右手方向。

假设在车模前方安装两个水平的线圈。

这两个线圈的间隔为L,线圈的高度为h,参见下图5所示。

左边的线圈的坐标为(x,h,z),右边的线圈的位置(x-L,h,z)。

由于磁场分布是以z轴为中心的同心圆,所以在计算磁场强度的时候我们仅仅考虑坐标(x,y)。

式(2)可以知道感应电动势大小与 2 2 成正比。

由于线圈的轴线是水平的,所以感应电动势反映了磁场的水平分量。

根据公hx , h车模前进方向赛道y z中心 (x,h) L 导航 x 水平线圈电线 h 交变电流 (100mA) x (x-L,h) 水平线圈Y z 线圈 L h I/100mA X 0 x图6 感应线圈的布置方案h 随着线圈水平位假设 h , 5cm, x ( 15, ,15)cm ,计算感应电动势 E ,2置 x 的变化取值,如下图所示:感应电动势0.220.20.180.160.140.120.10.080.060.040.02 -15 -10 -5 0 5 10 15 x/cm图 7 线圈中感应电动势与它距导线水平位置 x 的函数如果只使用一个线圈,感应电动势 E 是位置 x 的偶函数,只能够反映到水平位置的绝对值 x 的大小,无法分辨左右。

为此,我们可以使用相距长度为 L 的两h , x 2E/V个感应线圈,计算两个线圈感应电动势的差值: h , x h2 , ( x L)2h h Ed , E1 E2 , 2 2下面假设 L , 30cm ,计算两个线圈电动势差值 Ed 如下图所示:0.20.150.1 Ed/V 0.05-0.05-0.1-0.15 -0.2 -5 0 5 10 15 20 25 30 35 x/cm图 8 感应电动势差值 Ed 与距离 x 之间的函数从上图可以看出,当左边线圈的位置 x , 15cm 的时候,此时两个线圈的中心恰好处于跑道中央,感应电动势差值 Ed 为0。

当线圈往左偏移, x (15,30) ,感应电动势差值小于零;反之,当线圈往右偏移, x (0,15) ,感应电动势大于零。

因此在位移 0 ? 30cm 之间,电动势差值 Ed 与位移 x 是一个单调函数。

可以使用这个量对于小车转向进行负反馈控制,从而保证两个线圈的中心位置跟踪赛道的中心线。

通过改变线圈高度 h ,线圈之间距离 L 可以调整位置检测范围以及感应电动势的大小。

三、电路设计原理从上面检测原理可以知道,测量磁场核心是检测线圈的感应电动势 E 的幅值。

下面将从感应线圈、信号选频放大、整流与检测等几个方面讨论电路设计的问题,最后给出电路设计系统框图和实际电路。

1、感应磁场线圈:检测线圈可以自行绕制,也可以使用市场上能够比较方便购买的工字型10mH 的电感。

如下图所示。

图 9 几种 10mH 电感这类电感体积小,Q 值高,具有开放的磁芯,可以感应周围交变的磁场。

如下图所示:磁场磁场线圈磁材料引脚图 10 工字磁材电感2、信号选频放大使用电感线圈可以对其周围的交变磁场感应出响应感应电动势。

这个感应电动势信号具有以下特点:(1) 信号弱:感应电压只有几十个毫伏。

在检测幅值之前必须进行有效的放大,放大倍数一般要大于 100 倍(40db)。

(2) 噪声多:一般环境下,周围存在着不同来源、不同变化频率的磁场。

如下表所示: 磁场环境磁场性质磁场强度(高斯) -3 -2 家用电器周围一米范围 50Hz 10 -10 表 1:典型的环境磁场强度范围地表面地球磁场恒定 0.2-0.5 工业电机和电缆周围十米范围 50Hz 1-100 -6 -3 长波通讯 > 30kHz 10 -10-4 -2 赛道中心导线周围 0.5 米范围 20kHz 10 -10比赛选择 20kHz 的交变磁场作为路径导航信号,在频谱上可以有效地避开周围其它磁场的干扰,因此信号放大需要进行选频放大,使得 20kHz 的信号能够有效的放大,并且去除其它干扰信号的影响。

可以使用 LC 串并联电路来实现选频电路(带通电路),如下图所示:电感电路示意图等效电路图内阻R0/10ΩC L Vo Vo 谐振 L/10mH 电容 C/6.8nf 感应线圈 E感应电动势图 11:RLC 并联谐振电路上述电路中,E 是感应线圈中的感应电动势,L 是感应线圈的电感量,R0 是1 。

已知感电感的内阻,C 是并联谐振电容。

上述电路谐振频率为: f0 ,2 LC应电动势的频率 f0 , 20kHz ,感应线圈电感为 L , 10mH ,可以计算出谐振电容 , 6.33 ,10 (F ) 的容量为: , 2 , 20 ,10 , 1 1 9 , C , 2 3 3 3 , 2 f0 , ,10 ,10 L通常在市场上可以购买到的标称电容与上述容值最为接近的电容为 6.8nF,所以在实际电路中我们选用 6.8nF 的电容作为谐振电容。

为了验证 RLC 选频电路的效果,我们对比了在有和没有谐振电容两种情况下的电感输出的感应电压。

在导线中通有 20kHz 左右,100mA 左右方波电流,在距离导线 50mm 的上方放置垂直于导线的 10mH 电感,使用示波器测量输出电压波形。

相关文档
最新文档