科大奥锐拉伸法测金属丝的杨氏模量数据处理表格

合集下载

拉伸法测定金属的杨氏模量(新)

拉伸法测定金属的杨氏模量(新)

实验61 拉伸法测定金属的杨氏模量一、实验目的1)掌握拉伸法测定金属杨氏模量原理;2)学会用光杠杆放大法测量微小的长度变化量的方法; 3)掌握用最小二乘法拟合处理数据。

二、实验仪器杨氏模量测定仪、光杠杆、尺读望远镜、卡尺、千分尺、钢卷尺、砝码。

三、实验原理与方法(一)实验原理任何固体在外力作用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。

本实验研究的是棒状物体弹性形变中的伸长形变。

设金属丝的长度为L ,截面积为S ,一端固定,一端在沿长度方向上受力为F ,并伸长△L ,如图6-1所示,那么:L L∆是物体的相对伸长量,叫应变。

SF是物体单位面积上的作用力,叫应力。

根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即:LLYS F ∆= 则有:LS FLY ∆=…………………………………(1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量)。

实验证明:杨氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。

它是表征固体性质的一个物理量。

(二)实验方法本实验采用YMC-7型杨氏模量测定仪测定金属的杨氏模量。

仪器的结构图如图6-2所示。

环形底座由可调底脚支撑,两个立柱固定在环形底座上,上夹头及发光标尺固定在横梁上,其中标尺为水平前置。

待测金属丝上端固定于架顶的上夹头处,下端由下夹头夹紧,下夹头可在固定平台的孔中自由上下移动, 拉力通过砝码托盘和挂钩与下夹头底部连接,加力时依次放置砝码,在力的作用下,金属丝产生弹性形变。

水平标尺与望远镜构成90°反射系统,使得望远镜的工作距离形成近距。

光杠杆反射镜与标尺成45°反射角,标尺刻线经反射镜成像在望远镜的目镜分划板上,分划板带有十字线和视距丝。

增加砝码时,施加力沿垂直方向产生位移,光杠杆足尖随着位移使得反射镜相应转动微小角度。

于是在望远镜的目镜分划板上看到标尺的像在垂直移动,表示被测线材的长度受力产生形变(ΔL )。

用拉伸法测金属丝的杨氏弹性模量

用拉伸法测金属丝的杨氏弹性模量

金属杨氏模量的测定杨氏模量是表征固体材料抵抗形变能力的重要物理量,是工程材料重要参数,它反映了材料弹性形变与内应力的关系,它只与材料性质有关,是工程技术中机械构件选材时的重要依据。

本实验采用液压加力拉伸法及利用光杠杆的原理测量金属丝的微小伸长量,从而测定金属材料的杨氏模量。

一、 实验目的(1) 学会测量杨氏弹性模量的一种方法(2) 掌握光杠杆放大法测量微小长度的原理 (3) 学会用逐差法处理数据二、仪器和量具数显液压杨氏模量仪,光杠杆和标尺望远镜,钢卷尺,螺旋测微计。

三、原理1.拉伸法测量钢丝的杨氏模量任何物体在外力作用下都要产生形变,可分为弹性形变和塑性形变。

弹性形变在外力作用撤除后能恢复原状,而塑性形变则不能恢复原状。

发生弹性形变时,物体内部产生的企图恢复物体原状的力叫做内应力。

对固体来讲,弹性形变又可分为4种:伸长或压缩形变、切变、扭变、弯曲形变。

本实验只研究金属丝沿长度方向受外力作用后的伸长形变。

取长为L ,截面积为S 的均匀金属丝,在两端加外力F 相拉后,则作用在金属丝单位面积上的力S F 为正应力,相对伸长LL ∆定义为线应变。

根据胡克定律,物体在弹性限度范围内,应变与应力成正比,其表达式为LLYS F ∆= (1) 式中Y 称为杨氏模量,它与金属丝的材料有关,而与外力F 的大小无关。

由于L ∆是一个微小长度变化,故实验常采用光杠杆法进行测量。

2.光杠杆法测量微小长度变化放大法是一种应用十分广泛的测量技术,有机械放大、光放大、电子放大等。

如螺旋测微计是通过机械放大而提高测量精度的,示波器是通过将电子信号放大后进行观测的。

本实验采用的光杠杆法属于光放大。

光杠杆放大原理被广泛地用于许多高灵敏度仪表中,如光电反射式检流计、冲击电流计等。

图1(b)标尺光杠杆如图1(a )、1(b )所示,在等腰三角形板1的三个角上,各有一个尖头螺钉,底边连线上的两个螺钉B 和C 称为前足尖,顶点上的螺钉A 称为后足尖,A 到前两足尖的连线BC 的垂直距离为b ,如图3(a )所示;2为光杠杆倾角调节架;3为光杠杆反射镜。

用拉伸法测金属丝的杨氏模量参考报告

用拉伸法测金属丝的杨氏模量参考报告

用拉伸法测金属丝的杨氏模量参考报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。

2、掌握光杠杆放大法测量微小长度变化的原理和方法。

3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。

4、学习数据处理和误差分析的方法。

二、实验原理1、杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。

对于一根粗细均匀的金属丝,在其长度方向上施加拉力 F,金属丝会发生伸长,设其伸长量为ΔL,金属丝的原长为 L,横截面积为 S,则根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,其比例系数即为杨氏模量 E,表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\2、光杠杆放大原理光杠杆是一个带有三个尖足的平面镜支架,前两尖足放在平台的横槽内,后尖足置于待测金属丝的测量端。

当金属丝受力伸长时,光杠杆的后尖足随之下降,镜面将发生偏转。

设镜面偏转角度为θ,光杠杆常数(前脚到后脚的垂直距离)为 b,从望远镜中看到的标尺刻度变化为Δn,则有:\\tan\theta \approx \theta =\frac{\Delta n}{D} \\\Delta L =\frac{b}{2D} \Delta n \其中 D 为光杠杆镜面到标尺的距离。

三、实验仪器1、杨氏模量测定仪包括支架、待测金属丝、砝码托盘等。

2、光杠杆及望远镜尺组由光杠杆、望远镜和标尺组成。

3、游标卡尺用于测量金属丝的直径。

4、螺旋测微器用于更精确地测量金属丝的直径。

5、砝码若干个,用于对金属丝施加拉力。

四、实验步骤1、仪器调整(1)将杨氏模量测定仪放置在水平桌面上,调整底座螺丝使立柱铅直。

(2)调整光杠杆,使其前脚位于平台的沟槽内,后脚置于金属丝的测量端,镜面与平台垂直。

(3)调节望远镜,使其与光杠杆镜面等高,且望远镜光轴与镜面中心等高,目镜调焦看清十字叉丝,物镜调焦看清标尺刻度。

2、测量金属丝长度 L用米尺测量金属丝的原长 L,测量多次取平均值。

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。

条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。

测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。

伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。

本实验采用拉伸法当中的显微镜直读法。

【实验目的】1. 熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2. 学习用逐差法处理数据;3. 了解CCD 成像系统。

【实验仪器】YWC-III 杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg 、0.2kg 的砝码若干。

杨氏模量测定仪的结构如图4-2-1所示。

(a)学生实验配置 (b)教学演示配置图4-2-1 杨氏模量测定仪1. 金属丝支架S 为金属丝支架,高约1.30m ,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm ,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。

支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。

2. 读数显微镜读数显微镜M 用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm, 分度值0.01mm ,每隔1mm 刻一数字。

H 1为读数显微镜支架。

D 成像、显示系统(作为示教仪)CCD 黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD 接在显微镜目镜与电视显示器上。

H 2为CCD 黑白摄像机支架。

【实验原理】物体在外力作用下,总会发生形变。

当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。

发生弹性形变时,物体内部产生恢复原状的内应力。

(完整版)拉伸法测钢丝杨氏模量

(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量实验目的1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量;2. 掌握有效数字的读取、运算以及不确定度计算的一般方法.3. 掌握用逐差法处理数据的方法;4. 了解选取合理的实验条件,减小系统误差的重要意义.实验仪器YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干.1.标尺2.锁紧手轮3.俯仰手轮4.调焦手轮5.目镜6.内调焦望远镜7.准星8.钢丝上夹头9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝.实验原理设一粗细均匀的钢丝,长度为L 、横截面积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即F L ES L ∆= 或 //F SE L L=∆ 式中E 称为杨氏模量,单位为N·m -2,在数值上等于产生单位应变的应力.由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题.本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动.设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度).由图可知2tan Ld θ∆=,1011tan 2s s s d d θ-∆== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有θtan ≈θ2d L∆=,θ2tan θ2≈1101d s d s s ∆=-=由此可得 212d L s d ∆=∆ 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式:1228mgLd E D d s=π∆其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E .实验内容1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度;2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次;3. 用游标卡尺测量光杠杆常数d 2一次;4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度;5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果.实验步骤1. 杨氏模量测定仪的调整(1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直;(2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直.(3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在支架上. 调整到平面镜法线和望远镜轴线等高共轴.(4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节平面镜倾角,直到在平面镜中看到镜筒或标尺的像.(6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝.杠杆架反射镜固定平台砝码光杠杆结构图θθ光杠杆望远镜标尺s 0s 1d 1d 2ΔLθθΔs2. 用千分尺在不同方向、位置测量钢丝的直径D ,共测6次,测量前应先记录千分尺的零点读数;3. 用钢卷尺测量镜面到标尺的距离d 1;4. 在砝码钩上放上测量时要加的全部(共加7次)砝码(不包括预加的本底砝码)的一半(3-4块),细心调节平面镜倾角,使望远镜中看到的标尺像在零刻线附近,以保证在轴线附近的范围内测量.4. 去掉刚才所加的砝码,开始测量,记录初始值0s ',逐个增加砝码,记录每一步的读数i s ',再逐个减去砝码,记录每一步同一砝码数对应的读数i s '';5. 测量光杠杆常数d 2.可将光杠杆的三个脚放在数据记录纸上按下三个印,作连接前两脚的连线和后脚到该连线的垂线,用游标卡尺测量这一距离.6. 整理实验数据,交指导老师签字,整理仪器,完成实验.注意事项1. 实验系统调好后,一旦开始正式测量,在实验过程中不能再对系统任一部分进行任何调整,否则,所有数据将重新再测;2. 加减砝码时要轻拿轻放,槽口要相互错开,避免砝码钩晃动,在系统稳定后读数;3. 同一荷重(相同砝码数)下的两个读数要记在一起.增重与减重对应同一荷重下读数的平均值才是对应荷重下的最佳值,它消除了摩擦(圆柱体与圆孔之间的摩擦)与滞后(加减砝码时钢丝伸长与缩短滞后)等引起的系统误差.4. 实验完成后,应将砝码取下,防止钢丝疲劳.数据记录表一 L 、d 1、d 2测量数据表 单位: mm表二 钢丝直径D 的测量数据表千分尺零点读数 =仪ε mm 单位: mm表三 Δs 的测量数据表 单位:mm数据处理1.计算每增加一块砝码(1kg)的钢丝伸长量Δs 的最佳值及不确定度 (1) Δs 的最佳值(用逐差法))(41041s s s -=∆;)(41152s s s -=∆;)(41263s s s -=∆;)(41374s s s -=∆;)(414321s s s s s ∆+∆+∆+∆=∆(2) 计算 的实验标准差: ()Ss ∆= (3) 计算 平均值的实验标准差: ()S s ∆=(4) 标尺的示值极限误差: Δm=0.5mm(5) 合成不确定度:()u s ∆==2.D 的最佳值及不确定度的计算(1) D 的最佳值: ∑==6161i i D D(2) 计算D 的实验标准差: ()S D =(3) 计算 D 平均值的实验标准差: ()S D = (4) 千分尺的的示值极限误差:Δm =0.004mm(5) 计算D 的合成不确定度: ()u D ==3. E 的最佳值的计算和不确定度的计算 (1) E 的最佳值的计算: sd D mgLd E ∆=2218π(2) E 的合成不确定度的计算取u (d 2)=0.02mm ,u (d 1)=5mm , u (L )=5mm ,及2和3中的不确定度得到E S S u D D u L L u d d u d d u E u ⋅⎪⎭⎫⎝⎛∆∆+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=222222211)()(2)()()()((3) E 的相对不确定度的计算,将实验值与 E 的公认值 E 0=2.05×1011 N ·m -2比较,计算其相对不确定度:()100%EE E E =⨯。

用拉伸法测量金属丝的杨氏模量

用拉伸法测量金属丝的杨氏模量

大学物理实验报告实验名称姓名学号____实验类型(验证性、综合性)指导教师________上课时间年月日实验名称: 用拉伸法测量金属丝的杨氏模量 实验时间: 小组成员: 实验地点:实验目的:1.学会用拉伸法测金属丝的杨氏模量。

2.掌握用光杠杆法测量微小长度的变化。

3.学会用逐差法处理数据。

仪器、设备和材料:杨氏模量测定仪、光杠杆、尺读望远镜、游标卡尺、螺旋测微计及米尺等 实验原理:⑴固体材料的杨氏模量一根细而长的均匀棒状固体,只受轴向外力的作用,可以认为该物体只产生轴向形变。

设棒状固体的长度为L ,横截面积为S ,轴向力F 作用时,长度伸长量为L ∆,在弹性限度内,应力/F S 和应变/L L ∆成正比(胡克定律),即F LYSL ∆= 我们对上式整理可以得到//F SY L L =∆可见,只要测出F 、S 、L 、L ∆,就会得到杨氏模量Y 值。

F 、S 、L 各量可用一般的测量仪器测得,而L ∆通常很小,用一般仪器和方法测量较为困难,本实验采用光杠杆法测量L ∆。

⑵.利用光杠杆法测量微小长度变化量光杠杆由平面全反射镜、主杠支脚和刀口组成,镜面倾角及主杠尖脚到刀口间距离均可调。

测量微小长度变化量原理。

实验中如果光杠杆的支架刀刃固定,而后足的支撑点由于外力作用而改变了L ∆的微小高度,则光杠杆就会改变一个角度ϕ,使镜面A 到达'A 的位置,平面镜法线也将转过角度ϕ。

据反射定律,反射线转过2ϕ角度。

此时在望远镜中观察到的标尺B 的刻度变到了1x 的位置。

因L ∆很小,且L b ∆,ϕ亦很小,故有 /tan L b ϕϕ∆=≈又因10x x x D -=∆,则tan 22xxϕϕ∆=≈ 消去ϕ,则 2L xb D∆∆= 2b L x D∆=∆物理实验原始数据记录专业班级实验日期学号姓名同组姓名。

拉伸法测金属丝杨氏弹性模量

拉伸法测金属丝杨氏弹性模量
(1)调节杨氏模量测定仪的底脚调整螺钉,使立柱铅 直。
(2)调节平台的上下位置,使随金属丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。
(3)加1Kg砝码在砝码托盘上,将金属丝拉直,检查 夹具B是否能在平台的孔中上下自由地滑动,金属丝 是否被上下夹子夹紧.
2.光杠杆及望远镜尺组的调节
(1)外观对准——调节光杠杆与望远镜、标尺中部 在同一高度上。 (2)镜外找像——缺口、准星、平面镜中标尺 像.三者在一条水平 线上。 (3)镜内找像 ——先调节目镜使叉丝清晰,再调节 调焦距看清标尺像,直到无视差为准。 (4)细调对零——对准标尺像零刻线附近的任一刻
4 n4 9 n9
n7 n2
5 n5 10 n10
n8 n3
n9 n4
n10 n5
5
2
A t0 .9 55i 1
N iN 5 1
,
B仪,
因 n1N
5
所 以 n5 1N
N
2 2
AB
nnn
返回
实验内容
1.杨氏模量测定仪的调整
i1
31
B 仪
nnn
n 2A2B
杨氏模量 E计 8FL算D
d2bn
不确定度计算:
EEFF2LL2D D24dd2bb2nn2
E
E E
E
用拉伸法测量金属丝杨氏模量
1. 实验简介 2. 实验目的 3. 实验原理 4. 逐差法处理数据 5. 实验内容 6. 注意事项 7. 数据记录与处理 8. 课后思考题
实验简介
材料受外力作用时必然发生形变,杨氏模量(也称弹性模量)是 反映固体材料弹性形变的重要物理量,在一般工程设计中是一个 常用参数, 是选定机械构件材料的重要依据之一。常用金属材

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。

实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。

实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。

实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。

实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。

实验6 杨氏模量的测定(拉伸法)

实验6 杨氏模量的测定(拉伸法)

一、拉伸法 【实验目的】1. 学会用拉伸法测量金属丝的杨氏模量2. 掌握光杠杆法测量微小伸长量的原理3. 掌握各种测量工具的正确使用方法4. 学会用逐差法或最小二乘法处理实验数据5.学会不确定度的计算方法,结果的正确表达【实验仪器】杨氏模量仪如图 所示,主要由实验架和望远镜系统、数字拉力计、测量工具(图中未显示)组成。

标尺金属丝望远镜拉力传感器数字拉力计光杠杆施力螺母水平卡座垂直卡座图 2-6-1 杨氏模量系统示意图1. 实验架实验架是待测金属丝杨氏模量测量的主要平台。

金属丝通过一夹头与拉力传感器相连,采用螺母旋转加力方式,加力简单、直观、稳定。

拉力传感器输出拉力信号通过数字拉力计显示金属丝受到的拉力值。

光杠杆的反射镜转轴支座被固定在一台板上,动足尖自由放置在夹头表面。

反射镜转轴支座的一边有水平卡座和垂直卡座。

水平卡座的长度等于反射镜转轴与动足尖的初始水平距离(即小型测微器的微分筒压到0刻线时的初始光杠杆常数),该距离在出厂时已严格校准,使用时勿随意调整动足与反射镜框之间的位置。

旋转小型测微器上的微分筒可改变光杠杆常数。

实验架含有最大加力限制功能,实验中最大实际加力不应超过13.00kg 。

2. 望远镜系统望远镜系统包括望远镜支架和望远镜。

望远镜支架通过调节螺钉可以微调望远镜。

望远镜放大倍数12倍,最近视距0.3m ,含有目镜十字分划线(纵线和横线)。

望远镜如图所示。

图2-6-2 望远镜示意图3. 数字拉力计电源:AC220V ±10%,50Hz显示范围:0~±19.99kg (三位半数码显示) 最小分辨力:0.001kg含有显示清零功能(短按清零按钮显示清零)。

含有直流电源输出接口:输出直流电,用于给背光源供电。

数字拉力计面板图:图 2-6-3 数字拉力计面板图4. 测量工具【实验原理】分划线视度调节手轮调焦手轮物镜O 型连接圈1. 杨氏模量的定义设金属丝的原长为L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力σ=F /S 称为正应力,金属丝的相对伸长量ε=ΔL /L 称为线应变。

大学物理实验-拉伸法测金属丝的杨氏模量

大学物理实验-拉伸法测金属丝的杨氏模量

大学物理实验-拉伸法测金属丝的杨氏模量导言:拉伸法测金属丝的杨氏模量是一项非常重要的实验,也是物理学学生必须掌握的基本实验之一。

这个实验旨在测量一根金属丝的杨氏模量,并通过实验结果校验材料的性质和质量,探究杨氏模量与材料力学性质和微观结构特征的关系。

本篇实验报告将介绍拉伸法测金属丝的杨氏模量的实验步骤、原理、实验结果的处理方法,同时还将探讨实验中可能遇到的问题和解决办法。

实验器材:1. 金属丝一根2. 电子天平3. 倒数计时器4. 万能试验机5. 卡尺6. 水平线标7. 显微镜8. 毛玻璃实验原理:拉伸法测金属丝的杨氏模量是一种用拉伸法测量金属丝抗拉强度和弹性常数的实验方法。

这一实验方法基于普通的夹紧式拉伸实验,通过拉伸金属丝并绘制拉伸曲线和应变-应力曲线来测量金属丝的杨氏模量。

拉伸曲线是通过测量不同拉伸距离下金属丝直径的变化并绘制出来的。

应变-应力曲线是通过计算不同拉伸距离下金属丝应力和应变的比值并绘制出来的。

应力和应变的比值就是杨氏模量。

实验步骤:1. 清洗金属丝2. 准确测量金属丝的直径3. 定量量取一定长度的金属丝,并将其拉长4. 通过电子天平和倒数计时器测量拉伸金属丝的质量和拉伸速度5. 通过水平线标固定金属丝的一端,并在另一端连接力表6. 启动万能试验机和力表,开始拉伸金属丝7. 在拉伸过程中,用毛玻璃顶起金属丝,并用显微镜观察金属丝的直径变化8. 记录不同拉伸距离下金属丝的直径变化,绘制拉伸曲线9. 记录不同拉伸距离下金属丝的应力和应变的比值,绘制应变-应力曲线10. 根据应变-应力曲线计算金属丝的杨氏模量11. 清洗实验器材和实验室,并整理实验数据和结果实验结果的处理方法:实验结束后,我们需要处理实验数据和结果。

处理实验结果的方法是将绘制的拉伸曲线和应变-应力曲线转化为可计算的数据,并根据这些数据计算出实验结果。

实验结果通常以两个参数表示:杨氏模量和金属丝的抗拉强度。

计算杨氏模量时,我们需要根据应变-应力曲线计算比例极限(截断点或称为杨氏弹性极限),然后根据金属丝的几何形状、尺寸和长度计算杨氏模量。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

欢迎阅读用拉伸法测金属丝的杨氏弹性模量一、实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。

二、实验仪器、钢三、的伸长∆∆∆DnxL四、<一>然后继<二>测量7.计下无挂物时刻度尺的读数0n;8.依次挂上kg1的砝码,七次,计下7654321,,,,,,nnnnnnn;9.依次取下kg1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'nnnnnnn;10.用米尺测量出金属丝的长度L(两卡口之间的金属丝)、镜面到尺子的距离D;11.用游标卡尺测量出光杠杆x、用螺旋测微器测量出金属丝直径d。

<三>数据处理方法——逐差法1. 实验测量时,多次测量的算术平均值最接近于真值。

但是简单的求一下平均还是不能达到最好的效果,我们多采用逐差法来处理这些数据。

2. 逐差法采用隔项逐差:3. 注:上式中的n ∆为增重kg 4的金属丝的伸长量。

五、 实验数据记录处理金属丝伸长量:cm A A A A A A A A A 82.14)()()()(37261504=-+-+-+-=金属丝直径:mm d d d d d d d 600.0654321=+++++=1110⨯值:100.2~002/m差分析分请同自己实勿抄一>注光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可在移动,否则,所测的数据将不标准,实验又要重新开始;2.不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任意纸片擦拭镜面;<二> 误差分析:3.实验测数据前没有事先放上去一个kg2砝码,将金属丝拉直,作为一个基准点;4.用游标卡尺在纸上测量x值和螺旋测微器测量读数时易产生误差;5.测量金属丝长度时没有找准卡口;6.米尺使用时常常没有拉直,且应该注意水平测量D,铅垂测量L;7.在加减砝码是应该注意轻放,避免摇晃。

用拉伸法测量杨氏弹性模量教学内容

用拉伸法测量杨氏弹性模量教学内容

用拉伸法测量杨氏弹性模量用拉伸法测量杨氏弹性模量任何物体在外力作用下都会发生形变,当形变不超过某一限度时,撤走外力之后,形变能随之消失,这种形变称为弹性形变。

如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,称为塑性形变。

发生弹性形变时,物体内部产生恢复原状的内应力。

弹性模量是反映材料形变与内应力关系的物理量,是工程技术中常用的参数之一。

一. 实验目的1. 学会用光杠杆放大法测量长度的微小变化量。

2. 学会测定金属丝杨氏弹性模量的一种方法。

3. 学习用逐差法处理数据。

二. 实验仪器杨氏弹性模量测量仪支架、光杠杆、砝码、千分尺、钢卷尺、标尺、灯源等。

三. 实验原理在形变中,最简单的形变是柱状物体受外力作用时的伸长或缩短形变。

设柱状物体的长度为L ,截面积为S ,沿长度方向受外力F 作用后伸长(或缩短)量为ΔL ,单位横截面积上垂直作用力F /S 称为正应力,物体的相对伸长ΔL /L 称为线应变。

实验结果证明,在弹性范围内,正应力与线应变成正比,即L L YS F ∆= (3-1-1) 这个规律称为虎克定律。

式中比例系数Y 称为杨氏弹性模量。

在国际单位制中,它的单位为N /m 2,在厘米克秒制中为达因/厘米2。

它是表征材料抗应变能力的一个固定参量,完全由材料的性质决定,与材料的几何形状无关。

本实验是测钢丝的杨氏弹性模量,实验方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量ΔL ,即可求出Y 。

钢丝长度L 用钢卷尺测量,钢丝的横截面积42d S π=,直径d 用千分尺测出,力F由砝码的质量求出。

在实际测量中,由于钢丝伸长量ΔL 的值很小,约mm 110-数量级。

因此ΔL 的测量采用光杠杆放大法进行测量。

光杠杆是根据几何光学原理,设计而成的一种灵敏度较高的,测量微小长度或角度变化的仪器。

它的装置如图3-1-1(a )所示,是将一个可转动的平面镜M 固定在一个⊥形架上构成的。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

For personal use only in study and research; not for commercialuse用拉伸法测金属丝的杨氏弹性模量一、 实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。

二、 实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)三、 实验原理在外力作用下,固体所发生的形状变化成为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:我们把E 称为杨氏弹性模量。

如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆) 四、 实验内容<一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。

<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ;9. 依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。

用拉伸法测金属丝的杨氏弹性模量实验报告示范

用拉伸法测金属丝的杨氏弹性模量实验报告示范

用拉伸法测金属丝的杨氏弹性模量实验报告示范实验报告示范 1实验名称:用拉伸法测金属丝的杨氏弹性模量一(实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。

二(实验原理F/SlS长为,截面积为的金属丝,在外力的作用下伸长了,称为杨氏模量(如图1)。

设钢,lY,F,l/l4lF2d丝直径为,即截面积,则。

S,,d/4Y,2,,ld伸长量比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量(如图2)。

,l,lFlL8bb?Y,由几何光学的原理可知,,。

,l,(n,n),,,n022L2L,db,n图1 图2三(主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。

四(实验步骤1. 调整杨氏模量测定仪2(测量钢丝直径3(调整光杠杆光学系统4(测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码。

记录此时望远镜十字叉丝水平线对准标尺的刻度值。

n0'''(2) 依次增加1个砝码,记录相应的望远镜读数。

n,n,?,n127''''''''(3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数。

n,n,?,n,n7610''''''(4) 计算同一负荷下两次标尺读数(和)的平均值。

nnn,(n,n)/2iiiii ,n(5) 用隔项逐差法计算。

5. 用钢卷尺单次测量标尺到平面镜距离和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖Lb连线的垂直距离。

6(进行数据分析和不确定度评定,报道杨氏模量值。

实验报告示范 2五(数据记录及处理1d(多次测量钢丝直径d表1 用千分卡测量钢丝直径(仪器误差取0.004) mm测量部位上中下平均测量方向纵向横向纵向横向纵向横向d(mm)0.718 0.714 0.705 0.704 0.705 0.711 0.710,242.64 .16 .25 .36 .25 .01 (d,d)(,10mm)0.278 id钢丝直径的:1122A类不确定度 u(d),(d,d),(d,d)/(n,1),,Aiin(n,1)n,4,0.278,10/(6,1),0.0024 mm,0.004B类不确定度mm u(d),,,0.0023B3322u(d),u(d),u(d),总不确定度0.0034 mm CABu(d)0.0034C相对不确定度 0.48% u(d),,,r0.710dd,(0.710,0.004)mm,测量结果 ,u(d),0.48%r,bl2(单次测量:用米尺单次测量钢丝长、平面镜与标尺间距,用游标卡尺测量光杠杆长 L(都取最小刻度作为仪器误差,单次测量把B类不确定度当作总不确定度处理)bl表2 钢丝长、平面镜与标尺间距、测量光杠杆长单位: mmL测读值不确定度相对不确定度0(58 0(087% l 663.0 u(l)r0(58 0(064% u(L) 907.5 Lr0(012 0(016% b u(b)75.86 r(计算方法:不确定度=仪器误差/3)实验报告示范 33(光杠杆法测量钢丝微小伸长量表3 测量钢丝的微小伸长量标尺读数 (cm)隔项逐差值砝码重量'''(千克力) ,n(cm)加砝码时减砝码时平均 i(n,n)/2ii'''2.00 n1.80 1.88 1.84 nn000- nn0.75 40'''3.00 n 2.01 2.09 2.05nn111'''4.00 n 2.20 2.27 2.23 nn222- nn0.74 51'''5.00 n2.38 2.44 2.41nn333'''6.00 n 2.56 2.61 2.59 nn444- nn0.74 62'''7.00 n 2.78 2.79 2.79 nn555'''8.00 n2.96 2.98 2.97 nn666- nn0.73 73'''3.13 3.15 3.14 9.00 nnn777所以,在F=4.00千克力作用下,标尺的平均变化量Δn=0.74 cm Δn的总不确定度Δn相对不确定度 u(,n),u(,n),0.0012cmu(,n),0.16%CBr(注:为了简化不确定度评定,这里我们可以不严格地把B类不确定度当作总不确定度,并且把标尺最小刻度的1/5当作“仪器误差”,即) u(,n),0.02/3,0.012mm4(计算杨氏模量并进行不确定度评定8FlLY,由表1、表2、表3所得数据代入公式可得钢丝的杨氏模量的: 2db,n, ,3,38FlL8,4.00,9.8,663.0,10,907.5,10112Y,,2.123,10近真值=(N/m) 2,32,3,2,db,n3.14,[0.710,10],75.86,10,0.74,1022222相对不确定度 u(Y),[u(l)],[u(L)],[2u(d)],[u(b)],[u(,n)]rrrrrr22222,0.98%,0.00087,0.00064,(2,0.0048),0.00016,0.0016112,0.21,10总不确定度 (N/m) u(Y),u(Y),YCr112,Y,(2.12,0.21),10N/m测量结果 ,uY(),0.98%r,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档