高考球类型及例题
高考数学球的有关问题(解析版)
专题17 球的有关问题(解析版)球是最常见的一种几何体,在近几年高考题中与球有关的问题频繁出现。
在此类问题中,既可以考查球的表面积、体积及距离等基本量的计算,又可以考查球与多面体的相切接,同时也能很好地考查同学们的画图能力、空间想象能力、推理论证能力。
考查形式多以选择题和填空题出现。
本专题对近十年来,全国新课标卷理出现的与球有关的问题进行汇编和简要的分析。
球的有关性质性质1. 球的任意一个截面都是圆.其中过球心的截面叫做球的大圆,其余的截面都叫做球的小圆.性质2. 球的小圆的圆心和球心的连线垂直于小圆所在的平面. 反之,球心在球的小圆所在平面上的射影是小圆的圆心.性质3: 球心到截面的距离d 与球的半径R 及截面的半径r 的关系为:R 2=d 2+r 2. 性质4. 球的两个平行截面的圆心的连线垂直于这两个截面,且经过球心. 性质5. 球的直径等于球的内接长方体的对角线长.性质6. 若直棱柱的所有顶点都在同一个球面上,则该球的球心O 是直棱柱的两个底面的外接圆的圆心的连线的中点. 球有关问题易错点 易错点1:公式记忆错误易错点2:多面体与几何体的结构特征不清楚导致计算错误易错点3:简单的组合体画不出适当的截面图致误题组一:以三视图为背景 1.(2016I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 【解析】由三视图可知该几何体为球去掉一个81球,设球的半径为R ,则37428,833VR R=2, 故其表面积2271431784SR R2.(20131)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为A.3cm 3500π B.3cm 3866π C.3cm 31372π D.3cm 32048π【解析】根据几何意义得出:边长为8的正方形,球的截面圆为正方形的内切圆,∴圆的半径为4,∵球面恰好接触水面时测得水深为6cm ,862d2224,=5R R R 球的半径为:即334500cm 33R 球的体积为:V=故选A. 题组二,以棱(圆)柱为载体3.(2010)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为________.【解析】根据题意可知三棱柱是棱长都是a 的正三棱柱,设上下底面中心连线EF 的中点O ,则O 就是球心,其外切球的半径为OA1,又设D 为A1C1中点,在直角三角形EDA1中,110sin 603A D EA == 122211t ,2712aR OEA OE R OA OE EA a 在中,由勾股定理得∆===+=22774123a S a 球的表面积为ππ=⋅=4.(20173)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________. 【解析】圆柱的轴截面如图,1AC =,12AB =,所以圆柱底面半径32r BC ==,那么圆柱的体积是2233()14V r h πππ==⨯⨯=,故选B . 题组三:以棱(圆)锥为载体5.(2012)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且SC=2;则此棱锥的体积为_________.【解析】根据题意做出图,设球心为O ,过A 、B 、C 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 交球于点D ,则SD ⊥平面ABC ,1123316,133CO OO 12623SD OO 高∵ΔABC 是边长为1的三角形313262,36ABCS ABCSV6.(20191)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA=PB=PC ,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为________为底面三角形的中心PO BG O =,的中点,所以EF PB . 6.7.(2011)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥0-ABCD 的体积为 。
高考数学空间几何体的外接球与内切球常见题型
高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。
具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。
例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。
第二种类型为对棱相等模型,补形为长方体。
在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。
例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。
除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。
同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。
需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。
题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。
设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。
例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。
2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。
3)正四面体的各条棱长都为2,则该正面体外接球的体积为。
河北省邯郸四中高考数学复习《球》典型例题
河北省邯郸四中2013届高考数学复习《球》典型例题典型例题一例1.已知地球的半径为R ,球面上B A ,两点都在北纬45 圈上,它们的球面距离为R 3π,A 点在东经30 上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45 圈的中心为1O ,由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =. 由R R B O A O 2245cos 11=⋅== , 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30 上,故B 的位置在东经120 ,北纬45 或者西经60 ,北纬45 .B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.典型例题二例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.典型例题三例3.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.典型例题四例4.试比较等体积的球与正方体的表面积的大小.分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系.解:设球的半径为r ,正方体的棱长为a ,它们的体积均为V , 则由ππ43,3433V r V r ==,343πV r =,由,3V a =得3V a =. 322324)43(44V V r S ππππ===球. 32322322166)(66V V V a S ====正方体. ∴<2164π <324V π32216V ,即正方体球S S <.说明:突出相关的面积与体积公式的准确使用,注意比较大小时运算上的设计.典型例题五例5.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可.解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==. 3)(3=+++∴R r R r ,233133-=+=+∴r R . (1)设两球体积之和为V , 则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π 当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值.典型例题六例6.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S . 图 1图2依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=. 所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.典型例题七例7.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.解:由题意,四球心组成棱长为2的正四面体的四个顶点, 则正四面体的高362)332(222=⋅-=h . 而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 说明:此类型题目对培养学生空间想象能力,并根据题意构造熟悉几何体都非常有帮助,且还可以适当增加一点实际背景,加强应用意识.典型例题八例8 过球面上两点作球的大圆,可能的个数是( ).A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B说明:解此易选出错误判断A .其原因是忽视球心的位置.典型例题九例9 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC ∆的外接圆半径,R AB r 3333==,3233==r R .答案:B说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.典型例题十例10 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等,∴底面是菱形.∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥.过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=, 故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.典型例题十一例11 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R .解:设过A 、B 、C 三点的球的截面半径为r ,球心到该圆面的距离为d ,则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心,从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.典型例题十二例12 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N AD E N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF , ∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=, ∴)43543323323(3122+++=r , ∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--, 解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210. 说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.典型例题十三例13 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为PC AC V ⋅⋅=231π圆锥 3233)3(31r r r ππ=⋅=, 334r V π=球. 球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水. 又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=. 答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.典型例题十四例14 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形.∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=,∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 典型例题十五例15 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少?分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π. ∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.典型例题十六例16 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 36)62(432==∆ABC S 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯363132********得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少?这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 典型例题十七例17 求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ;R O O OB 330cot 1=︒⋅=,R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱, 3233)3(31R R R V ππ=⋅⋅=锥, ∴964∶∶∶∶锥柱球=V V V .典型例题十八例18 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积. 分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心.∵⊥OD 底面ABC ,∴O 、P 、D 三点共线.∵l PC PB PA ===,α2=∠APB . ∴ααsin 22cos 2222l l l AB =-=. ∴αsin 33233==AB AD , 设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中, ∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==. 在POE Rt ∆中,∵αβ2sin 3412cos -===lPE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l l V 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.典型例题十九例19 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O = 同理ππ40021=⋅A O ,∴)(201cm A O = 设xcm OO =1,则cm x OO )9(2+=. 在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R , ∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R ∴)(2500422cm R S ππ==球.∴球的表面积为22500cm π.。
高考数学复习考点题型专题讲解17 球的切、接、截问题
高考数学复习考点题型专题讲解专题17 球的切、接、截问题1.球的切接问题(1)长方体的外接球①球心:体对角线的交点;②半径:r=a2+b2+c22(a,b,c为长方体的长、宽、高).(2)正方体的外接球、内切球及与各条棱相切的球(a为正方体的棱长)①外接球:球心是正方体中心,半径r=32a,直径等于体对角线长;②内切球:球心是正方体中心,半径r=a2,直径等于正方体棱长;③与各条棱都相切的球:球心是正方体中心,半径r=22a,直径等于面对角线长.(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分,a为正四面体的棱长)①外接球:球心是正四面体的中心,半径r=64a;②内切球:球心是正四面体的中心,半径r=612a.2.平面截球平面截球面得圆.截面圆的圆心与球心的连线与截面圆圆面垂直且R2=d2+r2(R为球半径,r为截面圆半径,d为球心到截面圆的距离).类型一外接球问题考向1 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:例1 已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π答案 D解析因为点E,F分别为PA,AB的中点,所以EF∥PB.因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示. 因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=6 2,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.考向2 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R)2=a2+b2+c2(长方体的长、宽高分别为a,b,c),即R2=18(x2+y2+z2),如图.例2 在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥A -BCD 外接球的表面积为________. 答案29π2解析 构造长方体,三个长度为三对面的对角线长,设长方体的长宽高分别为a ,b ,c ,则a 2+b 2=9,b 2+c 2=4,c 2+a 2=16, 所以2(a 2+b 2+c 2)=9+4+16=29, 即a 2+b 2+c 2=4R 2=292, 则外接球的表面积为S =4πR 2=29π2.考向3 汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h2,所以R 2=r 2+h 24.例3(2022·金华调研)在三棱柱ABC -A 1B 1C 1中,AB =BC =AC ,侧棱AA 1⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( ) A.63B.3 3 C.32D.3 答案 B解析 如图,设三棱柱上、下底面中心分别为O 1,O 2,则O 1O 2的中点为O ,设球O 的半径为R ,则OA =R ,设AB =BC =AC =a ,AA 1=h ,则OO 2=12h ,O 2A =23×32AB =33a .在Rt△OO 2A 中,R 2=OA 2=OO 22+O 2A 2=14h 2+13a 2≥2×12h ×33a =33ah , 当且仅当h =233a 时,等号成立,所以S 球=4πR 2≥4π×33ah , 所以43π3ah =4π, 所以ah =3,所以该三棱柱的侧面积为3ah=3 3.考向4 垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.例4(2022·广州模拟)已知四棱锥S-ABCD的所有顶点都在球O的球面上,SD⊥平面ABCD,底面ABCD是等腰梯形,AB∥CD且满足AB=2AD=2DC=2,且∠DAB=π3,SC=2,则球O的表面积是( ) A.5π B.4πC.3πD.2π答案 A解析依题意,得AB=2AD=2,∠DAB=π3,由余弦定理可得BD=3,则AD2+DB2=AB2,则∠ADB=π2.又四边形ABCD是等腰梯形,故四边形ABCD的外接圆直径为AB,半径r=AB2=1,设AB的中点为O1,球的半径为R,因为SD ⊥平面ABCD , 所以SD =SC 2-CD 2=1, R 2=12+⎝ ⎛⎭⎪⎫SD 22=54,则S =4πR 2=5π. 考向5 切瓜模型切瓜模型是有一侧面垂直底面的棱锥模型,常见的是两个互相垂直的面都是特殊三角形,在三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,设三棱锥的高为h ,外接球的半径为R ,球心为O ,△BCD 的外心为O 1,O 1到BC 的距离为d ,O 与O 1的距离为m ,△BCD 和△ABC 外接圆的半径分别为r 1,r 2,则⎩⎨⎧R 2=r 21+m 2,R 2=d 2+(h -m )2,解得R ,可得R =r 21+r 22-l 24(l 为两个面的交线段长).例5(2022·济宁模拟)在边长为6的菱形ABCD 中,∠A =π3,现将△ABD 沿BD 折起,当三棱锥A -BCD 的体积最大时,三棱锥A -BCD 的外接球的表面积为________. 答案 60π解析 边长为6的菱形ABCD ,在折叠的过程中, 当平面ABD ⊥平面BCD 时,三棱锥的体积最大; 由于AB =AD =CD =BC =6, ∠C =∠A =π3.所以△ABD 和△CBD 均为正三角形,设△ABD 和△CBD 的外接圆半径为r , 则2r =BDsin C,所以r =2 3.△ABD 和△CBD 的交线段为BD ,且BD =6. 所以三棱锥A -BCD 的外接球的半径R =(23)2+(23)2-624=15.故S 球=4·π(15)2=60π.训练1 (1)(2022·青岛一模)设三棱柱的侧棱垂直于底面,所有棱的长都为1,顶点都在一个球面上,则该球的表面积为( ) A.5π B.π C.113π D.73π (2)在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC ,且PA =4,底面△ABC 的外接圆的半径为3,则三棱锥P -ABC 的外接球的表面积为________. 答案 (1)D (2)52π解析 (1)由三棱柱所有棱的长a =1,可知底面为正三角形, 底面三角形的外接圆直径2r =1sin 60°=233,所以r =33, 设外接球的半径为R ,则有R 2=r 2+⎝ ⎛⎭⎪⎫a 22=13+14=712,所以该球的表面积S =4πR 2=73π,故选D.(2)因为平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC , 所以PA ⊥平面ABC .设三棱锥P -ABC 的外接球的半径为R ,结合底面△ABC 的外接圆的半径r =3,可得R 2=⎝ ⎛⎭⎪⎫PA 22+r 2=22+33=13,所以三棱锥P -ABC 的外接球的表面积为S 表=4πR 2=52π. 类型二 内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r ,建立等式V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )r ; 第三步:解出r =3V P -ABCS △ABC +S △PAB +S △PAC +S △PBC.例6 (1)(2022·成都石室中学三诊)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,PA ⊥平面ABC ,PA =BC =4,AB =3,AB ⊥BC ,若三棱锥P -ABC 有一个内切球O ,则球O 的体积为( ) A.9π2B.9π4 C.9π16D.9π (2)在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =6,BC =8,AC =10,则该三棱柱内能放置的最大球的表面积是( ) A.16π B.24π C.36π D.64π答案(1)C (2)A解析(1)设球O的半径为r,则三棱锥P-ABC的体积V=13×12×3×4×4=13×(12×3×4+12×4×3+12×5×4+12×4×5)×r,解得r=34,所以球O的体积V=43πr3=9π16,故选C.(2)由题意,球的半径为底面三角形内切圆的半径r,因为底面三角形的边长分别为6,8,10,所以底面三角形为直角三角形,r=AB+BC-AC2=6+8-102=2.又因为AA1=6,2r=4<6,所以该三棱柱内能放置的最大球半径为2,此时S表面积=4πr2=4π×22=16π.训练 2 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB,如图所示,则△PAB的内切圆为圆锥的内切球的大圆.在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.类型三 球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).例7(2022·杭州质检)在正三棱锥P -ABC 中,Q 为BC 中点,PA =2,AB =2,过点Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为________. 答案⎣⎢⎡⎦⎥⎤π,3π2解析 因为正三棱锥P -ABC 中,PB =PC =PA =2,AC =BC =AB =2,所以PB 2+PA 2=AB 2,即PB ⊥PA , 同理PB ⊥PC ,PC ⊥PA ,因此正三棱锥P -ABC 可看作正方体的一角,如图.记正方体的体对角线的中点为O ,由正方体结构特征可得,点O 即是正方体的外接球球心,所以点O 也是正三棱锥P -ABC 外接球的球心,记外接球半径为R , 则R =122+2+2=62,因为球的最大截面圆为过球心的圆,所以过点Q 的平面截三棱锥P -ABC 的外接球所得截面的面积最大为S max =πR 2=3π2. 又Q 为BC 中点,由正方体结构特征可得OQ =12PA =22;由球的结构特征可知,当OQ 垂直于过点Q 的截面时,截面圆半径最小为r =R 2-OQ 2=1, 所以S min =πr 2=π.因此,过Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为⎣⎢⎡⎦⎥⎤π,3π2. 训练3 (1)设球O 是棱长为4的正方体的外接球,过该正方体棱的中点作球O 的截面,则最小截面的面积为( ) A.3π B.4π C.5π D.6π(2)(2022·武汉质检)已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为________. 答案 (1)B (2)2π3解析 (1)当球O 到截面圆心连线与截面圆垂直时,截面圆的面积最小, 由题意,正方体棱的中点与O 的距离为22,球的半径为23, ∴最小截面圆的半径为12-8=2, ∴最小截面面积为π·22=4π.(2)∵正方体ABCD -A 1B 1C 1D 1的棱长为2,球O 与该正方体的各个面相切,则球O 的半径为1,设E ,F ,G 分别为球O 与平面ABCD 、平面BB 1C 1C 、平面AA 1B 1B 的切点, 则等边三角形EFG 为平面ACB 1截此球所得的截面圆的内接三角形, 由已知可得EF =EG =GF =2, ∴平面ACB 1截此球所得的截面圆的半径r =22sin 60°=63,∴截面的面积为π×⎝ ⎛⎭⎪⎫632=2π3.一、基本技能练1.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4C.π2D.π4 答案 B解析 如图画出圆柱的轴截面ABCD ,O 为球心.球的半径R =OA=1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.2.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π 答案 C解析 由题意知球的直径2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.故选C.3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.33π D.6π 答案 A解析 构造棱长为1的正方体,该四面体的外接球也是棱长为1的正方体的外接球, 所以外接球半径R =32, 所以外接球表面积为S =4πR 2=3π.4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132D.310 答案 C解析 将直三棱柱补为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13,则R =132.5.(2022·南阳二模)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π 答案 C解析 折后的几何体构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造长方体,其对角线即为球的直径,三条棱长分别为1,1,3,所以2R =1+1+3=5,球的表面积S =4π⎝ ⎛⎭⎪⎫522=5π.6.(2022·青岛模拟)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O 的表面积为( )A.2πB.4πC.6πD.8π 答案 B解析 根据图形可知,该十四面体是由一个正方体切去八个角得到的,如图所示,十四面体的外接球球心与正方体的外接球球心相同, 建立空间直角坐标系,∵该十四面体的棱长为1,故正方体的棱长为2, ∴该正方体的外接球球心的坐标为O ⎝ ⎛⎭⎪⎫22,22,22,设十四面体上一顶点为D ,则D ⎝ ⎛⎭⎪⎫2,22,0,所以十四面体的外接球半径R =OD =⎝ ⎛⎭⎪⎫2-222+⎝ ⎛⎭⎪⎫22-222+⎝ ⎛⎭⎪⎫0-222=1,故外接球的表面积为S =4πR 2=4π.故选B.7.四面体ABCD 的四个顶点都在球O 上且AB =AC =BC =BD =CD =4,AD =26,则球O 的表面积为( )A.70π3B.80π3C.30πD.40π答案 B解析如图,取BC的中点M,连接AM,DM,由题意可知,△ABC和△BCD都是边长为4的等边三角形. ∵M为BC的中点,∴AM⊥BC,且AM=DM=23,又∵AD=26,∴AM2+DM2=AD2,∴AM⊥DM,∵BC∩DM=M,BC,DM⊂平面BCD,∴AM⊥平面BCD,∵AM⊂平面ABC,∴平面ABC⊥平面BCD,△ABC与△BCD外接圆半径r=23DM=433,又△ABC与△BCD的交线段BC=4. 所以四面体外接球半径R =⎝ ⎛⎭⎪⎫4332+⎝ ⎛⎭⎪⎫4332-424=2153,四面体ABCD 的外接球的表面积为4π×R 2=803π. 8.已知三棱锥P -ABC 的棱AP ,AB ,AC 两两垂直,且长度都为3,以顶点P 为球心,2为半径作一个球,则球面与三棱锥的表面相交所得到的四段弧长之和等于( ) A.2π3B.5π6C.πD.3π2答案 D解析 如图,∠APC =π4,AP =3,AN =1,∠APN =π6,∠NPM =π12,MN ︵=π12×2=π6,同理GH ︵=π6,HN ︵=π2,GM ︵=2π3,故四段弧长之和为π6+π6+π2+2π3=3π2.9.(多选)(2022·石家庄调研)已知一个正方体的外接球和内切球上各有一个动点M 和N ,若线段MN 长的最小值为3-1,则( ) A.该正方体的外接球的表面积为12π B.该正方体的内切球的体积为π3C.该正方体的棱长为1D.线段MN长的最大值为3+1 答案AD解析设该正方体的棱长为a,则其外接球的半径R=32a,内切球的半径R′=a2,该正方体的外接球与内切球上各有一个动点M,N,由于两球球心相同,可得MN的最小值为3a2-a2=3-1,解得a=2,故C错误;所以外接球的半径R=3,表面积为4π×3=12π,故A正确;内切球的半径R′=1,体积为43π,故B错误;MN的最大值为R+R′=3+1,故D正确.故选AD.10.(多选)设圆锥的顶点为A,BC为圆锥底面圆O的直径,点P为圆O上的一点(异于B,C),若BC=43,三棱锥A-PBC的外接球表面积为64π,则圆锥的体积为( ) A.4π B.8πC.16πD.24π答案BD解析如图,设圆锥AO的外接球球心为M,半径为r,则M在直线AO上,4πr2=64π,解得r=4.由勾股定理得BM2=OM2+OB2,即42=(23)2+OM2,可得OM=2,即OM=|AO-r|=|AO-4|=2,解得AO=6或AO=2.当AO=6时,圆锥AO的体积为V=13π×(23)2×6=24π;当AO=2时,圆锥AO的体积为V=13π×(23)2×2=8π.故选BD.11.在三棱锥A-BCD中,△BCD和△ABD均是边长为1的等边三角形,AC=2,则该三棱锥外接球的表面积为________.答案2π解析取AC的中点O,连接OB,OD,在△ABC中,AB=BC=1,AC=2,所以∠ABC=90°,所以OA=OB=OC=2 2,同理得OD=22,故点O为该三棱锥外接球的球心,所以球O的半径r=22,S球=4πr2=2π.12.如图,已知球O是棱长为3的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.答案3π2解析 根据题意知,平面ACD 1是边长为9+9=32的正三角形,且所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD 1内切圆的半径r =13(32)2-⎝⎛⎭⎪⎫3222=62, 所以平面ACD 1截球O 的截面面积为 S =π×⎝ ⎛⎭⎪⎫622=3π2.二、创新拓展练13.(多选)(2022·华大新高考联考)已知三棱锥S -ABC 中,SA ⊥平面ABC ,SA =AB =BC =2,AC =2,点E ,F 分别是线段AB ,BC 的中点,直线AF ,CE 相交于G ,则过点G 的平面α截三棱锥S -ABC 的外接球O 所得截面面积可以是( ) A.23π B.89π C.π D.32π答案 BCD解析 因为AB 2+BC 2=AC 2,故AB ⊥BC , 故三棱锥S -ABC 的外接球O的半径R =2+2+22=62,取AC 的中点D ,连接BD 必过G , 因为AB =BC =2,故DG =13BD =13,因为OD =22, 故OG 2=⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫132=1118,则过点G 的平面截球O 所得截面圆的最小半径r 2=⎝ ⎛⎭⎪⎫622-1118=89,故截面面积的最小值为89π,最大值为πR 2=32π,故选BCD.14.(多选)(2022·济南模拟)已知三棱锥P -ABC 的四个顶点都在球O 上,AB =BC =AC =1,∠APC =π6,平面PAC ⊥平面ABC ,则( )A.直线OA 与直线BC 垂直B.点P 到平面ABC 的距离的最大值为1+32C.球O 的表面积为13π3D.三棱锥O -ABC 的体积为18答案 ACD解析 设△ABC 外接圆的圆心为O 1,连接OO 1,O 1A . 因为O 为三棱锥P -ABC 外接球的球心, 所以OO 1⊥平面ABC ,所以OO 1⊥BC ,因为AB =BC =AC =1,所以O 1A ⊥BC ,所以BC ⊥平面OO 1A , 所以OA ⊥BC ,故A 选项正确; 设△PAC 外接圆的圆心为O 2,AC 的中点为D ,连接O 2D , 由于AC =1,∠APC =π6,所以圆O 2的半径r 2=12×1sinπ6=1,则易知O 2D =32, 所以点P 到平面ABC 的距离的最大值为1+32(此时P ,O 2,D 三点共线),故B 选项错误;由于AB =BC =AC =1,平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC , 所以圆O 1的半径r 1=12×1sin π3=33, 圆O 2的半径r 2=1,△ABC 与△PAC 的交线段AC =1, 所以三棱锥P -ABC 外接球半径R 2=⎝ ⎛⎭⎪⎫332+12-14=1312.故球O 的表面积S =4π×1312=13π3,故C 选项正确;由于OO 1⊥平面ABC ,且OO 1=O 2D =32,S △ABC =34,所以三棱锥O-ABC的体积为13×OO1×S△ABC=13×32×34=18,故D选项正确,故选ACD.15.(多选)(2022·湖州调研)已知正四面体ABCD的棱长为3,其外接球的球心为O.点E 满足AE→=λAB→(0<λ<1),过点E作平面α平行于AC和BD,设α分别与该正四面体的棱BC,CD,DA相交于点F,G,H,则( )A.四边形EFGH的周长为定值B.当λ=12时,四边形EFGH为正方形C.当λ=13时,平面α截球O所得截面的周长为13π4D.四棱锥A-EFGH的体积的最大值为22 3答案ABD解析将正四面体ABCD放入正方体中.因为正四面体ABCD的棱长为3,所以正方体的棱长为322.如图所示,过点E作平面α平行于AC和BD,平面α与正方体的棱交于M,N,P,Q四点.因为AE→=λAB→,故AH→=λAD→,即有EH=λBD,同理FG=λBD,EF=(1-λ)AC,HG=(1-λ)AC,且EH∥BD,EF∥AC,故四边形EFGH 为平行四边形.因为AC ⊥BD ,故EF ⊥EH ,则四边形EFGH 为矩形.对于A ,四边形EFGH 的周长为2(EF +EH )=2[(1-λ)AC +λBD ]=2[(1-λ)AC +λAC ]=2AC =6,为定值,故A 选项正确;对于B ,当λ=12时,E 为AB 的中点,故EF =EH ,所以四边形EFGH 为正方形,故B 选项正确;对于C ,当λ=13时,球心O 到平面EFGH 的距离即球心到平面MNPQ 的距离,即BC 中点到MF 的距离,经计算为24,球半径为322×32=364,故截面圆的半径为⎝ ⎛⎭⎪⎫3642-⎝ ⎛⎭⎪⎫242=132,所以截面圆的周长为132×2π=13π,故C 选项错误;对于D ,四棱锥A -EFGH 的高为AQ ,所以其体积V =13×322λ×3(1-λ)×3λ=922λ2(1-λ),0<λ<1, 令f (λ)=922λ2(1-λ),则f ′(λ)=922(2λ-3λ2),令f ′(λ)=0得λ=23,故当λ=23时,四棱锥A -EFGH 的体积最大,最大值为922×49×13=223,故D 选项正确,故选ABD.16.(多选)(2022·嘉兴测试)如图,在等腰梯形ABCD 中,AB =2AD =2BC =2CD =4.现将△DAC沿对角线AC所在的直线翻折成△D′AC,记二面角D′-AC-B的大小为α(0<α<π),则( )A.存在α,使得D′A⊥BCB.存在α,使得D′A⊥平面D′BCC.存在α,使得三棱锥D′-ABC的体积为3 3D.存在α=π2,使得三棱锥D′-ABC的外接球的表面积为20π答案ACD解析如图1,取AB的中点E,连接DE交AC于点F.因为AB=2CD,所以CD=EB=AE,所以四边形AECD为菱形,四边形EBCD为菱形,所以△AED,△DEC,△EBC均为等边三角形,所以AC⊥ED,∠DAC=∠BAC=π6,∠ACB=π2,在翻折过程中,如图2,AC⊥D′F,AC⊥FE,所以∠D′FE为二面角D′-AC-B的平面角,所以∠D′FE=α.对于A,当α=π2时,平面D′AC⊥平面ABC.因为BC⊥AC,所以BC⊥平面D′AC.又因为D′A⊂平面D′AC,所以D′A⊥BC,所以存在α,使得D′A⊥BC,故A选项正确;对于B,假设存在α,使得D′A⊥平面D′BC.因为D′C⊂平面D′BC,所以D′A⊥D′C,与∠AD′C=2π3矛盾,故B选项不正确;对于C,由分析可得,D′F=12DE=12AD=1,AC=2AF=2×32×AD=2 3.设D′到平面ABC的距离为d,则V三棱锥D′-ABC=13×S△ABC×d=13×12×AC×BC×d=13×12×23×2×d=33,解得d=1 2,所以sin α=dD′F=12,所以α=π6或5π6,故C选项正确;对于D,当α=π2时,平面D′AC⊥平面ABC,所以BC⊥平面D′AC,D′F⊥平面ABC.如图2所示,因为E,F分别为AB,AC的中点,所以EF∥BC,且EF=12BC=1,所以EF⊥平面D′AC.设△D′AC外接圆圆心为O1,则O1A=O1D′=AD′=2.因为E是Rt△ABC斜边的中点,所以E为Rt△ABC的外心.过O1作平面D′AC的垂线,过点E作平面ABC的垂线,则两垂线的交点O即为三棱锥D′-ABC外接球的球心,显然四边形EFO1O是矩形,所以OO1=EF=1.设三棱锥D′-ABC的外接球半径为R,则在Rt△OO1D′中,R=OD′=O1O2+O1D′2=1+4=5,所以三棱锥D′-ABC的外接球的表面积S=4πR2=20π,故D选项正确.综上所述,故选ACD.17.在菱形ABCD中,AB=23,∠ABC=60°,若将菱形ABCD沿对角线AC折成大小为60°的二面角B-AC-D,则四面体DABC的外接球球O的体积为________.答案5239π27解析如图,设M,N分别为△ABC,△ACD的外心,E为AC的中点,则EN=EM=13BE=1,在平面BDE内过点M作BE的垂线与过点N作DE的垂线交于点O. ∵BE⊥AC,DE⊥AC,BE∩DE=E,∴AC⊥平面BDE.∵OM⊂平面BDE,∴OM⊥AC,∵OM⊥BE,BE∩AC=E,∴OM⊥平面ABC,同理可得ON⊥平面ACD,则O为四面体DABC的外接球的球心,连接OE,∵EM=EN,OE=OE,∠OME=∠ONE=90°,∴△OME≌△ONE,∴∠OEM=30°,∴OE=EMcos 30°=233.∵AC⊥平面BDE,OE⊂平面BDE,∴OE⊥AC,∴OA=OE2+AE2=39 3,即球O的半径R=39 3.故球O的体积V=43πR3=5239π27.18.(2022·湖南三湘名校联考)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1=4,M 为棱AB的中点,N是棱BC的中点,O是三棱柱外接球的球心,则平面MNB1截球O所得截面的面积为________.答案8π解析如图1,将直三棱柱补形成正方体ABCD-A1B1C1D1,连接BD1,则直三棱柱的外接球也是正方体的外接球,球心O是BD1的中点,半径R=2 3. 连接BD交MN于点E,连接B1E交BD1于点F,过点O作OO1⊥B1E于点O1,连接B1D1,因为MN∥AC,AC⊥平面BB1D1D,所以MN⊥平面BB1D1D,所以OO1⊥MN,所以OO1⊥平面MNB1.如图2,31 / 31 在矩形BB 1D 1D 中,BF FD 1=BE B 1D 1=14, 所以BF OF =23,过点B 作BG ⊥B 1E 于点G , 则BG =BE ·BB 1B 1E =43,BGOO 1=BF OF =23,所以OO 1=2,设截面圆的半径为r , 则r 2=R 2-OO 21=(23)2-22=8,所以截面的面积为8π.。
(完整版)高考数学中的内切球和外接球问题.
(完整版)高考数学中的内切球和外接球问题.高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 .解设正六棱柱的底面边长为x ,高为h ,则有==h x x 24368936==213x h ∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。
SXB195高考数学必修_有关球的考题分析
有关球的考题分析球在高考中基本上以客观题的形式出现,考查的方式十分灵活,主要涉及到球的截面、球面距离、球的面积、球的体积以及球内接多面体的切接问题等.解决与球相关的问题通常转变为与圆的有关问题,将立体图形转变为平面图形.一、考题举例例1 如图1所示,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在该球面上的球面距离是( )(图1)(图2)(A)4π (B)3π (C)2π(D)42π解 过E 、F 点用平行于OBC 面的平面去截图中所给几何体,得到如图4,因E 、F 分别是大圆弧AB 与AC的中点,故45=∠BOE .则2245cos 1cos 1=⋅=∠⋅=BOE R E O ,12121=+=F O E O EF ,211121112cos 222=⋅⋅-+=⋅-+=∠OF OE EF OF OE EOF ,于是3π=∠EOF ,E 、F 在该球面上的球面距离是3π,选B. 点拨 所谓两点间的球面距离,就是经过这两点的大圆在这两点间的劣弧的长度.其基本解题思路是:先求出以球心为原点且经过这两点的射线所成的圆心角α,再利用公式“R l α=”求出弧长.例2 已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A 、16π B 、20π C 、24π D 、32π(图3)解 如图3,依题意,球的直径是正四棱柱的体对角线1BD ,不妨设2==AD AB ,41=AA ,∴1BD ==++=++=++=222212*********AA AD AB BB BC AB R 62,∴6=R ,πππ24)6(4422=⨯==R S 表,故选C.点拨 本题运用的公式有:①长方体对角线的长度 21221BB BC BA BD ++=;②球的表面积24R S π=表.例3 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A 、22 B 、1 C 、212+ D 、2 解 选D.设球半径是r ,则球的直径就是其内接正方体的对角线长,即为3,于是32=r ,23=r , (图4)设由求新O 及E 、F 点所确定的平面为α,则平面α截得正方体及球O 的大圆如上图所示,设直线EF 与球O 相交于PQ ,EF 的中点是N ,则21=ON ,在PON ∆中, 2)21()23(2222222=-=-==ON OP PN PQ . 点拨 本题考查的知识点为以球为载体的截面问题,实际上是考查学生的空间想象力、识图能力和作图能力.二、高考题预测1、一个四面体共顶点的三条棱两两垂直,其长度分别是1、6、3,且四面体的四个顶点在一个球面上,则这个球的表面积是( )A 、π16B 、π32C 、π36D 、π642、已知ABC ∆的三个顶点在同一球面上,90=∠BAC ,2==AC AB . 若球心O 到平面ABC 的距离为1,则该球的体积为( )A 、π32B 、π33C 、π24D 、π343、已知球O 的半径是1,A 、B 、C 三点都在球面上,且每两点间的球面距离均是2π,则球心O 到平面ABC 的距离是( ) (A )31 (B )33 (C )32(D )364、棱长均是4的正四棱锥P-ABCD 的内切球的半径是( )A 、26+B 、26-C 、426+ D 、426- 5、在四面体ABCD 中,已知AB =CD =5,AC =BD =5,AD =BC =6.则四面体ABCD 外接球的面积为6、设地球半径为R ,在以地心O 为原点的空间直角坐标系中,城市A )22,22,0(R R 、城市B )46,46,2(RR R --,则AB 两城市的球面距离是 .答案:1、A ;2、D ;3、B ;4、B ;5、43π;6、R 65π.。
2020届高三立体几何专题《球》
2020届⾼三⽴体⼏何专题《球》球⼀、基本知识点由于球的任⼀截⾯均为圆,所以圆的许多性质,如相交弦定理,切线定理,切割线定理对球仍然成⽴,注意球的截⾯即球的⼤圆的特殊性及应⽤。
1.表⾯积:24R S π=,R 为球的半径;球的体积:334R V π=,R 为球的半径;例1.设球的半径为时间t 的函数()R t ,若球的体积以均匀速度C 增长,则球的表⾯积的增长速度与球的半径()A .成正⽐,⽐例系数为CB .成正⽐,⽐例系数为2C C .成反⽐,⽐例系数为CD .成反⽐,⽐例系数为2C2.外切于半径为r 的球的多⾯体的体积:rS V 31=(S 为多⾯体的表⾯积);3.多球堆垒问题“抓球⼼”;4.球与规则多⾯体或旋转体的组合体问题“找截⾯”:⼀是过球⼼的截⾯;⼆是过多⾯体表⾯或棱的截⾯;5.棱长为a 的正⽅体:外接球半径2a ;内切球半径:12a ;棱切球半径:2a ;6.棱长为a 正四⾯体:外接球半径4a ;内切球半径:12a ;棱切球半径:4a ;7.需要掌握的常见问题:(1)球的截⾯问题;(2)球与多⾯体的组合题问题;(3)球与球的组合问题⼆、典型例题选讲例1.已知半径为5的球O 的两个平⾏截⾯12,O O 的周长分别为6π和8π,则这两个截⾯间的距离是例2.已知平⾯α截⼀球⾯得圆M ,过圆⼼M 且与α成60?⼆⾯⾓的平⾯β截该球⾯得圆N .若该球的半径为4,圆M 的⾯积为4π,则圆N 的⾯积为A .7πB .9πC .11πD .13π例3.已知球的半径为4,圆与圆为该球的两个⼩圆,为圆与圆的公共弦,.若,则两圆圆⼼的距离.例4.(2017全国卷Ⅰ)已知三棱锥S ABC ?的所有顶点都在球O 的球⾯上,SC 是球O 的直径.若平⾯SCA ⊥平⾯SCB ,SA AC =,SB BC =,三棱锥S ABC ?的体积为9,则球O 的表⾯积为.例5.(2019年全国Ⅰ卷)已知三棱锥P ABC ?的四个顶点在球O 的球⾯上,PA PB =PC =,ABC ?是边长为2的正三⾓形,E ,F 分别是PA ,AB 的中点,90CEF ∠=o ,则球O的体积为() A. B. C. DO M N AB M N 4AB =3OM ON ==MN =例 6.已知三棱锥S ABC ?的所有顶点都在球O 的球⾯上,且SC ⊥平⾯ABC 若1,120SC AB AC BAC ===∠=? 则球O 的表⾯积为 .例7.已知四棱锥P ABCD ?的顶点都在球O 上,底⾯ABCD 是矩形,平⾯PAD ⊥平⾯ABCD ,PAD ?为正三⾓形,24AB AD == 则球O 的表⾯积为 A.323π B.32π C.64π D.643π例8.已知棱长为3的正四⾯体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四⾯体AEFD 的内切球半径和外接球半径.例9.如图1所⽰,在棱长为1的正⽅体内有两个球相外切且⼜分别与正⽅体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最⼩.图1例10.如图,在棱长为a 的正⽅体1111D C B A ABCD ?中,P 为过正⽅体表⾯正⽅形ABCD ,11B BCC ,1111D C B A ,DA D A 11的中⼼的圆上的⼀动点,Q 为正⽅形ABCD 的内切圆上的⼀动点,R 为过顶点11,,,A D C B 的圆上的⼀动点,则QR PQ +的最⼩值为()A .a 223?B .a 21C .a 212? D .a 213?例11. 如图所⽰,⼀个圆柱形乒乓球筒,⾼为40厘⽶,底⾯半径为4厘⽶.球筒的上底和下底分别粘有⼀个乒乓球,乒乓球与球筒底⾯及侧⾯均相切(球筒和乒乓球厚度忽略不计).⼀个平⾯与两乒乓球均相切,且此平⾯截球筒边缘所得的图形为⼀个椭圆,则该椭圆的离⼼率为.例12.(1)把四个半径都是1的球中的三个放在桌⾯上,使它两两外切,然后在它们上⾯放上第四个球,使它与前三个都相切,求第四个球的最⾼点与桌⾯的距离.(2)四个半径为1的球两两外切,求和这四个球都相切的球的半径.思考题:(3)四个半径分别为2,2,3,3的球两两外切,求和这四个球都相切的球的半径三、补充练习1. 正四棱锥的顶点都在同⼀球⾯上,若该棱锥的⾼为4,底⾯边长为2,则该球的表⾯积为()A .814πB .16πC .9πD .274π2. 已知三棱柱111ABC A B C ?的侧棱垂直于底⾯,各项点都在同⼀球⾯上. 若该棱柱的体积2AB =,1AC =,60BAC ∠=?,则此球的表⾯积等于() A .2πB .4πC .6πD .8π3. 在三棱锥D ABC ?中,1AB BC == 2AD = BD = AC =BC AD ⊥,则三棱锥的外接球的表⾯积为()AB .6πC .5πD .8π4. 在四⾯体ABCD 中,60,3,2ABC ABD CBD AB CB DB ∠=∠=∠====o,则此四⾯体外接球的表⾯积为()A .192π B .24C .17πD .65. 在三棱锥A BCD ?中,6,5AB CD AC BD AD BC ======,则该三棱锥的外接球的表⾯积为()A .24B .6C .432π D .43π6. 设正三棱锥A BCD ?的所有顶点都在球O 的球⾯上,1,,BC E F =分别是,AB BC 的中点,EF DE ⊥,则球O 的半径为()A.3 B. 4C. 2D.47. 已知三棱锥S ABC ?的所有顶点都在球O 的求⾯上,ABC ?是边长为1的正三⾓形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()A.6B.6C.3D.28. 已知平⾯α截⼀球⾯得圆M ,过圆⼼M 且与α成60o ⼆⾯⾓的平⾯β截该球⾯得圆N ,若该球⾯的半径为4.圆M 的⾯积为4π,则圆N 的⾯积为() A. 7π B. 9π C. 11π D. 13π9. 如图,平⾯四边形ABCD 中, 1AB AD CD ===,BD =BD CD ⊥,将其沿对⾓线BD 折成四⾯体A BCD '?,使平⾯A BD '⊥平⾯BCD ,若四⾯体A BCD '?顶点在同⼀球⾯上,则该球的体积为()A.3B. 3πC.2D. 2π10. 在菱形ABCD中,60,A AB =?=,将ABD ?折起到PBD ?的位置,若⼆⾯⾓P BD C ??的⼤⼩为23π,则三棱锥P BCD ?的外接球的体积为() A .43πB.2C.6D.211. 已知圆柱的⾼为1,它的两个底⾯的圆周在直径为2的同⼀个球的球⾯上,则该圆柱的体积为 .12. 设,,,A B C D 是同⼀个半径为4的球的球⾯上四点,ABC ?为等边三⾓形且其⾯积为,则三棱锥D ABC ?体积的最⼤值为 .13. 在三棱柱111ABC A B C ?中,已知1AA ⊥平⾯ABC ,且12AB AC AA ===,BC =,该三棱柱的各个顶点都在⼀个球⾯上,则球的表⾯积为 .BDABDCA'14. 已知三棱锥P ABC ?的四个顶点都在球O 的球⾯上,BC AB ⊥且10,51,5,7====AC PC PB PA ,则球O 的体积为 .15.已知,,,A B C D 四点在半径为2的球⾯上,且5,AC BD AD BC AB CD ====,则三棱锥D ABC ?的体积是 .16. 如图,在四⾯体ABCD 中,AB BCD ⊥平⾯,BCD △是边长为3的等边三⾓形. 若2AB =,则四⾯体ABCD 外接球的⾯积为_______________.17. 已知ABC ?的三个顶点在以O 球⼼的球⾯上,且cos 3A =,1,3BC AC ==,三棱锥O ABC ?的体积为6,则球O 的表⾯积为 .18. 在棱长为2的正四⾯体ABCD 中,G 为BCD ?的重⼼,M 为线段AG 的中点,则三棱锥M BCD ?外接球的表⾯积为 .19. 在正三棱锥S ABC ?中,,M N 分别是棱,SC BC 的中点,且MN AM ⊥ . 若侧棱,则正三棱锥ABC S ?外接球的表⾯积是 .20. 已知边长为1的等边三⾓形ABC 与正⽅形ABDE 有⼀公共边AB ,⼆⾯⾓C AB D ??的余弦值为3,若,,,,A B C D E 在同⼀球⾯上,则此球的体积为 .SA =DC球练习题参考答案1—10:ADBAD BADCC11.34π 12. 13.20π 14.5003π 15.816.16π 17. 16π 18. 6π 19. 36π 20. 3。
(完整版)高考外接球内切球专题练习
高考外接球与内接球专题练习(1)正方体,长方体外接球1. 如图所示,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 的中点的轨迹的面积为( )A. 4πB. 2πC. πD. 2π 2. 正方体的内切球与其外接球的体积之比为( ) A. 1:3 B. 1:3 C. 1:33 D. 1:93. 长方体ABCD ﹣A 1B 1C 1D 1的8个顶点在同一个球面上,且AB=2,AD=3,AA 1=1, 则该球的表面积为( )A. 4πB. 8πC. 16πD. 32π4. 底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为A. 323π B. 4π C. 2π D. 43π 5. 已知正三棱锥P ﹣ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 _________ .6. 在三棱椎A ﹣BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的 面积分别为22,32,62,则该三棱椎外接球的表面积为( ) A. 2π B. 6π C. 46π D. 24π7. 设A 、B 、C 、D 是半径为2的球面上的四点,且满足AB ⊥AC 、AD ⊥AC 、AB ⊥AD , 则S △ABC +S △ABD +S △ACD 的最大值为( )A. 4B. 8C. 12D. 168. 四面体ABCD 中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体的 外接球的表面积为( )A. 25πB. 45πC. 50πD. 100π9. 如图,在三棱锥S ﹣ABC 中,M 、N 分别是棱SC 、BC 的中点,且MN ⊥AM ,若AB=22,则此正三棱锥外接球的体积是A. 12πB. 43πC. 433π D. 123π 10. 已知三棱锥P ABC -的顶点都在同一个球面上(球O ),且2,6PA PB PC ===, 当三棱锥P ABC -的三个侧面的面积之和最大时,该三棱锥的体积与球O 的体积的比值为( )A. 316πB. 38πC. 116πD. 18π (2)直棱柱外接球11. 已知三棱柱ABC ﹣A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC , AA 1=12,则球O 的半径为A. 3172B. 210C. 132D. 310 12. 设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面 积为( )A. 2a πB. 273a πC. 2113a π D. 25a π 13. 直三棱柱ABC ﹣A 1B 1C 1的各顶点都在同一球面上,若AB=AC=AA 1=2,∠BAC=120°, 则此球的表面积等于_________ .14. 三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA=AB=BC=1,则球O 的表面积为( )A. 32πB. 32π C. 3π D. 12π 15. 已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3, 则球O 的体积等于 _________ .(3)正棱锥外接球16. 棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为___________17. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. 4327πB. 62π C. 68π D. 624π 18. 已知三棱锥P ABC -的所有顶点都在表面积为28916π的球面上,底面ABC 是边长为 3的等边三角形,则三棱锥P ABC -体积的最大值为__________19. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积 为( )A. 814π B. 16π C. 9π D. 274π 20. 已知正三棱锥P ﹣ABC 的顶点均在球O 上,且P A=PB=PC=25,AB=BC=CA=23, 则球O 的表面积为( )A. 25πB. 1256πC. 52π D. 20π21. 在球O 的表面上有A 、B 、C 三个点,且3AOB BOC COA π∠=∠=∠=,△ABC 的外接圆半径为2,那么这个球的表面积为( ) A. 48π B. 36π C. 24π D. 12π 22. 半径为2的半球内有一内接正六棱锥P ﹣ABCDEF ,则此正六棱锥的侧面积是 ____.23. 表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A. 23πB. 3π C. 23π D. 223π 24. 正四棱锥P ﹣ABCD 底面的四个顶点A 、B 、C 、D 在球O 的同一个大圆上,点P 在球面 上,如果163P ABCD V -=,则求O 的表面积为( ) A. 4π B. 8π C. 12π D. 16π(4)棱锥外接球25. 已知A ,B ,C ,D 在同一个球面上,AB ⊥平面BCD ,BC ⊥CD ,若AB=6,213AC =, AD=8,则此球的体积是 _________ .26. 在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B ﹣AC ﹣D , 则四面体ABCD 的外接球的体积为( )A. 12512πB. 1259πC. 1256πD. 1253π 27. 点A ,B ,C ,D 在同一个球的球面上,AB=BC=2,AC=22,若四面体ABCD 体积 的最大值为43,则该球的表面积为( ) A. 163π B. 8π C. 9π D. 12π 28. 四棱锥S ﹣ABCD 的底面ABCD 是正方形,侧面SAB 是以AB 为斜边的等腰直角三角 形,且侧面SAB ⊥底面ABCD ,若AB=23,则此四棱锥的外接球的表面积为( )A. 14πB. 18πC. 20πD. 24π29. 三棱锥S ﹣ABC 的四个顶点都在球面上,SA 是球的直径,AC ⊥AB ,BC=SB=SC=2, 则该球的表面积为( )A. 4πB. 6πC. 9πD. 12π30. 已知四棱锥V ﹣ABCD 的顶点都在同一球面上,底面ABCD 为矩形,AC∩BD=G ,VG ⊥平面ABCD ,AB=3,AD=3,VG=3,则该球的体积为( )A. 36πB. 9πC. 123πD. 43π(5)内接球31. 一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A. 1B. 2C. 3D. 432. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6,8AB BC ==,13AA =,则V 的最大值为A. 4πB. 92πC. 6πD. 323π 33. 已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A. 823π B. 833π C. 863π D. 1623π 34. 把一个皮球放入一个由8根长均为20的铁丝接成的四棱锥形骨架内,使皮球的表面 与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A. 103B. 10C. 102D. 3035. 棱长为23的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小 球,则这些球的最大半径为( )A. 2B. 22C. 24D. 2636. 如图,在四面体ABCD 中,截面AEF 经过四面体的内切球球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A ﹣BEFD 与三棱锥A ﹣EFC的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定(6)球的截面问题37. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体 积为( )A. 6πB. 43πC. 46πD. 63π38. 已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形, SC 为球O 的直径,且SC=2,则此棱锥的体积为( )A. 26B. 36C. 23D. 2239. 高为2的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半 径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. 102B. 232+C. 32D. 240. 已知三棱锥S ﹣ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A. πB. 2πC. 3πD. 4π41. 在半径为13的球面上有A ,B ,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC 的距离为 _________ ;(2)过A ,B 两点的大圆面与平面ABC 所成二面角为(锐角)的正切值为 ____.42. 设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到 该平面的距离是球半径的一半,则球的体积是( )A. B. C. D.43. 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2, 则球面面积是( ) A. 169π B. 83π C. 4π D. 649π 44. 已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M . 若圆M 的面积为3π,则球O 的表面积等于 _________ .45. 三棱锥P ﹣ABC 的各顶点都在一半径为R 的球面上,球心O 在AB 上,且有P A=PB=PC , 底面△ABC 中∠ABC=60°,则球与三棱锥的体积之比是 _________ .46. 已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截 球O 所得截面的面积为π,则球O 的表面积为__________(7)旋转体的外接内切47. 半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面 积之差是 _________ .48. 将4个半径都是R 的球体完全装入底面半径是2R 的圆柱形桶中,则桶的最小高度 是 _________ .1. D ;2. C ;3. B ;4. D ;5. 3; 6. B ; 7. B ; 8. C ; 9. B ;10. A ; 11. C ; 12. B ; 13. 20π; 14. C ; 15. 92π; 16. ;17. C ; 19. A ; 20. A ; 21. A ; 22. ; 23. A ; 24. D ; 25. 2563π; 26. C ; 27. C ; 28. D ; 29. B ; 30. D ; 31. B ; 32. B ; 33. A ; 34. B ; 35. C ; 36. C ; 37. B ; 38. A ; 39. A ; 40. D ;41. 12;3;42. A;43. D;44. 16π;45.3;46.92π47. 30π;48.(2R+;。
关于球的历年高考真题与球有关的高考试题.精品资料
《立体几何》之《球》的分类复习立体几何章节在传统的高考中分值占22分左右,以两小一大的形式出现较多。
与球相关的问 题也时有考题出现,现针对近年高考考题形式总结如下,供复习参考之用:考试核心:性质的应用22212r R OO d -==,构造直角三角形建立三者之间的关系。
类型一:有公共底边的等腰三角形,借助余弦定理求球心角。
(两题互换条件形成不同的题)1.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若A ,B 两点间的球面距离为23π,则1AO B ∠= . (2009年理科)2.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若1AO B ∠=2π,则A,B 两点间的球面距离为 (2009年文科) 类型二:球内接多面体,利用圆内接多边形的性质求出小圆半径,通常用到余弦定理求余弦值,通过余弦值再利用正弦定理得到小圆半径r Cc 2sin =,从而解决问题。
3.15. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
(2009年理科) 析:欲求球的表面积,归根结底求球半径R ,与R 相关的是重要性质222d r R +=。
∵AA 1=2, ∴121121====AA OO OO d 。
现将问题转化到⊙O 2的半径之上。
因为△ABC 是⊙O 2的内接三角形,又知AB=AC=2,∠BAC=120°,三角形可解。
由余弦定理有32444cos 222=++=∠⋅⋅-+=BAC AC AB AC AB BC , 由正弦定理有2sin 22sin =∠=⇒=∠BAC BC r r BAC BC ∴.514222=+=+=d r R ∴ππ2042==R S 。
4.14.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 8 .(2009年理科)5.12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC 的体积为 C (2011年理科)A .33B .32C .3D .16.(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 表面积等于 A (2010年文科) (A )4π (B )3π (C )2π (D )π类型三:通过线线角、线面角、面面角之间的平面的转化,构造勾股定理处理问题。
(word完整版)高考数学中的内切球和外接球问题
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为.例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24 ,则该球的体积为.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16B. 20C. 24D. 323.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形, 其侧棱垂直于底面,已知该 六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长 为3,则这个球的体积为.解设正六棱柱的底面边长为x ,高为h ,则有 6x 3 9 会 3 2.6 — x h 8 4的半径的常用公式二、构造法(补形法)1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为 V 3 ,则其外 接球的表面积是.例3若三棱锥的三个侧面两两垂直,且侧棱长均为V 3 ,则其外 接球的表面积是.故其外接球的表面积S 4 r 2 9 .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分 别为a,b,c ,则就可以将这个三棱锥补成一个长方体, 于是长方体的体 对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则 有2R va 2 b 2 c 2.出现“墙角”结构利用补形知识,联系长方体。
经典三类球:外接球、内切球、棱切球(解析版)
经典三类球:外接球、内切球、棱切球1【考点预测】考点一:正方体、长方体外接球1.正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.2.长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.3.补成长方体(1)若三棱锥的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示.(2)若三棱锥的四个面均是直角三角形,则此时可构造长方体,如图2所示.(3)正四面体P -ABC 可以补形为正方体且正方体的棱长a =PA2,如图3所示.(4)若三棱锥的对棱两两相等,则可将其放入某个长方体内,如图4所示图1图2图3图4考点二:正四面体外接球如图,设正四面体ABCD 的的棱长为a ,将其放入正方体中,则正方体的棱长为22a ,显然正四面体和正方体有相同的外接球.正方体外接球半径为R =22a ⋅32=64a ,即正四面体外接球半径为R =64a .考点三:对棱相等的三棱锥外接球四面体ABCD 中,AB =CD =m ,AC =BD =n ,AD =BC =t ,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为a ,b ,c ,则b 2+c 2=m 2a 2+c 2=n 2a 2+b 2=t2,三式相加可得a 2+b 2+c 2=m 2+n 2+t 22,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则a 2+b 2+c 2=4R 2,所以R =m 2+n 2+t 28.直棱柱外接球如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)图1图2图3第一步:确定球心O 的位置,O 1是ΔABC 的外心,则OO 1⊥平面ABC ;第二步:算出小圆O 1的半径AO 1=r ,OO 1=12AA 1=12h (AA 1=h 也是圆柱的高);第三步:勾股定理:OA 2=O 1A 2+O 1O 2⇒R 2=h 22+r 2⇒R =r 2+h 2 2,解出R考点五:直棱锥外接球如图,PA ⊥平面ABC ,求外接球半径.解题步骤:第一步:将ΔABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:O 1为ΔABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r (三角形的外接圆直径算法:利用正弦定理,得a sin A=b sin B =c sin C =2r ),OO 1=12PA ;第三步:利用勾股定理求三棱锥的外接球半径:①(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;②R 2=r 2+OO 12⇔R =r 2+OO 12.考点六:正棱锥外接球正棱锥外接球半径:R=r2+h22h.垂面模型如图1所示为四面体P-ABC,已知平面PAB⊥平面ABC,其外接球问题的步骤如下:(1)找出△PAB和△ABC的外接圆圆心,分别记为O1和O2.(2)分别过O1和O2作平面PAB和平面ABC的垂线,其交点为球心,记为O.(3)过O1作AB的垂线,垂足记为D,连接O2D,则O2D⊥AB.(4)在四棱锥A-DO1OO2中,AD垂直于平面DO1OO2,如图2所示,底面四边形DO1OO2的四个顶点共圆且OD为该圆的直径.图1图2考点八:锥体内切球方法:等体积法,即R=3V体积S表面积考点九:棱切球方法:找切点,找球心,构造直角三角形1【典型例题】1(2023春·天津宁河·高一校考期末)在三棱锥P-ABC中,AP=2,AB=3,PA⊥面ABC,且在△ABC中,C=60°,则该三棱锥外接球的表面积为()B.8πC.10πD.12πA.20π3【答案】B【解析】根据题意得出图形如右图:O为球心,N为底面△ABC截面圆的圆心,ON⊥面ABC,∵在三棱锥P-ABC中,AP=2,AB=3,PA⊥面ABC,且在△ABC中,C=60°=2r,解得r=1,∴根据正弦定理得出:3sin60°∵PA⊥面ABC,∴PA⎳ON,∵PA=2,AN=1,ON=d,∴OA=OP=R,∴根据等腰三角形得出:12+d2=(2-d)2+12,解得d=1,∴R=1+1=2∴三棱锥的外接球的表面积为4πR2=8π.故选:B.2(2023·辽宁沈阳·高一东北育才学校校考阶段练习)在正三棱锥S-ABC中,外接球的表面积为36π,M,N分别是SC,BC的中点,且MN⊥AM,则此三棱锥侧棱SA=()A.1B.2C.3D.23【答案】D【解析】取AC的中点E,连结BE、SE,∵三棱锥S-ABC正棱锥,∴SA=SC,BA=BC.又∵E为AC的中点,∴SE⊥AC且BE⊥AC∵SE、BE是平面SBE内的相交直线,∴AC⊥平面SBE,又SB在平面SBE内可得SB⊥AC又∵MN是△SBC的中位线,∴MN∥SB,可得MN⊥AC又∵MN ⊥AM ,又AM ,AC 是平面SAC 内的相交直线,∴MN ⊥平面SAC ,结合MN ∥SB ,可得SB ⊥平面SAC 又∵三棱锥S -ABC 是正三棱锥,∴∠ASB =∠BSC =∠ASC =90°,因此将此三棱锥补成正方体,则它们有相同的外接球,设球的半径为R ,可得4πR 2=36π,解得R =3,∴SA 2+SA 2+SA 2=2R =6,解之得SA =23故选:D3(2023春·河南南阳·高一校联考期末)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ∥平面ABCD ,四边形ABFE ,CDEF为两个全等的等腰梯形,EF =12AB =2,AE =23则该刍甍的外接球的体积为()A.642π3B.3πC.643π3D.642π【答案】A【解析】取AD ,BC 中点N ,M ,正方形ABCD 中心O ,EF 中点O 2,连接EN ,MN ,FM ,OO 2,如图,依题意,OO2⊥平面ABCD,EF⎳AB⎳MN,点O是MN的中点,MN=AB=4,等腰△AED中,AD⊥EN,EN=AE2-AN2=22,同理FM=22,因此,等腰梯形EFMN的高OO2=EN2-MN-EF22=7,由几何体的结构特征知,刍甍的外接球球心O1在直线OO2上,连O1E,O1A,OA,正方形ABCD外接圆半径OA= 22,则有O1A2=OA2+OO21O1E2=O2E2+O2O21,而O1A=O1E,O2E=12EF=1,当点O1在线段O2O的延长线(含点O)时,视OO1为非负数,若点O1在线段O2O(不含点O)上,视OO1为负数,即有O2O1=O2O+OO1=7+OO1,即(22)2+OO21=1+(7+OO1)2,解得OO1=0,因此刍甍的外接球球心为O,半径为OA=22,所以刍甍的外接球的体积为4π3×223=642π3.故选:A.4(2023·高一课时练习)已知圆台的上下底面半径分别为1和2,侧面积为35π,则该圆台的外接球半径为()A.1055B.654C.1854D.1054【答案】B【解析】设圆台的高和母线分别为h,l,球心到圆台上底面的距离为x,根据圆台的侧面积公式可得π1+2l=35π⇒l=5,因此圆台的高h=l2-2-12=2,当球心在圆台内部时,则12+x2=22+h-x2,解得x=74,故此时外接球半径为1+x2=65 16=65 4,当球心在圆台外部时,则12+x2=22+x-h2,x>h,解得x=74不符合要求,舍去,故球半径为65 4故选:B5(2023·高一课时练习)已知圆锥的底面半径为2,高为42,则该圆锥的内切球表面积为()A.4πB.42πC.82πD.8π【答案】D【解析】如图,圆锥与内切球的轴截面图,点O为球心,内切球的半径为r,D,E为切点,设OD=OE=r,即BE=BD=2由条件可知,AB=422+22=6,△ADO中,AO2=AD2+DO2,即42-r2=6-22+r2,解得:r=2,所以圆锥内切球的表面积S=4πr2=8π.故选:D6(2023·高一课时练习)一个正四棱柱的每个顶点都在球O的球面上,且该四棱柱的底面面积为3,高为10,则球O的体积为()A.16πB.32π3C.10π D.28π3【答案】B【解析】设该正四棱柱的底面边长为a,高为h,则a2=3,h=10,解得a=3,所以该正四棱柱的体对角线为球O的直径,设球O的半径为R,所以,2R=a2+a2+h2=3+3+10=4,即R=2,所以,球O的体积为4π3×23=32π3.故选:B7(2023·高一课时练习)正八面体是每个面都是正三角形的八面体.如图所示,若此正八面体的棱长为2,则它的内切球的表面积为()A.423π B.8327π C.83π D.163π【答案】C【解析】以内切球的球心为顶点、正八面体的八个面为底面,可将正八面体分为8个全等的正三棱锥,设内切球的半径为r ,则8V 三棱锥=V 正八面体=2V 正四棱锥,且正四棱锥的高为图中CO ,易得CO =2,即:8×13×12×2×2×32 ⋅r =2×13×2×2 ×2解得:r =63,所以,内切球的表面积为8π3.故选:C .8(2023·高一课时练习)已知A ,B ,C 三点均在球O 的表面上,AB =BC =CA =2,且球心O 到平面ABC 的距离等于球半径的13,则下列结论正确的为()A.球O 的外切正方体的棱长为6B.球O 的表面积为8πC.球O 的内接正方体的棱长为3D.球O 的半径为32【答案】A【解析】设球O 的半径为R ,△ABC 的外接圆半径为r ,则r =233,因为球心O 到平面ABC 的距离等于球O 半径的13,所以R 2-19R 2=43,得R 2=32,即R =62,故D 错误;球O 的外切正方体的棱长b 满足b =2R =6,故A 正确;所以球O 的表面积S =4πR 2=4π×32=6π,故B 错误;球O 的内接正方体的棱长a 满足3a =2R =6,即a =2,故C 错误.故选:A .9(2023·河南开封·开封高中校考模拟预测)已知某棱长为22的正四面体的各条棱都与同一球面相切,则该球与此正四面体的体积之比为()A.π2B.π3C.3π3D.2π2【答案】A【解析】如图,正方体ABCD -A 1B 1C 1D 1中,棱长为2,所以,四面体A 1BDC 1是棱长为22的正四面体,当正四面体的各条棱都与同一球面相切时,该球为正方体的内切球,半径为1,所以,该球的体积为4π3,因为正四面体的体积为8-4×13×12×2×2×2=8-163=83,所以,该球与此正四面体的体积之比为4π383=π2.故选:A10(2023·高一课时练习)正四面体ABCD 的棱长为a ,O 是棱AB 的中点,以O 为球心的球面与平面BCD 的交线和CD 相切,则球O 的体积是()A.16πa 3B.26πa 3 C.36πa 3 D.23πa 3【答案】D【解析】设点A 在平面BCD 内的射影为点E ,则E 为△BCD 的中心,取CD 的中点M ,连接BM ,则E ∈BM ,取线段BE 的中点F ,连接OF ,因为O 、F 分别为AB 、BE 的中点,则OF ⎳AE 且OF =12AE ,因为AE ⊥平面BCD ,则OF ⊥平面BCD ,因为BE ⊂平面BCD ,则AE ⊥BE ,正△BCD的外接圆半径为BE=a2sinπ3=33a,∴AE=AB2-BE2=63a,所以,OF=12AE=66a,易知球O被平面BCD所截的截面圆圆心为点F,且BF=EF=EM,故FM=BE=33a,因为△BCD为等边三角形,M为CD的中点,则BM⊥CD,因为以O为球心的球面与平面BCD的交线和CD相切,则切点为点M,则球O的半径为OM=OF2+FM2=22a,因此,球O的体积是V=43π×22a3=23πa3.故选:D.11(2023·高一课时练习)已知直三棱柱ABC-A1B1C1的底面为直角三角形,如图所示,∠BAC= 90°,AB=1,AC=2,AA1=3,则四面体A-A1BC的体积为,四棱锥A1-BCC1B1的外接球的表面积为.【答案】 1 14π【解析】由题意可得S△ABC=12×AB⋅AC=12×2×1=1,且h=AA1,则V A-A1BC=13S△ABC⋅h=13×1×3=1因为△ABC 外接圆的圆心即为BC 中点,设为O ,△A 1B 1C 1外接圆的圆心即为B 1C 1中点,设为O 1,则OO 1的中点到六个顶点的距离相等,则OO 1的中点M 为外接球的球心,即CM 为半径,OC =12BC =12AC 2+AB 2=52,OM =12AA 1 =32所以CM =OC 2+OM 2=54+94=142,即外接球的表面积为4πR 2=4π×144=14π故答案为:1,14π2【过关测试】一、单选题1(2023·高一课时练习)若正四面体的表面积为83,则其外接球的体积为()A.43πB.12πC.86πD.323π【答案】A【解析】设正四面体的棱长为a ,由题意可知:4×34a 2=83,解得:a =22,所以正四面体的棱长为22,将正四面体补成一个正方体,则正方体的棱长为2,正方体的体对角线长为23,因为正四面体的外接球的直径为正方体的体对角线长,所以外接球半径R =3,则外接球的体积为V =43πR 3=43π,故选:A .2(2023·陕西渭南·高一统考期末)在直三棱柱ABC -A 1B 1C 1中,AB =BC =2,AA 1=22,∠ABC =π2,则此三棱柱外接球的表面积为()A.4πB.8πC.16πD.24π【答案】C 【解析】因为AB=BC=2,∠ABC=π2,所以△ABC为等腰直角三角形,将直三棱柱ABC-A1B1C1补全为如图长方体ABCD-A1B1C1D1,则长方体的外接球即直三棱柱的外接球,因为AB=BC=2,AA1=22,所以外接球直径2R=AC1=22+22+222=4,所以外接球半径R=2,表面积S=4πR2=16π.故选:C.3(2023春·河北衡水·高一校考阶段练习)在正四棱锥P-ABCD中,AB=4,PA=26,则平面PAB截四棱锥P-ABCD外接球的截面面积是()A.65π5B.36π5C.12πD.36π【答案】B【解析】如图,作PO ⊥平面ABCD,垂足为O ,则O 是正方形ABCD外接圆的圆心,从而正四棱锥P-ABCD外接球的球心O在PO 上,取棱AB的中点E,连接O D,O E,OD,PE,作OH⊥PE,垂足为H.由题中数据可得O D=22,O E=2,PE=25,O P=4,设四棱锥P-ABCD外接球的半径为R,则R2=O D2+O O2=OP2=O P-O O2,即R2=8+O O2=4-O O2,解得R=3.由题意易证△OPH∽△EPO ,则PHO P=OPPE,故PH=65 5.故所求截面圆的面积是π⋅PH2=36π5.故选:B4(2023春·山西太原·高一校考阶段练习)在三棱锥P -ABC 中,PA =PB =PC =3,侧棱PA与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A.πB.π3C.4πD.4π3【答案】D【解析】设点P 在平面ABC 内的射影点为E ,如下图所示:由线面角的定义可知,直线PA 与底面ABC 所成的角为∠PAE =60°,所以,PE =3sin60°=32,AE =3cos60°=32,因为PE ⊥平面ABC ,BE 、CE ⊂平面ABC ,∴PE ⊥BE ,PE ⊥CE ,∴BE =PB 2-PE 2=32=PC 2-PE 2=CE ,所以,△ABC 的外接圆圆心为点E ,且其外接圆半径为32,所以,三棱锥P -ABC 的外接球球心O 在直线PE 上,设球O 的半径为r ,由几何关系可得OE 2+AE 2=OA 2,即32-r 2+322=r 2,解得r =1,因此,三棱锥P -ABC 外接球的体积为V =43πr 3=43π.故选:D .5(2023春·河南鹤壁·高一河南省浚县第一中学校考阶段练习)已知三棱锥P -ABC 的四个顶点均在同一个球面上,底面ABC 满足BA =BC =6,∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为()A.323π B.32π C.16π D.823π【答案】A【解析】在△ABC中,BA=BC=6,∠ABC=π2,因此三棱锥P-ABC的外接球被平面ABC截得的截面小圆圆心是AC的中点O1,令三棱锥P-ABC的外接球球心为O,则OO1⊥平面ABC,而S△ABC=12AB⋅BC=3,O1A=3,因三棱锥P-ABC体积的最大值为3,则三棱锥P-ABC底面ABC上的高最大,设此最大高为h,由13×3h=3得h=3,要三棱锥P-ABC的体积最大,当且仅当球O上的点P到平面ABC的距离最大,则点P在线段O1O的延长线上,设球O半径为R,则有(h-R)2+O1A2=R2,即(3-R)2+(3)2=R2,解得R=2,所以三棱锥P-ABC的外接球体积为V=43πR3=323π.故选:A6(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【解析】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA2+AB2+AD22=32+42+522=522,则外接球的表面积为:S=4πR2=4π⋅504=50π.故选:B7(2023·吉林·高一吉林一中校考阶段练习)如图,在△ABC中,AB=25,BC=210,AC=213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π【答案】C【解析】由题意可知,PE =DF =10,PF =DE =13,PD =EF =5,即三棱锥P -DEF 的对棱相等,先将该三棱锥补充成长方体,如图所示:设FH =x ,HD =y ,HP =z ,则x 2+y 2=10,y 2+z 2=5,x 2+z 2=13,所以x 2+y 2+z 2=14,于是三棱锥P -DEF 的外接球直径为14,半径为142,所以该三棱锥外接球的表面积为:4π⋅142 2=14π.故选:C .8(2023·高一课时练习)如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 中点.将ΔADE 与ΔBEC 分别沿ED 、EC 折起,使A 、B 重合于点P ,则三棱锥P -DCE 的外接球的体积为()A.43π27B.6π2C.6π8D.6π24【答案】C【解析】易证所得三棱锥为正四面体,它的棱长为1,故其外接球与棱长为22的正方体的外接球一直,又正方体外接球半径为R=12+12+122=64故外接球的体积为43π633=68π故选C.9(2023·高一课时练习)边长为1的正四面体内切球的体积为()A.6π8B.212C.π6D.6π216【答案】D【解析】将棱长为1的正四面体ABCD补成正方体AECF-GBHD,则该正方体的棱长为22,V A-BCD=223-4V B-ACE=24-4×13×12×22 3=212,设正四面体ABCD的内切球半径为r,正四面体ABCD每个面的面积均为34×12=34,由等体积法可得V A-BCD=212=13r S△ABC+S△ACD+S△ABD+S△BCD=33r,解得r=612,因此,该正四面体的内切球的体积为V=43π×6123=6216π.故选:D.10(2023·高一课时练习)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SAC⊥平面SBC,SA=AC,SB=BC,球O的体积为36π,则三棱锥S-ABC的体积为()A.9B.18C.27D.36【答案】A【解析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径O为SC中点,SA=AC,SB=BC∴AO⊥SC,BO⊥SC,∵平面SAC⊥平面SBC,平面SAC∩平面SBC=SC,BO⊂平面SBC,∴BO⊥平面SCA,设BO=r,由球O的体积为36π,可得43πr3=36π,∴r=3,则V S-ABC=V B-SCA=13S△SCA⋅BO=13×12×2r×r×r=13r3=9,∴三棱锥S-ABC的体积为9,故选∶A.11(2023·高一课时练习)如下图是一个正八面体,其每一个面都是正三角形,六个顶点都在球O 的球面上,则球O与正八面体的体积之比是()A.πB.4π3C.3π2D.2π【答案】A【解析】由题意得正方形ABCD的中心O即为外接球球心,设AB=a,则R=OA=22a,球O的体积为V1=43π×22a3=2π3a3,而h=OE=22a,故正八面体的体积V2=2×13×a2×22a=23a3,得V1V2=π,故选:A12(2023·高一课时练习)已知三棱柱ABC-A1B1C1所有的顶点都在球O的球面上,球O的体积是500π3,∠ABC =60°,AC =43,则AA 1=()A.3B.6C.4D.8【答案】B【解析】设球O 的半径为R ,△ABC 外接圆的半径为r ,则43πR 3=500π3,解得R =5,因为∠ABC =60°,AC =43,由正弦定理得,△ABC 外接圆的半径r =432sin60°=4,则AA 1=2R 2-r 2=2×3=6.故选:B二、多选题13(2023春·湖北襄阳·高一襄阳四中校考阶段练习)如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,EF ⎳AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且AB =2,EF =AD =1,则下列说法正确的是()A.OF ⎳平面BCEB.BF ⊥平面ADFC.三棱锥C -BEF 外接球的体积为5πD.三棱锥C -BEF 外接球的表面积为5π【答案】ABD【解析】选项A :由EF ⎳AB ,AB =2,EF =1,可得EF // OB 则四边形OBEF 为平行四边形,则OF ⎳BE又OF ⊄平面BCE ,BE ⊂平面BCE ,则OF ⎳平面BCE .判断正确;选项B :连接BF ,线段AB 为圆O 的直径,则BF ⊥AF 由平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB AD ⊂平面ABCD ,AD ⊥AB ,则AD ⊥平面ABEF则AD ⊥BF ,又AF ∩AD =A ,AF ⊂平面ADF ,AD ⊂平面ADF 则BF ⊥平面ADF .判断正确;选项C :取CD 中点H ,连接OH由平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =ABOH ⊥AB ,OH ⊂平面ABEF ,可得OH ⊥平面ABEF又点E ,F ,B 在圆O 上,则三棱锥C -BEF 外接球球心在直线OH 上,由OH ⎳BC ,OH ⊄平面BCE ,BC ⊂平面BCE可得OH ⎳平面BCE ,则三棱锥C -BEF 外接球球心到平面BCE 的距离为点O 到平面BCE 的距离由BC ⊥平面ABEF ,BC ⊂平面BCE ,可得平面BCE ⊥平面ABEF ,则点O 到平面BCE 的距离即点O 到直线BE 的距离,又点O 到直线BE 的距离为32,则三棱锥C -BEF 外接球球心到平面BCE 的距离为32在△BCE 中,BC ⊥BE ,BC =BE =1,则CE =2,则△BCE 外接圆半径为22则三棱锥C -BEF 外接球的半径R =22 2+32 2=52则三棱锥C -BEF 外接球的体积为43π⋅52 3=556π.判断错误;选项D :由三棱锥C -BEF 外接球的半径R =52则三棱锥C -BEF 外接球的表面积为4πR 2=4π⋅522=5π.判断正确.故选:ABD14(2023春·江苏无锡·高一江苏省江阴市第一中学校考阶段练习)我们把所有棱长都相等的正棱柱(锥)叫“等长正棱柱(锥)”,而与其所有棱都相切的称为棱切球,设下列“等长正棱柱(锥)”的棱长都为1,则下列说法中正确的有()A.正方体的棱切球的半径为2B.正四面体的棱切球的表面积为π2C.等长正六棱柱的棱切球的体积为4π3D.等长正四棱锥的棱切球被棱锥5个面(侧面和底面)截得的截面面积之和为7π12【答案】BCD 【解析】正方体的棱切球的直径为正方体的面对角线,正方体的棱切球的半径为面对角线的一半,即为22,选项A 错误;如图,四面体ABCD 为棱长为1的正四面体,把正四面体ABCD 放到正方体中,则正方体的棱长即为正四面体的棱切球的直径,所以正四面体的棱切球的半径为24,即正四面体的棱切球的表面积为π2,选项B 正确;如图,等长正六棱柱的棱切球的直径为AB ,即直径为2,半径为1,所以等长正六棱柱的棱切球的体积为4π3,选项C 正确;由棱切球的定义可知,棱切球被每一个面所截,截面为该面的内切圆,则等长正四棱锥的底面内切圆的面积为π×12 2=π4,每个侧面正三角形的内切圆的半径为正三角形高的13,即36,所以四个侧面正三角形的内切圆的面积为4×π×36 2=π3,所以等长正四棱锥的棱切球被棱锥5个面截得的截面面积之和为π4+π3=7π12,选项D 正确.故选:BCD .15(2023春·湖南邵阳·高一湖南省邵东市第三中学校考期中)已知正方体ABCD -A 1B 1C 1D 1的各棱长均为2,下列结论正确的是()A.该正方体外接球的直径为23B.该正方体内切球的表面积为4πC.若球O 与正方体的各棱相切,则该球的半径为2D.该正方体外接球的体积为43【答案】ABC【解析】若正方体的棱长为2,则:①若球为正方体的外接球,则外接球直径等于正方体体对角线,即2R =22+22+22=23,故A 正确,外接球体积为43πR 3=43π,故D 错误;②若球为正方体的内切球,则内切球半径为棱长的一半,故R =1,球的表面积为4πR 2=4π,故B 正确;③若球与正方体的各棱相切,则球的直径等于正方形对角线长,即R =22+22=22,球的半径为R =2,故C 正确.故本题选:ABC .三、填空题16(2023春·陕西汉中·高一校考期中)已知球O 是四棱锥P -ABCD 的外接球,四边形ABCD 是边长为1的正方形,点P 在球面上运动且PA =2,则当四棱锥P -ABCD 的体积最大时,球O 的表面积是.【答案】6π【解析】设PA 与平面ABCD 夹角为θ,则四棱锥P -ABCD 的体积为V =13S ABCD ⋅h =13×1×h =13×PA ×sin θ=23sin θ,当sin θ=1时,四棱锥P -ABCD 的体积最大,即θ=90°,此时PA ⊥平面ABCD ,将四棱锥P -ABCD 补成一个正四棱柱,如图所示,此时四棱锥P -ABCD 和该正四棱柱有相同的外接球O ,设球O 的半径为R ,则2R =PC =12+12+22=6,可得R =62,所以球O 的表面积为S =4πR 2=4π×622=6π.故答案为:6π17(2023·高一课时练习)、已知正方体外接球的体积是323π,那么正方体的棱长等于【答案】433【解析】设正方体的棱长为a ,则外接球的半径为3a 2,外接球的体积V =4π3R 3=4π3×3a 2 3=3πa 32=32π3,解得a =433,即正方体的棱长等于433.18(2023春·浙江宁波·高一余姚中学校考阶段练习)已知某圆锥的内切球的体积为32π3,则该圆锥的表面积的最小值为.【答案】32π【解析】设圆锥的内切球半径为r ,则43πr 3=32π3,解得r =2,设圆锥顶点为A ,底面圆周上一点为B ,底面圆心为C ,内切球球心为D ,内切球切母线AB 于E ,底面半径BC =R >2,∠BDC =θ,则tan θ=R 2,又∠ADE =π-2θ,由已知△BDE ,△BDC 为直角三角形,又DC =DE ,BD =BD ,所以△BDE ≅△BDC ,所以BE =BC =R ,∠BDE =∠BDC =θ,所以∠ADE =π-2θ,故AB=BE +AE =R +2tan π-2θ =R -2tan2θ,又tan2θ=2tan θ1-tan 2θ=R 1-R 24=4R 4-R 2,故AB =R -8R 4-R 2=R R 2+4 R 2-4,故该圆锥的表面积为S =πR 2R 2+4 R 2-4+πR 2=2πR 4R 2-4,令t =R 2-4>0,则S =2π(t +4)2t =2πt +16t +8 ≥2π2t ×16t +8 =32π,当且仅当t =16t,即t =4,R =22时取等号.故答案为:32π.19(2023·高一课时练习)如果圆柱、圆锥的底面直径和高都等于一个球的直径,则圆柱、球、圆锥的体积的比是.【答案】3:2:1【解析】设球的半径为r ,则球的体积为V 球=43πr 3,圆柱的体积为V 圆柱=πr 2⋅2r =2πr 3,圆锥的体积为V 圆锥=13πr 2⋅2r =2πr 33,因此,V 圆柱:V 球:V 圆锥=2:43:23=3:2:1.故答案为:3:2:1.20(2023·高一课时练习)已知A 、B 、C 是球面上三点,且AB =AC =4,∠BAC =90°,若球心O 到平面ABC 的距离为22,则该球表面积为.【答案】64π【解析】因为AB =AC =4,∠BAC =90°,所以BC 为平面ABC 截球所得小圆的直径,如图,设小圆的半径为r ,得2r =AB 2+AC 2=42,解得r =22,又球心O 到平面ABC 的距离d =22,根据球的截面圆性质,得球的半径R =r 2+d 2=4,所以球的表面积为S =4πR 2=64π.故答案为:64π.21(2023春·河南商丘·高一商丘市第一高级中学校考期中)已知正三棱锥S -ABC ,SA =SB =SC =23,AB =3,球O 与三棱锥S -ABC 的所有棱相切,则球O 的表面积为.【答案】(19-83)π【解析】取等边△ABC 的中心E ,连接SE ,则SE ⊥平面ABC ,连接AE 并延长,交BC 于点D ,则D 为BC 中点,且AD ⊥BC ,在SE 上找到棱切球的球心O ,连接OD ,则OD 即为棱切球的半径,过点O 作OF ⊥SA 于点F ,则OF 也是棱切球的半径,设OD =OF =R ,因为SA =SB =SC =23,AB =3,所以求得AD =332,AE =3,DE =32,由勾股定理得:SE =12-3=3,且∠ASE =30°,设OE =h ,OD =OE 2+ED 2=h 2+34,SO =3-h ,OF =123-h ,由题意得:h 2+34=123-h ,解得:h =3-1或-1-3,当h=3-1时,R2=h2+34=194-23,此时球O的表面积为(19-83)π;当棱切球的半径最大时,切点为A,B,C,由于∠ASE=30°,SA=SB=SC=23,可求得最大半径R=23tan30°=2,而当h=-3-1时,R2=h2+34=194+23>4,显然不成立,故h=-3-1舍去,综上:球O的表面积为(19-83)π故答案为:(19-83)π22(2023春·山东德州·高一德州市第一中学校考阶段练习)边长为2的正四面体内有一个球,当球与正四面体的棱均相切时,球的体积为.【答案】2 3π【解析】结合正四面体的性质:球心在正四面体的体高上,且为外接球的球心,如下图:取球心O,若OD⊥PA,则OD即为球的半径,而O 为底面中心,∴PO ⊥面ABC,若E为BC中点,则AE=PE=3,∴PO =263,PO=62,AO=233,由Rt△PDO∼Rt△PO A,则POPA=ODAO,故OD=22,∴球的体积为43π⋅OD3=23π.故答案为:23π23(2023春·广东江门·高一江门市培英高级中学校考期中)已知正方体的棱长为2,则与正方体的各棱都相切的球的表面积是.【答案】8π【解析】过正方体的对角面作截面如图,故球的半径r=2,∴其表面积S=4π×(2)2=8π.故答案为:8π.24(2023春·江苏苏州·高一江苏省苏州实验中学校考阶段练习)一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R-h)h2,其中R为球的半径,h为球缺的高.若一球与一棱长为2的正方体的各棱均相切,则该球与正方体的公共部分的体积为.【答案】10-162 3π【解析】由题可得该球与正方体的公共部分球去掉6个球缺,则球的半径为R=22+222=2,球缺高h=2-1,则一个球缺的体积为π332-2-12-12=π342-5,则该球与正方体的公共部分的体积为4π3×23-6×π342-5=10-1623π.故答案为:10-162 3π.四、解答题25(2023·全国·高一专题练习)已知球与正四面体的六条棱都相切,求球与正四面体的体积之比.【解析】如图,设正四面体棱长为a,球半径为R,取AB的中点为E,CD中点F,连接AF,BF,EF,则AF=BF=32a,∴EF⊥AB,同理EF⊥CD,∴EF是AB,CD的公垂线,则EF的长是AB,CD的距离,EF=AF2-AE2=34a2-14a2=22a,又由球与正四面体的六棱都相切,得EF是该球的直径,即2R=22a,∴R3=232a3,V 球=43πR3=43π⋅232a3=224πa3,又V正四面体=13×S×h=13×12×a×a×sin60°×63a=212a3,故V球V正四面体=π226(2023·高一课时练习)有三个球,已知球O1内切于正方体,球O2与这个正方体各棱都相切,球O3过这个正方体的各个顶点,求球O1、球O2、球O3的表面积之比.【解析】设正方体的棱长为a.①球O1为正方体的内切球,球心O1是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,如图1所示,设球O1的半径为r1,表面积为S1,则2r1=a,r1=a2,所以S1=4πr21=πa2.②球O2与正方体各棱的切点为各棱的中点,过正方体的两个相对面的面对角线作截面,如图2所示,设球O2的半径为r2,表面积为S2,则2r2=2a,r2=22a,所以S2=4πr22=2πa2.③球O3过正方体的各个顶点,即正方体的各个顶点都在球面上,过正方体的体对角线作截面,如图3所示,设球O3的半径为r3,表面积为S3,则2r3=3a,r3=32a,所以S3=4πr23=3πa2.故这三个球的表面积之比S1:S2:S3=πa2:2πa2:3πa2=1:2:3.图1 图2 图3。
高考数学复习考点题型专题讲解 题型47 球体与几何体(解析版)
高考数学复习考点题型专题讲解题型:球体与几何体【高考题型一】:多面体的外接球体。
【题型1】:长方体的外接球体。
『解题策略』:球的直径是长方体的体对角线:R =2222c b a ++(c b a ,,为三条棱长)。
特例:正方体外接球体:R =a 23(a 为棱长)。
1.(2010年新课标全国卷)设长方体的长、宽、高分别为2,,,a a a 其顶点都在一个球面上,则该球的表面积为 ( )A.23a πB.26a πC.212a πD.242a π【解析】:()a a a a R =++=22222,选B 。
2.(2017年新课标全国卷II)长方体的长、宽、高分别为3、2、1,其顶点都在球O 的球面上,则球O 的表面积为 。
【解析】:2142123122=++=R ,ππ1442==R S 。
3.(高考题)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.332πB.π4C.π2D.34π 【解析】:()12211222=++=R ,选D 。
【题型2】:直角三棱锥的外接球体。
『解题策略』:R =2222c b a ++(c b a ,,为三条直角棱长),还原后为长方体,即长方体的外接球体。
1.(2012年辽宁卷)已知正三棱锥P-ABC ,点P 、A 、B 、C 都在半径为3的球面上,若PA 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离为 。
【解析】:323==a R ,2=a ,球心到截面ABC 的距离为球的半径减去正三棱锥P-ABC 在面ABC 上的高,可求得正三棱锥P-ABC 在面ABC 上的高为体对角线的31,23所以球心到截面ABC =2.(高考题)若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是 。
【解析】:23323=⨯=R ,π9=S 。
【题型3】:阳马的外接球体。
『解题策略』:阳马:四棱锥ABCD P -,ABCD PA ⊥,底面是矩形,其还原为长方体。
高考数学 球有关的经典题型
有关球的经典题目1.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )AB.C .132D.2. 已知正四棱锥O-ABCD 的体积为3√22,底面边长为√3,则以O 为球心,OA 为半径的球的表面积为________.3. 已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.4. 已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于______. 5. 已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.6. 已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A ()B()C()D 7. 已知正三棱锥P -ABC ,点P ,A ,B ,C的求面上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________.8. 已知是球表面上的点,,,,则球的表面积等于(A )4 (B )3 (C )2 (D )9. 圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm_________.10. 设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C 。
若圆C 的面积等于,则球O 的表面积等于 .11. 直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于12. 已知为球的半径,过的中点且垂直于的平面截球面得到,若圆的面积为,则球的表面积等于__________________.13. 在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC 的距离为 ;(2)过A,B 两点的大圆面为平面ABC 所成二面角为(锐角)的正切值为 .14. 已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ),,,S A B C O SA ABC ⊥平面AB BC ⊥1SA AB ==BC =O ππππ47π111ABC A B C -12AB AC AA ===120BAC ∠=︒OA O OA M OA M M 3πOA .1B .2C .3D .215. 设,M N 是球心O 的半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂线于OP 的面截球得三个圆,则这三个圆的面积之比为:( ) (A)3,5,6 (B)3,6,8 (C)5,7,9 (D)5,8,916. 连结球面上两点的线段称为球的弦。
微专题6 与球有关的切、接、截面问题 --2025年高考数学复习讲义及练习解析
球的切、接、截面问题是历年高考的热点内容,常以选择题、填空题的形式出现,一般围绕球与其他几何体的内切、外接问题命题,考查球的体积、表面积等.类型一外接球解决与外接球相关问题的关键是确定球心,然后通过球心和接点作截面,进而将球的外接问题转化为平面几何问题,利用平面几何知识来分析、处理.例1(1)(2024·江苏启东中学阶段考试)已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB =5,BC=7,AC=2,则此三棱锥的外接球的体积为()A.8π3B.82π3C.16π3D.32π3答案B解析由题意知,可将三棱锥放入长方体中考虑,则长方体的外接球即为三棱锥的外接球,故球的半径为长方体体对角线的一半,设PA=x,则PB2+PC2=BC2=7,即5-x2+4-x2=7,解得x=1,故PA=1,PB=2,PC=3,所以R=12+22+(3)22=2,所以此三棱锥的外接球的体积为43πR3=82π3.(2)(2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π答案A解析设正三棱台上、下底面所在圆面的半径分别为r1,r2,所以2r1=33sin60°,2r2=43sin60°,则r1=3,r2=4.设球心到上、下底面的距离分别为d1,d2,球的半径为R(R≥4),所以d1=R2-9,d2=R2-16,故|d1-d2|=1或d1+d2=1,即|R2-9-R2-16|=1或R2-9+R2-16=1,解得R2=25,符合题意,所以球的表面积为S=4πR2=100π.故选A.(3)(2023·全国乙卷)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=________.答案2解析如图,将三棱锥S-ABC转化为直三棱柱SMN-ABC,设△ABC的外接圆的圆心为O1,半径为r,则2r=ABsin∠ACB=332=23,可得r= 3.设三棱锥S-ABC的外接球的球心为O,连接OA ,OO 1,则OA =2,OO 1=12SA ,因为OA 2=O 1A 2+OO 21,即4=3+14SA 2,所以SA =2.(4)(2022·新高考Ⅰ卷改编)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是________.答案274,643解析如图,设该球的半径为R ,球心为O ,正四棱锥的底边长为a ,高为h ,正四棱锥的侧棱与高所成的角为θ,则正四棱锥的底边长a =2l sin θ,高h =l cos θ.依题意,得36π=43πR 3,解得R =3.在△OPC 中,作OE ⊥PC ,垂足为E ,则可得cos θ=l 2R =l6∈12,32,所以l =6cos θ,所以正四棱锥的体积V =13a 2h =13(2l sin θ)2·l cos θ=23(6cos θ)3sin 2θcos θ=144(sin θcos 2θ)2.设sin θ=t ,易得t ∈12,32.令y =sin θcos 2θ=t (1-t 2)=t -t 3,则y ′=1-3t 2,令y ′=0,得t =33,所以当12<t <33时,y ′>0;当33<t <32时,y ′<0,所以函数y =t -t 3,.又当t =33时,y =239;当t =12时,y =38;当t =32时,y =38.所以38≤y ≤239,所以274≤V ≤643.所以该正四棱锥的体积的取值范围是274,643.1.求解几何体外接球半径的思路一是根据球的截面的性质,利用球的半径R 、截面圆的半径r 及球心到截面圆的距离d 三者的关系R 2=r 2+d 2求解,其中,确定球心的位置是关键;二是将几何体补成长方体,利用该几何体与长方体共有外接球的特征,由外接球的直径等于长方体的体对角线长求解.2.确定球心常用的方法(1)长方体或正方体的外接球的球心是其体对角线的中点.(2)正棱柱的外接球的球心是上、下底面中心连线的中点.(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点.(4)正棱锥的外接球的球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到.1.(2024·福建宁德一中高三模拟)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,BC =1,AB =3,AA 1=23,则该直三棱柱的外接球的体积为()A .8π3B .16π3C .32π3D .64π3答案C解析如图所示,将直三棱柱ABC -A 1B 1C 1补成长方体,则长方体的外接球即为直三棱柱的外接球.长方体的体对角线长为(23)2+(3)2+1=4,设长方体的外接球的半径为R ,则2R =4,解得R =2,所以该直三棱柱的外接球的体积V =43πR 3=32π3.故选C.2.(2024·鞍山一中高三模拟)在三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,则三棱锥P -ABC 外接球的表面积为()A .26πB .12πC .8πD .24π答案A解析三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,如图,构造长方体,使得面上的对角线长分别为4,5,11,则长方体的体对角线长等于三棱锥P -ABC 外接球的直径,设长方体的棱长分别为x ,y ,z ,则x 2+y 2=16,y 2+z 2=25,x 2+z 2=11,则x 2+y 2+z 2=26,因此三棱锥P -ABC 外接球的直径为26,所以三棱锥P -ABC 外接球的表面积为=26π.故选A.3.(2024·四川遂宁高三期末)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为________.答案16π解析球心O 在平面ABC 的投影为△ABC 的中心,设为O 1,连接OD ,OO 1,OA ,设H 是AD 的中点,连接OH ,如图所示,则AO 1=32sin60°=3,OA =OD =R ,则OH ⊥AD ,四边形AO 1OH 为矩形,OO 1=AH =1,R 2=AO 21+OO 21=3+1=4,故R =2,S=4πR 2=16π.4.(2022·全国乙卷改编)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为________.答案33解析设该四棱锥的底面为四边形ABCD ,四边形ABCD 所在小圆的半径为r ,四边形ABCD对角线的夹角为α,则S 四边形ABCD =12AC ·BD sin α≤12AC ·BD ≤12·2r ·2r =2r 2(当且仅当四边形ABCD为正方形时,等号成立),即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 的面积的最大值为2r 2,设该四棱锥的高为h ,则r 2+h 2=1,所以V O -ABCD =13·2r 2·h =23r 2·r 2·2h 2≤23=4327,当且仅当r 2=2h 2,即h =33时,等号成立.类型二内切球解决与内切球相关的问题,其通法也是作截面,将空间几何问题转化为平面几何问题来解决.例2(1)(2024·广东广州模拟)已知一个圆台的母线长为5,且它的内切球的表面积为16π,则该圆台的体积为()A .25πB .84π3C .28πD .36π答案C解析由圆台的内切球的表面积为16π,可得球的半径为2.设圆台上、下底面圆的半径分别为x ,y ,作出圆台的轴截面如图所示.+y =5,2+(y -x )2=52,=1,=4.又圆台的高为4,所以该圆台的体积为13×(π+16π+π×16π)×4=28π.故选C.(2)已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________.答案2-1解析如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心.因为AB =BC =23,所以S △ABC =33,DE =1,PE =2.所以S 三棱锥表=3×12×23×2+33=36+33.因为PD =1,所以三棱锥的体积V =13×33×1=3.设内切球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3,得r =3336+33=2-1.(3)(2023·全国甲卷)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CD ,A 1B 1的中点,则以EF 为直径的球面与正方体每条棱的交点总数为________.答案12解析如图,不妨设正方体的棱长为2,EF 的中点为O ,取AB ,BB 1的中点G ,M ,侧面BB 1C 1C 的中心为N ,连接FG ,EG ,OM ,ON ,MN ,由题意可知,O 为球心,在正方体中,EF =FG 2+EG 2=22+22=22,即R =2,则球心O 到BB 1的距离为OM =ON 2+MN 2=12+12=2,所以球O 与棱BB 1相切,球面与棱BB 1只有1个交点,同理,根据正方体的对称性知,球面与其余各棱也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.“切”的问题常用的处理方法(1)找准切点,通过作过球心的截面来解决.(2)通过体积分割法来求内切球的半径.5.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2π3解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π×=2π3.6.(2024·山东烟台模拟)某学校开展手工艺品展示活动,某同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为________,三棱柱的顶点到球的表面的最短距离为________.答案12π15-3解析过侧棱的中点作正三棱柱的截面,如图所示,则球心为△MNG 的中心.因为MN=6,所以△MNG内切圆的半径r=OH=13MH=13MN2-HN2=3,即内切球的半径R=3,所以内切球的表面积S=4πR2=12π.又正三棱柱的高AA1=2R=23,OM=23 MH=23,所以AO=OM2+AM2=(23)2+(3)2=15,所以点A到球的表面的最短距离为AO-R=15- 3.类型三球的截面、截线问题解决球的截面、截线问题的关键是利用球的截面的性质.例3(1)(2024·云南昆明模拟)已知OA为球O的半径,M为线段OA上的点,且AM=2MO,过点M且垂直于OA的平面截球面得到圆M,若圆M的面积为8π,则OA=()A.22B.3C.23D.4答案B解析如图所示,由题意,得π×BM2=8π,则BM=2 2.设球的半径为R,则MO=13R,OB=R,所以R2=19R2+(22)2,所以OA=R=3.故选B.(2)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π答案A解析设⊙O1的半径为r,球的半径为R,依题意,得πr2=4π,∴r=2.由正弦定理可得AB sin60°=2r,∴AB=2r sin60°=23,∴OO1=AB=23.根据球的截面性质,得OO1⊥平面ABC,∴OO1⊥O1A,R=OA=OO21+O1A2=OO21+r2=4,∴球O的表面积S=4πR2=64π.故选A.(3)(2020·新高考Ⅰ卷)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析如图所示,取B 1C 1的中点为E ,BB 1的中点为F ,CC 1的中点为G ,连接D 1E ,EF ,EG ,D 1B 1,因为∠BAD =60°,直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,所以△D 1B 1C 1为等边三角形,所以D 1E =3,D 1E ⊥B 1C 1.又四棱柱ABCD -A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥D 1E .因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面B 1C 1CB .设P 为侧面B 1C 1CB 与球面的交线上的点,连接D 1P ,EP ,则D 1E ⊥EP .因为球的半径为5,D 1E =3,所以EP =D 1P 2-D 1E 2=5-3=2,所以侧面B 1C 1CB 与球面的交线上的点到E 的距离为2.因为EF =EG =2,所以侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ︵.因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2,所以根据弧长公式可得交线长l =π2×2=2π2.(1)球的截面一定是一个圆面.(2)球心和小圆圆心连线垂直于小圆圆面.(3)过球内一点作球的截面,最大截面为过球心的圆面,最小截面为过该点且垂直于球心和该点连线的截面.7.(2024·江苏苏州校考阶段练习)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,如图是一个圆柱容球,O 1,O 2为圆柱两个底面的圆心,O 为球心,EF 为底面圆O 1的一条直径,若球的半径R =2,则(1)平面DEF 截得球的截面面积的最小值为________;(2)若P 为球面和圆柱侧面的交线上一点,则PE +PF 的取值范围为______________.答案(1)16π5(2)[25+2,43]解析(1)过点O 在平面ABCD 内作OG ⊥DO 1,垂足为G ,如图所示,易知O 1O 2⊥CD ,O 1O 2=4,O 2D =2,由勾股定理,可得O 1D =O 1O 22+O 2D 2=25,则由题意,可得OG =12×O 1O 2×O 2D O 1D =12×4×225=255,设点O 到平面DEF 的距离为d 1,平面DEF 截得球的截面圆的半径为r 1,因为O 1D ⊂平面DEF ,当OG ⊥平面DEF 时,d 1取得最大值OG ,即d 1≤OG =255,所以r 1=4-d 21≥4-45=455,所以平面DEF 截得球的截面面积的最小值为=16π5.(2)由题意可知,点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ′,则PP ′=2,PE =22+P ′E 2=4+P ′E 2,PF =22+P ′F 2=4+P ′F 2,由勾股定理,可得P ′E 2+P ′F 2=16,令P ′F 2=8-t ,则P ′E 2=8+t ,其中-8≤t ≤8,所以PE +PF =12+t +12-t ,所以(PE +PF )2=(12+t +12-t )2=24+2144-t 2∈[24+85,48],因此PE +PF ∈[25+2,43].。
高考球的问题总结
高考球的问题总结在高考数学中,球的问题是一个重要的考点,涵盖了多个方面的知识点。
本文将对高考中涉及的球的问题进行总结,主要包含球的表面积、球的体积、球与内切圆、球的切线问题、球的旋转体问题、球与多面体的关系、球的几何变换、球的物理属性及应用、球在数学问题中的应用等方面。
一、球的表面积球的表面积公式为4πr^2,其中r为球的半径。
在高考中,涉及球的表面积的问题主要考查学生对于公式的理解和应用,以及如何利用已知条件计算球的表面积。
二、球的体积球的体积公式为(4/3)πr^3,其中r为球的半径。
涉及球的体积的问题同样需要学生掌握公式的应用,以及如何利用已知条件计算球的体积。
三、球与内切圆球的内切圆半径可以通过球的体积和表面积的公式求得,内切圆半径为r=3V/S,其中V为球的体积,S为球的表面积。
在高考中,考查学生对于内切圆半径的理解和应用。
四、球的切线问题球的切线问题是球的问题中的一个重要考点,主要考查学生对于切线的性质和判定方法的理解和应用。
在解决这类问题时,学生需要利用球心到切点的连线与切线垂直的性质,结合几何知识进行证明和计算。
五、球的旋转体问题球的旋转体问题主要考查学生对于旋转体的性质和判定方法的理解和应用。
在解决这类问题时,学生需要利用旋转体的性质和几何知识进行证明和计算。
六、球与多面体的关系球与多面体的关系主要考查学生对于多面体和球之间的关系的理解,以及如何利用已知条件计算球的半径和多面体的边长等参数。
在解决这类问题时,学生需要利用几何知识进行证明和计算。
七、球的几何变换球的几何变换主要考查学生对于球的各种变换的理解和应用,如旋转、平移、对称等。
在解决这类问题时,学生需要利用几何知识进行证明和计算。
八、球的物理属性及应用球的物理属性及应用主要考查学生对于球在物理中的各种属性的理解和应用,如重力加速度、转动惯量等。
在解决这类问题时,学生需要利用物理知识和几何知识进行证明和计算。
九、球在数学问题中的应用球在数学问题中的应用非常广泛,如几何、代数、概率统计等领域都可以涉及到球的问题。
高考中“球”的构造类
构造例题一、 常规类型1. 已知正方体的棱长为a ,分别求出它的内切球、外接球及与各棱都相切的球半径。
2. 已知某正四面体的内切球的体积是1,则该正四面体的外接球的体积是3. 已知某三棱锥的三视图如图所示,在该几何体的外接球的体积为4. 某四面体的三视图如图所示,正视图、俯视图的都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则该四面体的外接球的体积为5. 已知三棱锥P -ABC 的各顶点都在以O 为球心的球面上,且P A 、PB 、PC 两两垂直,若P A =PB =PC =2,则球心O 到平面ABC 的距离为A. 233B. 3 C .1 D.336. 三棱锥S A B C -的所有顶点都在球O 的球面上,SA ⊥面ABC ,1,SA AB ==2,3AC BAC π=∠=,则球O 的表面积为A. 4πB. 12πC. 16πD. 64π7. 在三棱锥S ABC -中,侧棱SC ⊥面SAB ,SA BC ⊥,侧面,,SAB SBC SAC ∆∆∆的面积分别为31,,32,则此三棱锥的外接球的表面积 A. 14π B. 4π C. 3π D. 23π8. 已知,,,A B C D 四点在半径为的球面上,且AC BD ==5,AD BC AB CD ===,则三棱锥D ABC -的体积是9. 在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为A. 27B.C.D.10. 在三棱锥S ABC -中AB BC ⊥,AB BC =2SA SC ==,二面角S AC B--的余弦值为,,,S A B C 都再同一球面上,则该球的表面积为A. B. C. 24π D. 6π11. 在正三棱锥S ABC -中,,M N 分别是,SC BC 的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥S ABC -外接球的表面积是____12. 在三棱锥ABC S -中,2,2,====⊥SC SA BC AB BC AB ,AC 的中点为M ,SMB ∠的余弦值为33,若C B A S ,,,都在同一球面上,则球的表面积为?二、 直径类型1. 已知球直径4SC =,,A B 求该球面上的两点,AB =6ASC BSC π∠=∠=,则三棱锥S ABC -的体积为A. B. C. D. 12. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为(A. 6 (B (C )3 (D )23. 已知三棱锥P ABC -的所有顶点都在球O 的球面上,且,,PA AB PC BC ⊥⊥120,ABC ∠=1BA BC ==,若此棱锥的体积为12,则球O 的表面积为4. 已知在三棱锥P ABC -中,3P ABC V -=4APC π∠=,3BPC π∠=,PA AC ⊥,PB BC ⊥,且平面PAC ⊥平面PBC ,那么三棱锥P ABC -外接球的体积为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考球类型及例题 Prepared on 22 November 2020高考球类型及例题1、球定义2、球面距离经度纬度:此类题主要目的在于明确经度和纬度概念,注意及利用圆的有关性质,弧长公式,球的截面的性质等球截面:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两 个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.3、球内接多面体:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题4、多面体内切球、:解决有关几何体接切的问题,如何选取截面是个关键.5、球与球外切:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比总之:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.类型例题一球定义例1 过球面上两点作球的大圆,可能的个数是( ).A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B 说明:解此易选出错误判断A .其原因是忽视球心的位置. 类型例题二球面距离经度纬度例1.已知地球的半径为R ,球面上B A ,两点都在北纬45 圈上,它们的球面距离为R 3π,A 点在东经30 上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45 圈的中心为1O ,由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =.由R R B O A O 2245cos 11=⋅== , 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30 上,故B 的位置在东经120 ,北纬45 或者西经60 ,北纬45 .B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.类型例题三球截面例1 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O =同理ππ40021=⋅A O ,∴)(201cm A O =设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R ,∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R∴)(2500422cm R S ππ==球.∴球的表面积为22500cm π.例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.例3 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π. ∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.例4 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3 分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC ∆的外接圆半径,R AB r 3333==,3233==r R . 答案:B 说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.类型例题四球内接例1.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例2 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等,∴底面是菱形.∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥.过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=,故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.例3 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R .解:设过A 、B 、C 三点的球的截面半径为r ,球心到该圆面的距离为d ,则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心,从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.例4 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形.∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 例5 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心.∵⊥OD 底面ABC ,∴O 、P 、D 三点共线. ∵l PC PB PA ===,α2=∠APB .∴ααsin 22cos 2222l l l AB =-=.∴αsin 33233==AB AD , 设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中,∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==. 在POE Rt ∆中,∵αβ2sin 3412cos -===lPE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l l V 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.类型例题五球外切例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可. 解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r ,233133-=+=+∴r R . (1)设两球体积之和为V ,则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π 当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值. 例2.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .图2依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=. 所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.例3 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N ADE N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF , ∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=, ∴)43543323323(3122+++=r ,∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--, 解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210. 说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为3233)3(31r r r ππ=⋅=, 334r V π=球. 球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水. 又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=. 答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.例5 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯363132******** 得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 例6求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ; R O O OB 330cot 1=︒⋅=,R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱,3233)3(31R R R V ππ=⋅⋅=锥,∴964∶∶∶∶锥柱球=V V V .。