高考经典圆锥曲线习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考圆锥曲线试题精选
一、选择题:(每小题5分,计50分)
1、(2008海南、宁夏文)双曲线
22
1102
x y -=的焦距为( ) A. 32 B. 42 C. 33 D. 43
2.(2004全国卷Ⅰ文、理)椭圆14
22
=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )
A .
23 B .3 C .2
7
D .4 3.(2006辽宁文)方程2
2520x x -+=的两个根可分别作为( )
A.一椭圆和一双曲线的离心率
B.两抛物线的离心率 C.一椭圆和一抛物线的离心率
D.两椭圆的离心率
4.(2006四川文、理)直线y=x-3与抛物线x y 42
=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.
5.(2007福建理)以双曲线
116
92
2=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )
A . B.
C .
D. 6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率2
=
e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )
A .13422=+y x
B .16822=+y x
C .122
2=+y x D .1422=+y x 7.(2005湖北文、理)双曲线)0(12
2≠=-mn n
y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )
A .163
B .83
C .3
16
D .38
8. (2008重庆文)若双曲线22
21613x y p
-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )
(A)2
(B)3
(C)4
2
9.(2002北京文)已知椭圆
1532222=+n y m x 和双曲线1322
2
22=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 2
15
±
= B .x y 2
15±
= C .y x 4
3±
= D .x y 4
3±
= 二、填空题:(每小题5分,计20分)
11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()
0,152,则椭圆的标准方程是_________________________
12.(2008江西文)已知双曲线22221(0,0)x y a b a b
-=>>的两条渐近线方程为3
3y x =±, 若顶点到渐近线的距离为1,则双曲线方程为 .
13.(2007上海文)以双曲线15
42
2=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .
三、解答题:(15—18题各13分,19、20题各14分)
15.(2006北京文)椭圆C:22
221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,
且11212414
,||,||.33
PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;
(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求
直线l 的方程..
16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不
同的
交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.
17.(2007安徽文)设F 是抛物线G :x 2
=4y 的焦点.
(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:
(Ⅱ)设A 、B 为抛物线G 上异于原点的两点,且满足0·
=FB FA ,延长AF 、BF 分别交抛物线G 于点
C ,
D ,求四边形ABCD 面积的最小值.
18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(03)-,
,(03),的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;
(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?
19. (2002广东、河南、江苏)A 、B 是双曲线x 2
-y
2
2
=1上的两点,点N(1,2)是线段AB 的
中点
(1)求直线AB 的方程;
(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?
20.(2007福建理)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且=。 (1)求动点P 的轨迹C 的方程;
(2)过点F 的直线交轨迹C 于A 、B l 于点M ,
已知,
,求
的值。