数字信号处理-答案第五章

合集下载

第五章 数字信号处理课后答案刘顺兰版

第五章   数字信号处理课后答案刘顺兰版

H α ( s ) = H αN (
ω c = 2πf c T = 2π × 400 HZ / 6000 HZ =
Ωc = 2 ωc 2 π 2 tg = tg ( ) = 0.2 × T T 2 T 15
2π 15
s=
2 1 − z −1 , T 1 + z −1
s = Ωc
1 − z −1 −1 π tg ( ) 1 + z 15 1 1
=
1 + 3z −1 + 3z −2 + z −3 0.005376(1 + 3z −1 + 3z −2 + z −3 ) = 186 − 412 z −1 + 318 z − 2 − 84 z −3 1 − 2.215 z −1 + 1.71z − 2 − 0.4516 z −3
5.24 用双线性变换设计一个三阶巴特沃思数字高通滤波器,采样频率为 f s = 6 KHZ ,截止 频率为 f c = 1.5 KHZ (不计 3KHZ 以上的频率分量) 。 解法 1:三阶巴特沃思低通模拟滤波器的原型函数:
按照冲激不变条件,可以写出
因此系统函数为
H ( z ) = ∑ h(n) z − n
n =0

1 1 2 2 = + 1 − e − aT e − jbT z −1 1 − e −aT e jbT z −1 = 1 − (e − aT cos bT ) z −1 (1 − e − aT e − jbT z −1 )(1 − e −aT e jbT z −1 )
所以
ω1 + ω 2
H BP ( z ) = H αN ( s )
s=
1 1+ z − 2 3 1− z − 2

数字信号处理第5章答案史林赵树杰编著

数字信号处理第5章答案史林赵树杰编著

数字信号处理第5章答案史林赵树杰编著第五章练习题答案%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%5.8 已知复序列()()()f n x n jy n =+的8点DFT 为()[()](07)F k DFTf n k =≤≤,其值为(0)13,(1)24,(2)37,(3)45,(4)25,(5)12,(6)48,(7)6,F j F j F j F j F j F j F j F j =-=-+=+=--=+=--=-=不计算()F k 的离散傅里叶逆变换(IFFT ),试求实序列()x n 和()y n 的8点DFT ()X k 和()Y k 。

解:利用DFT 的共轭对称性()()()f n x n jy n =+[]()()()()F k DFT f n X k jY k ==+[]Re ()()()f n Fep k x n ??[]Im ()()()j f n Fop k y n ??所以[][]*()()R e ()()1(())(())()2N N N X k D FT x n D FT f n Fep k F k F N k R k ??====+-?[][]*1()()Im ()()1(())(())()2N N N Y k D FT y n D FT f n Fep k j F k F N k R k j ??====--?%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%5.9 设()x n 和()y n 是长度为N 的两个实序列。

已知()[()](01)X k DFT x n k N =≤≤-,()[()](01)Y k DFT y n k N =≤≤-。

现在希望根据()X k 和()Y k 求()x n 和()y n ,为了提高运算效率,试设计一种算法,用一次N 点IFFT 来完成。

数字信号处理,第5章课后习题答案

数字信号处理,第5章课后习题答案

第五章习题与上机题5.1 已知序列12()(),0 1 , ()()()nx n a u n a x n u n u n N =<<=--,分别求它们的自相关函数,并证明二者都是偶对称的实序列。

解:111()()()()()nn mx n n r m x n x n m a u n au n m ∞∞-=-∞=-∞=-=-∑∑当0m ≥时,122()1mmnx n ma r m aaa∞-===-∑ 当0m <时,122()1m mnx n a r m aaa -∞-===-∑ 所以,12()1mx ar m a =-2 ()()()()N x n u n u n N R n =--=22210121()()()()()1,0 =1,00, =()(1)x NN n n N mn N n m N r m x n x n m Rn R n m N m N m N m m Nm N m R m N ∞∞=-∞=-∞--=-=-=-=-⎧=--<<⎪⎪⎪⎪=-≤<⎨⎪⎪⎪⎪⎩-+-∑∑∑∑其他从1()x r m 和2()x r m 的表达式可以看出二者都是偶对称的实序列。

5.2 设()e()nTx n u n -=,T 为采样间隔。

求()x n 的自相关函数()x r m 。

解:解:()()()()e()e ()nTn m T x n n r m x n x n m u n u n m ∞∞---=-∞=-∞=-=-∑∑用5.1题计算1()x r m 的相同方法可得2e()1e m Tx Tr m --=-5.3 已知12()sin(2)sin(2)s s x n A f nT B f nT ππ=+,其中12,,,A B f f 均为常数。

求()x n 的自相关函数()x r m 。

解:解:()x n 可表为)()()(n v n u n x +=的形式,其中)2sin()(11s nT f A n u π=,=)(n v 22sin(2)s A f nT π,)(),(n v n u 的周期分别为 s T f N 111=,sT f N 221=,()x n 的周期N 则是21,N N 的最小公倍数。

数字信号处理 第五章

数字信号处理 第五章

+ a2 z-1
数字信号处理—第五章
6
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
x(n) b0 +
-1 a1 z
y(n)
+ a2 z-1
数字信号处理—第五章
7
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
z z
2 2
H (z)
1 1k z 1 1k z
1 1
x(n)
H 1(z)
y (n )
H 2(z)
H k (z)
数字信号处理—第五章
22
数字信号处理—第五章
23
IIR数字滤波器的级联型结构优点
1) 每个二阶或一阶子系统单独控制零、极点。 2)级联顺序可交换,零、极点对搭配任意,因此级联 结构不唯一。有限字长对各结构的影响是不一样的, 可通过计算机仿真确定子系统的组合及排序。 3)级联各节之间要有电平的放大和缩小,以使变量值 不会太大或太小。太大可能导致运算溢出;太小可 能导致信噪比太小。 4)级联系统也属于最少延时单元实现,需要最少的存 储器,但乘法次数明显比直接型要多。 4)级联结构中后面的网络输出不会再流到前面,运算 误差积累比直接型小。

数字信号处理—第五章
4
基本单元(数字滤波器结构)有两种表 示方法
数字信号处理—第五章
5
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
x(n) b0 +

数字信号处理(Digital Signal Processing)智慧树知到课后章节答案2023年

数字信号处理(Digital Signal Processing)智慧树知到课后章节答案2023年

数字信号处理(Digital Signal Processing)智慧树知到课后章节答案2023年下聊城大学聊城大学绪论单元测试1.声音、图像信号都是()。

A:二维信号 B:一维信号 C:确定信号 D:随机信号答案:随机信号第一章测试1.序列的周期为()。

A:7 B:7 C:14 D:14答案:142.序列的周期为()。

A:10 B:10 C:8 D:8答案:103.对于一个系统而言,如果对于任意时刻n0,系统在该时刻的响应仅取决于此时刻及此时刻以前时刻的输入系统,则称该系统为____系统。

()A:线性 B:因果 C:稳定 D:非线性答案:因果4.线性移不变系统是因果系统的充分必要条件是______。

()A:n<0,h(n)=0 B:n>0,h(n)=0 C:n>0,h(n)>0 D:n<0,h(n)>0答案:n<0,h(n)=05.要想抽样后能够不失真的还原出原信号,则抽样频率必须,这就是奈奎斯特抽样定理。

()A:等于2倍fm B:小于等于2倍fm C:大于2倍fm D:大于等于2倍fm答案:大于等于2倍fm6.已知x(n)=δ(n),其N点的DFT[x(n)]=X(k),则X(N-1)= 1。

()A:对 B:错答案:对7.相同的Z变换表达式一定对应相同的时间序列。

()A:对 B:错答案:错8.滤波器设计本质上是用一个关于z的有理函数在单位圆上的特性来逼近所有要求的系统频率特性。

()A:错 B:对答案:对9.下面描述中最适合离散傅立叶变换DFT的是()A:时域为离散周期序列,频域也为离散周期序列 B:时域为离散有限长序列,频域也为离散有限长序列 C:时域为离散序列,频域也为离散序列 D:时域为离散无限长序列,频域为连续周期信号答案:时域为离散有限长序列,频域也为离散有限长序列10.巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

()A:错 B:对答案:错第二章测试1.N=1024点的DFT,需要复数相乘次数约()。

数字信号处理第三版(姚天任、江太辉) 答案 第五章-unprotected

数字信号处理第三版(姚天任、江太辉) 答案 第五章-unprotected
E[x(i)x( j)] −
2
N −1 N −1
E[x(i)x( j)]
N n=0
N2 i=0 j=0
N2 i=0 j=0
∑ ∑∑ =
1 N
N −1
E[x2 (n)] −
n=0
1 N2
N −1 N −1
E[x(i)x( j)]
i=0 j=0
∑ ∑ ∑∑ =
1
N −1
E[x2 (n)] −
1
N −1
N −1 N −1
∫ = 1
q
0 −q
xdx
=
1 2q
x2
|0−q =

q 2

∫ mx2 = E[x2 ] = −∞ xpx2 (x)dx
∫ = 1
q
q/2 −q/2
xdx
=
1 2q
x2
|−q
/2 q/
2
=
0

∫ mx3 = E[x3 ] = −∞ xpx3 (x)dx
∫ = 1

2π 0
xdx =
1 4π
x2
|02π = π
∞ −∞
(x

mx2
)2
px2
( x)dx
∫ = 1 q
q/2 −q / 2
x2dx
=
1 3q
x3
|q / 2
−q/
2
=
q2 12
∫ σ 2 x3
=
E[( x3
− mx3 )2 ] =
∞ −∞
(x

mx3
)2
px3
( x)dx
∫ = 1

2π 0

数字信号处理作业 第五章 参考答案

数字信号处理作业 第五章 参考答案
为得到 H ( z ) ,
(1) 由极点构成 H a ( s ) 的分母多项式,分子为分母多项式的常数。 (2) H a ( s ) 展成部分分式。 (3) 据有理分式变换得到对应的 H ( z ) 各分式,整理得到最后的 H ( z ) 。 22、 取 T=1, 预畸, 由已知列出对模拟滤波器的衰减要求, 解出 N=6.04, 取 N=7, 得到
−0.5
Z −1
−1
0.9
−0.81
4、 H ( z ) = −4.9383 +
2.1572 4.7811 − 1.5959 z −1 + 1 + 0.5 z −1 1 − 0.9 z −1 + 0.81z −2
−4.9383
x ( n) y ( n)
2.1572 −0.5
Z −1
4.7811
Z
0.9 −0.81
= H 2 ( z)
α 02 + α12 z -1 -3.1986 + 0.2591z -1 = 1 +z 2 1 + 1.618 z - 4π 2 2 1 + r z 1 - 2rz -cos 5
频率取样型实现流程图:
−10.125
Z −1
18.3236
x ( n)
Z −1
x ( n)
Z −1
Z −1
+
Z −1
− 7 4
+
Z −1
− 69 8
+
y ( n) 4) 频率取样型:取 r=1,N=5,得到 DFT{h(n)}为:
{-10.1250 9.1618 + 6.6564i -1.5993 - 4.9221i -1.5993 + 4.9221i 9.1618 - 6.6564i}

北京邮电大学数字信号处理习题答案第5章18页word

北京邮电大学数字信号处理习题答案第5章18页word

FIR 数字滤波器设计本章知识点:对于一个离散时间系统∑∑=-=--=M 1n nn 1-N 0n nnz a 1z bz H )(,若分母多项式中系数0a a a M 21====Λ,则此系统就变成一个FIR 系统∑-=-=1N 0n nn z b z H )(,其中系数1-N 10b ,.b ,b Λ即为该系统的单位取样响应h ( 0 ) , h ( 1 ) ,… h ( N-1 ),且当n > N-1时,h ( n ) = 0。

FIR 系统函数H(z) 在Z 平面上有N-1个零点,在原点z=0处有N-1个重极点。

这类系统不容易取得较好的通带和阻带特性,要想得到与IIR 系统类似的衰减特性,则要求较高的H(z)阶次。

相比于IIR 系统来说,FIR 系统主要有三大突出优点:1)系统永远稳定;2)易于实现线性相位系统;3)易于实现多通带(或多组带)系统。

线性相位FIR 滤波器实现的充要条件是:对于任意给定的数值N (奇数或偶数),冲激响应h[n] 相对其中心轴21-N 必须成偶对称或奇对称,此时滤波器的相位特性是线性的,且群延时均为常数 21-=N τ。

由于h(n) 有奇对称和偶对称两种情况,h(n)的点数N 有奇数、偶数之分。

因此,h (n )可以有4种不同的类型,分别对应于4种线性相位FIR 数字滤波器:h[n] 偶对称N 为奇数、h[n] 偶对称N 为偶数、h[n] 奇对称N 为奇数、h[n] 奇对称N 为偶数。

四种线性相位FIR 滤波器的特性归纳对比于表5.1中。

一.FIR DF 设计方法FIR DF 的设计实现不能像IIR DF 设计那样借助于模拟滤波器的设计方法来实现,其设计方法主要是建立在对理想滤波器频率特性进行不同程度逼近的基础上,主要的逼近方法有三种:窗函数法;频率抽样法;最佳一致逼近法。

1. 窗函数法窗函数法是设计FIR 滤波器的最直接方法,它通过采用不同时宽的窗函数,对理想滤波器的无限长冲激响应h d (n)进行截短,从而得到系统的有限长冲激响应 h (n),这一过程可用式5-1来描述:,021-N ||,(n)h )()()(d ⎪⎩⎪⎨⎧≤=其它= n n w n h n h R d (5.1)其中W R (n)是时宽为N 的窗函数。

北京邮电大学数字信号处理习题答案第5章

北京邮电大学数字信号处理习题答案第5章

FIR 数字滤波器设计本章知识点:对于一个离散时间系统∑∑=-=--=M 1n nn 1-N 0n nnz a 1z bz H )(,若分母多项式中系数0a a a M 21==== ,则此系统就变成一个FIR 系统∑-=-=1N 0n n nz bz H )(,其中系数1-N 10b ,.b ,b 即为该系统的单位取样响应h ( 0 ) , h ( 1 ) ,… h ( N-1 ),且当n > N-1时,h ( n ) = 0。

FIR 系统函数H(z) 在Z 平面上有N-1个零点,在原点z=0处有N-1个重极点。

这类系统不容易取得较好的通带和阻带特性,要想得到与IIR 系统类似的衰减特性,则要求较高的H(z)阶次。

相比于IIR 系统来说,FIR 系统主要有三大突出优点:1)系统永远稳定;2)易于实现线性相位系统;3)易于实现多通带(或多组带)系统。

线性相位FIR 滤波器实现的充要条件是:对于任意给定的数值N (奇数或偶数),冲激响应h[n] 相对其中心轴21-N 必须成偶对称或奇对称,此时滤波器的相位特性是线性的,且群延时均为常数 21-=N τ。

由于h(n) 有奇对称和偶对称两种情况,h(n)的点数N 有奇数、偶数之分。

因此,h (n )可以有4种不同的类型,分别对应于4种线性相位FIR 数字滤波器:h[n] 偶对称N 为奇数、h[n] 偶对称N 为偶数、h[n] 奇对称N 为奇数、h[n] 奇对称N 为偶数。

四种线性相位FIR 滤波器的特性归纳对比于表5.1中。

一.FIR DF 设计方法FIR DF 的设计实现不能像IIR DF 设计那样借助于模拟滤波器的设计方法来实现,其设计方法主要是建立在对理想滤波器频率特性进行不同程度逼近的基础上,主要的逼近方法有三种:窗函数法;频率抽样法;最佳一致逼近法。

1. 窗函数法窗函数法是设计FIR 滤波器的最直接方法,它通过采用不同时宽的窗函数,对理想滤波器的无限长冲激响应h d (n)进行截短,从而得到系统的有限长冲激响应 h (n),这一过程可用式5-1来描述:,021-N ||,(n)h )()()(d ⎪⎩⎪⎨⎧≤=其它= nn w n h n h R d (5.1)其中W R (n)是时宽为N 的窗函数。

数字信号处理_吴镇扬_第二版_第五章习题答案

数字信号处理_吴镇扬_第二版_第五章习题答案

5.7 (1)由于h2(n)是h1(n)圆周移位的序列,根据DFT的 2π 性质有: −j 4k − jπ k
H 2 (k ) = e
8
H 1 (k ) = e
H 1 (k )
~ ~ H1 ( k ) = H 2 ( k ) 成立 所以
(2)由于h1 (n ) 和h2 (n ) 均为偶对称序列,以其构成的低通滤波器
(3)若采用海明窗设计,则
⎡ ⎛ 2πn ⎞⎤ wHam ( n) = ⎢0.54 − 0.46 cos ⎜ ⎟ ⎥ RN ( n ) ⎝ N − 1 ⎠⎦ ⎣ 2 h( n) = sin[(n − α )ωc ]cos[(n − α )ω0 ]wHam (n) N 为奇数时, (n − α )π
h( n N 为偶数时, ) =
0 −ωc
e − jωα e jω nd ω
可见h(n)关于(N-1)/2偶对称,即 h( n) = h( N − 1 − n)
(1)当 N 为奇数时,为第一类滤波器。 (2)当N为偶数时,为第二类滤波器
⎧hd ( n) h( n) = hd ( n) ⋅ R(n ) = ⎨ ⎩0 0 ≤ n ≤ N −1
解:由经验公式可知若 不小于 At 40dB , 则
β = 0.5842 At - 21)0.4 + 0.07886(At - 21) ≈ 3.3953 ( At − 8 40 − 8 N= = ≈ 22.28 2.286∆ω 2.286× 0.2π ωc + ωr ωc′ = = 0.2π 2 ′ ⎧ωc ′ ⎪ π Sa[ωc (n − α )] n ≠ α ′ 1 ωc − jωα jωn ⎪ hd (n) = ∫ ′ e e dω = ⎨ ′ 2π −ωc ωc ⎪ n =α ⎪ ⎩ π

数字信号处理第5章答案

数字信号处理第5章答案
最小, 而既非通带波纹最小, 又非阻带波动最小。 所以, 用这种优化程序设计的滤波器的阻带最小衰减和通带波纹可能 不满足要求。
第5章 无限脉冲响应(IIR)数字滤波器的设

特别是以理想滤波器特性作为Hd(ejω)时, 为了使ε2最小,
优化过程尽可能逼近Hd(ejω)的间断特性(即使过渡带最窄), 而使通带出现较大过冲、 阻带最小衰减过小, 不能满足工
H(ejω)=|H(ejω)|ejθ(ω) 其中, |H(ejω)|称为幅频特性函数, θ(ω)称为相频特性函数。
常用的典型滤波器|H(ejω)|是归一化的, 即|H(ejω)|max=1, 下 的讨论一般就是针对归一化情况的。 对IIR数字滤波器, 通
常用幅频响应函数|H(ejω)|来描述设计指标, 而对线性相位特 性的滤波器, 一般用FIR数字滤波器设计实现。

图5.1.6
第5章 无限脉冲响应(IIR)数字滤波器的设

5.1.4 IIR-DF的直接设计法
所谓直接设计法, 就是直接在数字域设计IIR[CD*2]DF 的方法。 相对而言, 因为从AF入手设计DF是先设计相应的 AF, 然后再通过s-z平面映射, 将Ha(s)转换成H(z), 所以 这属于间接设计法。 该设计法只能设计与几种典型AF相对 应的幅频特性的DF。 而需要设计任意形状幅频特性的DF时, 只能用直接设计法。 直接设计法一般都要借助于计算机进行 设计, 即计算机辅助设计(CAD)。 现在已有多种DF优化 设计程序。 优化准则不同, 所设计的滤波器特点亦不同。所 以最主要的是建立优化设计的概念, 了解各种优化准则的 特点, 并根据设计要求, 选择合适的优化程序设计DF。
≤≤
(5.1.1)

(5.1.2)

(完整word版)数字信号处理(程佩青)课后习题解答(5)

(完整word版)数字信号处理(程佩青)课后习题解答(5)

第五章 数字滤波器的基本结构1。

用直接I 型及典范型结构实现以下系统函数21214.06.028.02.43)(-----+++=z z z z z H分析:①注意系统函数H(z)分母的 0z 项的系数应该化简为1。

②分母), 2 , 1( ••••••=-i z i 的系数取负号,即为反馈链的系数。

解:21212.03.014.01.25.1)(-----+++=z z z z z H )2.03.0(14.01.25.12121----+--++=z z z z ∵)()(1)(1z X z Y z a zb z H Nn nn Mm mn=-=∑∑=-=- ∴3.01-=a ,2.02=a5.10=b ,1.21=b ,4.02=b2。

用级联型结构实现以下系统函数)8.09.0)(5.0()14.1)(1(4)(22++-+-+=z z z z z z z H 试问一共能构成几种级联型网络。

分析:用二阶基本节的级联来表达(某些节可能是一阶的)。

解: ∏------++=k k k k k z zz z A z H 2211221111)(ααββ )8.09.01)(5.01()4.11)(1(4211211------++-+-+=z z z z z z ∴ 4=A8.0 ,9.0 , 0,5.0 1,4.1 , 0 ,1 2212211122122111-=-====-===ααααββββ由此可得:采用二阶节实现,还考虑分子分母组合成二阶(一阶)基本节的方式,则有四种实现形式.3。

给出以下系统函数的并联型实现。

)8.09.01)(5.01(6.141.158.12.5)(211321------++--++=z z z z z z z H 分析:注意并联的基本二阶节和级联的基本二阶节是不一样的,这是因为系统函数化为部分分式之和,分子的1-z 的最高阶数比分母1-z 的最高阶数要低一阶,如果分子、分母多项式的1-z 的最高阶数相同,则必然会分解出一个常数项的相加(并联)因子。

数字信号处理课后答案第五章报告.ppt

数字信号处理课后答案第五章报告.ppt
第五章习题讲解
1
1、用直接I型及典范结构实现以下系统函数:
H
z
=
3 2
4.2 0.6
z z
1 1
0.8 z 2 0.4 z 2
解:根据IIR滤波器的系统函数标准式
M
H
bm zm
z =
m0 N
1 an zn
Y z X z
n 1
将系统函数整理为:
H
z
=
1.5 2.1z1 0.4z2 1 0.3z1 0.2z2
H
z
=
4
z
z 1z 0.5 z2
2 1.4z 1 0.9z 0.8
试问一共能构成几种级联型网络。
解:H
z
A
k
1 1k z1 2k z2 1 1k z1 2k z2
4 1 z1 11.4z1 z2
1 0.5z1 1 0.9z1 0.8z2
4
考虑分子分母的组合及级联的次序,共有以下 四种级联型网络:
=
5
2z3 3z 1 z1
6
抽样点数 N 6,修正半径 r 0.9。
解:由N = 6,得频率抽样型结构:
H z= 1 6
1 r6z6
H0
z
H3
z
2 k 1
H
k
z

5 3z3 1 z3
H z=
1 z1
1 z1
1 z1 z2
5 3z3 1 z1 z2
5
h2 1
h1 h3 3 0.6
5
即 hn是偶对称,对称中心在n N 1 2处,
N为奇数 N 5 。
2
得线性相位结构:
17
1.5 2.1z1 0.4z2 1 0.3z1 0.2z2

数字信号处理第三版西科大课后答案第5章

数字信号处理第三版西科大课后答案第5章

第 4 章 时域离散系统的网络结构及数字信号处理的实现
[例4.4.2] 假设系统函数如下式, 画出它的并联型 结构。
H (z) (2 0.379z 1)(4 1.24z 1 5.264z 2 ) (1 0.5z 1)(1 z 1 0.5z 2 )
解: 上式的分子分母是因式分解形式, 再写成下式:
[例4.4.3] 为了保证滤波器的因果稳定性, 其系统 函数的极点必须保证全部集中在单位圆内。 如果有极点在 单位圆上, 则可以形成一个正弦波发生器。 利用这一原理 试设计正弦波发生器。
解: 假设有两个系统函数
H1(z)
Y1 ( z) X (z)
1
(sin0 )z 1 2(cos0 )z 1
z 2
4.4 例 题
[例4.4.1] 设FIR滤波器的系统函数为 H (z) 1 (1 0.9z 1 2.1z 2 0.9z 3 z 4 ) 10
求出其单位脉冲响应, 判断是否具有线性相位, 画出直 接型结构和线性相位结构(如果存在)。
第 4 章 时域离散系统的网络结构及数字信号处理的实现 图4.4.1
N
H(z) C
Ak
k1 1 pk z 1
式中, pk是极点l, C是常整数, Ak是展开式中的系数。 一 般pk、 Ak都是复数。 为了用实数乘法, 将共轭成对的极点 放在一起, 形成一个二阶网络, 公式为
Hk
(z)
1
bk0 bk1z 1 ak1z 1 ak 2
z 2
第 4 章 时域离散系统的网络结构及数字信号处理的实现
第 4 章 时域离散系统的网络结构及数字信号处理的实现
该公式是频率采样结构的基本公式, 但它是一个不考虑 稳定性, 又可以应用复数乘法器的公式。为了稳定, 且使 用实数乘法器,

数字信号处理—基于计算机的方法第5章答案

数字信号处理—基于计算机的方法第5章答案

5-1 An AM broadcast transmitter is tested by feeding the RF output into a 50-Ω (dummy) load. Tone modulation is applied. The carrier frequency is 850 kHz and the FCC licensed power output is 5,000 W. The sinusoidal tone of 1,000 Hz is set for 90% modulation.(a) Evaluate the FCC power in dBk (dB above 1 kW) units.(b) Write an equation for the voltage that appears across the 50-Ω load, giving numerical values for all constants.(c) Sketch the spectrum of this voltage as it would appear on a calibrated spectrum analyzer.(d) What is the average power that is being dissipated in the dummy load? (e) What is the peak envelope power? Solution :(a) FCC power:500010lg 6.99()1000dBK ⎛⎫= ⎪⎝⎭()()()():c o s 20001000900.9501cos m m m c c b Let m t A t f H z A s t A m t tπω==→=∴Ω=+⎡⎤⎣⎦是%调制负载上通过的电压为:()707[10.9 cos (2000)]cos[2850,000]s t t t ππ=+(c)])cos[(2)707(9.0])cos[(2)707(9.0cos 707)(t t t t s m c m c c ωωωωω++-+=212500050c A =707c A V=(d)50Ω负载上的平均功率:()222A V G real 210.921505020.95000170252c A st P w<>⎡⎤==+⎢⎥⎣⎦⎡⎤=+=⎢⎥⎣⎦(e) (){}[]222PEP P 1max 500010.918050250cA m t w =+=⨯+=⎡⎤⎣⎦⨯5-2 An AM transmitter is modulated with an audio testing signal given by()120.2sin 0.5cos m t t t ωω=+, where 1500f Hz =,2f =,and 100c A =.Assume that the AM signal is fed into a 50Ω load. (a) Sketch the AM waveform. (b) What is the modulation percentage?(c) Evaluate and sketch the spectrum of the AM waveform. Solution: ()()12100(10.2sin 0.5cos )cos c a s t t t t ωωω=++2222221110.9()()12222c c cs t A A m t A ⎡⎤<>=+<>=+⎢⎥⎣⎦5-4 Assume that an AM transmitter is modulated with a video testing signal given by ()10.20.6sin m t t ω=-+,where f 1=3.57MHz. Let A c =100. (a) Sketch the AM waveform.(b) What are the percentages of positive and negative modulation? (c) Evaluate and sketch the spectrum of the AM waveform about f c .Solution:()()()()()()1110.20.6sin 3.57;1001001cos 1000.80.6sin cos m c c c a m t t f f M H zA s t m t t t tωωωω=-+====+=+()m ax m in140100%pos.m od.40%10010020%neg.m od.80%100ccc cA A b A A A A --===--===()()()()()04015c c m c m c f Sff f j f f f f f f δδδ>=------+⎡⎤⎣⎦5-5 A 50,000-W AM broadcast transmitter is being evaluated by means of a two-tonetest.The transmitteris connected to a 50-Ω load, and()1111cos cos 2m t A t A t ωω=+, where f 1=500 Hz. Assume that a perfect AMsignal is generated.(a) Evaluate the complex envelope for the AM signal in terms of A 1 and ω1. (b) Determine the value of A 1 for 90% modulation.(c) Find the values for the peak current and average current into the 50-Ω load for the 90% modulation case. Solution:(a))]2cos (cos 1[2236)](1[)(V2236)50(2000,501112t t A t m A t g A A C c cωω++=+==⇒=(b)()1111111cos 2c c os 2os []cos A t t m t A t A t ωωωω=++=to find [m (t )]min : x (θ) = cos θ +cos2θ()sin 2sin 20dx d θθθθ=--=sin 4sin cos θθθ-=125.1)5.104(5.104-=︒︒=x θ()()()111min 104.51.12min 0.905.8om t A m A x At -=→=⎡==-⎡⎤⎣⎤⎣⎦⎦m ax 1M I N 1m ax m in112236[12]2236[1 1.125]3.1250.900.57622cA A A A A A A A A =+=--==⇒=另解:(c)m ax m ax m ax m ps1112236[12(0.8)]5813.6volts116.272 50()2236[10.8(cos cos 2)]cos 0 Av c c A A I A I s t t t tfor ωωωωω=+=====++⋅=>>m ax m ax m ax m ps1112236[12(0.576)]4811.9volts96.238 50()2236[10.576(cos cos 2)]cos 0 c c A A I A s t t t tfor ωωωωω=+====++⋅=>>另解:∴ mps A 0I Av =5-12 SSB signals can be generated by the phasing method shown in Fig. 5-5a, by the filter method, of Fig. 5-5b, or by the use of Weaver ’s method [Weaver, 1956], as shown in Fig. P5-12. For Weaver ’s method (Fig. P5-12), where B is the bandwidth of m (t ),(a) Find a mathematical expression that describes the waveform out of each block on the block diagram.(b) Show that s (t) is an SSB signal.Figure P5-12 Weaver ’s method for generating SSB.Solution:)cos(212cos )(1Bt t B t V ππ=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡++-=↔==)21()21(21)()cos()()()()(313B f M B f M f V Bt t m t V t m t V π⎥⎦⎤⎢⎣⎡++--=↔==)21()21(21)()sin()()()()(424B f M B f M j f V Bt t m t V t m t V π⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎥⎦⎤⎢⎣⎡++-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<=elsewhere ,021||,)21()21(21elsewhere f ,021|| ),()(45f Bf B f M B f M B f f V f VLikewise ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎥⎦⎤⎢⎣⎡++--=elsewhere ,021||,)21()21(21)(6f B f B f M B f M f V ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=t B f t v t V c 212cos )()(59π⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<++⎥⎦⎤⎢⎣⎡++++-++<--⎥⎦⎤⎢⎣⎡+--+---=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛--=⇒elsewhere 21|21|,0,)2121()2121(21|21|,)2121()2121(41 212121)(559f B B f f B B f f M B B f f M B B f f B B f f M B B f f M B f f V B f f V f V c c c c c c c ccc c c c c c c c c f f B f B B f f B f f f B B f f B B f BB f f B B B f f -<<--⇒<+++<<⇒++<<-+⇒<--<-⇒<--21|21| Likemise 21212121 21212121|21:|AsideThus,[][]⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-<<--+++++<<-+--=elsewhere ,0,)()(41,)()(41)(9f f f B f B f f M f f M B f f f f f M B f f M f V c c c c c c c cLikewise⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧<++⎥⎦⎤⎢⎣⎡+++--++<--⎥⎦⎤⎢⎣⎡+--+----=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛---=elsewhere 21|21|,0,)2121()2121(4121|21|,)2121()2121(41212121)(6610f BB f f B B f f M B B f f M B B f f B B f f M B B f f M B f f V B f f V j f V c c c c c c c c[][]⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-<<--++-++<<-+---⇒elsewhere ,0,)()(41,)()(41)(10f f f B f B f f M f f M B f f f f f M B f f M f V c c c c c c c cputout=s(t) = v 9(t)+v 10(t ))()()(109f V f V f s +=⇒5-13 An SSB-AM transmitter is modulated with a sinusoid ()15cos m t t ω=, where1112,500,and 1c f f Hz A ωπ===. (a) Evaluate ()ˆmt . (b) Find the expression for a lower SSB signal.cc c f c -S(t) is a USSB signal⇒ USSBf f f B f f f M B f f f f f M f S c c c c c c =⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-<<--++<<-=⇒elsewhere ,0),(21),(21)((c) Find the rms value of the SSB signal. (d) Find the peak value of the SSB signal.(e) Find the n ormalized average power of the SSB signal. (e) Find the normalized PEP of the SSB signal. Solution:()()1ˆ5sin a mt t ω= ()()()()()111ˆcos sin 5cos cos 5sin sin 5cos c c c c c b s t m t t mt t t t t t tωωωωωωωω=+=+=-()()15cos c s t t ωω=-()()22552rms c st V <>=→==()5P d V V =()()2252e st w <>=()252P E P f P w =5-18 A phasing-type SSB-AM detector is shown in Fig. P5-18. This circuit is attached to the IF out-put of a conventional superheterodyne receiver to provide SSB reception.(a) Determine whether the detector is sensitive to LSSB or USSB signals. How would the detector be changed to receive SSB signals with the opposite type of sidebands?(b) Assume that the signal at point A is a USSB signal with f c = 455 kHz. Find the mathematical expressions for the signals at points B through I . (c) Repeat part (b) for the case of an LSSB-AM signal at point A .(d) Discuss the IF and LP filter requirements if the SSB signal at point A has a3-kHz bandwidth.Figure P5-18Solution: (a)ˆ()()cos ()sin ''''A c c s t m t t m t t U SSBL SSBωω=-→+→()cos D c s t t ω=2ˆ()()()()cos ()sin cos ˆ()()(1cos 2)sin 222B A D c c c c c s t s t s t m t t mt t t m t m t t tωωωωω===+()()2c m t s t =()sin E c s t t ω=2()()()ˆ()sin cos ()sin ˆ()()sin 2(1cos 2)22F A E c c c c c s t s t s t m t t t m t t m t m t t t ωωωωω===-ˆ()()2G m t s t =()()()2H m t s t =-I :()()()()()()22,(),I c H m t m t s t s t s t U SSB m t LSSB=-=+⎧=⎨⎩To receive USSB signals, Additive V H (t ) from V C (t) at the summer.CHI(b) see part (a.) (c) see part (a.)(d) IF should be cantered atf c ±1.5 kH z,LSSBU SSBhave 3kHz BW and as small aroll-off factor as is economically feasible. LPF should have 3 kHz BW and as small a roll-off factor as is feasible, also.5-20 A modulated signal is described by the equations (t )=10 cos[(2π⨯108)t+10 cos (2π⨯103t )] Find each of the following: (a) Percentage of AM.(b) Normalized power of the modulated signal. (c) Maximum phase deviation. (d) Maximum frequency deviation. Solution: (a) ma xm i nc A AA ==0% A M∴ (b) W 502/10/2/22norm ===c A P()()()()()()310cos 2102210101502j tj t c org t e A eg t st g t wπθ===∴<>=<>=(c) m ax 10 radions θ∆=(d)kHz10102)2000(102)2000sin()2000(10)()(4===∆=∆-==πππωππθωd d F t dt t d t5-23 A MF signal has sinusoidal modulation with a frequency of f m =15KHzand modulation index of 2.0β=.(a) Find the transmission bandwidth by using carson ’s rule.(b)What percentage of the total FM signal power lies within the carson rule bandwidth?Solution:().cos 22(1)231590m m T m a m t A f tB f KHzπβ==+=⨯⨯=()()()()012320.223920.576720.352820.1289J J J J ====在卡森带宽内取了三次边频:()()()()()()()()2222222201232222201231111222222222.122222299.75%c c c c c A J A J A J A J b A J J J J ⎡⎤+⨯++⎢⎥⎣⎦∴⎡⎤=+⨯++=⎣⎦5-26 A modulated RF waveform is given by []1500cos 20cos c t t ωω+, where1112,1,100c f f K H z and f M H z ωπ===.(a) If the phase deviation constant is 100 rad/V , find the mathematical expression for the corresponding phase modulation voltage ()m t . What is the peak value and its frequency?(b) If the frequency deviation constant is 6110/rad V s ⨯⋅, find the mathematical expression for the corresponding FM voltage ()m t . What is the peak value and its frequency?(c)If the RF waveform appears across a 50Ω load, determine the average powerand the PEP.Solution:.:a PM.:b FM()22150012522s c RF P A KW ===波形的规一化功率:()12500025005050s real PEP P P W P Ω====通过50负载后:5-46 A digital baseband signal consisting of rectangular binary pulses occurring at a rate of 24 kbits/s is to be transmitted over a bandpass channel.(a) Evaluate the magnitude spectrum for OOK signaling that is keyed by a baseband digital test pattern consisting of alternating 1’s and 0’s.(b) Sketch the magnitude spectrum and indicate the value of the first null-to-null bandwidth . Assume a carrier frequency of 150 MHz.(c) For a random data pattern, find the PSD and plot the result. Compare this1()cos[()]500cos[20cos ]100()20cos 210001()cos 210005c c c P S t A t D m t t t m t tm t tωωωππ=+=+∴==[]()166()cos[()]500cos[20cos ]10()20cos 2100020()sin 2100021000104sin 21000100t c c c f t S t A t D m t dt t t m t dt t m t t tωωωπππππ-∞-∞=+=+∴==-=-⎰⎰result with that obtained in parts (a) and (b) for alternating data. Solution:(a) Evaluate the magnitude spectrum for OOK signaling that is keyed by a baseband digital test pattern consisting of alternating 1’s and 0’s.()()cos c c s t A m t t ω= , m (t )为单极性 OOK : ()()c g t A m t =0000000/4/4/4/4/2/20000()1sin(/2)2/2/2sin(/2)()()() 2/211 w here:22jn tn n T jn tT jn tc n c T T jn jn c c cn n n bg t C eA eC A edt T T jn A A e en T jn T n A n G f C f nf f nf n R f T T ωωωππωππππδδπ∞=-∞-----∞∞=-∞=-∞===⋅--==-⎡⎤=-=-⎢⎥⎣⎦===∑⎰∑∑*1()[()()]2c c S f G f f G f f =-+--(b) Sketch the magnitude spectrum and indicate the value of the first null-to-null bandwidth. Assume a carrier frequency of 150 MHz.48null B K H z =(c) For a random data pattern, find the PSD and plot the result. Compare this result with that obtained in parts (a) and (b) for alternating data.48null B K H z =The null-to-null bandwidth is the same for both (b) and (c). Both have sinx/x type spectral envelope.5-47 对于BPSK 调制,重做5.46的(a)(b)(c)()()U nipolar N R Zc g t A m t =→22sin ()()4cb g b b A fT P f f T fT πδπ⎡⎤⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦1()[()()]4s g g c c P f P f f P f f =-+--()()cos c c s t A m t t ω= ,(a)(b)()/2/2b b b b t T t T p t T T ⎡⎤⎡⎤+-=-⎢⎥⎢⎥⎣⎦⎣⎦∏∏ ()()()0nm t p t t nT δ=*-∑()()()()()2/22/22sin b b bbj fT j fT b b b b j fT j fT b b b b bP f T Sa fT eT Sa fT eT Sa fT e ej T Sa fT fT πππππππππ--=-⎡⎤=-⎣⎦=()()()()12sin()22sin()2/2sin(/2)2b b b nb b b b n b n b n Mf j T Sa fT fT f T T n jSa fT fT f T n j Sa n n f T ππδππδππδ⎛⎫=⋅- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭∑∑∑()()[()()]2c c c A S f Mf f f f f δδ=*-++(c) ()()cos c c s t A m t t ω= m(t)为极性NRZ()()c g t A m t =()()22sin b gc b b fT P f A T fT ππ⎛⎫= ⎪⎝⎭()()()14sgc g c P fP f f P f f ⎡⎤=-+--⎣⎦5-49 Evaluate the magnitude spectrum for an FSK signal with alternating 1 and 0 data. Assume that the mark frequency is 50 kHz, the space frequency is 55 kHz, and the bit rate is 2,400 bits/s. Find the first null-to-null bandwidth. Solution:The result if given by (5-86).f 1: : =50KHz f 2 : =55KHz R : = 2.4 Kbit/s where f2>f121f f h R-=A C := 1122c f f f +=Solution:By problem 5.46:0000*sin(/2)()()() 2/211w here:221()[()()]2c n bc c A n G f C f nf f nf n R f T T S f G f f G f f πδδπ∞∞-∞-∞⎡⎤=-=-⎢⎥⎣⎦====-+--∑∑()()1122()cos()cos()FSK n b c n n b c n s t a p t nT A t a p t nT A t ωθωθ⎡⎤=-⋅+⎢⎥⎣⎦⎡⎤+-⋅+⎢⎥⎣⎦∑∑()()nbnm t a p t nT =-∑null (5550)2 2.49.8kH zB =-+⨯=b.()()c g t A m t =22sin ()()4c b g b b A fT P f f T fT πδπ⎡⎤⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦1()[()()]4s g g c c P f P f f P f f =-+--null (5550)2 2.49.8kH zB =-+⨯=5.53 A binary baseband signal is pass through a raised cosine-rolloff filter with a 50% rolloff factor and is then modulated onto a carrier. The data rate is 64 kbits/s. Evaluate(a) The absolute bandwidth of a resulting OOK signal.(b) The approximate bandwidth of a resulting FSK s ignal when the mark freqwency is 150KHz and the space freqwency is 155KHz.(Note: It is interesting to compare these bandwidths with those obtained in probs. 5-46 and 5-49) Solution:()0643222R f K H z ===()()010.5321.548B f K H z =+=⨯= a. OOK()()0210.548296OOK B f KHz =+=⨯=b. FSK()()()212155150248101FSK B f f B KHz =-+=-+⨯=5-58 Assume that a QPSK signal is used to send data at a rate of 30 Mbits/s over asatellite transponder. The transponder has a bandwidth of 24 MHz.(a) If the satellite signal is equalized to have an equivalent raised cosine filter characteristic, what is the rolloff factor r required?(b) Could a rolloff factor r be found so that a 50-Mbit/s data rate could be supported?Solution:for QPSK M=4, l=2(a) If the satellite signal is equalized to have an equivalent raised cosine filtercharacteristic, what is the rolloff factor r required?0.6 6.130)24(2)1(230)1(24===+⇒+=⇒r or r r(b) Could a rolloff factor r be found so that a 50-Mbit/s data rate could besupported?()r f B +=10()021T B f r =+()021T B f r =+502424(1)(1)225r r ⇒=+⇒+=A rolloff factor ,r could not be found support 50Mb/s QPSK signaling5.62 Assume that a telephone line channel is equalized to allow bandpass data transmission over a frequency range of 400 to 3100Hz so that the available channel bandwidth is 2700Hz and the midchannel frequency is 1750Hz. Design a 16-symbol QAM signaling scheme that will allow a data rate of 9600 bits/s to be transferred over the channel. In you design, choose an appropriate rolloff factor r and indicate the absolute and 6-dB QAM signal bandwidth. Discuss why you selected the particular value of r that you used. 5.62 Solution:31004002700Q AM B H z =-= 49600162424004M l D Bd ==→=→==()()131004002400127000.125D r r r +=-→+=→=62400dB B D Hz ==习题:5.69 5.715.69 Plot the MSK Type I modulation waveforms x(t) and y(t).5.71 Plot the MSK TypeⅡmodulation waveforms x(t) and y(t).5.67 For π/4 QPSK signal,(a) Caculate the carrier phase shifts when the input data stream is 10110100101010 , where the leftmost bits are first applied to the transmitter.(b) Find the absolute bandwidth of the signal if r=0.5 raised cosine-rolloff filtering is used and the data rate is 1.5Mbits/s.Solution:For π/4 QPSK signal, M=4 ,l=2 0 1.52(1)(1)(1)(10.5) 1.1322T R B f r D r r M H z =+=+=+=+=。

数字信号处理 Chapter05答案

数字信号处理 Chapter05答案

2011/4/10
3
Notice: Skipped Sections

5.7 5.8 (all) 5.9 (all) 5.10 5.11
2011/4/10
4
5.1
Introduction
2011/4/10
5
5.1 Introduction
Digital processing of a real-world continuous-time signal involves the following basic steps:
The multiplication operation yields an impulse train
Note: Analog Filters are very important for digital systems. Since both the anti-aliasing filter and the reconstruction filter are analog lowpass filters, we review first the theory behind the design of such filters Also, the most widely used IIR digital filter design method is based on the conversion of an analog lowpass prototype
g[n ] = ga (nT ), -¥ <n < ¥
(5.1)
With T being the sampling period. The reciprocal of T is called the sampling frequency , i.e., 1⁄ . It is known that the frequency-domain of the analog signal is given by its FT:

数字信号处理-第五章数字滤波器的基本结构(new)

数字信号处理-第五章数字滤波器的基本结构(new)
1 2 ( 1 p z ) ( 1 z z ) 1k k 2k 1 k 1 N1 1 1 2 ( 1 c z ) ( 1 a z a z ) k 1k 2k k 1 k 1 k 1 N2 M1 M2
H ( z) A
将两个一阶因子组合成二阶因子,则
数字信号处理-第五章 数字滤波器络结构及 FIR数字滤波器的基本网络结构
数字信号处理-第五章 数字滤波器的基本结构
滤波器表示方式
(1)系统函数
k b z k M
Y ( z) H ( z) X ( z)
1 ak z k
k 1
k 0 N
1 ak z k
k 1
k 0 N
N2 M N Ak Bk (1 g k z 1 ) k G z k 1 1 * 1 1 c z ( 1 d z )( 1 d z ) k 1 k 1 k 0 k k k N1
一般IIR滤波器满足
N1
数字信号处理-第五章 数字滤波器的基本结构
5.2 无限长单位冲激响应(IIR)滤波器的基本结构)
IIR滤波器有以下几个特点: (1)系统的单位冲激响应 (2)系统函数
h( n)
是无限长的
H ( z)
在有限z平面(
0 z
)上有极点存在
(3)结构上存在输出到输入的反馈,也就是结构是递归的 1、直接Ⅰ型 一个IIR滤波器的有理系统函数为:


x n
3 1.5 -1.5 0.5
z 1 z 1 z 1
-3.5 2.5
y n
数字信号处理-第五章 数字滤波器的基本结构 级联型:
3z 3 3.5z 2 2.5z 3 3.5z 1 2.5z 2 1 H ( z) 2 2 z z 1 z 0.5 1 z z 1 0.5z 1

【免费下载】北京邮电大学数字信号处理习题答案第5章

【免费下载】北京邮电大学数字信号处理习题答案第5章

幅度函数:H()
d (n) 2h N n 2
O
H
| n | N -1 2
其它
π

N
2

n1
d(n) sin(n
n=1, 2, …, N/2

-
1)
2
WR
(e j
)
三角窗(或巴特利特 Bartlett 窗)
w(n)
W (e j )

2N-2-nN12, n
0.23WR
0.23WR
布莱克曼(Blackman)窗——又称二阶升余弦窗
w(n) 0.42 0.5cos 2n 0.08cos 2 2n
N 1
j
N2n1



(
N 1) 2








汉宁(Hanning)窗 —— 升余弦窗
W(e

j N 1
e2
2 N
2 N
ห้องสมุดไป่ตู้
e
n , 1

1
j(
w(n) sin2 n 0.5 0.5cos 2n
j
)


0.5WR
0.5WR
N 1
()
()
(5.7) 汉明(Hamming)窗 —— 改进的升余弦窗
a(n) h( N 1) 2
a(n) 2h( N 1 n) n 0 2
O
H
π
θ(ω)
表 5.1 线性相位 FIR 滤波器特性
N-1
2
n0
n 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 .6 0 .6 1 1 0 .7 z 1 0.36 z 1
(2)由题意可知
H ( z)
1 z 1 1 1 1 z 1 z 2 3 4
H (e j )
1 e j 1 j 1 2 j 1 e e 3 4
(1 c o s ) js in 1 1 1 1 1 c o s c o2 s j s i n s in 2 3 4 4 3
) 的系数取负号,即为反馈链的系数。
解:
1.5 2.1z 1 0.4 z 2 1.5 2.1z 1 0.4 z 2 H ( z) 1 ( 0.3z 1 0.2 z 2 ) 1 0.3z 1 0.2 z 2
∵ H ( z)
m 0 N
b z
G0 4
11 0.5 , 21 0 , 12 0.9 , 22 0.8
01 0.2 , 11 0
, 02 1
, 12 0.3
/quty88/
4.用横截型结构实现以下系统函数:
1 1 H ( z ) 1 z 1 1 6 z 1 1 2 z 1 1 z 1 1 z 1 6 2
/quty88/
11 1, 11 0.5 ,
21 0 , 21 0 ,
12 1.4 , 12 0.9 ,
22 1 22 0.8
/quty88/
由此可得: 采用二阶节实现, 还考虑分子分母组合成二阶 (一阶) 基本节的方式, 则有四种实现形式。 3. 给出以下系统函数的并联型实现。

一阶节并联型:
1 z 1 (1 0.7 z 1 )(1 0.36 z 1 )
H ( z) (1
1 z 1 1 10 1 1 10 1 z )(1 z ) 6 6
1 7 1 7 10 10 2 20 2 20 1 10 1 1 10 1 1 z 1 z 6 6
试画出其级联型结构实现。
分析:级联型是用二阶节的因式乘积表示。
解: 根据 H ( z )
N 1 n 0
h(n) z n 得:
H ( z ) 1 0.3z 1 0.72z 2 0.11z 3 0.12z 4
/quty88/
1


/quty88/
7.设某 FIR 数字滤波器的系统函数为: H ( z ) 试画出此滤波器的线性相位结构。
分析:FIR 线性相位滤波器满足 h(n) h( N 称或奇对称,因而可简化结构。
1 (1 3z 1 5 z 2 3z 3 z 4 ) 5
即h(n)偶对称,对称中心在 n 处, N 为奇数( N 5) 。
8.设滤波器差分方程为: y ( n ) x ( n ) x ( n 1)
1 1 y ( n 1) y ( n 2) 3 4
⑴试用直接 I 型、典范型及一阶节的级联型、一阶节的并联型结构实现此差分方 程。 ⑵求系统的频率响应(幅度及相位) 。 ⑶设抽样频率为 10kHz,输入正弦波幅度为 5,频率为 1kHz,试求稳态输出。
解;
因为 N=6,所以根据公式可得:
/quty88/
H ( z)
2 1 (1 r 6 z 6 ) H 0 ( z ) H 3 ( z ) H k ( z ) 6 k 1
(5 3 z 3 )(1 z 3 ) H ( z) 1 z 1 (5 3 z 3 )(1 z 1 z 2 ) 故 H ( k ) H ( Z ) Z 2k / N (5 3e 因而 H (0) 24 , H (1) 2 2 3 j , H (2) 0 H (3) 2 , H ( 4) 0 , H (5) 2 2 3 j
jk
)(1 e
j

3ke源自j2 k 3)

H (0) 24 1 rz 1 1 0.9 z 1 H (3) 2 H 3 ( z) 1 1 rz 1 0.9 z 1 H 0 ( z)
01 11 z 1 2 1
求: H k ( z) k 1 时 :H 1 ( z )
解:对此系统函数进行因式分解并展成部分分式得:
H ( z)
5.2 1.58 z 1 1.41z 2 1.6 z 3 (1 0.5z 1 )(1 0.9 z 1 0.8 z 2 )
4
0.2 1 0.3z 1 1 0.5z 1 1 0.9 z 1 0.8z 2
k 1
ak y(n k ) bk x(n k ) 可得:
k 0
N
M
1 1 a1 , a2 3 4
一阶节级联型:

b0 1 , b1 1
/quty88/
1 z 1 H ( z) 1 1 1 z 1 z 2 3 4 1 z 1 1 10 1 1 10 1 (1 z )(1 z ) 6 6
幅度为:
H (e j )
(1 cos ) 2 sin 2 1 1 1 1 (1 cos cos 2 ) 2 ( sin sin 2 ) 2 3 4 3 4
相位为:
/quty88/
(3) 正弦输入 x(t ) 情况下要先化成 x(n) x(t ) t nT 输出信号幅度等于输入信号 幅度与 H (e j ) 的乘积 , 频率即为输入的数字频率 0 ,相角为输入相角加 上系统频率响应在 0 处的相角 arg[H (e j 0 )]
解:
(1)直接Ⅰ型及直接Ⅱ: 根据 y ( n )
分析:FIR 滤波器的横截型又称横向型,也就是直接型。
解: 1 H ( z ) (1 z 1 )(1 6 z 1 )(1 2 z 1 ) 2 1 (1 z 1 )(1 z 1 ) 6
1 (1 z 1 2 z 1 z 2 ) 2 1 (1 z 1 6 z 1 z 2 )(1 z 1 ) 6 5 (1 z 1 z 2 ) 2 37 (1 z 1 z 2 )(1 z 1 ) 6
第五章
数字滤波器的基本结构
1.用直接 I 型及典范型结构实现以下系统函数
H ( z) 3 4.2 z 1 0.8 z 2 2 0.6 z 1 0.4 z 2
分析:①注意系统函数 H(z)分母的 ②分母 z i (i 1 , 2 ,

z 0 项的系数应该化简为 1。
分析: (1)此题分子 z 1 的阶次低于分母 z 的阶次,故一阶节的并联结构没有常数项
1
( 2) 由 H ( z ) H (e j ) , 且要用模和相角表示, H (e j ) H (e j ) e j arg[H ( e
j
)]
/quty88/
(1 0.2 z 1 0.3z 2 ) (1 0.1z 1 0.4 z 2 )
而 FIR 级联型结构的模型公式为:
N 2 k 1
H ( z ) ( 0k 1k z 1 2 k z 2 )
对照上式可得此题的参数为:
01 1 , 02 1,
n n 1
M
m
1 a n z n

Y ( z) X ( z)
∴ a1 0.3 , a2 0.2 b0 1.5 , b1 2.1 , b2 0.4
2.用级联型结构实现以下系统函数 H ( z ) 试问一共能构成几种级联型网络。
4( z 1)( z 2 1.4 z 1) ( z 0.5)( z 2 0.9 z 0.8)
1 n) ,即对 n ( N 1) / 2 呈现偶对
解:由题中所给条件可知:
1 3 h(n) (n) (n 1) (n 2) 5 5 3 1 (n 3) (n 4) 5 5
则 h(0) h(4)
1 0.2 5 3 h(1) h(3) 0.6 5 h(2) 1 N 1 2 2
8 205 2 205 3 1 z 1 z z 3 12 12 8 z 4 z 5 3
/quty88/
5.已知 FIR 滤波器的单位冲击响应为
h(n) (n) 0.3 (n 1) 0.72 (n 2) 0.11 (n 3) 0.12 (n 4)
H k ( z)
1 z 1 2r cos(
0 k 1k z 2
N
1
k ) r 2 z 2
k 1, 2 , k 1 , 2 ,


N-1 , N 奇数 2 N 1, N 偶数 2
k 其中 0k 2Re[ H (k )] , 1k 2rRe[ H (k )WN ]
11 0.2 , 12 0.1
21 0.3 , 22 0.4
6.用频率抽样结构实现以下系统函数:
5 2 z 3 3z 6 H ( z) 1 z 1
抽样点数 N = 6,修正半径 r 0.9 。 分析:FIR 滤波器的修正的频率抽样结构
H 0 ( z) H (0) 1 r z 1 n H( ) 2 , , H N / 2 ( z) 1 r z 1
2 2 1 2 z r cos r z N
01 2 Re H (1) 2 Re[ 2 2 3 j ] 4 11 (2) (0.9) Re H (1)W61 3.6
4 3 .6 z 1 0.9 z 1 0.81z 2 k 2 时 : 02 12 0 , H 2 ( z) 0 H1 ( z)
相关文档
最新文档