常见经济函数
常见的经济函数

Q 14 1.5P, Q 5 4 P
求该商品均衡价格。 解:由供需均衡条件,有
14 1.5P 5 4P
由此,得均衡价格 P 19 3.45 0
5.5
二、成本、收益、利润 1. 成本函数
成本是生产一定数量产品所需要的各种生产要素 投入的价格或费用总额, 常用C(x)或C(Q)表示。 成本由固定成本和可变成本组成。固定成本是指 支付固定生产要素的费用, 包括厂房、设备折旧以 及管理人员工资等, 常用C(0)表示;可变成本是指 支付可变生产要素的费用,包括原材料、燃料的
f x c c cx
2
这里 c > 0 为容量参数。
3.规模报酬问题:
当投入增加一倍时,产出是否也增加一倍?
例7:设投入 x 与产出g ( x )的关系为
g x cx
a
由于 g 2 x 2a cx a ,可见, 当 1时,规模报酬不变;当
1时,如果投入
这样,利润函数为
Q2 L R Q C Q 8Q 50 5 1 2 Q 20 30 5
因此, Q 20 时,最大利润为30。
三、其他函数
1. 库存函数
设某企业在计划期 T 内,对某种物品的总需求量为
Q ,由于库存费用及资金占用等因素。显然一次进
例5. 已知某产品价格为 P ,需求函数为 Q 50 5 P, 成本函数为C (Q) 50 2 Q,求产量 Q 为多少时利润 L 最大?最大利润是多少?
Q 解:由需求函数 Q 50 5 P ,可得 P 10 5 Q2 于是,收益函数为 R P Q 10Q 5
且能够向市场提供的商品量也就越多。因此一般 的供给函数都是单调增加的。 人们根据统计数据,常使用下面简单的供给函数 线性函数: Q aP b ,其中 幂函数: Q kP a ,其中
经济数学微积分经济学中的常用函数

在时间 T 内的总费用 E 为
1 Q E C1Tq C 2 2 q
1 Q 其中 , C1Tq 为贮存费,C 2 为进货费用 . 2 q
八、戈珀兹 (Gompertz) 曲线
戈珀兹 曲线是指数函数
y ka
bt
在经济预测中,经常使用该曲线.
k
初始期 发展期
饱和期
当 lg a 0 , 0 b 1 时,图形如上页所示.
由图可见,曲线当t 0 且无限增大时,
其无限与直线 y k 接近 , 且始终位于该直
线 下方. 在产品销售预测中,当预测销售量充
分接近到 k 值时,表示该产品在商业流通中将
达到市场饱和 .
练习题
1.设需求函数由 P+Q=1 给出,(1)求总收益 函数 P;(2)若售出 1/3 单位,求其总收益。
该点的横坐标称为供需平衡价格 .
供需平衡点 供需平 衡价格
Q0
E
P0
三、生产函数 生产函数刻画了一定时期内各生产
要素的投入量与产品的最大可能产量之
间的关系.一般说来,生产要素包括资金
和劳动力等多种要素 .为方便起见,我
们暂时先考虑只有一个投入变量,而其
他投入皆为常量的情况 .
例 2 设投入 x 与产出 g ( x ) 间的函数关系为
成本是生产一定数量产品所需要的
各种生产要素投入的价格或费用总额,
它由固定成本与可变成本两部分组成.
C总 C固 C可变
支付固定生产 要素的费用 支付可变生产 要素的费用
总 成 本 固 定 成 本 可 变 成 本 平 均 成 本 产量 产量
C ( Q ) C 1 C 2 (Q ) 即C AC Q Q Q
优选常用的经济函数介绍

An A0 (1 R)n
二、需求函数与供给函数
1、需求函数
需求的含义:消费者在某一特定的时期内, 在一定的价格条件下对某种商品具有购买力 的需要.
如果价格是决定需求量的最主要因素, 可以认为 需求量QD 是 价格P的函数。记作
QD QD (P)
4
所以总收益为TR(Q) P Q 100Q 3Q2 , 4
平均收益为 AR(Q) P(Q) 100 3Q . 4
2、利润函数
利润是生产中获得的总收益与投入的总成
本之差。即 (Q) TR(Q) TC(Q)
利润函数的三种情况:
Q TRQ TC Q 0 盈余状态 Q TRQ TC Q 0 亏损状态 Q TRQ TC Q 0 保本状态
所以 (Q) TR(Q) TC(Q)
20 18Q 0.5Q2
(20) 20 18 20 0.5 202
140(万元)
20
(20)
7
令20 18Q 0.5Q2 0
20
解得: Q1 1.15,Q2 34.85
例6 某厂生产一种产品,据调查其需求函数为 Q=-900P+45000,生产该产品的固定成本是 270000元,而单位产品的变动成本为10元,为 获得最大利润,出厂价格应为多少?
(舍去),
P2 15 Q2 6
三、成本函数与平均成本函数
1、成本函数
成本是生产一定数量产品所需要的各种生
产要素投入的价格或费用总额,它由固定成本 与可变成本两部分组成.
TC(Q) FC VC (Q)
2、平均成本函数
平均成本
总成本 产量
固定成本 可变成本 产量
03第三节常用经济函数

03 第三节常用经济函数常用经济函数是经济学中用来描述经济变量之间关系的数学模型。
这些函数可以用来分析经济发展、预测经济趋势、制定经济政策等。
下面介绍几种常用的经济函数及其含义。
一、消费函数消费函数是指消费者在某一时期内消费的商品或服务的数量与收入之间的函数关系。
通常表示为C=f(Y),其中C表示消费,Y表示收入。
消费函数曲线是一条向右上方倾斜的曲线,表示随着收入的增加,消费也会增加。
但在达到一定收入后,消费增长速度会逐渐减缓,甚至出现零增长或负增长。
二、投资函数投资函数是指企业在某一时期内进行的投资数量与资本存量之间的函数关系。
通常表示为I=f(K),其中I表示投资,K表示资本存量。
投资函数曲线是一条向右上方倾斜的曲线,表示随着资本存量的增加,投资也会增加。
但在达到一定资本存量后,投资增长速度会逐渐减缓,甚至出现零增长或负增长。
三、总供给函数总供给函数是指某一时期内,企业愿意且有能力提供的商品和服务的总量与价格水平之间的函数关系。
通常表示为Y=f(P),其中Y表示总供给,P表示价格水平。
总供给函数曲线是一条向右下方倾斜的曲线,表示随着价格水平的提高,总供给会减少。
但在达到一定价格水平后,总供给增长速度会逐渐减缓,甚至出现零增长或负增长。
四、总需求函数总需求函数是指某一时期内,消费者愿意且有能力购买的商品和服务的总量与价格水平之间的函数关系。
通常表示为Y=f(P),其中Y表示总需求,P表示价格水平。
总需求函数曲线是一条向右下方倾斜的曲线,表示随着价格水平的提高,总需求会减少。
但在达到一定价格水平后,总需求增长速度会逐渐减缓,甚至出现零增长或负增长。
五、菲利普斯曲线菲利普斯曲线是指通货膨胀率与失业率之间的函数关系。
通常表示为π=f(u),其中π表示通货膨胀率,u表示失业率。
菲利普斯曲线是一条向右下方倾斜的曲线,表示随着失业率的降低,通货膨胀率会上升。
但在达到一定失业率后,通货膨胀率增长速度会逐渐减缓,甚至出现零增长或负增长。
1.3 常用的经济函数介绍

4、收益函数与利润函数 TR(Q) PQ , AR P , (Q) TR(Q) TC (Q)
QS QS ( P )
称为供给函数.
常见的供给函数: 线性函数: QS aP b , a , b 0 幂函数:
QS kP a , a 0 , k 0
bP Q ae , a0,b0 指数函数: S
在同一个坐标系中作出需求曲线 D和供
给曲线 S ,两条曲线的交点称为供需均衡点, 该点的横坐标称为供需均衡价格 .
将本利和A1再存入, 第2期末的本利和为:
A2 A1 A1r A0 (1 r )2
再把本利和存入银行, 如此反复, 第t期末的本利和为:
At A0 (1 r )t
若按年为期, 年利率为R, 则第n年末的本利和为:
An A0 (1 R)n
二、需求函数与供给函数
1、需求函数
需求的含义:消费者在某一特定的时期内, 在一定的价格条件下对某种商品具有购买力 的需要. 如果价格是决定需求量的最主要因素, 可以认为 需求量QD 是 价格P的函数。记作
QD QD ( P )
称为需求函数.
常见的需求函数:
线性函数: QD aP b 幂函数: QD kP a 指数函数: QD ae bp ( 其中 a,b,k > 0 ) 需求函数QD=QD(P)的反函数,称为价格函 数,记为 P=P(QD)
TR(Q) PQ , AR P
例 4 设某商品的需求关系是 3Q+4P=100, 求总收 益和平均收益.
100 3Q P , 解 价格函数为 4
100Q 3Q 所以总收益为TR(Q ) P Q , 4 平均收益为 AR(Q ) P (Q ) 100 3Q . 4
经济学中常用的函数

例1 某产品销售70元/件, 可买出10000件, 价格每增 某产品销售 元 件 可买出 件 元就少买300件 的函数. 加3元就少买 件, 求需求量 Qd 与价格 p 的函数 元就少买 设价格由70元增加 个 元 解 设价格由 元增加 k个3元, 则
p = 70 + 3k , Qd = 10000 300k
p( x ) =
库存费为 (x/2) c, 故
为批数, 为库存量. 其中 a/x 为批数 x/2 为库存量
ab cx , x ∈ (0, a ]. + x 2
12
某矿厂A要将生产出的矿石运往铁路旁的冶炼厂 例6 某矿厂 要将生产出的矿石运往铁路旁的冶炼厂 B冶炼 已知该矿距冶炼厂所在铁路垂直距离为 a 公里 冶炼. 公里, 冶炼 公里. 它的垂足 C 到 B 的距离为 b公里 又知铁路运价为 m 元/ 公里 公里, 公里(m 为节省运费, 吨公里 公路运价是 n元/吨公里 < n), 为节省运费 公里 元 吨 公里 作为转运站, 拟在铁路上另修一小站 M 作为转运站 那么总运费的多 少决定于M的位置 试求出运费与距离 |CM| 的函数关系. 少决定于 的位置. 的函数关系 的位置 解 设 运费 CM= x , 运费为 y, 则
1 x + 40, x ∈ (0,1600] 40
10
工厂生产某种产品, 生产准备费1000元, 可变资 例4 工厂生产某种产品 生产准备费 元 本4元, 单位售价 元. 求: 元 单位售价8元 (1) 总成本函数 总成本函数; (3) 销售收入函数 销售收入函数; 解 (2) 单位成本函数 单位成本函数; (4) 利润函数 利润函数.
2
这个函数的几何形态, 这个函数的几何形态 是一条反应需求量与价格关系的 曲线, 我们称之为需求曲线, 如右图. 曲线 我们称之为需求曲线 如右图
常用经济函数

当 L R C 0 时, 生产者亏损;
当 L R C 0 时, 生产者盈亏平衡;
使 L( x) 0的点 x0称为盈亏平衡点(又称为
盈亏转折点、保本点).
平均利润L L( x) R( x) C( x) R C
x
x
《高等数学(一)》
辽宁对外经贸学院
解 据 C( x) C固 C变 , 可得每天总成本函数为
C( x) 160 8x, x [0,200] 每天总收益函数 R R( x) 10x, x [0,200]
《高等数学(一)》
辽宁对外经贸学院
每天总利润函数
L( x) R( x) C( x) 10x (160 8x) 2x 160,
即C C ( x) C0 C1 ( x)
x
x
《高等数学(一)》
辽宁对外经贸学院
例7 某工厂生产某产品,每日最多生产200单位.它的 日固定成本为150元, 生产一个单位产品的可变成本 为16元. 求该厂日总成本函数及平均成本函数.
解 据 C( x) C固 C变 , 可得总成本
C( x) 150 16x, x [0,200]
均衡 数量
均衡
Q0
价格
供求平衡点 E
P0
《高等数学(一)》
辽宁对外经贸学院
例6 某种商品的供给函数和需求函数分别为
Qs 25P 10, Qd 200 5P
求该商品的市场均衡价格和市场均衡数量.
解 由均衡条件 Qd Qs 得 200 5P 25P 10
30 p 210
P0 7 Q0 25P0 10 165
平均成本
C
(x)
C(x) x
16
经济学中常用的函数

微分学在经济中的应用§1 经济学中的常用函数一、需求函数消费者对商品有需求才是使商品在市场上得以流通的源动力。
这种源动力的核心主要有两个:一是购买商品的愿望,二是有购买商品的能力。
影响需求的因素有人口、收入、财产、价格和爱好等等。
忽略其他因素,只考虑与价格的关系就得到了需求函数)(P f D =, (1-1)需求函数通常是单调下降函数(如图1-1所示)。
产生下降的原因有两个:一是收入效应,二是替代效应。
注:需求量与价格有时也是按上升方式变化的。
例如,古画、文物等珍品价格越高,越被人门人为是珍品,因而需求量就越大。
下列函数可作为需求函数:线性函数 )0,0(>>-=b a bP a D , 二次函数 )0,0,0(2>≥>--=c b a cP bP a D ,指数函数 )0,0(>>=-b A Ae D bP ,幂 函 数 )0,0(>>=-ααA AP D 。
二、供给函数供给是生产者在一定时间内,在一定的价格水平下对某种商品愿意并能够出售的数量,需求是对消费者而言,供给是对生产者而言。
所以,供给和需求是相对的概念,这就是 说产生了和生产者之间的一对永恒的矛盾。
产生供给的条件有个,一是有出售商品的愿望,二是有供给商品的能力。
影响供给的因素有生产成本、技术成本、劳动力及价格等等。
忽略其他因素,只考虑与 价格的关系就得到了供给函数:)(P g Q =, (1-2)供给函数通常是单调上升函数(如图1-2所示)。
注:供给量与价格有时也是按下降方式变化的。
例如,古画、文物等珍品价格上升后,人们就会把存货拿出来出售,供给量增加,当价格上升到一定程度后,人们以为它更珍贵,就不会再提供给市场。
因而价格上涨供给量反而减少。
经常采用的供给函数有如下形式:线性函数 )0,0(>>+-=d c dP c Q , 二次函数 )0,0,0(2>≥>++-=c b a cP bP a Q ,指数函数 ),0,0,0(A B k B A B Ae Q kP >>>>-=, 幂 函 数 )0,0,0(>>>-=-ααB A BAP D 。
经济学中的常用函数

一 单利与复利
经济学中的常用函数
单利计算公式
初始本金为p , 利率为r
第1年末的本利和 s1 p rp p(1 r ) 第2年末的本利和 s2 p(1 r ) rp p(1 2r )
……
第n年末的本利和 sn p(1 nr )
目录
上页
下页
返回
结束
复利计算公式
所求总成本函数为 x2 C ( x ) 400 (万元) 100 平均成本函数为
C ( x ) 400 x C ( x) (万元 / 吨) x x 100
目录 上页 下页 返回 结束
小结
1. 函数的定义及函数的二要素 定义域 对应规律
2. 函数的特性
有界性, 单调性, 奇偶性, 周期性
Qd f d ( P )
均衡价格
目录 上页 下页
P
P
返回 结束
例2 设某商品的需求函数和供给函数分别为
Q d 190 5P,Q s 25P 20,
求该商品的市场均衡价格和市场均衡数量.
解 由均衡条件
Qd Q s 得
190 5P 25P 20
解得 p 7,
因此,市场均衡价格为 P0 7.
初始本金为p , 利率为r
第1年末的本利和 s1 p rp p(1 r )
第2年末的本利和 s2 p(1 r ) rp(1 r )
p(1 r )2
……
第n年末的本利和 sn p(1 r )
n
例1 现有初始本金100(元),若银行年储蓄利率为5%, 问: (1)按单利计算,3年末本利和为多少? (2)按复利计算,3年末本利和为多少?
(经济中常用的函数)精讲

R(400) 200 400 80000 元 R(600) 180 600 10000 118000 元
12
2.供给函数
供给函数,记为 S S ( p). 供给函数为价格 p 的单调增加函数.
线性供给函数为 S c dp (c 0, d 0) . 使某种商品的市场需求量与供给量相等 的价格 p0,称为均衡价格.
19500(元)
例1 当鸡蛋收购价为每 kg 4.5元时,某 收购站每月能收购5 000 kg .若收购价每 kg 提高0.1元,则收购量可增加400 kg ,求鸡蛋 的线性供给函数.
解 设鸡蛋的线性供给函数为 S c dp , 由题意有 5 000 c 4.5d, 5 400 c 4.6d. 解得 d 4 000 , c 13 000 ,所求供给函数为 S 13 000 4 000 p .
例8
某产品日产量不超过1000件,已知产
品的固定成本为500(元),每生产 x 件产品
1 2 的生产成本为 x 100 x ,每件售价为 6 1 400 x ,求利润函数以及销售400件时的 3
利润。
解
由题设成本函数
1 2 C C ( x) x 100 x 500 6
收入函数
10
例6 某产品每台售价200元,当年产量500台 以内时,可以全部售出;当年产量超过500台 时,经广告宣传后又可再多卖200台,这时需 要支付每台20元的广告费。生产再多,本年 就卖不出去了。试建立销售总收入 R 关于产 量 q 的收入函数。并求当产量为400台、600 台时的收入为多少元?
11
R R(Q) PQ QP .(Q)
9
经济数学中的函数都有哪些分类

经济数学中的函数都有哪些分类一、在经济学中的几个常用函数(一)需求函数与供给函数需求函数是指消费者在一定的价格水平上对某种商品有支付能力的需要:人们对某一商品的需求受许多因素的影响,如价格、收入、替代品、偏好等.一般研究中,需求量Qd是价格p的函数,此函数称为需求函数,记为Qd=f(p).供给函数是生产者或销售者在一定价格水平上提供市场的商品量.一般而言,供给量Qs是价格p的函数,记为Qs=g(p).(二)总成本函数成本是指生产制造产品所投入的原材料、人的劳动力与技术等生产资料的货币表现.它是产量的函数,记为C(x),其中x为产量.总成本函数由固定成本和可变成本两部分组成.固定成本与产品的产量(或销售量)x无关.可变函数是x的函数,因此总成本是x的函数,记为C(x)=C0+V(x)其中C0是固定成本,x是产量(或销售量),V(x)是可变成本.(三)总收益函数和总利润函数总收益函数是指一定量的产品出售后所得到的全部收入,若产品的销售单价为p,销售量为x,则总收益函数为R(x)=P(x).平均收益函数为R(x)=R(x)x=xP(x)x=P(x).若产品的销售量即是生产量,则生产x单位产品的总利润函数等于总收益函数与成本函数之差,即L(x)=R(x)-C(x).(四)边际函数与弹性函数设函数y=f(x)可导,则导函数f′(x)在经济学中又称为边际函数.设函数y=f(x)在点x0处可导,函数的相对改变量Δyy0=f(x0+Δx)-f (x0)f(x0)与自变量的相对该变量Δxx0之比,当Δx→0limΔx→0Δy/y0Δx/x0存在,则称此极限为f(x)在x=x0处弹性,记为EyEx|x=x0.若f(x)在任意x处可导,则称EyEx=xy·f′(x)为f(x)在x处的弹性函数.二、极限在经济方面的应用极限概念是微积分中最基本的概念.微积分中很多概念都是用极限概念来表达的.如导数和定积分在定义时都是建立在极限概念的基础之上.而在经济学中同样有很多概念也是通过极限概念来定义的.所以掌握极限的概念及其思想方法对于掌握经济学中重要概念有很大的帮助.下面就通过一个例子——复利与连续复利问题,来说明极限在经济学中应用.例1有本金10000元,存款一年,年利率为12%,求到期本利之和为:(1)如果一年计息1期;(2)按连续复利计息.三、经济中的最值问题在生产销售中,到处可见“最大、最小”这类问题.生产者追求最低成本,销售者要得到最大利润等等.这些实际问题的解决办法就要借助高等数学中的求解最大值与最小值的方法.例2某专门卖宠物用品连锁店的市场推销部门研究他们销售的金鱼缸泵价格需求曲线近似为p=120-20lnx(0<x<=""p=""style="user-select:initial!important;"></x 其中x为每周销售这种泵的数量,p是每个泵的价格(以元为单位).若每个泵的成本为30元,试求每周取得利润的最大值以及相应的每周泵的销售量.解由已知可求得收益函数R(x)为R(x)=px=(120-20lnx)x=120x-20xlnx.其成本函数为C(x)=30x,因此利润函数为L(x)=R(x)-C(x)=120x-20xlnx-30x=90x-20xlnx,则L′(x)=90-20lnx-20=70-20lnx.令L′(x)=0,求得L(x)的驻点为x=e72≈32.又因为L″(x)=-20x<0,所以L(x)在x=32处取得极大值.而在0<x<=""p=""style="user-select:initial!important;"></xL(32)=90×32-20×32ln32=640(元).此时相应每个泵的价格为p=120-20ln32≈50(元).四、定积分在经济学中的应用学了一元函数积分学后就知道在经济学中的成本函数,总收入函数,利润函数分别是边际成本函数,边际收入函数,边际利润函数的原函数.那么再根据定积分定义及其计算方法,便可求得相应的函数.例3已知某商品的边际收益为R′(x)=200-12x(元/单位),其中x表示该商品的产量.求该商品的总收益函数,并求当商品的产量达到100单位时总收益.解函数为R(x)=∫x0(200-12t)dt=[200t-t24]x0=200x-x24,则平均收益函数为R(x)=R(x)x=200-x4.当生产100单位时,总收益为R(100)=200×100-10024=17500(元),平均收益为R(100)=200-1004=175(元).。
1-6经济学中的常用函数

练习题答案
1 2 1. R = Q − Q , R( ) = ; 2 9 2. R = 0.11Q − 0.4 , P (15) = 0.0025, P (12) = 0.0034, P ( 20) = 0.0017, R(10) = 0.044, R(12) = 0.041, R(15) = 0.037; 3.C = C (Q ) = 200000 + 1000Q;
在时间 T 内的总费用 E 为
1 Q E = C1Tq + C 2 2 q 1 Q 为贮存费, 其中 , C1Tq 为贮存费, C 2 为进货费用 . 2 q
八、戈珀兹 (Gompertz) 曲线 戈珀兹 曲线是指数函数 y = ka
bc
在经济预测中,经常使用该曲线 在经济预测中,经常使用该曲线.
k
初始期 发展期
饱和期
0 当 lg a < 0 , < b < 1 时,图形如上页所示 . 且无限增大时, 由图可见 ,曲线当 t > 0 且无限增大时, 其无限与直线 y = k 接近 ,且始终位于该直
下方. 在产品销售预测中, 线 下方 在产品销售预测中,当预测销售量充 分接近到 k 值时,表示该产品在商业流通中 值时, 将达到市场饱和 .
平均收益为 100 Q − 3 Q AP ( Q ) = P ( Q ) = . 4
六、利润函数 利润是生产中获得的总收益与投入的 总成本之差。 总成本之差。即
L(Q ) = R(Q ) − C (Q )
例 5 设某种商品的总成本为C (Q) = 20 + 2Q + 0.5Q ,
2
万元, 若每售出一件该商品的收入是 20 万元, 求生产 10 件的总利润. 件的总利润.
(1-1) 经济函数

年订货与库存总成本
年订货与库存总成 本 C(q) 由 年 库 存 成 本与年订货成本组 成,即
q D C (q ) a b 2 q
q D a b 2 q
总 成 本
C (q )
O
q*
订货批量
如图3。其中 q* 为经 济批量。
图3 库存成本、订货成本与总成本曲线
案例2
a 某工厂生产某型号车床, 年产量为 台, 分若 干批进行生产,每批生产准备费为 b 元。设产品 均匀投入市场, 且上一批用完后立即生产下一批, 即平均库存量为批量的一半。设每年每台库存费 为 c 元。显然,生产批量大则库存费高;生产批 量少则批数增多,因此准备费高。为了选择最优 批量,试求出一年中库存费与生产准备费之和与 批量的函数关系。
1 2 R R(Q) 400Q Q , 0 Q 400 2
求利润函数。
解 总成本函数为
C C (Q) 20000 100Q
由会计学知, 未销售的产品进入产成品 仓库,本期核算利润时不予以考虑,则利 润函数为
L L(Q) R(Q) C (Q)
2
Q 300Q 20000, 2
案例1.8
六、库存函数
案例 1 设某公司按年度计划需要某种物资 D 单位,已知该物资每单位每年库存费为 a 元, 每次订货费为 b 元,为了节省总成本,分批 订货,假定公司对这种物资的使用是均匀的, 如何求订货与库存总成本最小的订货批量。
年平均库存量
q
q 2
T1
T2
Tn
年库存成本
设订货批量为 q 单 位,则年平均库存 量为 q/2,因为每单 位该物资每年库存 费为 a 元,则:年 库存成本=(q/2)×a。 可见,库存成本与 订货批量成正比, 如图1。
经济函数

一、常用的经济函数1、总成本函数、总收入函数、总利润函数总成本函数是指在一定时期内,生产产品时所消耗的生产费用之总和。
常用C 表示,可以看作是产量x 的函数,记作()C C x =总成本包括固定成本和可变成本两部分,其中固定成本F 指在一定时期内不随产量变动而支出的费用,如厂房、设备的固定费用和管理费用等;可变成本V 是指随产品产量变动而变动的支出费用,如税收、原材料、电力燃料等。
固定成本和可变成本是相对于某一过程而言的。
在短期生产中,固定成本是不变的,可变成本是产量x 的函数,所以()()C x F V x =+,在长期生产中,支出都是可变成本,此时0F =。
实际应用中,产量x 为正数,所以总成本函数是产量x 的单调增加函数,常用以下初等函数来表示:(1)线性函数 C a bx =+, 其中0b >为常数.(2)二次函数 2C a bx cx =++,其中0,0c b ><为常数.(3)指数函数 ax C be =, 其中,0a b >为常数.平均成本:每个单位产品的成本,即 ()C x C x=. 总收益函数是指生产者出售一定产品数量(x )所得到的全部收入,常用R 表示,即 ()R R x =其中x 为销售量. 显然,0(0)0Q R R ===,即未出售商品时,总收益为0.若已知需求函数()Q Q p =,则总收益的为1()()R R Q P Q Q p Q -==⋅=⋅ 平均收益:()R x R x=,若单位产品的销售价格为p ,则R p x =⋅,且R p =. 总利润函数是指生产中获得的纯收入,为总收益与总成本之差,常用L 表示,即 ()()()L x R x C x =-例 某工厂生产某产品,每日最多生产100个单位。
日固定成本为130元,生产每一个单位产品的可变成本为6元,求该厂每日的总成本函数及平均单位成本函数.解 设每日的总成本函数为C 及平均单位成本函数为C ,因为总成本为固定成本与可变成本之和,据题意有()1306(0100)130()6(0100)C C x xx C C x x x ==+≤≤==+<≤例 设某商店以每件a 元的价格出售商品,若顾客一次购买50件以上,则超出部分每件优惠10%,试将一次成交的销售收入R 表示为销售量x 的函数。
经济师函数知识点归纳总结

经济师函数知识点归纳总结经济师函数知识点归纳总结引言:经济学中的函数是研究经济现象和经济关系的重要工具。
函数是一种数学工具,可用来描述两个变量之间的关系。
经济师在研究经济问题时,通常会使用各种各样的函数来描述不同的经济关系。
本文将对经济师常用的函数进行归纳总结,希望能为读者提供一个全面而清晰的概览。
一、线性函数线性函数是最简单和最常用的函数之一,在经济学中被广泛应用。
线性函数的表达式为:y = ax + b。
(其中,a和b为常数)线性函数的特点是在平面坐标系中表示为一条直线。
例如,如果我们用y表示消费支出,x表示收入,那么x和y之间的关系可以用线性函数来描述。
二、二次函数二次函数是形如y = ax^2 + bx + c的函数,其中a、b和c都是常数。
二次函数的图形是一个抛物线,通常有一个最高点或最低点。
在经济学中,二次函数常用于描述边际效应和成本曲线。
例如,当我们研究某种产品的成本与产量之间的关系时,二次函数可以帮助我们更好地理解成本的变化情况。
三、指数函数指数函数是形如y = a^x的函数,其中a是一个常数。
指数函数的特点是随着x的增加,y值会以指数形式增长或下降。
指数函数在经济学中常用于描述增长率和复利的概念。
例如,当我们研究人口增长、经济增长或利息计算时,指数函数可以提供更准确的结果和预测。
四、对数函数对数函数是指形如y = loga x的函数,其中a是一个常数。
对数函数与指数函数是互逆的关系,即对数函数和指数函数互为反函数。
对数函数在经济学中也是常用的函数之一。
例如,当我们研究货币的时间价值、价格弹性或投资回报率时,对数函数可以为我们提供更多的信息和洞察。
五、多项式函数多项式函数是指形如y = a0 + a1x + a2x^2 + ... + anx^n 的函数,其中a0、a1、a2...a和n都是常数。
多项式函数在经济学中常用于描述复杂的经济关系和现象。
例如,当我们研究经济增长模型、生产函数或收益递减时,多项式函数可以提供更加灵活的表达和分析工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、不迟到、不早退、不旷课。
2、课堂精神饱满、遵守课堂纪律。
3、学习态度好、积极参与课堂活动。
4、按时按质的完成布置的课后作业和学习任务。
5、认真如实的填写信息反馈。
学时安排
4学时
第二部分:学习内容
一、总成本函数、总收入函数、总利润函数
产品成本是以货币形式表现的企业生产和销售产品的全部费用支出,成本函数表示费用总额与产量(或销售量)之间的依赖关系,产品成本可分为固定成本和变动成本两部分.其中固定成本 指在一定时期内不随产量变动而支出的费用,如厂房、设备的固定费用和管理费用等;可变成本 是指随产品产量变动而变动的支出费用,如税收、原材料、电力燃料等。一般地,以货币计值的(总)成本C是产量x的函数,即
例1-2设某商品的需求函数线性函数 ,其中 为常数,求 时的需求量和 时的价格。
解当 时, ,表示价格为零时,消费者对某商品的需求量为 ,这也是市场对该商品的饱和需求量。当 时, 为最大销售价格,表示价格上涨到 时,无人愿意购买该产品。
供给量是指在一定时期内生产者愿意生产并可向市场提供出售的商品量,供给价格是指生产者为提供一定量商品愿意接受的价格,将供给量 也看作价格 的函数,记为
2、掌握利息的各种算法。
学习难点
1、数学知识和实际问题的结合;
2、建立数学模型;
3、连续复利的公式推导。
学习思路
了解经济函数的概念---掌握各函数的特性---挖掘各函数的联系---建立模型计算相关经济问题---掌握利息的算法---巩固练习---小结
基础知识
初等数学、极限
教学方法
讲授法、案例教学、情景教学法、启发式
1、单利与复利
利息是指借款者向贷款者支付的报酬,它是根据本金的数额按一定比例计算出来的.利息又有存款利息、贷款利息、债券利息、贴现利息等几种主要形式.
单利计算公式
设初始本金为p(元),银行年利率为r.则
第一年末本利和为
第二年末本利和为
……
第n年末的本利和为 .
复利计算公式
设初始本金为p(元),银行年利率为r.则
二、需求函数与供给函数
需求量指的是在一定时间内,消费者对某商品愿意而且有支付能力购买的商品数量。
经济活动的主要目的是在于满足人们的需求,经济理论的主要任务之一就是分析消费及由此产生的需求。但需求量不等于实际购买量,消费者对商品的需求受多种因素影响,例如,季节、收入、人口分布、价格、等等。其中影响的主要因素是商品的价格,所以,我们经常将需求量 看作价格 的函数,记为
学习情景一:常见经济函数
第一部分:学习任务分解
学习领域
数学核心能力应用模块
学习目标
1、理解成本函数、收入函数及利润函数的概念;
2、掌握成本函数、收入函数及利润函数的关系及计算方法;
3、理解供给函数与需求函数的概念;
4、了解市场均衡的意义;
5、掌握利息的不同算法。
学习重点
1、掌握成本函数、收入函数及利润函数的计算方法;
一般说来,价格上涨刺激生产者向市场提供更多的商品,使供给量增加,价格下跌使供给量减少,即供给函数是价格( )的单调增加函数。常用以下简单的初等函数来表示:
(1)线性函数 ,其中 为常数。
(2)指数函数 ,其中 为常数。供给量也受多种因素影响,
(3)幂函数 ,其中 为常数。
当市场上需求量 与供给量 一致时,即 ,商品的数量称为均衡数量,记为 ,商品的价格称为均衡价格,记为 。例如,由线性需求和供给函数构成的市场均衡模型可以写成
(1)线性函数 ,其中 为常数.
(2)二次函数 ,其中 为常数.
(3)指数函数 ,其中 为常数.
成本函数是单调增加函数,其图象称为成本曲线.
设 为成本函数,称 为单位成本函数或平均成本函数.
例1-1某工厂生产某产品,每日最多生产100个单位。日固定成本为130元,生产每一个单位产品的可变成本为6元,求该厂每日的总成本函数及平均单位成本函数.
例1-3已知某商品的需求函数和供给函数分别为
求该商品的均衡价格。
解由均衡条件 可知
所以均衡价格价格为
例1-4已知某产品的价格为 元,需求函数为 ,成本函数为 元,求产量 为多少时利润 最大?最大利润是多少?
解因为需求函数为 , ,所以收益函数为
利润函数
因此, 时利润最大,且最大利润是30元。
三、利息函数
解设每日的总成本函数为 及平均单位成本函数为 ,因为总成本为固定成本与可变成本之和,据题意有
总收益函数是指生产者出售一定产品数量( )所得到的全部收入,常用 表示,即
其中 为销售量.显然, ,即未出售商品时,总收益为0.
若已知需求函数 ,则总收益的为
平均收益: ,获得的纯收入,为总收益与总成本之差,常用 表示,即
例设某商店以每件 元的价格出售商品,若顾客一次购买50件以上,则超出部分每件优惠10%,试将一次成交的销售收入 表示为销售量 的函数。
解由题意,一次售出50件以内的收入为 元,而售出50件以上是,收入为
所以一次成交的销售收入 是销售量 的分段函数
第一年末本利和为
第二年末本利和为
……
称其为(总)成本函数.当产量 时,对应的成本函数值 就是产品的固定成本值.固定成本和可变成本是相对于某一过程而言的。在短期生产中,固定成本是不变的,可变成本是产量 的函数,所以 ,在长期生产中,支出都是可变成本,此时 。实际应用中,产量 为正数,所以总成本函数是产量 的单调增加函数,常用以下初等函数来表示:
解方程,可得均衡价格 和均衡数量 :
由于 >0, ,因此有 .
当市场价格高于 时,需求量减少而供给量增加,反之,当市场价格低于 时,需求量增加而供给量减少。市场价格的调节就是利用供需均衡来实现的。
经济学中常见的还有生产函数(生产中的投入与产出关系)、消费函数(国民消费总额与国民生产总值即国民收入之间的关系)、投资函数(投资与银行利率之间的关系)等等。
通常假设需求函数是单调减少的,需求函数的反函数
在经济学中也称为需求函数,有时称为价格函数.
一般说来,降价使需求量增加,价格上涨需求量反而会减少,即需求函数是价格 的单调减少函数。常用以下简单的初等函数来表示:
(1)线性函数 ,其中 为常数.
(2)指数函数 ,其中 为常数.
(3)幂函数 ,其中 为常数.