20年6月西南大学高等数学0917大作业(参考答案)

合集下载

西南大学20年6月[0350]数学教育学机考大作业参考答案

西南大学20年6月[0350]数学教育学机考大作业参考答案

西南大学网络与继续教育学院课程考试试题卷
类别:网教2020年5月
课程名称:数学教育学(方法论)【0350】
A卷大作业满分:100 分
要答案:wangjiaofudao
一、简述题(共计30分)
1. 简述教学评价对数学教学的功能。

(10分)
2. 简述数学教学原则中的“渗透数学思想方法原则”(20分)
二、实践与综合运用题(共计70分)
(一)选择以下知识点之一(共计30分)
分数的概念(小学)
平方差公式(初中)
函数的单调性(高中)
(1)分析教材,指出该知识点渗透了哪些数学思想方法(10分)
(2)分析学生学习该知识点的思维障碍或者容易出现的典型错误及原因(10分)(提示:该知识点的“思维障碍”与“典型错误”可选择其中之一进行分析), (3)提出相应的教学策略(10分)
(没有固定评分标准,根据回答情况酌情给分)(二)根据所提出的教学策略,设计简要的教学过程(40分)
答题提示:教学过程设计具有整体性,各环节衔接自如,结构紧凑;在渗透数学思想方法、突破学生思维障碍或纠正典型错误上与上述(一)的回答有一定的联系。

(没有固定评分标准,根据回答情况酌情给分)。

西南大学20年6月[0135]数学物理方法考试大作业参考答案

西南大学20年6月[0135]数学物理方法考试大作业参考答案

西南大学网络与继续教育学院课程考试试题卷
类别:网教
课程名称【编号】:数学物理方法【0135】
A卷大作业满分:100 分
要答案:wangjiaofudao
请对下列五个大题解答,要求写出必要的解题步骤.
一、求解下列各题(共4题,选做3题,每题10分,共30分)
计算计算解方程解方程
二、求解下列各题(共2题,选做1题,共15分)
证明函数在复平面上解析,并求的导数.
2、已知解析函数的虚部为,求.
三、求下列积分(共4题,选做2题,每题10分,共20分)
1、2、3、4、
四、求解下列各题(共3题,每题5分,共15分)
求幂级数的收敛半径.
将函数在内展成的幂级数.
3、把函数在内展成洛朗(Laurent)级数.
五、求解下列各题(共2题,每题10分,共20分)
1、试用分离变量法求解以下定解问题
答题要求:请用分离变量法求解,用其它方法求解不得分,并要求写出必要的解题步骤.
2、求解圆内的定解问题(10分)求解定解问题,
其中A为已知正常数.
答题要求:可用任何方法求解,要求写出必要的解题步骤.。

西南大学《 高等数学(上)》课程试题 〖B〗卷答案

西南大学《  高等数学(上)》课程试题 〖B〗卷答案

2015级《高等数学(上)》课程试题〖B 〗卷西南大学物理科学与技术学院2015级《高等数学(上)》课程试题〖B 〗卷参考答案命题人:西南大学 张文品 审题人:西南大学 张旭 (副教授)一、 填空题(每小题2分,共20分)1. .2..3.(1,-1)4.C5.6.17. 8.9.(-∞,0)和(1,+∞).10.二、单选题(每小题3分,共15分)1.A2.B3.D4.B5.C 6e a 1x =0()()dx x x x x dy x x y ⎪⎪⎭⎫ ⎝⎛--+--+=--+=1211211111212⎰=dx x f n )()(⎰++=+c n x dx n x )2sin()2cos(ππ1lim n nn k →∞→∞==1lim n n k →∞==1=⎰10ln(|ln(1x =+=+三、计算题(共4题,每小题6分,共24分)1.(本小题6分).;解:原式=(6分)2.(本小题6分)………2分…………4分……………6分3.(本小题6分)求不定积分解:………2分…………4分)233(lim 112-+-∞→x x x x ()211112113ln )33(3ln lim 23ln 13323ln lim 1233lim =+=-⋅=-+-∞→-∞→-∞→x x x x x x x x x xx 原式=-+→lim ln()x x xa b x 0212=-+→lim ln ln x x x a a b bx 012=14ln a b 1sin 1cos xdx x ++⎰1sin1sin 1cos 1cos 1cos x xdx dx dxx x x +=++++⎰⎰⎰21cos sec 221cos xd xdx x =-+⎰⎰……………6分4.(本小题6分).计算定积分。

解:……2分…………….4分………………………6分四 . 解答题(共4小题,每小题8分,共32分)1.(本小题8分)设函数由方程确定,求以及解:方程两边求导…………2分 (5)分 ,……………8分2. (本小题8分)解:……………2分 ……….4分 …………6分 …………….8分tan ln |1cos |2x x C =-++1241sin (1x x dx x -++⎰1112244111sin sin ((11x x x dx x dx x dx x x ---=+++⎰⎰⎰11(0x dx -=+⎰sin 22202sin cos x t t tdt π==⎰8π==()y y x sin()1x y e xy ++='()y x '(0)y (1)cos()()0x y e y xy xy y +''+++=cos()()cos()x y x y e y xy y x e x xy +++'=-+0,0x y ==(0)1y '=-. 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x fx 10330()x f x dx xe dx ---=+⎰⎰⎰030()x xd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--3. (本小题8分)1. 设函数连续,在x ≠0时二阶可导,且其导函数的图形如图所示,给出的极大值点、极小值点以及曲线的拐点。

2020年全国大学高等数学考试及答案解析

2020年全国大学高等数学考试及答案解析

2020年全国大学高等数学考试试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰x(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆(6)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) ()()(),,(),,A A C B C B A C B C C A C B C D A C B C 与相似与相似与相似与不相似与不相似与相似与不相似与不相似(7) 若A,B 为任意两个随机事件,则 ( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (1) 已知函数21()1f x x=+,则(3)(0)f =__________ (2) 微分方程'''230y y y ++=的通解为y =_________(3) 若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则 a =__________(4)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰(5)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (1)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求0x dy dx=,22x d y dx=(2)(本题满分10分)求21lim ln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑(3)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(4)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x =12()()()(),写出()f x 的求导公式.(5)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.(6) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.(7)(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换X QY =下的标准型221122y y λλ+,求a 的值及一个正交矩阵Q(8)(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为1(0)(2)2P X P X ====,Y 的概率密度为201()0,y y f y <<⎧=⎨⎩,其他()I 求()P Y EY ≤()∏求Z X Y =+的概率密度。

西南大学数学分析作业答案

西南大学数学分析作业答案

西南⼤学数学分析作业答案三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x .解: 902070902070902070583155863lim)15()58()63(lim=?-??-?→x x x x x x x x 2.求极限 211lim ()2x x x x +→∞+-.解:211lim ()2x x x x +→∞+=-21111lim 2211xx x x x x →∞++ ? ??= ? ? ? ? --?211lim 21xx x x →∞?+= -2(4)21[(1)]lim2[(1)]x x x x x264e e e-==.3.求极限 1 111lim (1)23n n n→∞++++解:由于11 1111(1)23nn n n≤++++≤ ,⼜lim 1n →∞=,由迫敛性定理1111lim (1)123n n n→∞4.考察函数),(,lim)(+∞-∞∈+-=--∞→x nn n n x f xx x xn 的连续性.若有间断点指出其类型.解:当0x <时,有221()limlim11x x x xxxn n n n n f x n nn--→∞→∞--===-++;同理当0x >时,有()1f x =.⽽(0)0f =,所以1,0()sgn 0,01,0x f x x x x -===??>?。

所以0是f 的跳跃间断点.四、证明题设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正整数N ,使得当N n >时,有n n b a <.证由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞lim b a b b n n +>=∞→,所以,⼜存在02>N ,使得当2N n >时有2b a b n +>. 于是取},max{21N N N =,当N n >时,有n n b b a a <+<2《数学分析选讲》第⼆次主观题作业⼀、判断下列命题的正误1. 若函数在某点⽆定义,则在该点的极限可能存在.2. 若)(x f 在[,]a b 上连续,则)(x f 在[,]a b 上⼀致连续.3. 若()f x 在[,]a b 上有定义,且()()0f a f b <,则在(,)a b 内⾄少存在⼀点ξ,使得()0f ξ=.4. 初等函数在其定义区间上连续. 5.闭区间[,]a b 的全体聚点的集合是[,]a b 本⾝.⼆、选择题1.下⾯哪些叙述与数列极限A a n n =∞→lim 的定义等价()A )1,0(∈?ε,0>?N ,N n ≥?,ε≤-||A a n ;B 对⽆穷多个0>ε,0>?N ,N n >?,ε<-||A a n ;C 0>?ε,0>?N ,有⽆穷多个N n >,ε<-||A a n ;D 0>?ε,有}{n a 的⽆穷多项落在区间),(εε+-A A 之内2.任意给定0>M ,总存在0>X ,当X x -<时,M x f -<)(,则()A -∞=-∞→)(lim x f x ; B -∞=∞→)(lim x f x ; C ∞=-∞→)(lim x f x ; D ∞=+∞→)(lim x f x3.设a 为定数.若对任给的正数ε,总存在0>X ,当X x -<时,()f x a ε-<,则().A lim ()x f x a →+∞=; B lim ()x f x a →-∞=; C lim ()x f x a →∞=; D lim ()x f x →∞=∞A 2e ;B 2e - ;C 1e - ;D 1 5.21sin(1)lim1x x x →-=-()A 1 ;B 2 ;C 21 ; D 06.定义域为],[b a ,值域为),(∞+-∞的连续函数() A 存在; B 可能存在; C 不存在; D 存在且唯⼀7.设 =)(x f 1(12) , 0 , 0x x x k x ??-≠??=? 在0=x 处连续,则=k ()A 1 ;B e ;C 1- ;D 21e8.⽅程410x x --=⾄少有⼀个根的区间是()A 1(0,)2; B 1(,1)2; C (2,3) ; D (1,2) 三、计算题1.求极限 n nn 313131212122++++++∞→ 2.求极限lim n →∞+++3.求极限 )111)(110()110()13()12()1(lim2222--++++++++∞→x x x x x x x4.求极限 112sin lim-+→x x x四、证明题设,f g 在],[b a 上连续,且()(),()()f a g a f b g b ><. 证明:存在(,),a b ξ∈使得()()f g ξξ=.数学分析选讲作业系统1、若f,g 均为区间I 上的凸函数,则f+g 也为I 上的凸函数。

西南大学答案(数学)

西南大学答案(数学)

高二年级2017-2018学年度第一学期期末数学试题答案1.计算机执行下面的程序后,输出的结果是()a=1b=3a=a+bb=a-bPRINT a,bENDA.1,3 B.4,1C.0,0 D.6,0解析本题考查了算法的基本语句.∵a=1,b=3,∴a=a+b=1+3=4.∴b=a-b=4-3=1.答案 B2.下面是2×2列联表:则表中a,bA.94,72 B.52,50C.52,74 D.74,52解析∵a+21=73,∴a=52,又a+22=b,∴b=74.答案 C3对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析 由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p 1=p 2=p 3,故选D.答案 D4某地区高中分三类,A 类学校共有学生2 000人,B 类学校共有学生3 000人,C 类学校共有学生4 000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为( )A.110B.920C.12 000D.12解析 利用分层抽样,每个学生被抽到的概率是相同的,故所求的概率为9002 000+3 000+4 000=110.5(理科)在区间⎝⎛⎭⎪⎫0,π2上随机取一个数x ,使得0<tan x <1成立的概率是( )A.18B.13C.12D.2π解析 由0<tan x <1,得0<x <π4, 故所求概率为π4π2=12.答案 C(文科)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 由(2x -1)x =0⇒x =0或x =12,所以应选B. 答案 B解析 由逆否命题的含义知,D 正确. 答案 D6对x ∈R ,关于x 的不等式f (x )>0有解”等价于( ) A .∃x 0∈R ,使得f (x 0)>0成立 B .∃x 0∈R ,使得f (x 0)≤0成立 C .∀x ∈R ,总有f (x )>0成立 D .∀x ∈R ,总有f (x )≤0成立解析 “对x ∈R ,关于x 的不等式f (x )>0有解”的意思就是∃x 0∈R ,使得f (x 0)>0成立,故选A.答案 A7(理科)已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析 由椭圆的定义知:|BA |+|BF |=|CA |+|CF |=2a (F 是椭圆的另外一个焦点),∴周长为4a =4 3.答案 C(文科)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y 25=1B.x 24-y 25=1 C.x 22-y 25=1D.x 22-y 25=1解析 由双曲线C 的右焦点为F (3,0),知c =3. 由e =c a =32,则a =2,故b 2=c 2-a 2=9-4=5, 所以双曲线C 的方程为x 24-y 25=1. 答案 B8如果命题“p q ⌝∨()”是假命题,那么正确的是( )A .p ,q 均为真命题B .p ,q 中至少有一个为真命题C .p ,q 均为假命题D .p ,q 中至多有一个为真命题 解析 由题意知,p ∨q 为真命题, 所以p ,q 中至少有一个为真命题. 答案 B9已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p 的值为( )A .1B .2 C.12D .4解析 圆的标准方程为(x -3)2+y 2=16,圆心为(3,0),半径为4.圆心到准线的距离为3-⎝ ⎛⎭⎪⎫-p 2=4,解得p =2.答案 B10命题“若a <0,则一元二次方程x 2+x +a =0有实根”与其逆命题、否命题、逆否命题中真命题的个数是( )A .0B .2C .4D .不确定解析 当a <0时,Δ=1-4a >0,所以方程x 2+x +a =0有实根,故原命题为真;根据原命题与逆否命题真假一致,可知其逆否命题为真;逆命题为:“若方程x 2+x +a =0有实根,则a <0”,因为方程有实根,所以判别式Δ=1-4a ≥0,所以a ≤14,显然a <0不一定成立,故逆命题为假;根据否命题与逆命题真假一致,可知否命题为假.故正确的命题有2个.答案 B11(理科)方程(x -y )2+(xy -1)2=0表示的曲线是( )A .一条直线和一条双曲线B .两条直线C .两个点D .4条直线解析 由(x -y )2+(xy -1)2=0得⎩⎪⎨⎪⎧x -y =0,xy -1=0,∴⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.即方程表示两个点(1,1)和(-1,-1). 答案 C(文科)若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线解析 ∵PM →·PN →=0,∴PM ⊥PN .∴点P 的轨迹是以线段MN 为直径的圆.答案 A12.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析 设C (x ,y ),则OC→=(x ,y ),OA →=(3,1),OB →=(-1,3),∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2.又λ1+λ2=1,∴x +2y -5=0,表示一条直线. 答案 A13.双曲线x 216-y 29=1的两条渐近线的方程为________. 解析 本题考查双曲线的渐近线方程.由a 2=16,b 2=9,得渐近线方程为y =±b a x =±34x . 答案 y =±34x14.执行如图所示的程序框图,若输入x =9,则输出y =________.解析 x =9时,y =93+2=5,|y -x |=|5-9|=4<1不成立;x =5,y =53+2=113,|y -x |=⎪⎪⎪⎪⎪⎪113-5=43<1不成立;x =113,y =119+2=299,|y -x |=⎪⎪⎪⎪⎪⎪299-113=49<1成立,输出y =299.答案 29915.已知两定点A (-1,0),B (2,0),动点P 满足|P A ||PB |=12,则P 点的轨迹方程是__________.解析 设P (x ,y ),则根据两点间距离公式,得 |P A |=(x +1)2+y 2,|PB |=(x -2)2+y 2, 又∵|P A ||PB |=12,∴(x +1)2+y 2(x -2)2+y 2=12. 整理,得(x +2)2+y 2=4即为所求. 答案 (x +2)2+y 2=416.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).解析 第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种). 答案 3617.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.条件p :x ∈A ,条件q :x ∈B ,并且p 是q 的充分条件,求实数m 的取值范围.解 化简集合A ,由y =x 2-32x +1,得y =⎝ ⎛⎭⎪⎫x -342+716. ∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴y min =716,y max =2.∴y ∈⎣⎢⎡⎦⎥⎤716,2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪716≤y ≤2.化简集合B ,由x +m 2≥1,得x ≥1-m 2,B ={x |x ≥1-m 2}. ∵p 是q 的充分条件,∴A ⊆B . ∴1-m 2≤716,解得m ≥34或m ≤-34.∴实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.18.某校为了比较“传统式教学法”与该校所创立的“三步式教学法”的教学效果.共选100名学生随机分成两个班,每班50名学生,其中一班采取“传统式教学法”,二班实行“三步式教学法”.(1)若全校共有学生2 000名,其中男生1 100名,现抽取100名学生对两种教学法的受欢迎程度进行问卷调查,应抽取多少名女生?(2)表1,2分别为实行“传统式教学法”与“三步式教学法”后的数学成绩:表1的前提下认为这两种教学法有差异.参考公式:K 2=(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c+d .参考数据:解 (1)设抽取女生x 人,则2 000-1 100=x ,解得x =45,所以女生抽取45人. (2)列联表如下:K 2的观测值k =80×20×50×50=6.25,由此可知在犯错误的概率不超过0.05的前提下认为这两种教学法有差异,不能在犯错误的概率不超过0.01的前提下认为这两种教学法有差异.19.已知椭圆的两焦点为F 1(-1,0)、F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|.(1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积. 解 (1)依题意得|F 1F 2|=2,又2|F 1F 2|=|PF 1|+|PF 2|,∴|PF 1|+|PF 2|=4=2a .∴a =2,c =1,b 2=3. ∴所求椭圆的方程为x 24+y 23=1.(2)设P 点坐标为(x ,y ),∵∠F 2F 1P =120°, ∴PF 1所在直线的方程为y =(x +1)·tan120°, 即y =-3(x +1).解方程组⎩⎨⎧y =-3(x +1),x 24+y 23=1,并注意到x <0,y >0,可得⎩⎨⎧x =-85,y =335.∴S △PF 1F 2=12|F 1F 2|·335=335.20.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x,y的值.解(1)用分层抽样的方法在35~50岁中抽取一个容量为5 样本,设抽取学历为本科的人数为m,∴3050=m5,解得m=3.抽取的样本中有研究生2人,本科生3人,分别记作S1,S2;B1,B2,B3.从中任取2人的所有等可能基本事件共有10个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B1,B 3),(B 2,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人学历为研究生的概率为710. (2)由题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20, ∴4880+x =2050=1020+y,解得x =40,y =5. 即x ,y 的值分别为40,5.21.已知抛物线y 2=4x 截直线y =2x +m 所得弦长AB =35,(1)求m 的值;(2)设P 是x 轴上的一点,且△ABP 的面积为9,求P 的坐标.解 (1)由⎩⎪⎨⎪⎧y 2=4x y =2x +m⇒4x 2+4(m -1)x +m 2=0,由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24, |AB |=1+k 2(x 1+x 2)2-4x 1x 2 =1+22(1-m )2-4·m24=5(1-2m ).由|AB |=35,即5(1-2m )=35⇒m =-4. (2)设P (a,0),P 到直线AB 的距离为d , 则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d , 则d =2·S △ABP |AB |,2|a -2|5=2×935⇒|a -2|=3⇒a =5或a =-1, 故点P 的坐标为(5,0)或(-1,0).22.在Rt △ABC 中,∠CAB =90°,AB =2,AC =22,一曲线E 过C 点,动点P 在曲线E 上运动,且保持|P A |+|PB |的值不变.(1)建立适当的坐标系,求曲线E 的方程;(2)直线l :y =x +t 与曲线E 交于M ,N 两点,求四边形MANB 的面积的最大值.解 (1)以AB 为x 轴,以AB 中点为原点O 建立直角坐标系,∵|P A |+|PB |=|CA |+|CB |=22+22+⎝ ⎛⎭⎪⎫222=22>|AB |,∴动点P 的轨迹为椭圆,且a =2,c =1,从而b =1. ∴曲线E 的方程为x 22+y 2=1.(2)将y =x +t 代入x 22+y 2=1,得3x 2+4tx +2t 2-2=0. 设M (x 1,y 1),N (x 2,y 2),∴⎩⎪⎨⎪⎧Δ=16t 2-4×3×(2t 2-2)>0, ①x 1+x 2=-4t 3, ②x 1x 2=2t 2-23, ③由①得t 2<3,∴S 四边形MANB =12|AB ||y 1-y 2|=|y 1-y 2|=|x 1-x 2| =236-2t 2≤263.所以四边形MANB 的面积最大值是263.。

20年6月西南大学高等数学0917大作业(参考答案)

20年6月西南大学高等数学0917大作业(参考答案)

西南大学网络与继续教育学院课程考试试题卷学期:2020年春季课程名称【编号】:高等数学【0917】 A卷考试类别:大作业满分:100 分(一)计算题(本大题共9小题,任意选做4个小题,每小题20分,共80分)1. 求错误!未找到引用源。

.2. 求不定积分错误!未找到引用源。

.3. 求定积分错误!未找到引用源。

.4. 求函数错误!未找到引用源。

的导数.解:y′=[(x+sin²x)³]′=3(x+sin²x)2(x+sin²x)′=3(x+sin²x)2[1+2sinx·(sinx)′]=3(x+sin²x)2(1+sin2x).5. 求函数错误!未找到引用源。

的极值.解:f′(x)=6x(x2-1)2令f′(x)=0,解得x1=-1,x2=0,x3=1当x=0时,f(x)有极小值,极小值是0,无极大值6. 求函数的二阶偏导数及.7.计算函数的全微分.解:аu/аx=1аu/аy=1/2cosy/2+ze^yzаu/аz=ye^yzdu=dx+(1/2cosy/2+ze^yz)dy+ye^yzdz8. 求微分方程的通解.解:先移项:dy/y=2xdx再两边同时积分得到:ln|y|=x^2 + C'|y|=e^(x^2 + C')即:y=e^(x^2+C)=Ce^(x^2),即为通解9. 计算,其中是抛物线及直线所围成的闭区域.错误!未找到引用源。

(二)证明题(本大题共1小题,必做,共20分)1. 证明方程在区间(-1,0)内有且只有一个实根.- 1 -。

高等数学 【0917】试题及答案

高等数学 【0917】试题及答案

西南大学网络与继续教育学院课程考试试题卷类别:网教专业:机电一体化技术、车辆工程、电力系统自动化技术、软件工程 2016年12月课程名称【编号】:高等数学【0917】 A卷大作业满分:100 分(一)计算题(本大题共9小题,每小题10分,共90分)1. 求.2.求不定积分.3. 求定积分.4. 求函数的微分.5. 求函数的极值.6. 计算抛物线与直线所围图形的面积.7. 求函数的全微分.8. 求三元函数的偏导数.9. 求解微分方程(二)证明题(本大题共1小题,每小题10分,共10分)1. 证明方程有且仅有一个小于1的正实根. (一)计算题1、解:2、解:3、解:⎰⎰---=11xx xdedxxe⎪⎭⎫⎝⎛--=⎰--11dxexe xx()()⎥⎦⎤⎢⎣⎡-+--=⎰--110xdee x⎪⎭⎫⎝⎛+-=--11xee()[]111-+-=--ee121--=e4、解:因为'23')(xexy=xx exex232223+=)23(22xex x+=所以dxxexdxydy x)23(22'+==5、解:f(x)=(x2-1)3+1f`(x) =3(x2-1)2 2x=6x(x+1)2(x-1)2令f`(x) =0得x=0,-1,1而x<-1,f'(x)<0,函数单调递减-1<x<0,f'(x)<0,函数单调递减0<x<1,f'(x)>0,函数单调递增x>1,f'(x)>0,函数单调递增所以函数在x=0处取得极小值为f(0)=06、解:面积微元:所求面积:7、解:8、解:把y和z看作常数,对x求导得把x和z看作常数,对y求导得把x和y看作常数,对z 求导得9、解:原方程变形为(齐次方程)令则故原方程变为即分离变量得两边积分得或回代便得所给方程的通解为(二)证明题(本大题共1小题,每小题10分,共10分)证:设()155+-=xxxf,则()x f在[0,1]上连续,且()10=f,()31-=f,由介值定理,存在()1,0∈x使()0=xf,即为方程的小于1的正实根.设另有()1,01∈x,1xx≠,使()01=xf因为()xf在1,xx之间满足罗尔定理的条件,所以至少存在一点ξ(在1,xx之间),使得()0'=ξf,但()()()()1,015'4∈<-=xxxf,导致矛盾,故x为唯一实根.。

20年6月西南大学课程考试[0692]《数学课程标准解读》大作业(参考答案)

20年6月西南大学课程考试[0692]《数学课程标准解读》大作业(参考答案)

学生:
面积s是时间t的函数,因为对于每一个确定的t值,都有唯一确定的一个面积s跟它对应。

教师:好,那我给你一个具体的时间t,你怎么得到与之相对应的面积?
学生:根据图像。

教师:那你能说出1991对应的面积吗?
学生:20。

教师:前面实例中的对应关系是用解析式表示的,那这个实例中的对应关系也得用一个解析式表示吗?
学生:不用。

教师:那我们如何记录这个对应关系呢?
由学生思考,教师启发得出用图像记录这个对应关系。

教师:好,那是不是对任何一个时间,通过图像,都有面积跟它对应呢?
学生:不是,对于2001
1979~之间的每一个时间,都有唯一的面积跟它相对应。

2020年全国大学高等数学考试试题及答案

2020年全国大学高等数学考试试题及答案
【解析】

因为 在 可导,且为极值,所以 ,则

(3)(本题满分10分)
【解析】显然 为方程一个实根.
当 时,令

令 ,

即 .
又因为 ,
即当 时, ; 当 时, .
当 时, ;当 时, .
所以当 时, 单调递减,当 时, 单调递增
又由 ,

所以当 时,由零点定理可知 在 , 内各有一个零点;
当 时,则 在 , 内均无零点.
(5)若二次曲面的方程 ,经过正交变换化为 ,则 .
(6)设二维随机变量 服从正态分布 ,则 =.
三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.
(1)(本题满分10分)
求极限 .
(2)(本题满分9分)
设函数 ,其中函数 具有二阶连续偏导数,函数 可导且在 处取得极值 ,求 .
综上所述,当 时,原方程有三个根.当 时,原方程有一个根.
(4)(本题满分10分)
设奇函数 上具有2阶导数,且 证明:
(III)存在
(IV)存在 ,使得
【解析】(1)令
则 使得
(2)令 则
又由于 为奇函数,故 为偶函数,可知 ,
则 使
即 ,即
(5)(本题满分10分)
设直线L过 两点,将L绕Z轴旋转一周得到曲面 所围成的立体为 ,
又 ,从而 。
(7)设 是随机变量,且 ,
则( )
(A)
(B)
(C)
(D)
【答案】(A)
【解析】由 知,

,故 .
由根据 及概率密度的对称性知, ,故选(A)
(8)设随机变量 给定 常数c满足 ,则 ( )

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案西南大学《社会科学研究方法》网上作业题及答案.doc 西南大学《色彩》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题及答案.doc 西南大学《区域分析与规划》网上作业题及答案.doc西南大学《园艺植物研究法》网上作业题答案.doc西南大学《遗传学》网上作业题答案.doc西南大学《仪器分析》网上作业题答案.doc西南大学《消费者行为学》网上作业题答案.doc西南大学《西方经济学(下)》网上作业题答案.doc西南大学《文字设计》网上作业题答案.doc西南大学《外语教育技术》网上作业题答案.doc西南大学《外国音乐简史》网上作业题答案.doc西南大学《土地利用规划学》网上作业题答案.doc西南大学《土地规划学》网上作业题答案.doc西南大学《商务沟通》网上作业题答案.doc西南大学《论文写作》网上作业题答案.doc西南大学《旅游地理学》网上作业题答案.doc西南大学《合唱指挥常识》网上作业题答案.doc西南大学《歌剧艺术欣赏》网上作业题答案.doc西南大学《高效率教学》网上作业题答案.doc西南大学《儿童哲学》网上作业题答案.doc西南大学《动物生物学》网上作业题答案.doc西南大学《动物生物化学》网上作业题答案.doc西南大学《动物生理学》网上作业题答案.doc西南大学《邓小平教育思想》网上作业题答案.doc西南大学《财务会计》网上作业题答案.doc西南大学《中国教育哲学思想》网上作业题及答案.doc 西南大学《中国法制史》网上作业题答案.doc西南大学《中国法律思想史》网上作业题及答案.doc 西南大学《政治学与管理》网上作业题及答案.doc西南大学《政治学》网上作业题及答案.doc西南大学《证券学》网上作业题及答案.doc西南大学《影视摄影》网上作业题及答案.doc西南大学《英语阅读一》(高)网上作业题答案.doc西南大学《英语阅读四(高)》网上作业题及答案.doc 西南大学《英语阅读二》(高)网上作业题答案.doc西南大学《英语听说二》(专)网上作业题及答案.doc 西南大学《英语国家概况》网上作业题及答案.doc西南大学《房地产经营管理》网上作业题及答案.doc西南大学《房地产估价》网上作业题及答案.doc西南大学《电子政务》网上作业题及答案.doc西南大学《当代中国公共政策》网上作业题及答案.doc 西南大学《城市地理学》网上作业题及答案.doc西南大学《财务会计》网上作业题及答案.doc西南大学《办公自动化》网上作业题及答案.doc西南大学《班主任工作》网上作业题及答案.doc西南大学《课堂教学艺术》网上作业题及答案.doc西南大学《经济地理学》网上作业题及答案.doc西南大学《计算机图象处理基础》网上作业题及答案.doc 西南大学《计算机辅助设计》网上作业题及答案.doc西南大学《花卉栽培学概》网上作业题及答案.doc西南大学《果树栽培学概论》网上作业题及答案.doc西南大学《国际贸易》网上作业题及答案.doc西南大学《管理中的计算机应用》网上作业题及答案.doc 西南大学《管理学》网上作业题及答案.doc西南大学《古代文化》网上作业题及答案.doc西南大学《公务员制度》网上作业题及答案.doc西南大学《公文写作》网上作业题及答案.doc西南大学《工程地质》网上作业题及答案.doc西南大学《政治经济学》网上作业题及答案.doc西南大学《语文教学方法论》网上作业题及答案.doc西南大学《行政管理学》网上作业题及答案.doc西南大学《行政法与行政诉讼法》网上作业题及答案.doc 西南大学《小学数学教学方法》网上作业题及答案.doc 西南大学《系统工程》网上作业题及答案.doc西南大学《无土栽培》网上作业题及答案.doc西南大学《土地管理学基础》网上作业题及答案.doc西南大学《蔬菜栽培学概论》网上作业题及答案.doc西南大学《社会学》网上作业题及答案.doc西南大学《素描》网上作业题及答案.doc西南大学《思想政治教育学》网上作业题及答案.doc西南大学《数学分析选讲》网上作业题答案.doc西南大学《世界旅游市场》网上作业题及答案.doc西南大学《审计学》网上作业题及答案.doc西南大学《社会学概论》网上作业题答案.doc西南大学《社会心理学》网上作业题答案.doc西南大学《社会调查与研究方法》网上作业题答案.doc 西南大学《社会保障》网上作业题及答案.doc西南大学《商品流通企业会计》网上作业题及答案.doc 西南大学《商法学》[下]网上作业题及答案.doc西南大学《人力资源管理》网上作业题及答案.doc 西南大学《人口地理学》网上作业题及答案.doc西南大学《人格心理学》网上作业题及答案.doc西南大学《企业管理》网上作业题及答案.doc西南大学《普通心理学》网上作业题答案.doc西南大学《普通物理选讲一》网上作业题及答案.doc 西南大学《民间文学》网上作业题答案.doc西南大学《民法总论》网上作业题答案.doc西南大学《民法分论》网上作业题及答案.doc西南大学《艺术概论》网上作业题及答案.doc西南大学《形式逻辑》网上作业题及答案.doc西南大学《行政法学》网上作业题及答案.doc西南大学《刑法总论》网上作业题答案.doc西南大学《刑法分论》网上作业题及答案.doc西南大学《新税制》网上作业题及答案.doc西南大学《心理学》网上作业题及答案.doc西南大学《心理测量学》网上作业题及答案.doc西南大学《宪法学》网上作业题答案.doc西南大学《线性代数》网上作业题答案.doc西南大学《现代化学教学论》网上作业题答案.doc 西南大学《现代汉语下》网上作业题及答案.doc西南大学《现代汉语上》网上作业题答案.doc西南大学《现代汉语词汇》网上作业题答案.doc西南大学《西方哲学史》网上作业题及答案.doc西南大学《西方经济学》网上作业题及答案.doc西南大学《文字学》网上作业题及答案.doc西南大学《外国文学下》网上作业题及答案.doc西南大学《外国文学上》网上作业题及答案.doc西南大学《土地管理》网上作业题及答案.doc西南大学《统计学原理》网上作业题答案.doc西南大学《体育新闻》网上作业题及答案.doc西南大学《综合英语一》网上作业题答案.doc西南大学《综合英语四》网上作业题及答案.doc西南大学《综合英语七》网上作业题及答案.doc西南大学《综合英语二》网上作业题及答案.doc西南大学《专业英语》网上作业题答案.doc西南大学《中级无机化学》网上作业题答案.doc西南大学《中国新诗与中外文化》网上作业题答案.doc 西南大学《古代散文》网上作业题及答案.doc西南大学《公司法学》网上作业题答案.doc西南大学《公共事业管理导论》网上作业题答案.doc 西南大学《工程地质学》网上作业题及答案.doc西南大学《高等有机化学》网上作业题及答案.doc西南大学《分子生物学》网上作业题及答案.doc西南大学《房地产法》网上作业题及答案.doc西南大学《法理学》网上作业题答案.doc西南大学《电算化会计》网上作业题及答案.doc西南大学《道德》网上作业题及答案.doc西南大学《单片机及应用》网上作业题及答案.doc西南大学《大学英语二》网上作业题答案.doc西南大学《成本会计》网上作业题及答案.doc西南大学《财政学》网上作业题及答案.doc西南大学《财务会计学》网上作业题答案.doc西南大学《材料化学》网上作业题及答案.doc西南大学《标准日本语四》网上作业题及答案.doc西南大学《旅游政策与法规》网上作业题答案.doc西南大学《旅游英语上》网上作业题及答案.doc西南大学《旅游心理学》网上作业题答案.doc西南大学《旅游企业投资与管理》网上作业题及答案.doc 西南大学《旅游美学》网上作业题及答案.doc西南大学《旅游景区开发与管理》网上作业题及答案.doc 西南大学《旅游经济学》网上作业题及答案.doc西南大学《领导科学》网上作业题及答案.doc西南大学《课程论》网上作业题及答案.doc西南大学《经济法》网上作业题及答案.doc西南大学《金融理论与实务》网上作业题及答案.doc 西南大学《教育学》网上作业题及答案.doc西南大学《教育心理学》网上作业题答案.doc西南大学《教育统计学》网上作业题及答案.doc西南大学《教育生理学》网上作业题及答案.doc西南大学《教育社会学》网上作业题及答案.doc西南大学《教育科研方法》网上作业题及答案.doc西南大学《教育经济学》网上作业题及答案.doc西南大学《教育法学》网上作业题及答案.doc西南大学《教学论》网上作业题及答案.doc西南大学《计算机应用》网上作业题及答案.doc西南大学《计算机导论》网上作业题答案.doc西南大学《基础语法下》网上作业题及答案.doc西南大学《婚姻法》网上作业题及答案.doc西南大学《环境学概论》网上作业题及答案.doc西南大学《环境伦理学》网上作业题及答案.doc西南大学《化学实验教学研究》网上作业题及答案.doc 西南大学《合同法》网上作业题及答案.doc西南大学《美学原理》网上作业题及答案.doc西南大学《体育文献检索》网上作业题及答案.doc西南大学《体育社会学》网上作业题及答案.doc西南大学《体育公共关系》网上作业题及答案.doc西南大学《唐宋词研究》网上作业题答案.doc西南大学《微积分初步》网上作业题及答案.doc西南大学《网页设计》网上作业题及答案.doc西南大学《土木工程材料》网上作业题及答案.doc西南大学《土地资源学》网上作业题及答案.doc西南大学《土地制度与政策》网上作业题及答案.doc西南大学《土地管理学》网上作业题及答案.doc西南大学《土地法学》网上作业题及答案.doc西南大学《田间试验设计》网上作业题及答案.doc西南大学《天然药物化学》网上作业题及答案.doc西南大学《体育教育学(方法论)》网上作业题及答案.doc 西南大学《水力学》网上作业题及答案.doc西南大学《数学活动》网上作业题及答案.doc西南大学《蔬菜栽培学》网上作业题及答案.doc西南大学《市场营销》网上作业题及答案.doc西南大学《社会心理学》网上作业题及答案.doc西南大学《色彩构成》网上作业题及答案.doc西南大学《企业战略管理》网上作业题及答案.doc西南大学《普通测量学》网上作业题及答案.doc西南大学《盆景制作》网上作业题及答案.doc西南大学《民族民间音乐》网上作业题及答案.doc西南大学《面向对象程序设计》网上作业题及答案.doc西南大学《乐理》网上作业题及答案.doc西南大学《中学数学课堂教学设计》网上作业题及答案.doc 西南大学《中国音乐史》网上作业题及答案.doc西南大学《中国古代文学二》网上作业题及答案.doc西南大学《政府经济学》网上作业题及答案.doc西南大学《园艺产品营销学》网上作业题及答案.doc西南大学《园艺产品采后处理与商品化》网上作业题及答案.doc 西南大学《园林制图》网上作业题及答案.doc西南大学《园林艺术设计》网上作业题及答案.doc西南大学《园林苗圃学》网上作业题及答案.doc西南大学《园林建筑》网上作业题及答案.doc西南大学《园林工程概预算》网上作业题及答案.doc西南大学《园林工程初步》网上作业题及答案.doc西南大学《英语语法》网上作业题及答案.doc西南大学《英语写作》网上作业题及答案.doc西南大学《音乐》网上作业题及答案.doc西南大学《药物化学》网上作业题及答案.doc西南大学《遥感概论》网上作业题及答案.doc西南大学《学校心理学》网上作业题及答案.doc西南大学《学习心理学》网上作业题及答案.doc西南大学《信息安全》网上作业题及答案.doc西南大学《心理学教学法(方法论)》网上作业题及答案.doc西南大学《小学数学教育学》网上作业题及答案.doc西南大学《小学数学教学案例分析》网上作业题及答案.doc 西南大学《西方文学与文化》网上作业题及答案.doc西南大学《国际私法》网上作业题及答案.doc西南大学《国际经济法》网上作业题及答案.doc西南大学《管理学原理》网上作业题及答案.doc西南大学《管理思想史》网上作业题及答案.doc西南大学《学校管理学》网上作业题及答案.doc西南大学《学校德育》网上作业题及答案.doc西南大学《学前心理学》网上作业题及答案.doc西南大学《学前教育学》网上作业题及答案.doc西南大学《新文学思潮与流派》网上作业题答案.doc西南大学《线性代数》网上作业题及答案.doc西南大学《西方经济学(上)》网上作业题及答案.doc西南大学《物业管理》网上作业题及答案.doc西南大学《土地评价与管理》网上作业题答案.doc西南大学《非营利组织会计》网上作业题及答案.doc西南大学《房屋建筑学2》网上作业题及答案.doc西南大学《房屋建筑学1》网上作业题及答案.doc西南大学《法律逻辑》网上作业题及答案.doc西南大学《发展心理学》网上作业题及答案.doc西南大学《地理信息系统原理》网上作业题及答案.doc西南大学《当代西方经济思潮》网上作业题及答案.doc西南大学《大气》网上作业题及答案.doc西南大学《存在主义疗法》网上作业题及答案.doc西南大学《城市园林绿地规划》网上作业题及答案.doc西南大学《测量学》网上作业题及答案.doc西南大学《奥林匹克学》网上作业题及答案.doc西南大学《C语言》网上作业题及答案.doc西南大学《钢筋混凝土结构与砌体结构》网上作业题及答案.doc 西南大学《课堂教学技术(教学论)》网上作业题及答案.doc 西南大学《酒店房务管理》网上作业题及答案.doc西南大学《金融学》网上作业题及答案.doc西南大学《解剖》网上作业题及答案.doc西南大学《结构力学》网上作业题及答案.doc西南大学《教育心理学》网上作业题及答案.doc西南大学《建筑制图2》网上作业题及答案.doc西南大学《建筑制图1》网上作业题及答案.doc西南大学《建筑力学》网上作业题及答案.doc西南大学《建筑工程招投标与合同管理》网上作业题及答案.doc 西南大学《建筑给水排水工程》网上作业题及答案.doc西南大学《建筑CAD》网上作业题及答案.doc西南大学《计算机制图基础(CAD)》网上作业题及答案.doc西南大学《基础工程》网上作业题及答案.doc西南大学《化工制图》网上作业题及答案.doc西南大学《化工技术经济学》网上作业题及答案.doc西南大学《花卉学》网上作业题及答案.doc西南大学《果树栽培学》网上作业题及答案.doc西南大学《果树盆景盆栽技术》网上作业题及答案.doc 西南大学《国际投资》网上作业题及答案.doc西南大学《国际金融》网上作业题及答案.doc西南大学《管理哲学》网上作业题及答案.doc西南大学《公共关系》网上作业题及答案.doc西南大学《工程建设监理》网上作业题及答案.doc西南大学《歌词创作与鉴赏》网上作业题及答案.doc西南大学《文献检索与应用》网上作业题及答案.doc西南大学《杜甫研究》网上作业题及答案.doc西南大学《第四纪地质学》网上作业题及答案.doc西南大学《地理信息系统》网上作业题答案.doc西南大学《导游业务》网上作业题及答案.doc西南大学《当代世界政治与经济》网上作业题及答案.doc 西南大学《操作系统》网上作业题及答案.doc西南大学《标准日本语三》网上作业题及答案.doc西南大学《标准日本语二》网上作业题及答案.doc西南大学《比较文学》网上作业题答案.doc西南大学《体育产业学导论》网上作业题及答案.doc 西南大学《税收学》网上作业题及答案.doc西南大学《生物化学》网上作业题及答案.doc西南大学《区域经济学》网上作业题及答案.doc西南大学《欧洲文化入门》网上作业题及答案.doc西南大学《面向对象技术》网上作业题答案.doc西南大学《美国文学史及选读》网上作业题及答案.doc 西南大学《马克思主义哲学》网上作业题及答案.doc 西南大学《旅游商品学》网上作业题及答案.doc西南大学《旅行社经营管理》网上作业题及答案.doc 西南大学《科学教育》网上作业题及答案.doc西南大学《经济数学(下)》网上作业题及答案.doc西南大学《经济数学(上)》网上作业题及答案.doc西南大学《教育案例研究》网上作业题答案.doc西南大学《建筑工程制图》网上作业题及答案.doc西南大学《会计学基础》网上作业题答案.doc西南大学《会计核算》网上作业题及答案.doc西南大学《会计电算化》网上作业题及答案.doc西南大学《化工基础》网上作业题及答案.doc西南大学《古代汉语下》网上作业题及答案.doc西南大学《高数选讲》网上作业题及答案.doc西南大学《概率统计》网上作业题答案.doc西南大学《分析化学(定量)》网上作业题答案.doc西南大学《房屋建筑学》网上作业题及答案.doc西南大学《多媒体技术》网上作业题及答案.doc西南大学《综合自然地理学》网上作业题及答案.doc 西南大学《综合英语八》网上作业题及答案.doc西南大学《资产管理》网上作业题及答案.doc西南大学《中学英语教学法》网上作业题及答案.doc 西南大学《中华人民共和国史》网上作业题及答案.doc 西南大学《植物生物学》网上作业题及答案.doc西南大学《语言学导论》网上作业题及答案.doc西南大学《英语阅读二》网上作业题及答案.doc西南大学《英语文体学引论》网上作业题答案.doc西南大学《英语听力一》(高)网上作业题及答案.doc西南大学《英语听力三》(高)网上作业题及答案.doc西南大学《英语词汇学》网上作业题及答案.doc西南大学《英国文学史及选读》网上作业题及答案.doc 西南大学《汇编语言》网上作业题及答案.doc西南大学《环境化学》网上作业题答案.doc西南大学《数学教育学》网上作业题及答案.doc西南大学《营销学》网上作业题及答案.doc西南大学《音乐审美常识》网上作业题及答案.doc西南大学《学校体育学》网上作业题及答案.doc西南大学《行政论理学》网上作业题及答案.doc西南大学《行政管理案例分析》网上作业题及答案.doc 西南大学《刑事诉讼法》网上作业题及答案.doc西南大学《心理诊断学》网上作业题及答案.doc西南大学《项目投资与分析》网上作业题及答案.doc 西南大学《现代教育技术》网上作业题及答案.doc西南大学《现代教学技术》网上作业题及答案.doc西南大学《现代广告学》网上作业题及答案.doc西南大学《系统论》网上作业题及答案.doc西南大学《物流管理》网上作业题及答案.doc西南大学《物理教育学》(方法论)网上作业题答案.doc 西南大学《物理化学》网上作业题答案.doc西南大学《网络原理》网上作业题及答案.doc西南大学《外国民商法》网上作业题及答案.doc西南大学《土木工程施工技术》网上作业题及答案.doc 西南大学《土木工程概预算》网上作业题及答案.doc 西南大学《土力学》网上作业题及答案.doc西南大学《土地经济学》网上作业题及答案.doc西南大学《投资经济学》网上作业题及答案.doc西南大学《统计物理基础》网上作业题及答案.doc西南大学《天文概论》网上作业题及答案.doc西南大学《体育经济学》网上作业题及答案.doc西南大学《体育概论》网上作业题及答案.doc西南大学《特稀蔬菜概论》网上作业题及答案.doc西南大学《数字电路》网上作业题及答案.doc西南大学《数学物理方法》网上作业题答案.doc西南大学《园艺作物无公害生产》网上作业题及答案.doc西南大学《园艺植物育种理论及实践》网上作业题及答案.doc 西南大学《园艺植物生物技术》网上作业题及答案.doc西南大学《园艺植物化学调控》网上作业题及答案.doc西南大学《园林植物造景设计》网上作业题及答案.doc西南大学《园林植物配置》网上作业题及答案.doc西南大学《园林建筑设计与构造》网上作业题及答案.doc西南大学《园林工程》网上作业题及答案.doc西南大学《语言学概论》网上作业题答案.doc西南大学《思想政治教育教学方法论》网上作业题及答案.doc 西南大学《税务会计》网上作业题及答案.doc西南大学《数学建模》网上作业题及答案.doc西南大学《食用菌栽培学》网上作业题及答案.doc西南大学《化学与社会》网上作业题答案.doc西南大学《古代汉语上》网上作业题答案.doc西南大学《公关语言》网上作业题及答案.doc西南大学《公共关系学》网上作业题及答案.doc西南大学《工程概预算》网上作业题及答案.doc西南大学《歌剧艺术欣赏》网上作业题及答案.doc西南大学《高级财务会计》网上作业题及答案.doc西南大学《钢琴教学法》网上作业题及答案.doc西南大学《钢筋混凝土结构基本原理》网上作业题及答案.doc 西南大学《钢结构设计》网上作业题及答案.doc西南大学《钢结构基本原理》网上作业题及答案.doc西南大学《儿童心理障碍》网上作业题及答案.doc西南大学《电子商务概论》网上作业题及答案.doc西南大学《地理科学》网上作业题及答案.doc西南大学《地籍管理》网上作业题及答案.doc西南大学《邓小平理论》网上作业题及答案.doc西南大学《城市园林绿地规划设计》网上作业题及答案.doc 西南大学《草坪学》网上作业题及答案.doc西南大学《变态心理学》网上作业题及答案.doc西南大学《花卉栽培》网上作业题及答案.doc西南大学《国际法》网上作业题及答案.doc西南大学《观光农场经营管理》网上作业题及答案.doc西南大学《市场营销学》网上作业题及答案.doc西南大学《世界政治制度史》网上作业题及答案.doc西南大学《实验心理学》网上作业题答案.doc西南大学《生物学》网上作业题及答案.doc西南大学《生物工程》网上作业题及答案.doc西南大学《生态学》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题答案.doc西南大学《企业管理学》网上作业题及答案.doc西南大学《普通物理选讲二》网上作业题及答案.doc西南大学《盆景装饰》网上作业题及答案.doc西南大学《暖通空调》网上作业题及答案.doc西南大学《毛泽东思想概论》网上作业题及答案.doc西南大学《马克思主义哲学》网上作业题答案.doc西南大学《旅游规划与开发》网上作业题及答案.doc西南大学《鲁迅研究》网上作业题及答案.doc西南大学《领导心理学》网上作业题答案.doc西南大学《理论力学》网上作业题答案.doc西南大学《乐理常识》网上作业题及答案.doc西南大学《跨文化交际》网上作业题及答案.doc西南大学《教育统计与测评》网上作业题及答案.doc西南大学《建设法规》网上作业题及答案.doc西南大学《基础教育阶段英语课程》网上作业题及答案.doc 西南大学《基础会计学》网上作业题及答案.doc。

西南大学2020年秋季经济数学上 【0177】机考大作业参考答案

西南大学2020年秋季经济数学上 【0177】机考大作业参考答案
(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;
(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么
x→∞时lim f(x)/F(x)=lim f'(x)/F'(x)。
如果函数f(x)满足:
在闭区间[a,b]上连续;
在开区间(a,b)内可导;
在区间端点处的函数值相等,即f(a)=f(b),
那么在(a,b)内至少有一点ξ(a<ξ<b),使得f'(ξ)=0.
如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),F'(x)≠0
西南大学培训与继续教育学院课程考试试题卷
学期:2020年秋季
课程名称【编号】:经济数学上 【0177】 A卷
考试类别:大作业 满分:100分
一、填空题每小题5分,共20分
1、设 ,则 =0。
2、若 ,则 -6。
3、已知 是函数 的极值点,则 -8。
4、求由曲线 在 上所围曲边梯形的面积 4。
二、计算题每小题15分,共60分
设(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时lim f(x)/F(x)=lim f'(x)/F'(x)。
又设
(1)当x→∞时,函数f(x)及F(x)都趋于∞;
1、讨论函数 的连续性。

20年6月西南大学儿童数学教育【0554】大作业(参考答案)

20年6月西南大学儿童数学教育【0554】大作业(参考答案)
西南大学培训与继续教育学院课程考试试题卷
ห้องสมุดไป่ตู้学期:2020年春季
课程名称【编号】:儿童数学教育【0554】 A卷
考试类别:大作业 满分:100 分
论述题.请在以下6题中选择2题回答,每题50分,共计100分。
1、教师在选择幼儿数学学习经验时需考虑哪些问题?
答:教师在选择学习经验时应考虑:所选经验是不是数学学科的知识内容;所选经验是否是幼儿能理解,并能得到满足的;所选经验是否是能对幼儿发生多种作用,即能给予幼儿整体发展以影响的一种经验;所选经验是否是达到同一目标的各种不同经验,即可以在不同发展层次上获得的经验。
(4)培养幼儿正确使用数学活动操作材的技能和良好的学习习惯。
4、试述幼儿园数学教育中量的教学的方法。
5、学前儿童数学教育如何才能遵循生活化原则。
6、请就以下案例说说你的看法,并说出理由并陈述其策略。
案例:4岁的红红可以毫无困难地数出5颗糖,但却认不出数字“5”,而和她同岁的玲玲能读出数字“5”,但让她说出这个数字可以表示什么则感到困惑不解。
2、试述儿童思维发展为他们学习数学知识提供了什么样的逻辑准备?
3、请阐述幼儿数学教育总目标。
答: (1)激发幼儿认识和探索环境中数里、形状等的兴趣,使他们愿意并喜欢参加数学活动。
(2)引导幼儿在与环境的相互作用的过程中,获得有关数、形、里、时间和空间的感性经验,使幼儿逐步形城一些初级的数学概念。
(3)培养幼儿观察、思考和解决“数学”问题的初步能力,并学习独立选择数学活动的内容和按照要求检查自己活动的情况、活动的结果。

20年6月西南大学课程考试[0158]《高等代数》大作业(资料)

20年6月西南大学课程考试[0158]《高等代数》大作业(资料)
西南大学培训与继续教育学院课程考试试题卷
学期:2020年春季
课程名称【编号】:高等代数【0158】 A卷
考试类别:大作业 满分:100 分
一、给出下面两个概念的定义(共2小题,15分/小题,共30分)
1.数域P上多项式p(x)在P上不可约。
答:在数域P上,p(x)无法写成两个次数较低的多项式之乘积的多项式。
可以写为
这样的形式,

由于
因此过渡矩阵 即为
六、(10分)设 是数域P上全体n阶方阵关于矩阵加法及数与矩阵的数乘构成的线性空间, 。证明:W是V的子空间。
答:ቤተ መጻሕፍቲ ባይዱ
要证明W是V的子空间,即证明W对于矩阵数乘和矩阵加法运算封闭。
,满足 与 ,若证明 ,则说明对于矩阵加法运算封闭
由于
得证
若证明 ,则说明对于矩阵数乘封闭
得证
综上,由于W对于矩阵数乘和矩阵加法都满足,因此W是V的子空间。
,之后将第二行乘-1加到第一行 ,最后将第三行乘上2加到第二行,乘上-1加到第一行
因此
四、(15分)求下面的齐次线性方程组的一个基础解系

答:该方程组可以化为
左边矩阵可以变形为:

若设 , 那么就可以求得一个基础解系
其中
五、(15分)设 , ,

求由基 到基 的过渡矩阵。
答:
设过渡矩阵为 ,则依题意有
2.数域P上n维向量组 线性相关。
答:若系数 满足公式 ,且 不全为0,则称n维向量组 线性相关。
二、(15分)设 , ,求 除 的商式与余式。
答:
商式:
余式:
三、(15分)设 ,求 。
答:
使用初等行变换,可以得到
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南大学网络与继续教育学院课程考试试题卷学期:2020年春季
课程名称【编号】:高等数学【0917】 A卷
考试类别:大作业满分:100 分
(一)计算题(本大题共9小题,任意选做4个小题,每小题20分,共80分)
1. 求错误!未找到引用源。

.
2. 求不定积分错误!未找到引用源。

.
3. 求定积分错误!未找到引用源。

.
4. 求函数错误!未找到引用源。

的导数.
解:
y′=[(x+sin²x)³]′
=3(x+sin²x)2(x+sin²x)′
=3(x+sin²x)2[1+2sinx·(sinx)′]
=3(x+sin²x)2(1+sin2x).
5. 求函数错误!未找到引用源。

的极值.
解:f′(x)=6x(x2-1)2
令f′(x)=0,解得x1=-1,x2=0,x3=1
当x=0时,f(x)有极小值,极小值是0,无极大值
6. 求函数的二阶偏导数及.
7.计算函数的全微分.
解:аu/аx=1
аu/аy=1/2cosy/2+ze^yz
аu/аz=ye^yz
du=dx+(1/2cosy/2+ze^yz)dy+ye^yzdz
8. 求微分方程的通解.
解:
先移项:dy/y=2xdx
再两边同时积分得到:
ln|y|=x^2 + C'
|y|=e^(x^2 + C')即:
y=e^(x^2+C)=Ce^(x^2),即为通解
9. 计算,其中是抛物线及直线所围成的闭区域.
错误!未找到引用源。

(二)证明题(本大题共1小题,必做,共20分)
1. 证明方程在区间(-1,0)内有且只有一个实根.
- 1 -。

相关文档
最新文档