福建省福州市2019届高三质检数学(理)试题
2019年福州市质检理科试卷与解答
2019年福州市普通高中毕业班质量检测参考答案数学(理科)试卷 (完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足i 1i z ⋅=-,则z 的共轭复数为 A.1i -+ B. 1i + C. 1i -- D. 1i -【简解】因为1i1i iz -==--,所以1+i z =-,故选A . 2.已知集合{}{}2213,20A x x B x x x =+>=--<,则AB =A. {}12x x <<B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >- 【简解】因为{}{}1,12A x x B x x =>=-<<,所以{}1AB x x =>-,故选D .3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25【简解】A 中的m 值应为12; B 中应为380人; C 是正确的; D 中的分段间隔应为20,故选C . 4.等比数列{}n a 的各项均为正实数,其前n 项和为n S .若3264,64aa a ==,则5S =A. 32B. 31C. 64D.63【简解】解法一:设首项为1a ,公比为q ,因为0n a >,所以0q >,由条件得21511464a q a q a q ⎧⋅=⎪⎨⋅=⎪⎩,解得112a q =⎧⎨=⎩,所以531S =,故选B .解法二:设首项为1a ,公比为q ,由226464a a a ==,又34a =,∴2q =,又因为214a q ⋅=所以11a =,所以531S =,故选B .5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D. 32【简解】解法一:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得, πcos 3θ⎛⎫- ⎪⎝⎭=cos01=,故选C .解法二:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3cos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线 AF 的斜率为3-,则PAF △的面积为A. 23B. 43C.8D. 83【简解】解法一:设准线与x 轴交于点Q ,因为直线AF 的斜率为3-, 2FQ =,60AFQ ∴∠=, 4FA =,又因为PA PF =,所以PAF △是边长为4的等边三角形,所以PAF △的面积为22334=4344FA ⨯=⨯.故选B . 解法二:设准线与x 轴交于点Q ,,)Pm n (,因为直线 AF 的斜率为3-, 2FQ =,60AFQ ∴∠=,所以23AQ =,所以23n =±,又因为24n m =,所以3m =,又因为4PA PF ==, 所以PAF △的面积为11423=4322PA n ⨯⨯=⨯⨯.故选B . 7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A.32 B.16 C.323 D.803【简解】由三视图知,所求几何体的体积为直三棱柱的体积减去三第7题棱锥的体积321180442=323⨯-⨯⨯⨯12.故选D . 8.已知函数()()2sin f x x ωϕ=+0,ωϕπ⎛⎫><⎪2⎝⎭图象的相邻两条对称轴之间的距离为π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是 A. 1,12⎛⎤- ⎥⎝⎦B. ()1,1-C. (]0,2D.(]1,2- 【简解】由图象的相邻两条对称轴之间的距离为π2,所以T =π,又因为0ω>,所以2ωπ=π,解得=2ω.0,ωϕ><π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数2()2sin 23g x x ϕπ⎛⎫=++ ⎪⎝⎭的图象.因为函数()g x 为偶函数,所以2,32k k ϕππ+=π+∈Z ,由ϕπ<2,解得 =6ϕπ- ,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭.因为02x π<<,所以1sin 2126x π⎛⎫-<-≤ ⎪⎝⎭,所以函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是(]1,2-,故选D .9. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]11x ∈-,,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为A.-1B.35 C. 1 D. 35- 【简解】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()()2222,22x x x xg x h x --+==-.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ---≤==-+++-,∵2141xy =-+为增函数,∴max 231415x ⎛⎫-= ⎪+⎝⎭,故选B .10.如图,双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过2F 作线段2F P 与C 交于点Q ,且Q 为2PF 的中点.若等腰△12PF F 的底边2PF 的长等于C 的半焦距,则C 的离心率为A.22157-+ B. 23 C. 22157+ D.32【简解】连结1QF ,由条件知12QF PF ⊥,且22c QF =.由双曲线定义知122cQF a =+,在12Rt F QF △中,()2222222c c a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,解得C 的离心率22157e +=,故选C .11.如图,以棱长为1的正方体的顶点A 为球心,以2为半径做一个球面,则该正方体的表面被球面所截得的所有弧长之和为 A. 34πB.2π C.32π D.94π【简解】正方体的表面被该球面被所截得的弧长有相等的三部分,例如,与上底面截得的弧长是以1A 为圆心,1为半径的圆周长的14,所以弧长之和为23342ππ⨯=.故选C. 12. 已知数列{}n a 满足11a =,()2122124n n n n n a a a na n ++=++,则8a =A.64892- B. 32892- C. 16892- D. 7892- 【简解】因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n na na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 第10第11题图所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,两边取对数得1lg 2lg n n b b +=,又111lg lg 2lg3b a ⎛⎫=+=⎪⎝⎭,所以数列{}lg n b 是首项为lg 3,公比为2的等比数列. 所以112lg lg32lg3n n n b --=⋅=,所以123n n b -=,即1232n n n a -+=,从而1232n n na -=-,将8n =代入,选A.法二、因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n n a na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,因为13b =,所以223b =,所以()224333b ==,所以()248433b ==,…,所以7264839b ==。
福建省福州市2019届高三第一学期质量抽测数学(理科)试题(解析版)
2018-2019学年度福州市高三第一学期质量抽测数学(理科)试卷(完卷时间:120分钟:满分150分)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则A. B. C. D.【答案】D【解析】【分析】首先解绝对值不等式,求出集合A,之后利用交集的定义求得结果.【详解】由解得,所以,又,所以,故选D.【点睛】该题考查的是有关集合的交集的概念及运算,属于简单题目.2.已知复数满足,则为A. B. C. 2 D. 1【答案】A【解析】【分析】首先利用复数的运算法则,求出复数z,再应用复数的模的运算公式,求得结果.【详解】由,得,所以,故选A.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则和除法运算法则,还有复数的模,属于简单题目. 3.曲线在点处的切线与坐标轴围成的三角形的面积为A. 2B.C.D. 【答案】D 【解析】 【分析】根据求导公式求出函数的导函数,把代入求出切线的斜率,代入点斜式方程并化简,分别令和,求出切线与坐标轴的交点坐标,再代入面积公式求解. 【详解】由题意得,所以,则在点处的切线斜率为, 所以切线方程为:,即,令,得,令,得,所以切线与坐标轴围成三角形的面积, 故选D.【点睛】该题考查的是有关直线与坐标轴围成三角形面积问题,涉及到的知识点有导数的几何意义,曲线的切线方程,直线方程的点斜式,三角形的面积公式,熟练掌握基础知识是正确解题的关键. 4.已知等差数列的前项和为,且,,则A. 20B. 40C. 60D. 80 【答案】B 【解析】 【分析】首先利用等差数列的性质,以及题中所给的条件,求得,之后应用等差数列的求和公式求得结果. 【详解】等差数列中,前n 项和为,且, 因为由等差数列的性质可知,所以,故选B.【点睛】该题考查的是有关等差数列的求和问题,涉及到的知识点有等差数列性质,等差数列的求和公式,属于基础题目.5.给出下列说法:①“”是“”的充分不必要条件;②定义在上的偶函数的最大值为30;③命题“,”的否定形式是“,”.其中正确说法的个数为A. 0B. 1C. 2D. 3【答案】C【解析】【分析】对于①,利用充分不必要条件的定义判读其正确性,对于②,利用偶函数的定义求得参数的值,结合二次函数的性质,求得其最大值,得出其正确性,对于③,应用特称命题的否定形式,判断其是否正确,即可得结果.【详解】对于①,当时,一定有,但是当时,,所以“”是“”的充分不必要条件,所以①正确;对于②,因为为偶函数,所以,因为定义域为,所以,所以函数的最大值为,所以②正确;对于③,命题“,”的否定形式是“,”,所以③是错误的;故正确命题的个数为2,故选C.【点睛】该题考查的是有关判断正确命题个数的问题,涉及到的知识点有充分必要条件的判断,偶函数的性质,含有一个量词的命题的否定,考查的都是基础.6.已知双曲线的两条渐近线均与圆相切,则双曲线的离心率为A. B. C. D.【答案】A【分析】先将圆的方程化为标准方程,再根据双曲线的两条渐近线均和圆相切,利用圆心到直线的距离等于半径,可建立几何量之间的关系,从而可求双曲线离心率.【详解】双曲线的渐近线方程为,即,将圆化为标准方程得,所以其圆心为,半径为2,根据题意,可得圆心到直线的距离等于半径,即,整理得,因为,所以有,所以,故选A.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有双曲线的渐近线方程,直线与圆相切的条件,双曲线中之间的关系,双曲线的离心率,属于中档题目.7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分别为3、3,则输出的值为A. 143B. 48C. 16D. 5【答案】B【解析】由题意,模拟程序的运行,依次写出每次循环得到的的值,当时,不满足条件,跳出循环,输出的值为48.【详解】初始值,程序运行过程如下表所示:,,,,,不满足条件,跳出循环,输出的值为48,故选B【点睛】该题考查的是有关程序框图的输出结果的问题,在解题的过程中,注意在什么情况下跳出循环,属于简单题目.8.某个几何体的三视图如图所示,在该几何体的各个侧面中,面积最大的侧面的面积为A. B. 1 C. D.【答案】D【解析】【分析】首先根据题中所给的几何体的三视图,还原几何体,得出其为底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,利用面积公式求得各个侧面的面积,比较大小得出结果.【详解】分析其三视图,可以确定该几何体是底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,从而可以求得该四棱锥的四个从侧面的直角边长分别是;;;;利用面积公式求得各侧面的面积,比较大小可知最大的是,故选D.【点睛】该题考查的是有关棱锥侧面的面积大小问题,涉及到的知识点有利用三视图还原几何体,判断侧面三角形的形状,比较各三角形面积的大小,属于中档题目.9.已知点是内部一点,且满足,又,,则的面积为A. B. 3 C. 1 D. 2【答案】C【解析】【分析】据向量的平行四边形法则判断出点O为三角形的重心,根据重心的性质得出的面积与面积的关系,利用向量的数量积公式,求出三角形两邻边的乘积,据三角形的面积公式求出面积.【详解】因为,所以O为的重心,所以的面积是面积的,因为,所以,因为,所以,所以,所以的面积为1,故选C.【点睛】该题考查的是有关三角形的面积问题,涉及到的知识点有三角形的重心的性质,向量的数量积运算,三角形的面积公式,属于中档题目.10.已知函数,将的图像上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数的图像,若,则的值可能为A. B. C. D.【答案】B【解析】【分析】首先利用余弦的倍角公式和辅助角公式对函数解析式进行化简,求得的解析式,之后根据图象变换的原则,求得的解析式,根据,得到和都是函数的最大值3,从而得出的值为周期的整数倍,求得结果.【详解】由题意得,所以,所以的最小正周期为,由,可知和都是函数的最大值3(或都是最小值-3),所以的值为周期的整数倍,所以其最小值为,故选B.【点睛】该题考查的是有关两个变量的差值的问题,涉及到的知识点有三角式的化简,三角函数的图象变换,函数的最值,函数的周期,熟练掌握相关公式是正确解题的关键.11.如图,函数的图像为两条射线,组成的折线,如果不等式的解集中有且仅有1个整数,那么实数的取值范围是A. B.C. D.【答案】B【解析】【分析】求得f(x)的分段函数式,由条件可得a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x),画出g(x)的图象,结合图象可得a的范围.【详解】根据题意可知f(x),不等式f(x)≥x2﹣x﹣a等价于a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x),可得g(x)的大致图象,如图所示,又g(0)=﹣2,g(1)=﹣1,g(﹣1)=2,∴要使不等式的解集中有且仅有1个整数,则﹣2≤a<1,即a取值范围是{a|﹣2≤a<1}.故选:B.【点睛】本题考查直线方程的求法,含参不等式的解法,注意运用分离法,考查数形结合思想方法,属于中档题.12.已知函数,若恒成立,则实数的取值范围是A. B.C. D.【答案】A【解析】【分析】首先根据题中的条件,结合函数的定义域,对不等式进行变形,之后将恒成立问题转化为最值来处理,利用导数研究函数的单调性,求得函数的最大值,从而求得结果.【详解】根据题意可得恒成立,因为,所以不等式可化为:恒成立,令,,可求得当时,,当时,,所在上单调增,在上单调减,所以,所以的取值范围是,故选A.【点睛】该题考查的是有关不等式恒成立的问题,在解题的过程中,将恒成立问题转化为最值问题,构造新函数,利用导数研究函数的最大值,再者就是利用题的条件,大于其最大值,可以到正无穷,只有A项满足条件,从而很容易求得结果.第Ⅱ卷本卷包括必考题和选考题两部分。
福建省福州市2019届高三上学期教学质量抽测理科数学(解析版)
离心率为( )
3
A.
2
6.答案:A
2
B.
3
6
C.
2
9
D.
4
解析:双曲线的渐近线方程为 y b x ,即 bx ay 0 ,圆 x2 y2 6 y 5 0 化为标准方程是 a
x2 ( y 3)2 4 ,若渐近线与此圆相切,则
3a
3a
c3
2 ,即 e .
a2 b2 c
a2
p
p
2p 1 1 2
则 AF
, BF
, AB
, ;
1 cos
1 cos
sin2 AF BF p
(4)以 AB 为直径的圆与其准线相切,以 AF 为直径的圆与 y 轴相切.
16.函数
f
(x)
cos 2x
(sin
x
cos
x)
在区间 0, 2
上单调递增,则实数
的取值范围是
.
16.答案:[ 2, )
边);
2 2 2 (4) OA OB OC O 为△ABC 的外心;
(5)若 AP
AB
AC
, [0, ) 点 P 的轨迹经过△ABC 的内心;
AB AC
(6)若 AP
AB
AC
, [0, ) 点 P 的轨迹经过△ABC 的垂心;
AB cos B AC cos C
8.某个几何体的三视图如图所示,在该几何体的各个侧面中,面积最大的侧面的面积为( )
1
正视图 2
1 侧视图
1 俯视图
A. 2
B.1
3
C.
2
6
D.
2
8.答案:D
福建省2019届高三质量检查数学试卷(理)
准考证号 姓名(在此试卷上答题无效)保密★启用前普通高中毕业班质量检查理 科 数 学注意事项:1.本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷2至4页。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.全部答案答在答题卡上,答在本试卷上无效。
4.考试结束或,将本试卷和答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知复数z 满足z i z ,21-=为z 的共轭复数,则()2016z z -等于A.20162B.20162-C.i 20162D.i 20162-(2)已知全集为R ,集合{},086|121|2≤+-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛=x x x B x A x,则=)(B C A RA.{}20|<≤x xB.{}42|≤≤x xC.{20|<≤x x 或}4>xD..{20|≤<x x 或}4≥x(3)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布A.30尺B.90尺C.150尺D.180尺(4)已知抛物线()02:2>=p px y C 的焦点为F,P 为C 上一点,若,4=PF 点P 到y 轴的距离等于等于3,则点F 的坐标为A.(-1,0)B.(1,0)C.(2,0)D.(-2,0)(5)执行如图所示的程序框图,则输出的k 值为A.7B.9C.11D.13(6)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为A.101 B.51 C.103 D.52(7)如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图则该几何体的体积是A.π6B.π7C.π12D.π14(8)()622--x x 的展开式中2x 的系数等于 A.-48 B.48 C.234 D.432(9)设x ,y 满足,0223010⎪⎩⎪⎨⎧≤--≤-+≥y x y ax y 若2210y x x z +-=的最小值为-12,则实数a 的取值范围是A.21-≤a B.23-<a C. 21≥a D.23<a (10)已知A,B,C 在球O 的球面上,AB=1,BC=2, 60=∠ABC ,直线OA 与截面ABC 所成的角为 30,则球O 的表面积为 A.π4 B.π16 C.π34D.π316 (11)已知函数()()()e e b ax x xf x -++-=2,当0>x 时,()0≤x f ,则实数a 的取值范围为 A.0>a B.10≤<a C.1≥a D.1≤a(12)已知数列}{n a 的前n 项和为,,,046,21>==n n S S S S 且22122,+-n n n S S S ,成等比数列,12221-2,++n n n S S S ,成等差数列,则2016a 等于A.1008-B.1009-C.21008D.21009第Ⅱ卷本卷包括必考题和选考题两部分。
2019届福建省福州市高三3月质量检测数学(理)试题word版含解析
2019届福建省福州市高三3月质量检测数学(理)试题一、单选题1.已知复数满足,则在复平面内,对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】由题易得:∴对应的点为,在第二象限,故选:B2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A. 简单随机抽样 B. 按性别分层抽样C. 按年龄段分层抽样D. 系统抽样【答案】C【解析】我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大. 了解某地区的“微信健步走”活动情况,,按年龄分层抽样,这种方式具有代表性,比较合理.故选:C.3.已知双曲线的两顶点间的距离为4,则的渐近线方程为( )A. B. C. D.【答案】B【解析】由双曲线的方程可知:,即,∴,解得:令,得到故选:B4.若角的顶点与原点重合,始边与轴的非负半轴重合,终边在直线上,则( )A. B. C. D.【答案】B【解析】由题意易得:,,故选:B5.已知三棱锥的四个顶点都在球的表面上,平面,,且,若平面截球所得截面的面积为,则球的表面积为( )A. B. C. D.【答案】D【解析】∵AB⊥BC,平面截球所得截面的面积为,∴AC为截面ABC的直径,AC=6,∴PC=,∵PA⊥平面ABC,∴PC的中点为球O的球心,∴球O的半径r==5,∴球O的面积S=4πr2=.故选:D.6.函数的图象大致为( )A. B. C. D.【答案】A【解析】的定义域为,为偶函数,排除C;当x时,,排除B,D故选:A点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.7.下面程序框图是为了求出满足的最大正整数的值,那么在和两个空白框中,可以分别填入( )A. “”和“输出”B. “”和“输出”C. “”和“输出”D. “”和“输出”【答案】D【解析】执行程序框图:,得到,判断不符合,∴“”排除A,B选项;,判断不符合,,判断不符合,,,判断符合,则“输出”故选:D点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )A. 90种B. 180种C. 270种D. 360种【答案】B【解析】第一步,为甲地选一名志愿者,有=6种选法;第二步,为乙地选一名志愿者,有=5种选法;第三步,为剩下两个展区各安排两个人,有种选法.故不同的安排方案共有6×5×6=180种.故选:B.9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A. B. C. D.【答案】C【解析】由三视图可知,该几何体为组合体:上方为半个圆锥,下方为放倒的直四棱柱,∴该几何体的体积为:故选:C点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10.设函数,则满足的的取值范围是( )A. B.C. D.【答案】C【解析】作出函数的图象,如图:等价于:或解得:或故选:C11.在平面直角坐标系中,抛物线的焦点为,准线为,过的直线交于两点,交于点,直线交于点.若,且.则( )A. 1B. 3C. 3或9D. 1或9【答案】D【解析】连接BD,易知:BD轴,G为准线与x轴的焦点,由抛物线的定义,|BF|=|BD|,|AF|=|AH|=3,∵,∴|BE|=2|BD|,∴∠BED=30°,故|AE|=2|AH|=6,∴,∴,交换A与B的位置,同理可得:故选:D12.已知函数的图象与直线恰有三个公共点,这三个点的横坐标从小到大分别为,则( )A. B. C. 0 D. 1【答案】B【解析】直线,即,直线过定点,函数的图象与直线恰有三个公共点即直线与的图象相切于B,C两点,,,,且∴∴∴.故答案为:B点睛:本题考查函数零点问题.函数零点问题有两种解决方法,一个是利用二分法求解,另一个是化原函数为两个函数,利用两个函数的交点来求解.本题采用第二种方法,充分利用函数的中心对称性及相切的关系布列方程即可.二、填空题13.已知集合,,则集合中元素的个数为____________.【答案】6【解析】∵,,∴,∴∴集合中元素的个数为6.故答案为:614.在钝角三角形中,,,,则面积为____________.【答案】或【解析】当∠B为钝角时,如图1,过点B作BD⊥AC,∵∠BAC=30°,∴BD=AB,∵AB=3,∴BD=,由勾股定理可得:AD==,∵BC=,∴由勾股定理得:CD==,∴AC=CD+AD=2,∴S=AC•BD=×2×=;△ABC当∠C为钝角时,如图2,过点B作BD⊥AC,交AC延长线于点D,∵∠BAC=30°,∴BD=AB,∵AB=3,∴BD=,∵BC=,∴由勾股定理得:CD==,AD==,∴AC=AD﹣DC=,=AC•BD=××=.∴S△ABC故答案为:或.15.设变量满足约束条件,则的取值范围为____________.【答案】【解析】作出可行域,如图所示:当直线经过B时取到最小值,没有最大值。
2019年福州市质检理科数学试卷
2019年福州市普通高中毕业班质量检测数学(理科)试卷 (完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足i 1i z ⋅=-,则z 的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i -2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:参加场数1234567参加人数占调查人数的百分比 8% 10% 20% 26% 18% m% 4% 2% 以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 4.等比数列{}n a 的各项均为正实数,其前n 项和为n S .若3264,64a a a ==,则5S =A. 32B. 31C. 64D.63 5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D. 326.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥错误!未找到引用源。
2019年福建省高三毕业班质量检查测试数学(理)试题 含答案
是唐代金银细工的典范之作.该杯型几何体的主体部分可近似看作是由双曲线 C : x2 − y2 = 1的右支与直线 39
x = 0 , y = 4 , y = −2 围成的曲边四边形 MABQ 绕 y 轴旋转一周得到的几何体,如图(2). N , P 分别为
C 的渐近线与 y = 4 ,y = −2 的交点,曲边五边形 MNOPQ 绕 y 同旋转一周得到的几何体的体积可由祖暅
y
满足约束条件
x
+
y
−1
0,
则
z
=
x
+
2
y
的最小值是(
)
y +1 0,
A. −5
B. −4
C. 0
D. 2
5.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球 O 的球面上,则球 O 的体积是( )
A. 8 2 3
B. 4 3
C.12
D.32 3
6.将函数
y
=
sin
2x
+
6
的图象向右平移
6
个单位长度后,所得图象的一个对称中心为(
)
A.
12
,
0
B.
4
,
0
C.
3
,
0
D.
2
,
0
7.已知 a = 2 , b = 5 5 , c = 7 7 ,则( )
福建省福州市2019届高三第三次(5月)质量检测数学(理)试题(wor版,图片答案)
第6题福州市2019届高三毕业班第三次质量检测数学理科注意事项:1.本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分;2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.全部答案答在答题卡上,答在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回一选择题:本题共12小题,每小题5分,共60分在每小出的四个选项中只有一项是符合题目求的。
1.已知集合2={|230},{|11}M x x x N x x+-<=-≤≤,则=M N⋂( )A.{|31}x x-<≤ B. {|11}x x-≤< C. {|11}x x-<≤ D. {|31}x x-≤<2.已知复数z满足(z()34)25ii+=-,则|z|=( )B.C.3D.3.已知等比数列{}n a满足1,n na a+<且24320,8a a a+==,则数列{}na的前10项的和为( )A.1022B.1024C.2046D.20484.已知向量(2,1),(m,1)a b==-,且2),b a b⊥-(则m的值为( )A.1B.3C.1或3D.45.已知不等式组0208xy≤≤⎧⎨≤≤⎩所表示的平面区域为M,记直线4y x=与曲线3y x=在第一象限内围成的封闭图形为D.若随机从M内取一个点,则该点取自D内的概率为( )A.58B.12C.13D.146.某几何体的三视图如图所示,则该几何体的表面积为()A.3+B. 3+C. 2D.2+7.执行如图所示的程序框图,若输人1a=时,运行输出的结果为m则4(1)mx-展式中第3项的系数为( )A.24B.6C.-6D.-248.已sin(026)()t tαπ+>=,则2cos()3sin()26πααπ-+的取值范围是( )A.( 1.1]- B.0+∞(,) C.(,1)-∞, D.(,1]-∞第12题9.若,y 满足约束条件2101010x y x y x y -+≥++≥--≤⎧⎪⎨⎪⎩,则2y z x +=的取值范围为( ) A.40,3⎡⎤⎢⎥⎣⎦ B.42][,)3(-∞-+∞, C.42,3⎡-⎤⎢⎥⎣⎦ D. 4]([2,)3-∞-+∞, 10.已知O 为坐标原点,过双曲线22221(0,0)x y a b a b-=>>的左焦点F 作一条直线,与圆222=x y a +相切于点T ,与双曲线右支交于点P ,M 为线段FP ,则|MF||OM||TF |-=() A.4B.2D.2 11.数列{}n a ,满足*121111(1)(1)(1),n n n N a a a a ---=∈,记n b =,则数列{}n b 的最大项是( )A.8bB. 7bC.6bD. 5b12.如图所示,四边形ABCD 和BEFC 是两个边长为1的正方形,点P 是边BC 上的一个动点设CP =x ,函数)(.g x AP PF +=函数()f x 满足()1()f x x f =+ 且当1][0.x ∈时())(f x g x =,则函数()cos22y f x x π=+-在区间[0.3]内的零点之和为( )A.3B.5C.7D.9二填空题:本题共4小题每小题5分共20分13.已知函数()()2x x f -,则不等式(lg )0f x >的解集为 。
2019届福建省福州市高三第一学期质量抽测数学(理)试题
2019届福建省福州市高三第一学期质量抽测数学(理)试题一、单选题1.设集合,,则()A.B.C.D.【答案】D【解析】首先解绝对值不等式,求出集合A,之后利用交集的定义求得结果.【详解】由解得,所以,又,所以,故选D.【点睛】该题考查的是有关集合的交集的概念及运算,属于简单题目.2.已知复数满足,则为A.B.C.2 D.1【答案】A【解析】首先利用复数的运算法则,求出复数z,再应用复数的模的运算公式,求得结果.【详解】由,得,所以,故选A.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则和除法运算法则,还有复数的模,属于简单题目.3.曲线在点处的切线与坐标轴围成的三角形的面积为A.2 B.C.D.【答案】D【解析】根据求导公式求出函数的导函数,把代入求出切线的斜率,代入点斜式方程并化简,分别令和,求出切线与坐标轴的交点坐标,再代入面积公式求解.【详解】由题意得,所以,则在点处的切线斜率为,所以切线方程为:,即,令,得,令,得,所以切线与坐标轴围成三角形的面积,故选D.【点睛】该题考查的是有关直线与坐标轴围成三角形面积问题,涉及到的知识点有导数的几何意义,曲线的切线方程,直线方程的点斜式,三角形的面积公式,熟练掌握基础知识是正确解题的关键.4.已知等差数列的前项和为,且,,则A.20 B.40 C.60 D.80【答案】B【解析】首先利用等差数列的性质,以及题中所给的条件,求得,之后应用等差数列的求和公式求得结果.【详解】等差数列中,前n项和为,且,因为由等差数列的性质可知,所以,故选B.【点睛】该题考查的是有关等差数列的求和问题,涉及到的知识点有等差数列性质,等差数列的求和公式,属于基础题目.5.给出下列说法:①“”是“”的充分不必要条件;②定义在上的偶函数的最大值为30;③命题“,”的否定形式是“,”.其中正确说法的个数为A.0 B.1 C.2 D.3【答案】C【解析】对于①,利用充分不必要条件的定义判读其正确性,对于②,利用偶函数的定义求得参数的值,结合二次函数的性质,求得其最大值,得出其正确性,对于③,应用特称命题的否定形式,判断其是否正确,即可得结果.【详解】对于①,当时,一定有,但是当时,,所以“”是“”的充分不必要条件,所以①正确;对于②,因为为偶函数,所以,因为定义域为,所以,所以函数的最大值为,所以②正确;对于③,命题“,”的否定形式是“,”,所以③是错误的;故正确命题的个数为2,故选C.【点睛】该题考查的是有关判断正确命题个数的问题,涉及到的知识点有充分必要条件的判断,偶函数的性质,含有一个量词的命题的否定,考查的都是基础.6.已知双曲线的两条渐近线均与圆相切,则双曲线的离心率为A.B.C.D.【答案】A【解析】先将圆的方程化为标准方程,再根据双曲线的两条渐近线均和圆相切,利用圆心到直线的距离等于半径,可建立几何量之间的关系,从而可求双曲线离心率.【详解】双曲线的渐近线方程为,即,将圆化为标准方程得,所以其圆心为,半径为2,根据题意,可得圆心到直线的距离等于半径,即,整理得,因为,所以有,所以,故选A.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有双曲线的渐近线方程,直线与圆相切的条件,双曲线中之间的关系,双曲线的离心率,属于中档题目. 7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分别为3、3,则输出的值为A.143 B.48 C.16 D.5【答案】B【解析】由题意,模拟程序的运行,依次写出每次循环得到的的值,当时,不满足条件,跳出循环,输出的值为48.【详解】初始值,程序运行过程如下表所示:,,,,,不满足条件,跳出循环,输出的值为48,故选B【点睛】该题考查的是有关程序框图的输出结果的问题,在解题的过程中,注意在什么情况下跳出循环,属于简单题目.8.某个几何体的三视图如图所示,在该几何体的各个侧面中,面积最大的侧面的面积为A.B.1 C.D.【答案】D【解析】首先根据题中所给的几何体的三视图,还原几何体,得出其为底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,利用面积公式求得各个侧面的面积,比较大小得出结果.【详解】分析其三视图,可以确定该几何体是底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,从而可以求得该四棱锥的四个从侧面的直角边长分别是;;;;利用面积公式求得各侧面的面积,比较大小可知最大的是,故选D.【点睛】该题考查的是有关棱锥侧面的面积大小问题,涉及到的知识点有利用三视图还原几何体,判断侧面三角形的形状,比较各三角形面积的大小,属于中档题目.9.已知点是内部一点,且满足,又,,则的面积为A.B.3 C.1 D.2【答案】C【解析】据向量的平行四边形法则判断出点O为三角形的重心,根据重心的性质得出的面积与面积的关系,利用向量的数量积公式,求出三角形两邻边的乘积,据三角形的面积公式求出面积.【详解】因为,所以O为的重心,所以的面积是面积的,因为,所以,因为,所以,所以,所以的面积为1,故选C.【点睛】该题考查的是有关三角形的面积问题,涉及到的知识点有三角形的重心的性质,向量的数量积运算,三角形的面积公式,属于中档题目.10.已知函数,将的图像上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数的图像,若,则的值可能为A.B.C.D.【答案】B【解析】首先利用余弦的倍角公式和辅助角公式对函数解析式进行化简,求得的解析式,之后根据图象变换的原则,求得的解析式,根据,得到和都是函数的最大值3,从而得出的值为周期的整数倍,求得结果.【详解】由题意得,所以,所以的最小正周期为,由,可知和都是函数的最大值3(或都是最小值-3),所以的值为周期的整数倍,所以其最小值为,故选B.【点睛】该题考查的是有关两个变量的差值的问题,涉及到的知识点有三角式的化简,三角函数的图象变换,函数的最值,函数的周期,熟练掌握相关公式是正确解题的关键.11.如图,函数的图像为两条射线,组成的折线,如果不等式的解集中有且仅有1个整数,那么实数的取值范围是A.B.C.D.【答案】B【解析】求得f(x)的分段函数式,由条件可得a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x),画出g(x)的图象,结合图象可得a的范围.【详解】根据题意可知f(x),不等式f(x)≥x2﹣x﹣a等价于a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x),可得g(x)的大致图象,如图所示,又g(0)=﹣2,g(1)=﹣1,g(﹣1)=2,∴要使不等式的解集中有且仅有1个整数,则﹣2≤a<1,即a取值范围是{a|﹣2≤a<1}.故选:B.【点睛】本题考查直线方程的求法,含参不等式的解法,注意运用分离法,考查数形结合思想方法,属于中档题.12.已知函数,若恒成立,则实数的取值范围是A.B.C.D.【答案】A【解析】首先根据题中的条件,结合函数的定义域,对不等式进行变形,之后将恒成立问题转化为最值来处理,利用导数研究函数的单调性,求得函数的最大值,从而求得结果.【详解】根据题意可得恒成立,因为,所以不等式可化为:恒成立,令,,可求得当时,,当时,,所在上单调增,在上单调减,所以,所以的取值范围是,故选A.【点睛】该题考查的是有关不等式恒成立的问题,在解题的过程中,将恒成立问题转化为最值问题,构造新函数,利用导数研究函数的最大值,再者就是利用题的条件,大于其最大值,可以到正无穷,只有A项满足条件,从而很容易求得结果.二、填空题13.已知实数,满足条件,则的最大值为__________.【答案】3【解析】作出题中所给的约束条件对应的可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数求得答案.【详解】根据题中所给的约束条件,画出其对应的可行域如图所示:令,得,从而上下移动直线,可知当直线过点A时,取得最大值,由解得,此时,故答案是:3.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,需要准确地画出约束条件对应的可行域,找出最优解,将最优解代入目标函数,求得结果.14.已知函数,且,则__________.【答案】1【解析】令,可知函数为奇函数,由,可求得,之后利用性质求得结果.【详解】令,因为,所以函数为奇函数,由,所以,所以,故答案是:1.【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有奇函数的性质,在解题的过程中,注意整体思维的应用.15.已知抛物线的焦点为,直线过且依次交抛物线及圆于点,,,四点,则的最小值为__________.【答案】13【解析】由抛物线的定义可知:,从而得到,同理,分类讨论,根据不等式的性质,即可求得的最小值.【详解】因为,所以焦点,准线,由圆:,可知其圆心为,半径为,由抛物线的定义得:,又因为,所以,同理,当轴时,则,所以,当的斜率存在且不为0时,设时,代入抛物线方程,得:,,所以,当且仅当,即时取等号,综上所述,的最小值为13,故答案是:13.【点睛】该题考查的是有关抛物线的简单性质的问题,涉及到的知识点有抛物线的定义,抛物线上的点到焦点的距离,直线与抛物线相交的问题,基本不等式求最值问题,在解题的过程中,注意认真审题是正确解题的关键.16.函数在区间上单调递增,则实数的取值范围是__________.【答案】【解析】由求导公式和法则求出,由题意可得在区间上恒成立,设,从而转化为,结合变量的范围,以及取值范围,可求得其最大值,从而求得结果.【详解】,则,因为函数在上单调增,可得在上恒成立,即,令,则,,所以,因为在上是增函数,所以其最大值为,所以实数的取值范围是.【点睛】该题考查的是有关函数在给定区间上是增函数,求参数的取值范围的问题,涉及到的知识点有导数与单调性的关系,恒成立问题向最值问题转换,注意同角的正余弦的和与积的关系.三、解答题17.如图,在中,是边的中点,,.(Ⅰ)求角的大小;(Ⅱ)若,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)根据三角形的性质和内角和的定理,转化为两角差的问题,应用差角余弦公式,求得结果;(Ⅱ)根据第一题的结果,可知,根据正弦定理,求得,是边的中点,应用面积公式求得结果.【详解】(Ⅰ)由,得,由,得又,所以,,又,所以.(Ⅱ)解法一:由(Ⅰ)知,在中,由正弦定理,得,所以,.因为是边的中点,所以,.故.解法二:由(Ⅰ)知,在中,由正弦定理,得,所以,.因为是边的中点,所以,所以,.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有三角形的性质,和角公式,正弦定理,以及三角形的面积公式,正确应用公式是解题的关键.18.在数列中,,,设,(Ⅰ)求证数列是等差数列,并求通项公式;(Ⅱ)设,且数列的前项和,若,求使恒成立的的取值范围.【答案】(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)根据题中所给的条件,取倒数,即可证明,注意利用等差数列的定义和通项公式;(Ⅱ)用错位相减法求和,之后将恒成立问题转化为最值来处理即可得结果.【详解】证法一:解:(Ⅰ)由条件知,,所以,,所以,又,所以,数列是首项为1,公差为1的等差数列,故数列的通项公式为:.证法二:由条件,得又,所以,数列是首项为1,公差为1的等差数列,故数列的通项公式为:.(Ⅱ)由(Ⅰ)知,,则,①②由①-②得,∴∵,∴恒成立,等价于对任意恒成立.∵,∴.【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的证明问题,等差数列的定义和等差数列的通项公式,应用错位相减法对数列求和,关于恒成立问题求参数的取值范围,保持思路清晰是正确解题的关键.19.如图,在三棱柱中,,,,.(Ⅰ)求证:平面;(Ⅱ)若是棱的中点,求直线与平面所成角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)根据题中的条件,利用线面垂直的判定定理,可证得平面,进而证得,利用勾股定理,可证得,利用线面垂直的判定定理,可证得平面,证得结果;(Ⅱ)利用(Ⅰ)的结论,建立空间直角坐标系,利用空间向量,求得线面角的正弦值,得到结果.【详解】(Ⅰ)证明:∵在三棱柱中,,,又,∴平面,又平面,∴,∵,∴,∵,∴,∴,又,∴平面.(Ⅱ)解法一:由(Ⅰ)知,直线,,两两互相垂直,如图,以为原点,分别以,,所在直线为,,轴,建立空间直角坐标系,则,,,,,设平面的法向量,则,所以,,取,则,又,设直线与平面所成角为,则.∴直线平面所成角的正弦值.解法二:由(Ⅰ)知,直线,,两两互相垂直,以为原点,分别以、、所在直线为,,轴,建立如图所示空间直角坐标系,则,,,,,,,设平面的法向量,则,所以,,取,则,又,设直线与平面所成角为,则.∴直线平面所成角的正弦值.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面垂直的判定,应用向量法求线面角的正弦值,在解题的过程中,需要对定理的条件和结论要熟记,再者就是正确建立空间坐标系.20.已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.(Ⅰ)求椭圆的方程;(Ⅱ)不经过点的直线(且)与椭圆交于,两点,关于原点的对称点为(与点不重合),直线,与轴分别交于两点,,求证:.【答案】(Ⅰ)(Ⅱ)见解析【解析】(Ⅰ)根据椭圆的中点弦所在直线的斜率的性质,得到,得到,再结合椭圆所过的点的坐标满足椭圆方程,联立方程组,求得,进而求得椭圆的方程;(Ⅱ)将直线方程与椭圆方程联立,消元,利用韦达定理得到两根和与两根积,将证明结果转化为证明直线,的斜率互为相反数,列式,可证.【详解】(Ⅰ)由题意,,即①又②联立①①解得所以,椭圆的方程为:.(Ⅱ)设,,,由,得,所以,即,又因为,所以,,,,解法一:要证明,可转化为证明直线,的斜率互为相反数,只需证明,即证明.∴∴,∴.解法二:要证明,可转化为证明直线,与轴交点、连线中点的纵坐标为,即垂直平分即可.直线与的方程分别为:,,分别令,得,而,同解法一,可得,即垂直平分.所以,.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点有椭圆方程的求解,用到的结论有椭圆中点弦所在直线的斜率的特征,再者就是直线与椭圆相交的综合题,认真审题是正确解题的关键,注意正确的等价转化.21.设函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,若函数与函数的图像总有两个交点,设两个交点的横坐标分别为,.①求的取值范围;②求证:.【答案】(Ⅰ)当时,单调递增区间是;单调递减区间是.(Ⅱ)①,②见解析【解析】(Ⅰ)求出函数的导数,结合题中所给的的条件,令导数大于零和导数小于零,分别求出函数的单调增区间和单调减区间;(Ⅱ)函数与函数的图像总有两个交点,等价于函数有两个零点,对函数求导,研究函数的单调性,从而求得参数m的范围,之后根据两个零点的条件,以及函数图象的特点,证得结果.【详解】(Ⅰ)由已知得,,由,,令得:,令得,所以,当时,单调递增区间是;单调递减区间是.(Ⅱ)令,∴,①解法一:由得,;由得,易知,为的极大值点.,当时,;当时,.由题意,只需满足,∴的取值范围是:.解法二:,由得,;由得,易知,为极大值点.而在时取得极小值,由题意,只需满足,解得.②由题意知,,为函数的两个零点,由①知,不妨设,则,且函数在上单调递增,所以,只需证明.令,则∴∵,∴,即所以,,即在上为增函数,所以,,∴成立,所以,.【点睛】该题考查的是有关导数的应用问题,涉及到的知识点有利用导数研究函数的单调性,将图象交点的个数转化为函数零点的个数问题,构造新函数,利用导数研究其图象,对于零点的条件,结合函数的性质证得结果.22.在平面直角坐标系中,直线的参数方程为(为参数,为的倾斜角),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线,,,与曲线分别交于不同于极点的三点,,.(Ⅰ)若,求证:;(Ⅱ)当时,直线过、两点,求与的值.【答案】(Ⅰ)见解析(Ⅱ),.【解析】(Ⅰ)根据题意可知,,,结合题中所给的角的范围,由此能证明;而求得直线的方程,从而求得与的值.【详解】:(1)证明:依题意,,,,∵,∴.(2)当时,直线与圆的交点的极坐标为,直线与圆的交点点的极坐标为从而,、两点的直角坐标分别为:,∴直线的方程为:,所以,,.【点睛】该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有利用方程求点的坐标的问题,正弦的和差角公式,极坐标与平面直角坐标的转化,熟练掌握基础知识是正确解题的关键.23.已知函数,.(Ⅰ)若对于任意,总有成立,求的值;(Ⅱ)若存在,使得成立,求的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)求出函数的对称轴,得到关于的方程,解出即可;,求出的最小值,得到关于的不等式,解出即可.【详解】(Ⅰ)因为,,所以的图像关于对称,又的图像关于对称,所以,所以,.(Ⅱ),使得等价于,使得.等价于,设,则,所以,.当时,,,所以,;当时,,,所以,综上,.解法二:(Ⅰ)∵∴,∴,即,或(舍)所以,(Ⅱ)由得,而即,∴.【点睛】该题考查的是有关绝对值不等式的问题,涉及到的知识点有根据函数图象的对称性求参数的值,绝对值不等式恒成立问题的解题思路,注意式子的应用.。
(完整)2019年福州市高三下学期第二次市质检理科数学试卷(word版,有答案)
19.(12 分) 最近,中国房地产业协会主办的中国房价行情网 调查的一份数据显示,2018 年 7 月,大部分一线 城市的房租租金同比涨幅都在 10%以上.某部门
研究成果认为,房租支出超过月收入 1 的租户“幸 3
第 18 题 图
福指数”低,房租支出不超过月收入 1 的租户“幸 3
A. 2 3
B. 4 3
C.8 D. 8 3
7. 如图,网格纸上的小正方形的边长为 1,粗实线画出的是某几 何体的三视图,则该几何体的体积为
第 7 题图
数学(理科)试卷第 1 页,共 5 页
32
A.32 B.16 C.
3
80
D.
3
8. 已知函数
f (x) 2sinx
0,
图
象的相邻
两条对称轴
福指数”高.为了了解甲、乙两小区租户的幸福指 数高低,随机抽取甲、乙两小区的租户各 100 户
进行调查.甲小区租户的月收入以0,3 ,3,6 ,6,9 ,9,12 ,12,15(单位:千元)
分组的频率分布直方图如上: 乙小区租户的月收入(单位:千元)的频数分布表如下:
数学(理科)试卷第 3 页,共 5 页
2019 年 福 州 市 普 通 高 中 毕 业 班 质 量 检 测
数学(理科)试卷
(完卷时间:120 分钟;满分 150 分) 第 Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只 有一项是符合题目要求的。
1. 1 i 设复数 z 满足 i z 1i ,则 z 的共轭复数为 A. B. 1 i C. 1 i D. 1 i
,则 a8
【市级联考】福建省福州市2019届高三第一学期质量抽测数学(理科)试题(原卷版)
, 总有
(Ⅱ)若存在
, 使得
成立 , 求 的值 ; 成立 ,求 的取值范围 .
D. B.
,若
恒成立 , 则实数 的取值范围是
C.
D.
第Ⅱ卷 本卷包括必考题和选考题两部分。第( 13)题~第( 21)题为必考题,每道试题考生都必须 做答。第( 22)题、第( 23)题为选考题,考生根据要求做答。 二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
13.已知实数 , 满足条件
,
”其.中正确说法的个数为
A. 0 B. 1 C. 2 D. 3
6.已知双曲线
的两条渐近线均与圆
相切 , 则双曲线 的离心率为
A.
B.
C.
D.
7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式
求值的秦九韶算法,至今仍是比较先进的算法
.如图所示的程序框图给出了利用秦九韶算法求多项式值的一
个实例,若输入 , 的值分别为 3、 3,则输出 的值为
A. 143 B. 48 C. 16 D. 5 8.某个几何体的三视图如图所示,在该几何体的各个侧面中,面积最大的侧面的面积为
A.
B. 1 C.
D.
9.已知点 是
内部一点 ,且满足
A.
B. 3 C. 1 D. 2
,又
,
,则
的面积为
10. 已知函数
17. 如图,在
中 , 是边 的中点 ,
,
.
(Ⅰ)求角 的大小 ;
(Ⅱ)若
,求
的面积 .
18.在数列 中 ,
,
,设
,
(Ⅰ)求证数列
是等差数列 , 并求通项公式 ;
福建省福州市2019届高三质检数学(理科)试题及答案
2019年福州市普通高中毕业班质量检测数学(理科)试卷(完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数满足i 1i z ⋅=-,则的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i -2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 4.等比数列的各项均为正实数,其前项和为.若3264,64a a a ==,则5S =A. 32B. 31C. 64D.63 5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D.z z {}n a n n S6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线 AF的斜率为PAF △的面积为A.B. C.8D. 7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A.32 B.16 C.323 D.8038.已知函数()()2sin f x x ωϕ=+0,ωϕπ⎛⎫><⎪2⎝⎭图象的相邻两条对称轴之间的距离为π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是A. 1,12⎛⎤- ⎥⎝⎦B. ()1,1-C. (]0,2D.(]1,2-9.已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]11x ∈-,,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为A.-1B.35 C. 1 D. 35- 10.如图,双曲线的左、右焦点分别为12,F F ,过2F 作线段2F P 与C 交于点Q ,且Q 为2PF 的中点.若等腰△12PF F 的底边2PF 的长等于C 的半焦距,则的离心率为A.B. 23C. D.3211.如图,以棱长为1的正方体的顶点A正方体的表面被球面所截得的所有弧长之和为2222:1(0,0)x y C a b a b-=>>C 第7题图第10题图第11题图A.34πC. 32πD.94π 12. 已知数列{}n a 满足11a =,()2122124n n n n n a a a na n++=++,则8a =A.64892-B.32892-C.16892-D.7892-第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22 、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知两个单位向量,a b r r,满足a b += ,则与的夹角为__________.14.已知点()0,2A ,动点(),P x y 的坐标满足条件0x y x≥⎧⎨≤⎩,则PA 的最小值是.15. ()()2511ax x +-的展开式中,所有x 的奇数次幂项的系数和为-64,则正实数a 的值为__________. 16.已知函数()2e()ln 2e x f x a x =-有且只有一个零点,则实数a 的取值范围是__________. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (12分)ABC △的内角,,的对边分别为,,.若角,,成等差数列,且b =(1)求ABC △的外接圆直径; (2)求a c +的取值范围.ab A B C a bc A B C如图,四棱锥P ABCD -,//AB CD ,90BCD ∠=︒,224AB BC CD ===,PAB △为等边三角形,平面PAB ⊥平面ABCD ,Q 为PB 中点. (1) 求证:AQ ⊥平面 PBC ; (2)求二面角B PC D --的余弦值.第18题最近,中国房地产业协会主办的中国房价行情网调查的一份数据显示,2018年7月,大部分一线城市的房租租金同比涨幅都在10%以上.某部门研究成果认为,房租支出超过月收入13的租户“幸福指数”低,房租支出不超过月收入13的租户“幸福指数”高.为了了解甲、乙两小区租户的幸福指数高低,随机抽取甲、乙两小区的租户各100户进行调查.甲小区租户的月收入以[)03,,[)36,,[)69,,[)912,,[]1215,(单位:千元)分组的频率分布直方图如上:乙小区租户的月收入(单位:千元)的频数分布表如下:(1)设甲、乙两小区租户的月收入相互独立,记M 表示事件“甲小区租户的月收入低于6千元,乙小区租户的月收入不低于6千元”.把频率视为概率,求M 的概率;(2)利用频率分布直方图,求所抽取甲小区100户租户的月收入的中位数;(3)若甲、乙两小区每户的月租费分别为2千元、1千元.请根据条件完成下面的22⨯列联表,并说明能否在犯错误的概率不超过 0.001 的前提下认为“幸福指数高低与租住的小区”有关.附:临界值表参考公式:2()()()()()n ad bc K a b c d a c b d -=++++.20. (12分)已知圆O :222x y r +=,椭圆()2222:10x y C a b a b+=>>的短半轴长等于圆O 的半径,且过C 右焦点的直线与圆O 相切于点12D ⎛ ⎝⎭. (1)求椭圆C 的方程;(2)若动直线l 与圆O 相切,且与C 相交于,A B 两点,求点O 到弦AB 的垂直平分线距离的最大值.21. (12分) 已知函数()()()ln 11xf x a x a x=-+∈+R ,2m 12e e ()x g x x +=-. (1)求函数()f x 的单调区间;(2)若0a <,[]12,0,e x x ∀∈,不等式12()()f x g x ≥恒成立,求实数m 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一个题目计分. 22. [选修44-:坐标系与参数方程] (10分)在直角坐标系中,直线的参数方程为12x t y a ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数,a ∈R ).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,射线()03θρπ=≥与曲线C 交于,O P 两点,直线与曲线C 交于,A B 两点.(1)求直线的普通方程和曲线C 的直角坐标方程; (2)当AB OP =时,求a 的值.23.[选修45-:不等式选讲] (10分) 已知不等式21214x x ++-<的解集为M. (1)求集合;(2)设实数,a M b M ∈∉,证明:1ab a b +≤+.xOy l x l l M2019年福州市普通高中毕业班质量检测参考答案数学(理科)试卷(完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数满足i 1i z ⋅=-,则的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i - 【简解】因为1i1i iz -==--,所以1+i z =-,故选A . 2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-【简解】因为{}{}1,12A x x B x x =>=-<<,所以{}1A B x x =>-U ,故选D .3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 【简解】A 中的m 值应为12; B 中应为380人; C 是正确的; D 中的分段间隔应为20,故选C . 4.等比数列的各项均为正实数,其前项和为.若3264,64a a a ==,则5S =A. 32B. 31C. 64D.63z z {}n a n n S【简解】解法一:设首项为1a ,公比为q ,因为0n a >,所以0q >,由条件得21511464a q a q a q ⎧⋅=⎪⎨⋅=⎪⎩,解得112a q =⎧⎨=⎩,所以531S =,故选B .解法二:设首项为1a ,公比为q ,由226464a a a ==,又34a =,∴2q =,又因为214a q ⋅=所以11a =,所以531S =,故选B . 5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1D. 【简解】解法一:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得,πcos 3θ⎛⎫- ⎪⎝⎭=cos 01=,故选C .解法二:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,πcos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线 AF 的斜率为PAF △的面积为A.B. C.8D. 【简解】解法一:设准线与x 轴交于点Q ,因为直线AF的斜率为,2FQ =,60AFQ ∴∠=o,4FA =,又因为PA PF =,所以PAF △是边长为4的等边三角形,所以PAF △224FA =B . 解法二:设准线与x 轴交于点Q ,,)Pm n (,因为直线 AF的斜率为2FQ =,60AFQ ∴∠=o ,所以AQ =n =±24n m =,所以3m =,又因为4PA PF ==, 所以PAF △的面积为11422PA n ⨯⨯=⨯⨯B . 7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A.32 B.16 C.323 D.803【简解】由三视图知,所求几何体的体积为直三棱柱的体积减去三棱锥的体积321180442=323⨯-⨯⨯⨯12.故选D . 8.已知函数()()2sin f x x ωϕ=+0,ωϕπ⎛⎫><⎪2⎝⎭图象的相邻两条对称轴之间的距离为π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是A. 1,12⎛⎤- ⎥⎝⎦B. ()1,1-C. (]0,2D.(]1,2- 【简解】由图象的相邻两条对称轴之间的距离为π2,所以T =π,又因为0ω>,所以2ωπ=π,解得=2ω.0,ωϕ><π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数2()2sin 23g x x ϕπ⎛⎫=++ ⎪⎝⎭的图象.因为函数()g x 为偶函数,所以2,32k k ϕππ+=π+∈Z ,由ϕπ<2,解得=6ϕπ- ,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭. 因为02x π<<,所以1sin 2126x π⎛⎫-<-≤ ⎪⎝⎭,所以函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是(]1,2-,故选D . 9.已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]11x ∈-,,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为A.-1B.35 C. 1 D. 35-第7题【简解】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()()2222,22x x x xg x h x --+==-.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ---≤==-+++-,∵2141x y =-+为增函数,∴max231415x⎛⎫-= ⎪+⎝⎭,故选B . 10.如图,双曲线的左、右焦点分别为12,F F ,过2F 作线段2F P 与C 交于点Q ,且Q 为2PF 的中点.若等腰△12PF F 的底边2PF 的长等于C 的半焦距,则的离心率为A. B. 23C. D.32【简解】连结1QF ,由条件知12QF PF ⊥,且22c QF =.由双曲线定义知122cQF a =+,在12Rt FQF △中,()2222222c c a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,解得的离心率27e +=,故选C .11.如图,以棱长为1的正方体的顶点A球面,则该正方体的表面被球面所截得的所有弧长之和为 A.34πC. 32πD.94π【简解】正方体的表面被该球面被所截得的弧长有相等的三部分,例如,与上底面截得的弧长是以1A 为圆心, 1为半径的圆周长的14,所以弧长之和为23342ππ⨯=.故选C.12. 已知数列{}n a 满足11a =,()2122124n n n n n a a a na n++=++,则8a =A.64892- B.32892- C.16892- D.7892-【简解】因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n n a na n a n a +++=+, 2222:1(0,0)x y C a b a b-=>>C C 第10第11题图所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n nb a =+,则21n n b b +=,两边取对数得1l g 2l g n n b b +=,又111l g l g 2l g 3b a ⎛⎫=+=⎪⎝⎭,所以数列{}lg n b 是首项为lg 3,公比为2的等比数列.所以112lg lg32lg3n n n b --=⋅=,所以123n n b -=,即1232n n n a -+=,从而1232n n n a -=-,将8n =代入,选A.法二、因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n na na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,因为13b =,所以223b =,所以()224333b ==,所以()248433b ==,…,所以7264839b ==。
2019届福建高三毕业班3月质量检测考试数学(理)试题及答案
2019届福建省高三毕业班3月质量检测考试数学(理)试题一、单选题1.已知集合,,则=A.B.C.D.【答案】C【】可求出集合A,B,然后进行交集的运算即可.,;∴A∩B={x|1<x≤2}.故选:C.【】考查描述法的定义,对数函数的定义域,一元二次不等式的解法,交集的运算.2.若复数满足,则A.B.C.D.1【答案】D【】把已知等式变形,利用复数代数形式的乘除运算化简求得z,再由复数模的计算公式求解.由(z+1)i=1+i,得z+1,∴z=﹣i,则|z|=1.故选:D.【】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.经统计,某市高三学生期末数学成绩,且,则从该市任选一名高三学生,其成绩不低于90分的概率是A.0.35 B.0.65 C.0.7 D.0.85【答案】A【】由已知直接利用正态分布曲线的对称性求解.∵学生成绩X服从正态分布N(85,σ2),且P(80<X<90)=0.3,∵P(X≥90)[1﹣P(80<X<90)],∴从该市任选一名高三学生,其成绩不低于90分的概率是0.35.故选:A.【】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.4.若满足约束条件,则的最小值是A.-5 B.-4 C.0 D.2【答案】B【】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.作出不等式组对应的平面区域如图:(阴影部分)由z=x+2y得y x z平移直线y x z,由图象可知当直线y x z经过点A(﹣2,﹣1)时,直线y x z的截距最小,此时z最小.将A(﹣2,﹣1)的坐标代入目标函数z=x+2y,得z=﹣4.即z=x+2y的最小值为﹣4;故选:B.【】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.5.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球的球面上,则球的体积是A.B.C.D.【答案】B【】由三视图还原几何体,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2,然后将其放入正方体进行求解.由三视图还原原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2.把该三棱锥补形为正方体,则正方体对角线长为.∴该三棱柱外接球的半径为.体积V.故选:B.【】本题考查空间几何体的三视图,考查多面体外接球表面积与体积的求法,是中档题.6.将函数的图像向右平移个单位长度后,所得图像的一个对称中心为A.B.C.D.【答案】A【】利用函数y=A sin(ωx+φ)的图象变换规律,求得平移后的式,再令2x kπ,求得结论.将函数y=sin(2x)的图象向右平移个单位长度后,所得图象对应的函数式为y =sin(2x),令2x kπ,求得x,k∈Z,故函数的对称中心为(,0),k∈Z,故选:A.【】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.7.已知,,,则A.B.C.D.【答案】A【】根据幂函数的单调性即可求出.a,b,c,则a70=235=(25)7=327=(27)5=1285,b70=514=(52)7=257c70=710=(72)5=495,∴a>c,a>b,又b70=514=(57)2=(78125)2c70=710=(75)2=(16807)2,∴b>c,∴a>b>c,故选:A.【】本题考查了不等式的大小比较,掌握幂函数的单调性是关键,属于基础题8.某商场通过转动如图所示的质地均匀的6等分的圆盘进行抽奖活动,当指针指向阴影区域时为中奖.规定每位顾客有3次抽奖机会,但中奖1次就停止抽奖。
【市级联考】福建省福州市2019届高三第一学期质量抽测数学(理科)试题(解析版)
2018-2019学年度福州市高三第一学期质量抽测数学(理科)试卷(完卷时间:120分钟:满分150分)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则A. B. C. D.【答案】D【解析】【分析】首先解绝对值不等式,求出集合A,之后利用交集的定义求得结果.【详解】由解得,所以,又,所以,故选D.【点睛】该题考查的是有关集合的交集的概念及运算,属于简单题目.2.已知复数满足,则为A. B. C. 2 D. 1【答案】A【解析】【分析】首先利用复数的运算法则,求出复数z,再应用复数的模的运算公式,求得结果.【详解】由,得,所以,故选A.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则和除法运算法则,还有复数的模,属于简单题目.3.曲线在点处的切线与坐标轴围成的三角形的面积为A. 2B.C.D.【答案】D【解析】【分析】根据求导公式求出函数的导函数,把代入求出切线的斜率,代入点斜式方程并化简,分别令和,求出切线与坐标轴的交点坐标,再代入面积公式求解.【详解】由题意得,所以,则在点处的切线斜率为,所以切线方程为:,即,令,得,令,得,所以切线与坐标轴围成三角形的面积,故选D.【点睛】该题考查的是有关直线与坐标轴围成三角形面积问题,涉及到的知识点有导数的几何意义,曲线的切线方程,直线方程的点斜式,三角形的面积公式,熟练掌握基础知识是正确解题的关键.4.已知等差数列的前项和为,且,,则A. 20B. 40C. 60D. 80【答案】B【解析】【分析】首先利用等差数列的性质,以及题中所给的条件,求得,之后应用等差数列的求和公式求得结果.【详解】等差数列中,前n项和为,且,因为由等差数列的性质可知,所以,故选B.【点睛】该题考查的是有关等差数列的求和问题,涉及到的知识点有等差数列性质,等差数列的求和公式,属于基础题目.5.给出下列说法:①“”是“”的充分不必要条件;②定义在上的偶函数的最大值为30;③命题“,”的否定形式是“,”.其中正确说法的个数为A. 0B. 1C. 2D. 3【答案】C【解析】【分析】对于①,利用充分不必要条件的定义判读其正确性,对于②,利用偶函数的定义求得参数的值,结合二次函数的性质,求得其最大值,得出其正确性,对于③,应用特称命题的否定形式,判断其是否正确,即可得结果.【详解】对于①,当时,一定有,但是当时,,所以“”是“”的充分不必要条件,所以①正确;对于②,因为为偶函数,所以,因为定义域为,所以,所以函数的最大值为,所以②正确;对于③,命题“,”的否定形式是“,”,所以③是错误的;故正确命题的个数为2,故选C.【点睛】该题考查的是有关判断正确命题个数的问题,涉及到的知识点有充分必要条件的判断,偶函数的性质,含有一个量词的命题的否定,考查的都是基础.6.已知双曲线的两条渐近线均与圆相切,则双曲线的离心率为A. B. C. D.【答案】A【分析】先将圆的方程化为标准方程,再根据双曲线的两条渐近线均和圆相切,利用圆心到直线的距离等于半径,可建立几何量之间的关系,从而可求双曲线离心率.【详解】双曲线的渐近线方程为,即,将圆化为标准方程得,所以其圆心为,半径为2,根据题意,可得圆心到直线的距离等于半径,即,整理得,因为,所以有,所以,故选A.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有双曲线的渐近线方程,直线与圆相切的条件,双曲线中之间的关系,双曲线的离心率,属于中档题目.7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分别为3、3,则输出的值为A. 143B. 48C. 16D. 5【答案】B【解析】由题意,模拟程序的运行,依次写出每次循环得到的的值,当时,不满足条件,跳出循环,输出的值为48.【详解】初始值,程序运行过程如下表所示:,,,,,不满足条件,跳出循环,输出的值为48,故选B【点睛】该题考查的是有关程序框图的输出结果的问题,在解题的过程中,注意在什么情况下跳出循环,属于简单题目.8.某个几何体的三视图如图所示,在该几何体的各个侧面中,面积最大的侧面的面积为A. B. 1 C. D.【答案】D【解析】【分析】首先根据题中所给的几何体的三视图,还原几何体,得出其为底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,利用面积公式求得各个侧面的面积,比较大小得出结果.【详解】分析其三视图,可以确定该几何体是底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,从而可以求得该四棱锥的四个从侧面的直角边长分别是;;;;利用面积公式求得各侧面的面积,比较大小可知最大的是,故选D.【点睛】该题考查的是有关棱锥侧面的面积大小问题,涉及到的知识点有利用三视图还原几何体,判断侧面三角形的形状,比较各三角形面积的大小,属于中档题目.9.已知点是内部一点,且满足,又,,则的面积为A. B. 3 C. 1 D. 2【答案】C【解析】【分析】据向量的平行四边形法则判断出点O为三角形的重心,根据重心的性质得出的面积与面积的关系,利用向量的数量积公式,求出三角形两邻边的乘积,据三角形的面积公式求出面积.【详解】因为,所以O为的重心,所以的面积是面积的,因为,所以,因为,所以,所以,所以的面积为1,故选C.【点睛】该题考查的是有关三角形的面积问题,涉及到的知识点有三角形的重心的性质,向量的数量积运算,三角形的面积公式,属于中档题目.10.已知函数,将的图像上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数的图像,若,则的值可能为A. B. C. D.【答案】B【解析】【分析】首先利用余弦的倍角公式和辅助角公式对函数解析式进行化简,求得的解析式,之后根据图象变换的原则,求得的解析式,根据,得到和都是函数的最大值3,从而得出的值为周期的整数倍,求得结果.【详解】由题意得,所以,所以的最小正周期为,由,可知和都是函数的最大值3(或都是最小值-3),所以的值为周期的整数倍,所以其最小值为,故选B.【点睛】该题考查的是有关两个变量的差值的问题,涉及到的知识点有三角式的化简,三角函数的图象变换,函数的最值,函数的周期,熟练掌握相关公式是正确解题的关键.11.如图,函数的图像为两条射线,组成的折线,如果不等式的解集中有且仅有1个整数,那么实数的取值范围是A. B.C. D.【答案】B【解析】【分析】求得f(x)的分段函数式,由条件可得a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x),画出g(x)的图象,结合图象可得a的范围.【详解】根据题意可知f(x),不等式f(x)≥x2﹣x﹣a等价于a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x),可得g(x)的大致图象,如图所示,又g(0)=﹣2,g(1)=﹣1,g(﹣1)=2,∴要使不等式的解集中有且仅有1个整数,则﹣2≤a<1,即a取值范围是{a|﹣2≤a<1}.故选:B.【点睛】本题考查直线方程的求法,含参不等式的解法,注意运用分离法,考查数形结合思想方法,属于中档题.12.已知函数,若恒成立,则实数的取值范围是A. B.C. D.【答案】A【解析】【分析】首先根据题中的条件,结合函数的定义域,对不等式进行变形,之后将恒成立问题转化为最值来处理,利用导数研究函数的单调性,求得函数的最大值,从而求得结果.【详解】根据题意可得恒成立,因为,所以不等式可化为:恒成立,令,,可求得当时,,当时,,所在上单调增,在上单调减,所以,所以的取值范围是,故选A.【点睛】该题考查的是有关不等式恒成立的问题,在解题的过程中,将恒成立问题转化为最值问题,构造新函数,利用导数研究函数的最大值,再者就是利用题的条件,大于其最大值,可以到正无穷,只有A项满足条件,从而很容易求得结果.第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷第1页,总21页
2019年福州市普通高中毕业班质量检测
数学(理科)试卷
(完卷时间:120分钟;满分150分)
第Ⅰ卷
1.设复数z 满足i 1i z ,则z 的共轭复数为
A.
1i
B. 1i
C.
1i
D.
1i
2.已知集合2
21
3,2
0A x x B
x x
x ,则A B U =
A.
1
2x x
B.
11x x C.
211
x x x ,或 D.
1
x x
3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民
族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:
参加场数
0 1 2 3 4 5 6 7 参加人数占调查人数的百分比
8%
10%
20%
26%
18%
m%
4%
2%
以下四个结论中正确的是
A. 表中m 的数值为10
B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人
C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人
D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 4.等比数列n
a 的各项均为正实数,其前
n 项和为n S .若3
264,64a a a ,则5
S A. 32 B. 31
C. 64
D.63
5. 已知sin
π16
2
,且2
θ
π0,
,则π3
cos
=
A. 0
B.
12
C. 1
D.
32
6.设抛物线2
4y x 的焦点为F ,准线为l ,P 为该抛物线上一点,PA
l ,A 为垂足.若直线AF
的斜率为3,则PAF △的面积为
A. 23
B. 43
C.8
D. 83
7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,
则该几何体的体积为A.32 B.16
C.
323
D.
803
8.已知函数()
2sin
f x x
0,
图象的相邻两条对称轴之间的
距离为
,将函数
()f x 的图象向左平移
3
个单位长度后,得到函数
()g x 的图
象.若函数()g x 为偶函数,则函数()f x 在区间
0,
2
上的值域是
A. 1,1
2
B.
1,1 C.
0,2
D.
1,2
9. 已知
g x 为偶函数,h x 为奇函数,且满足
2x
g x h x
.若存在11x
,,使得不等
式0m g x h x
有解,则实数m 的最大值为
A.-1
B.
35
C. 1
D.
35
第7题
图。