数据库中三个范式的理解

合集下载

三大范式应用与理解

三大范式应用与理解

(课程名称) → (学分)(学号) → (姓名, 年龄)即存在组合关键字中的字段决定非关键字的情况。

由于不符合2NF,这个选课关系表会存在如下问题:(1) 数据冗余:同一门课程由n个学生选修,"学分"就重复n-1次;同一个学生选修了m门课程,姓名和年龄就重复了m-1次。

(2) 更新异常:若调整了某门课程的学分,数据表中所有行的"学分"值都要更新,否则会出现同一门课程学分不同的情况。

(3) 插入异常:假设要开设一门新的课程,暂时还没有人选修。

这样,由于还没有"学号"关键字,课程名称和学分也无法记录入数据库。

(4) 删除异常:假设一批学生已经完成课程的选修,这些选修记录就应该从数据库表中删除。

但是,与此同时,课程名称和学分信息也被删除了。

很显然,这也会导致插入异常。

把选课关系表SelectCourse改为如下三个表:学生:Student(学号, 姓名, 年龄);课程:Course(课程名称, 学分);选课关系:SelectCourse(学号, 课程名称, 成绩)。

这样的数据库表是符合第二范式的,消除了数据冗余、更新异常、插入异常和删除异常。

另外,所有单关键字的数据库表都符合第二范式,因为不可能存在组合关键字。

第三范式(3NF):在第二范式的基础上,数据表中如果不存在非关键字段对任一候选关键字段的传递函数依赖则符合第三范式。

所谓传递函数依赖,指的是如果存在"A → B → C"的决定关系,则C传递函数依赖于A。

因此,满足第三范式的数据库表应该不存在如下依赖关系:关键字段→ 非关键字段x → 非关键字段y假定学生关系表为Student(学号, 姓名, 年龄, 所在学院, 学院地点, 学院电话),关键字为单一关键字"学号",因为存在如下决定关系:(学号) → (姓名, 年龄, 所在学院, 学院地点, 学院电话)这个数据库是符合2NF的,但是不符合3NF,因为存在如下决定关系:(学号) → (所在学院) → (学院地点, 学院电话)即存在非关键字段"学院地点"、"学院电话"对关键字段"学号"的传递函数依赖。

数据库(第一范式,第二范式,第三范式)

数据库(第一范式,第二范式,第三范式)
通过拆分【Order】为【Order】(OrderID,OrderDate,CustomerID)和【Customer】(CustomerID,CustomerName,CustomerAddr,CustomerCity)从而达到 3NF。
第二范式(2NF)和第三范式(3NF)的概念很容易混淆,区分它们的关键点在于,2NF:非主键列是否完全依赖于主键,还是依赖于主键的一部分;3NF:非主键列是直接依赖于主键,还是直接依赖于非主键列。
范式:英文名称是 Normal Form,它是英国人 E.F.Codd(关系数据库的老祖宗)在上个世纪70年代提出关系数据库模型后总结出来的,范式是关系数据库理论的基础,也是我们在设计数据库结构过程中所要遵循的规则和指导方法。目前有迹可寻的共有8种范式,依次是:1NF,2NF,3NF,BCNF,4NF,5NF,DKNF,6NF。通常所用到的只是前三个范式,即:第一范式(1NF),第二范式(2NF),第三范式(3NF)。下面就简单介绍下这三个范式。
可以把【OrderDetail】表拆分为【OrderDetail】(OrderID,ProductID,Discount,Quantity)和【Product】(ProductID,UnitPrice,ProductName)来消除原订单表中UnitPrice,ProductName多次重复的情况。
其中 OrderDate,CustomerID,CustomerName,CustomerAddr,CustomerCity 等非主键列都完全依赖于主键(OrderID),所以符合 2NF。不过问题是 CustomerName,CustomerAddr,CustomerCity 直接依赖的是 CustomerID(非主键列),而不是直接依赖于主键,它是通过传递才依赖于主键,所以不符合 3NF。

数据库范式1NF2NF3NFBCNF(实例)通俗易懂的讲解

数据库范式1NF2NF3NFBCNF(实例)通俗易懂的讲解

数据库范式1NF2NF3NFBCNF(实例)通俗易懂的讲解本⽂对⼤多数初学数据库原理的同学绝对是个⼤福利,哈哈,完完整整的看完此篇博⽂⼀定能够清晰地理解数据库的四⼤范式。

不懂者留⾔相互讨论。

设计范式(范式,数据库设计范式,数据库的设计范式)是符合某⼀种级别的关系模式的集合。

构造数据库必须遵循⼀定的规则。

在关系数据库中,这种规则就是范式。

关系数据库中的关系必须满⾜⼀定的要求,即满⾜不同的范式。

⽬前关系数据库有六种范式:第⼀范式(1NF)、第⼆范式(2NF)、第三范式(3NF)、第四范式(4NF)、第五范式(5NF)和第六范式(6NF)。

满⾜最低要求的范式是第⼀范式(1NF)。

在第⼀范式的基础上进⼀步满⾜更多要求的称为第⼆范式(2NF),其余范式以次类推。

⼀般说来,数据库只需满⾜第三范式(3NF)就⾏了。

下⾯我们举例介绍第⼀范式(1NF)、第⼆范式(2NF)和第三范式(3NF)。

在创建⼀个数据库的过程中,范化是将其转化为⼀些表的过程,这种⽅法可以使从数据库得到的结果更加明确。

这样可能使数据库产⽣重复数据,从⽽导致创建多余的表。

范化是在识别数据库中的数据元素、关系,以及定义所需的表和各表中的项⽬这些初始⼯作之后的⼀个细化的过程。

下⾯是范化的⼀个例⼦ Customer Item purchased Purchase price Thomas Shirt $40 Maria Tennis shoes $35 Evelyn Shirt $40 Pajaro Trousers $25如果上⾯这个表⽤于保存物品的价格,⽽你想要删除其中的⼀个顾客,这时你就必须同时删除⼀个价格。

范化就是要解决这个问题,你可以将这个表化为两个表,⼀个⽤于存储每个顾客和他所买物品的信息,另⼀个⽤于存储每件产品和其价格的信息,这样对其中⼀个表做添加或删除操作就不会影响另⼀个表。

关系数据库的⼏种设计范式介绍1 第⼀范式(1NF)在任何⼀个关系数据库中,第⼀范式(1NF)是对关系模式的基本要求,不满⾜第⼀范式(1NF)的数据库就不是关系数据库。

数据库设计中常见的规范与反范式化方法

数据库设计中常见的规范与反范式化方法

数据库设计中常见的规范与反范式化方法数据库设计是构建一个高效、可扩展和稳定的数据库系统的关键环节。

在设计数据库时,遵循一些常见规范和采用一些反范式化的方法可以提高数据库的性能和可维护性。

本文将介绍数据库设计中常见的规范和反范式化方法,并探讨它们的优缺点及适用场景。

一、常见的规范化方法规范化是一种将数据库设计转化为符合特定规范的过程,它消除了数据冗余和更新异常,提高了数据一致性和完整性。

以下是常见的规范化方法:1. 第一范式(1NF):确保每个实体属性都是不可分割的原子值。

例如,一个学生实体包含学生ID、姓名和电话号码,每个属性都是不能再分割的最小单位。

2. 第二范式(2NF):在满足第一范式的前提下,确保非主属性完全依赖于主键。

如果一个表有一个复合主键,那么非主属性必须完全依赖于这些复合主键,而不是依赖于其中的一部分。

3. 第三范式(3NF):在满足第二范式的前提下,确保非主属性不传递依赖于其他非主属性。

如果一个非主属性只依赖于主键,而不依赖于其他非主属性,那么该表满足第三范式。

常见的规范化方法可以有效地减少冗余数据,提高数据的整合性与一致性。

但是,过度规范化可能会导致关联查询变得复杂,性能下降。

因此,在设计数据库时,需要权衡规范化与性能之间的平衡。

二、反范式化方法反范式化是通过在设计过程中引入或保留冗余数据,来提高数据库性能和查询效率的一种方法。

以下是常见的反范式化方法:1. 合并表:将多个表合并成一个表,这样可以减少关联操作的次数,提高查询效率。

但是,合并表可能会导致数据冗余增加,增加数据更新的难度和风险。

2. 数据缓存:将经常被查询的数据缓存到内存或其他高速存储设备中,避免频繁的磁盘访问。

这样可以显著提高查询速度,但同时需要额外的资源。

3. 表分区:将表分成多个较小的分区,每个分区独立进行管理和维护。

这样可以减少查询的数据量,提高查询效率。

但是,分区可能导致数据分布不均衡,增加了维护和管理的复杂度。

数据库设计中的范式化与反范式化

数据库设计中的范式化与反范式化

数据库设计中的范式化与反范式化随着互联网的发展和大数据时代的到来,数据库已成为各行各业不可或缺的核心组成部分。

在数据库设计的过程中,范式化(Normalization)和反范式化(Denormalization)是两个重要的概念,它们分别指的是对数据库表的结构进行规范化和冗余化的处理。

本文将对范式化和反范式化进行详细的介绍和探讨。

一、范式化(Normalization)范式化是指将数据库中的表结构按照一定的规范进行设计和拆分的过程。

其主要目的是减少数据的冗余,提高数据存储的效率、一致性和易于维护性。

1. 第一范式(1NF)第一范式要求数据库表中的每个列都是原子性的,即不可再分解。

例如,一个学生表的列包括姓名、性别、年龄,而不是将它们放在一个“个人信息”列中。

这样可以避免数据的冗余和更新异常。

2. 第二范式(2NF)第二范式要求数据库表中的每个非主键列完全依赖于主键。

简单来说,就是表中的每个非主键列必须与主键直接相关,而不能与其他非主键列相关。

这样做可以消除表中的部分冗余,提高数据的完整性和一致性。

3. 第三范式(3NF)第三范式要求数据库表中的每个非主键列不存在传递依赖。

也就是说,表中的非主键列之间不应存在直接或间接的关联关系。

通过将具有传递依赖关系的非主键列拆分成独立的表,可以进一步减少数据库表中的冗余数据,提高查询效率和数据的一致性。

二、反范式化(Denormalization)反范式化是指在数据库设计中有意地将表中的某些冗余数据复制到其他表中,以提高查询性能和简化复杂的数据关联操作。

虽然这会增加数据的冗余,但能够降低查询时的数据读取和联接操作,提高系统的性能。

常用的反范式化技术包括冗余、数据扁平化、表的合并等。

1. 冗余冗余是反范式化的一种常见手段。

它通过将某些重复的数据放置在多个表中,减少了查询时的数据关联操作。

例如,在一个订单表中同时存储客户的姓名和地址信息,避免了通过联接操作来获取客户信息,提高了查询性能。

简述数据库设计3个范式的含义

简述数据库设计3个范式的含义

数据库设计是指按照特定的规范和要求,对数据库的数据存储和管理进行规划和设计的过程。

数据库设计的三个范式是指数据库设计中的基本规范,其中第一范式(1NF)、第二范式(2NF)和第三范式(3NF)分别规定了数据库中的数据应该满足的标准和要求。

下面我们将简要介绍数据库设计的三个范式的含义。

一、第一范式(1NF)1. 第一范式是指数据库表中的所有字段都是不可再分的最小单元,即每个数据项都是不可再分的,不能再被分割为更小的数据项。

2. 数据库表中的每一列都是单一的值,不可再分。

3. 所有的字段都应该是原子性的,即不能再分。

4. 如果数据库表中的字段不满足第一范式的要求,就需要进行适当的调整和修改,使之满足第一范式的要求。

二、第二范式(2NF)1. 第二范式是指数据库表中的所有非主属性都完全依赖于全部主键。

2. 所谓主属性是指唯一标识一个记录的属性,而非主属性是指与主键相关的其他属性。

3. 如果一个表中的某些字段与主键没有直接关系,而是依赖于其他字段,则需要将这些字段拆分到另一个表中。

4. 通过将非主属性与主键分离,可以避免数据冗余和更新异常。

5. 第二范式要求数据库表中的数据项应该是唯一的,不可再分,且完全依赖于全部主键。

三、第三范式(3NF)1. 第三范式是指数据库表中的所有字段都不依赖于其他非主字段。

2. 也就是说,一个表中的字段之间应该相互独立,不应该存在字段之间的传递依赖关系。

3. 如果一个字段依赖于其他非主字段,则应该将其拆分到另一张表中,以避免数据冗余和更新异常。

4. 第三范式要求数据库表中的字段之间应该是独立的,不应该存在传递依赖关系。

数据库设计的三个范式分别规范了数据库表中数据的原子性、依赖性和独立性。

遵循这些范式可以有效地减少数据冗余和更新异常,提高数据库的数据完整性和稳定性。

在进行数据库设计时,设计人员应该严格遵循这些范式的要求,以确保数据库的高效性和可靠性。

众所周知,数据库设计的三个范式是设计和维护关系型数据库时非常重要的标准和指导原则。

数据库1NF, 2NF, 3NF, 4NF, 5NF, BCNF的定义和区别

数据库1NF, 2NF, 3NF, 4NF, 5NF, BCNF的定义和区别

1NF, 2NF, 3NF, 4NF, 5NF, BCNF第一范式(1NF)无重复的列基本上现在的关系型数据库都会符合第一范式,不符合的也建立不了。

第二范式(2NF)属性完全依赖于主键要求数据库表中的每个实例或行必须可以被惟一地区分。

为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。

例如:员工信息表中加上了员工编号(emp_id)列,因为每个员工的员工编号是惟一的,因此每个员工可以被惟一区分。

这个惟一属性列被称为主关键字或主键、主码。

所以员工的其它信息都依赖于员工编号。

所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体第三范式(3NF)属性不依赖于其它非主属性要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。

例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。

那么在的员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。

如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。

简而言之,第三范式就是属性不依赖于其它非主属性。

修正的第三范式(BCNF)要求关系模型中所有的属性(包括主属性和非主属性)都不传递依赖于任何候选关键字。

也就是说,当关系型表中功能上互相依赖的那些列的每一列都是一个候选关键字时候,该满足BCNF。

BCNF实际上是在第三范式的基础上,进一步消除了主属性的传递依赖。

第四范式(4NF)当一个表中的非主属性互相独立时(3NF),这些非主属性不应该有多值。

若有多值就违反了第四范式。

定义比较抽象,可以参照下面的例子理解。

CUSTOMERID PHONE CELL10008828-123414908888888810008838-1234149099999999由于PHONE和CELL是互相独立的,而有些用户又有两个和多个值。

第一、二、三范式

第一、二、三范式

设计范式简介(范式,数据库设计范式,数据库的设计范式)是符合某一种级别的关系模式的集合。

构造数据库必须遵循一定的规则。

在关系数据库中,这种规则就是范式。

关系数据库中的关系必须满足一定的要求,即满足不同的范式。

目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、第四范式(4NF)、第五范式(5NF)和第六范式(6NF)。

满足最低要求的范式是第一范式(1NF)。

在第一范式的基础上进一步满足更多要求的称为第二范式(2NF),其余范式以次类推。

一般说来,数据库只需满足第三范式(3NF)就行了。

下面我们举例介绍第一范式(1NF)、第二范式(2NF)和第三范式(3NF)。

在创建一个数据库的过程中,范化是将其转化为一些表的过程,这种方法可以使从数据库得到的结果更加明确。

这样可能使数据库产生重复数据,从而导致创建多余的表。

范化是在识别数据库中的数据元素、关系,以及定义所需的表和各表中的项目这些初始工作之后的一个细化的过程。

下面是范化的一个例子Customer Item purchased Purchase price------------------------------------------------------------------------Thomas Shirt $40Maria Tennis shoes $35Evelyn Shirt $40Pajaro Trousers $25如果上面这个表用于保存物品的价格,而你想要删除其中的一个顾客,这时你就必须同时删除一个价格。

范化就是要解决这个问题,你可以将这个表化为两个表,一个用于存储每个顾客和他所买物品的信息,另一个用于存储每件产品和其价格的信息,这样对其中一个表做添加或删除操作就不会影响另一个表。

关系数据库的几种设计范式介绍第一范式(1NF)在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。

数据库函数依赖及范式(最通俗易懂)

数据库函数依赖及范式(最通俗易懂)

数据库函数依赖及范式(最通俗易懂)⼀、基础概念 要理解范式,⾸先必须对知道什么是关系数据库,如果你不知道,我可以简单的不能再简单的说⼀下:关系数据库就是⽤⼆维表来保存数据。

表和表之间可以……(省略10W字)。

然后你应该理解以下概念: 实体:现实世界中客观存在并可以被区别的事物。

⽐如“⼀个学⽣”、“⼀本书”、“⼀门课”等等。

值得强调的是这⾥所说的“事物”不仅仅是看得见摸得着的“东西”,它也可以是虚拟的,不如说“⽼师与学校的关系”。

属性:教科书上解释为:“实体所具有的某⼀特性”,由此可见,属性⼀开始是个逻辑概念,⽐如说,“性别”是“⼈”的⼀个属性。

在关系数据库中,属性⼜是个物理概念,属性可以看作是“表的⼀列”。

元组:表中的⼀⾏就是⼀个元组。

分量:元组的某个属性值。

在⼀个关系数据库中,它是⼀个操作原⼦,即关系数据库在做任何操作的时候,属性是“不可分的”。

否则就不是关系数据库了。

码:表中可以唯⼀确定⼀个元组的某个属性(或者属性组),如果这样的码有不⽌⼀个,那么⼤家都叫候选码,我们从候选码中挑⼀个出来做⽼⼤,它就叫主码。

全码:如果⼀个码包含了所有的属性,这个码就是全码。

主属性:⼀个属性只要在任何⼀个候选码中出现过,这个属性就是主属性。

⾮主属性:与上⾯相反,没有在任何候选码中出现过,这个属性就是⾮主属性。

外码:⼀个属性(或属性组),它不是码,但是它别的表的码,它就是外码。

⼆、6个范式 好了,上⾯已经介绍了我们掌握范式所需要的全部基础概念,下⾯我们就来讲范式。

⾸先要明⽩,范式的包含关系。

⼀个数据库设计如果符合第⼆范式,⼀定也符合第⼀范式。

如果符合第三范式,⼀定也符合第⼆范式…第⼀范式(1NF):属性不可分。

在前⾯我们已经介绍了属性值的概念,我们说,它是“不可分的”。

⽽第⼀范式要求属性也不可分。

那么它和属性值不可分有什么区别呢?给⼀个例⼦:name tel age⼤宝136****567822⼩明139****6655010-123456721Ps:这个表中,属性值“分”了。

设计表结构规范及三范式

设计表结构规范及三范式

设计表结构规范及三范式编写规范:表名以及字段名⽤英⽂单词表⽰,多个单词之间⽤下划线(_)连接,最多3个英⽂单词,下划线的⽅式映射到实体类,属性会⾃动驼峰;如果命名直接以驼峰命名,映射到实体类中属性会全部变成⼩写。

⾸先遵从数据库三范式:第⼀范式(1NF):强调的是列的原⼦性,即列不能够再分成其他⼏列。

第⼆范式(2NF):⾸先是 1NF,另外包含两部分内容,⼀是表必须有⼀个主键;⼆是没有包含在主键中的列必须完全依赖于主键,⽽不能只依赖于主键的⼀部分。

第三范式(3NF):⾸先是 2NF,另外⾮主键列必须直接依赖于主键,不能存在传递依赖。

即不能存在:⾮主键列 A 依赖于⾮主键列 B,⾮主键列 B 依赖于主键的情况。

第⼆范式(2NF)和第三范式(3NF)的概念很容易混淆,区分它们的关键点在于,2NF:⾮主键列是否完全依赖于主键,还是依赖于主键的⼀部分;3NF:⾮主键列是直接依赖于主键,还是直接依赖于⾮主键列。

范式的优点:1)范式化的数据库更新起来更加快;2)范式化之后,只有很少的重复数据,只需要修改更少的数据;3)范式化的表更⼩,可以在内存中执⾏;4)很少的冗余数据,在查询的时候需要更少的distinct或者group by语句。

范式的缺点:1)范式化的表,在查询的时候经常需要很多的关联,因为单独⼀个表内不存在冗余和重复数据。

这导致,稍微复杂⼀些的查询语句在查询范式的schema上都可能需要较多次的关联。

这会增加让查询的代价,也可能使⼀些索引策略⽆效。

因为范式化将列存放在不同的表中,⽽这些列在⼀个表中本可以属于同⼀个索引。

反范式的优点:1)可以避免关联,因为所有的数据⼏乎都可以在⼀张表上显⽰;2)可以设计有效的索引;反范式的缺点:3)表格内的冗余较多,删除数据时候会造成表有些有⽤的信息丢失。

所以在设计数据库时,要注意混⽤范式化和反范式化。

冗余是空间换时间,重点在于权衡空间和时间如果数据量⼀样,但数据类型更⼩的话,数据存放同样的数据就会占⽤更少的空间,这样检索同样的数据所带来的IO消耗⾃然会降低,性能也就很⾃然的得到提升⼀、数据库命名规范可以采⽤26个英⽂字母 (区分⼤⼩写) 和0-9的⾃然数 (⼀般不需要) 加上下划线 ‘_’ 组成,命名简介明确 (Student_Union),多个单词⽤下划线 ‘_’ 分隔,⼀个项⽬⼀个数据库,多个项⽬慎⽤同⼀个数据库⼆、表命名规范1)采⽤26字母和0-9的⾃然数(⼀般不使⽤)加上下互相 ‘_’ 组成,命名简洁明确,多个单词⽤下划线 ‘_’ 隔开2)全部⼩写命名,尽量避免出现⼤写(因为在我⽬前使⽤过的数据库⾥都不区分⼤⼩写)3)禁⽌使⽤关键字,如:select、table、show 等等 4)表名称不要取得太长(⼀般不超过三个英⽂单词) 5)表的名称⼀般使⽤名词或者东滨短语(实在不⾏就⽤拼⾳吧起码⾃⼰能看懂。

数据库设计的三大范式、BCNF、4NF

数据库设计的三大范式、BCNF、4NF

数据库设计的三⼤范式、BCNF、4NF⼀、理解的范式需要理解⼏个基本概念:码:表中可以唯⼀确定⼀个元组的某个属性(或者属性组),如果这样的码有不⽌⼀个,那么⼤家都叫候选码,我们从候选码中挑⼀个出来做⽼⼤,它就叫主码。

相当于键值的意思。

主属性:⼀个属性只要在任何⼀个候选码中出现过,这个属性就是主属性。

⾮主属性:与上⾯相反,没有在任何候选码中出现过,这个属性就是⾮主属性。

外码:⼀个属性(或属性组),它不是码,但是它别的表的码,它就是外码。

⼆、范式详解为了建⽴冗余较⼩、结构合理的数据库,设计数据库时必须遵循⼀定的规则。

在关系型数据库中这种规则就称为范式。

范式是符合某⼀种设计要求的总结。

要想设计⼀个结构合理的关系型数据库,必须满⾜⼀定的范式。

在实际开发中最为常见的设计范式有三个:1.第⼀范式(确保每列保持原⼦性)第⼀范式是最基本的范式。

如果数据库表中的所有字段值都是不可分解的原⼦值,就说明该数据库表满⾜了第⼀范式。

第⼀范式的合理遵循需要根据的实际需求来定。

⽐如某些数据库系统中需要⽤到“地址”这个属性,本来直接将“地址”属性设计成⼀个数据库表的字段就⾏。

但是如果系统经常会访问“地址”属性中的“城市”部分,那么就⾮要将“地址”这个属性重新拆分为省份、城市、详细地址等多个部分进⾏存储,这样在对地址中某⼀部分操作的时候将⾮常⽅便。

这样设计才算满⾜了数据库的第⼀范式,如下表所⽰。

上表所⽰的⽤户信息遵循了第⼀范式的要求,这样在对⽤户使⽤城市进⾏分类的时候就⾮常⽅便,也提⾼了数据库的性能。

2.第⼆范式(确保表中的每列都和主键相关)第⼆范式在第⼀范式的基础之上更进⼀层。

第⼆范式需要确保数据库表中的每⼀列都和主键相关,⽽不能只与主键的某⼀部分相关(主要针对联合主键⽽⾔)。

也就是说在⼀个数据库表中,⼀个表中只能保存⼀种数据,不可以把多种数据保存在同⼀张数据库表中。

⽐如要设计⼀个订单信息表,因为订单中可能会有多种商品,所以要将订单编号和商品编号作为数据库表的联合主键,如下表所⽰。

详解第一范式、第二范式、第三范式、BCNF范式

详解第一范式、第二范式、第三范式、BCNF范式

详解第⼀范式、第⼆范式、第三范式、BCNF范式什么是”范式(NF)”按照教材中的定义,范式是“符合某⼀种级别的关系模式的集合,表⽰⼀个关系内部各属性之间的联系的合理化程度”。

很晦涩吧?实际上你可以把它粗略地理解为⼀张数据表的表结构所符合的某种设计标准的级别。

就像家⾥装修买建材,最环保的是E0级,其次是E1级,还有E2级等等。

数据库范式也分为1NF,2NF,3NF,BCNF,4NF,5NF。

⼀般在我们设计关系型数据库的时候,最多考虑到BCNF就够。

符合⾼⼀级范式的设计,必定符合低⼀级范式,例如符合2NF的关系模式,必定符合1NF。

接下来就对每⼀级范式进⾏⼀下解释。

1. 第⼀范式(1NF)符合1NF的关系(你可以理解为数据表。

“关系模式”和“关系”的区别,类似于⾯向对象程序设计中”类“与”对象“的区别。

”关系“是”关系模式“的⼀个实例,你可以把”关系”理解为⼀张带数据的表,⽽“关系模式”是这张数据表的表结构。

1NF的定义为:符合1NF的关系中的每个属性都不可再分。

表1所⽰的情况,就不符合1NF的要求。

表1实际上,1NF是所有关系型数据库的最基本要求,你在关系型数据库管理系统(RDBMS),例如SQL Server,Oracle,MySQL中创建数据表的时候,如果数据表的设计不符合这个最基本的要求,那么操作⼀定是不能成功的。

也就是说,只要在RDBMS中已经存在的数据表,⼀定是符合1NF的。

如果我们要在RDBMS中表现表中的数据,就得设计为表2的形式:表2但是仅仅符合1NF的设计,仍然会存在数据冗余过⼤,插⼊异常,删除异常,修改异常的问题,例如对于表3中的设计:表31. 每⼀名学⽣的学号、姓名、系名、系主任这些数据重复多次。

每个系与对应的系主任的数据也重复多次——数据冗余过⼤2. 假如学校新建了⼀个系,但是暂时还没有招收任何学⽣(⽐如3⽉份就新建了,但要等到8⽉份才招⽣),那么是⽆法将系名与系主任的数据单独地添加到数据表中去的(注1)——插⼊异常注1:根据三种关系完整性约束中实体完整性的要求,关系中的码(注2)所包含的任意⼀个属性都不能为空,所有属性的组合也不能重复。

一二三范式的定义

一二三范式的定义

一二三范式的定义一范式的定义一范式是关系数据库设计中的基本概念,它要求关系数据库中的每个属性都是不可分割的最小数据单位。

换句话说,一范式要求每个属性都是原子的,不可再分的。

一范式的设计目标是避免数据冗余和数据更新异常。

在关系数据库中,一个关系表可以看作是一个二维表,其中每个列代表一个属性,每个行代表一个记录。

而一范式要求每个属性都是原子的,也就是说每个属性不能再分解成更小的数据单位。

例如,一个学生表中的姓名属性不能再分解成姓和名两个属性,而应该作为一个不可分割的整体。

一范式的设计原则是简单明确的,它能够确保数据库中的数据结构清晰,易于理解和维护。

符合一范式的数据库设计可以避免数据冗余和数据更新异常,提高数据的一致性和准确性。

二范式的定义二范式是关系数据库设计中的一个重要概念,它要求一个关系表中的非主键属性必须完全依赖于主键,而不能依赖于主键的一部分。

换句话说,二范式要求每个属性都与整个主键相关,而不能只与主键的某一部分相关。

在关系数据库中,一个关系表通常包含一个主键和多个非主键属性。

主键是用来唯一标识一个记录的属性,而非主键属性是与记录相关的其他属性。

二范式要求非主键属性必须完全依赖于主键,也就是说非主键属性不能依赖于主键的一部分。

二范式的设计目标是消除非主键属性之间的冗余依赖,提高数据库的数据存储效率和查询效率。

符合二范式的数据库设计能够减少数据冗余,提高数据的一致性和准确性。

三范式是关系数据库设计中的一个重要概念,它要求一个关系表中的非主键属性必须直接依赖于主键,而不能依赖于其他非主键属性。

换句话说,三范式要求每个非主键属性只与主键相关,而不与其他非主键属性相关。

在关系数据库中,一个关系表通常包含一个主键和多个非主键属性。

主键是用来唯一标识一个记录的属性,而非主键属性是与记录相关的其他属性。

三范式要求非主键属性必须直接依赖于主键,也就是说非主键属性不能依赖于其他非主键属性。

三范式的设计目标是消除非主键属性之间的传递依赖,提高数据库的数据存储效率和查询效率。

数据库三范式解释-概述说明以及解释

数据库三范式解释-概述说明以及解释

数据库三范式解释-概述说明以及解释1.引言1.1 概述在数据库设计中,三范式是指关系数据库中的数据规范化的一种理论。

它是为了解决数据冗余和数据更新异常而提出的一种设计原则。

通过将数据分解成多个表,并确保每个表都符合一定的规范,可以有效地减少数据冗余,提高数据的一致性和完整性。

三范式包括第一范式(1NF)、第二范式(2NF)和第三范式(3NF)。

每个范式都有其特定的规范要求,通过逐步满足这些要求,可以确保数据库设计得到最优化的结构。

在本文中,我们将对三范式进行详细解释,并探讨其在数据库设计中的应用和局限性。

通过本文的阅读,读者将能够更加深入地理解数据库三范式,并在实际工作中更好地运用它们。

1.2 文章结构文章结构部分主要是讲述整篇长文的结构和内容安排。

在本篇长文中,我们将首先介绍数据库三范式的概念及其重要性(引言部分),然后详细解释第一范式、第二范式和第三范式的含义和原理(正文部分),最后总结三范式的应用和局限性(结论部分)。

通过这样的结构,读者可以系统地了解数据库三范式的概念和应用,为其在实际工作中的应用提供理论支持和指导。

1.3 目的数据库三范式是设计关系型数据库的重要原则,其目的在于消除数据冗余和数据插入、更新和删除异常,使数据库结构更加规范化和高效。

本文旨在深入解释数据库三范式的概念,帮助读者了解每个范式的特点和应用场景。

通过本文的阐述,读者可以更好地应用三范式原则来设计和规划数据库结构,从而提高数据库的性能和可维护性。

同时,也可以帮助读者理解三范式在实际数据库设计中的局限性和不足之处,以便在设计数据库时做出更明智的决策。

通过对数据库三范式的深入理解,读者可以更好地应用这一原则来设计规范化的数据库结构,避免常见的数据库设计问题,提高数据的一致性和完整性,从而为企业和个人提供更加可靠和高效的数据管理和应用服务。

2.正文2.1 第一范式第一范式是关系数据库设计中的基本原则,指的是每个列都是原子性的,不可再分。

数据库设计三范式原则 概述及解释说明

数据库设计三范式原则 概述及解释说明

数据库设计三范式原则概述及解释说明1. 引言1.1 概述数据库设计是构建一个高效、可靠和易于维护的数据库系统的重要环节。

三范式原则作为数据库设计的基本准则,可以指导我们在设计关系型数据库时遵循一定的规范和理念。

三范式原则分别是第一范式(1NF)、第二范式(2NF)和第三范式(3NF),它们帮助我们消除冗余数据、提高数据存储效率和数据逻辑性,以及降低数据插入、更新和删除操作的复杂度。

1.2 文章结构本文将详细介绍数据库设计三范式原则,并对每个范式进行解释说明。

首先,我们会介绍第一范式(1NF),包括其概念和应用;然后,我们会讨论第二范式(2NF)及其在数据库设计中的应用;最后,我们会深入探讨第三范式(3NF)及其对规范化数据库的作用。

1.3 目的通过本文的撰写,旨在帮助读者充分理解数据库设计三范式原则的重要性和应用价值。

了解这些基本原则对于正确进行数据库设计至关重要,并能够避免产生滥用全能关系表所带来的问题。

我们将强调遵循三范式原则所带来的好处和影响,以及它们如何使数据库系统更加高效、可靠和易于维护。

同时,我们还会提供一些实际应用示例,以帮助读者更好地理解三范式原则的具体应用场景。

以上是文章“1. 引言”部分的详细内容解释。

2. 数据库设计三范式原则:数据库设计的三范式原则是用于规范化数据库结构的重要准则。

它们有助于确保数据在数据库中的存储和处理方式具备高效性、一致性和可靠性。

2.1 第一范式(1NF):第一范式要求数据库中的每个数据项都应该是不可再分割的最小单位,即每个字段都应该持有一个单独的值。

如果字段包含多个值,那么这些值就应该拆分成独立字段。

例如,假设我们有一个包含学生信息的表格,其中一列是“电话号码”,如果一个学生可以有多个电话号码,那么第一范式要求将这些电话号码拆分为相应数量的单独字段,以便每个字段只存储一个电话号码。

这样可以避免冗余数据,并且方便进行数据查询和更新操作。

2.2 第二范式(2NF):第二范式建立在第一范式的基础上进一步完善了数据库设计。

范式化的方法

范式化的方法

范式化的方法范式化的方法在信息学领域中有着广泛的应用。

范式化是指将数据按照一定的规范进行整理和组织,使其更易于存储、管理和分析。

本文将介绍范式化的概念、常见的范式化方法以及范式化的优点和局限性。

一、范式化的概念范式化是数据库设计中的一个重要概念,它的目的是消除数据冗余和数据依赖问题,提高数据的一致性和完整性。

范式化的过程包括将数据表分解成更小的关系表,并通过关系之间的连接来实现数据的关联。

范式化的目标是使数据库设计更加规范化,减少数据冗余和数据依赖,提高数据的一致性和完整性。

二、常见的范式化方法1. 第一范式(1NF)第一范式是指将数据表中的列分解成最小的数据单元,每一列都应该是不可再分的原子值。

这样可以消除数据冗余和数据依赖问题,提高数据的一致性和完整性。

2. 第二范式(2NF)第二范式是在第一范式的基础上,进一步消除非主键列对主键的部分依赖。

将非主键列分解成独立的数据表,每个表都包含一个主键列和与之相关的非主键列。

这样可以提高数据的一致性和完整性,减少数据冗余。

3. 第三范式(3NF)第三范式是在第二范式的基础上,消除非主键列对主键的传递依赖。

将非主键列分解成独立的数据表,每个表都包含一个主键列和与之相关的非主键列。

这样可以进一步减少数据冗余和数据依赖,提高数据的一致性和完整性。

4. BC范式(BCNF)BC范式是在第三范式的基础上,消除主键列对非主键列的部分依赖。

将非主键列分解成独立的数据表,每个表都包含一个主键列和与之相关的非主键列。

这样可以进一步减少数据冗余和数据依赖,提高数据的一致性和完整性。

三、范式化的优点范式化能够提高数据的一致性和完整性,减少数据冗余和数据依赖,使数据更易于存储、管理和分析。

范式化还能够提高数据库的性能和可扩展性,减少数据冗余带来的更新和维护工作量。

范式化的数据库设计更加规范化,易于理解和维护。

四、范式化的局限性范式化的过程可能会导致数据表的分解,增加了数据的连接和查询的复杂性。

数据库设计中的范式与反范式处理技巧

数据库设计中的范式与反范式处理技巧

数据库设计中的范式与反范式处理技巧在数据库设计过程中,范式与反范式是两种不同的设计方法和原则。

范式是为了减少数据冗余和保持数据一致性而采用的一种规范化设计方法,而反范式则是通过冗余数据来提高数据查询的性能和效率的一种反规范化设计方法。

本文将深入研究数据库设计中的范式与反范式处理技巧,探讨其优缺点以及应用场景。

范式是数据库设计中的重要原则,主要有五个级别的范式,即第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)和第四范式(4NF)。

不同的范式有不同的要求和目标,其核心思想是减少数据冗余、提高数据一致性和明确数据依赖关系。

第一范式要求数据库中的每个列都是原子的不可再分的,即每个列只能存储一个值。

这样可以避免数据重复和冗余,确保数据的一致性和完整性。

第二范式要求数据库的关系模式中的非主属性完全依赖于候选关键字(主键),而不能只依赖于候选关键字的一部分。

这样可以消除部分依赖,消除冗余数据。

第三范式要求数据库中的每个非主属性都不传递依赖于候选关键字。

这样可以消除传递依赖,避免数据冗余和不一致。

巴斯-科德范式(BCNF)是一个更严格的范式,要求数据库中的每个决策完全依赖于候选关键字,而不能依赖于候选关键字的一部分。

这样可以进一步消除数据冗余和不一致。

第四范式(4NF)要求数据库中的每个多值依赖都被消除。

这样可以进一步减少数据冗余和提高数据一致性。

范式设计有助于降低数据冗余,提高数据一致性和减少数据操纵异常的风险。

但是,范式化的数据库可能导致复杂的数据查询和连接操作,影响数据库查询性能。

在某些情况下,反范式化设计成为一种合理的选择。

反范式是指在数据库设计中,通过增加冗余数据来提高查询性能和效率。

反范式化可以带来较低的查询复杂度和较高的查询性能,在数据仓库和大数据应用场景中广泛应用。

在进行范式化设计时,我们需要详细分析数据需要存储和表之间的关联关系,并根据分析结果进行范式化设计。

数据库设计准则(第一、第二、第三范式说明)

数据库设计准则(第一、第二、第三范式说明)

数据库设计准则(第⼀、第⼆、第三范式说明)在创建⼀个数据库的过程中,必须依照⼀定的准则,这些准则被称为范式,从第⼀到第六共六个范式,⼀般数据库设计只要遵循第⼀范式,第⼆范式,和第三范式就⾜够了。

满⾜这些规范的数据库是简洁的、结构明晰的,同时,不会发⽣插⼊(insert)、删除(delete)和更新(update)操作异常。

反之则是乱七⼋糟,不仅给数据库的编程⼈员制造⿇烦,⽽且⾯⽬可憎,可能存储了⼤量不需要的冗余信息。

I、关系数据库设计范式介绍1.1 第⼀范式(1NF)⽆重复的列所谓第⼀范式(1NF)是指数据库表的每⼀列都是不可分割的基本数据项,同⼀列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。

如果出现重复的属性,就可能需要定义⼀个新的实体,新的实体由重复的属性构成,新实体与原实体之间为⼀对多关系。

在第⼀范式(1NF)中表的每⼀⾏只包含⼀个实例的信息。

简⽽⾔之,第⼀范式就是⽆重复的列。

说明:在任何⼀个关系数据库中,第⼀范式(1NF)是对关系模式的基本要求,不满⾜第⼀范式(1NF)的数据库就不是关系数据库。

1.2 第⼆范式(2NF)属性完全依赖于主键第⼆范式(2NF)是在第⼀范式(1NF)的基础上建⽴起来的,即满⾜第⼆范式(2NF)必须先满⾜第⼀范式(1NF)。

第⼆范式(2NF)要求数据库表中的每个实例或⾏必须可以被惟⼀地区分。

为实现区分通常需要为表加上⼀个列,以存储各个实例的惟⼀标识。

例如员⼯信息表中加上了员⼯编号(emp_id)列,因为每个员⼯的员⼯编号是惟⼀的,因此每个员⼯可以被惟⼀区分。

这个惟⼀属性列被称为主关键字或主键、主码。

第⼆范式(2NF)要求实体的属性完全依赖于主关键字。

所谓完全依赖是指不能存在仅依赖主关键字⼀部分的属性,如果存在,那么这个属性和主关键字的这⼀部分应该分离出来形成⼀个新的实体,新实体与原实体之间是⼀对多的关系。

为实现区分通常需要为表加上⼀个列,以存储各个实例的惟⼀标识。

数据库的范式(1NF、2NF、3NF、BNCF)

数据库的范式(1NF、2NF、3NF、BNCF)

数据库的范式(1NF、2NF、3NF、BNCF)第⼀范式:关系模式中,每个属性不可再分。

属性原⼦性第⼆范式:⾮主属性完全依赖于主属性,即消除⾮主属性对主属性的部分函数依赖关系。

第三范式:⾮主属性对主属性不存在传递函数依赖关系。

BNCF范式:在第三范式的基础上,消除主属性之间的部分函数依赖第⼀范式(1NF):在关系模式R中的每⼀个具体关系r中,如果每个属性值都是不可再分的最⼩数据单位,则称R是第⼀范式的关系。

例:如职⼯号,姓名,电话号码组成⼀个表(⼀个⼈可能有多个电话号码)规范成为1NF有三种⽅法: ⼀是重复存储职⼯号和姓名。

这样,关键字只能是电话号码。

⼆是职⼯号为关键字,电话号码分为单位电话和住宅电话两个属性 三是职⼯号为关键字,但强制每条记录只能有⼀个电话号码。

以上三个⽅法,第⼀种⽅法最不可取,按实际情况选取后两种情况。

第⼆范式(2NF):如果关系模式R(U,F)中的所有⾮主属性都完全依赖于任意候选关键字,则称关系R 是属于第⼆范式的。

例:选课关系 sc(sid,cid,grade,credit)其中sid为学号, cid为课程号,grade为成绩,credit为学分。

由以上条件,关键字为组合关键字(sid,cid)在应⽤中使⽤以上关系模式有以下问题: a.数据冗余,假设同⼀门课由40个学⽣选修,学分就重复40次。

b.更新异常,若调整了某课程的学分,相应的元组credit值都要更新,有可能会出现同⼀门课学分不同。

c.插⼊异常,如计划开新课,由于没⼈选修,没有学号关键字,只能等有⼈选修才能把课程和学分存⼊。

d.删除异常,若学⽣已经结业,从当前数据库删除选修记录。

某些门课程新⽣尚未选修,则此门课程及学分记录⽆法保存。

原因:⾮关键字属性credit仅函数依赖于cid,也就是credit部分依赖组合关键字(sid,cid)⽽不是完全依赖。

解决⽅法:分成两个关系模式sc(sid,cid,grade),c(cid,credit)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是范式
简单的说,范式是为了消除重复数据减少冗余数据,从而让数据库内的数据更好的组织,让磁盘空间得到更有效利用的一种标准化标准,满足高等级的范式的先决条件是满足低等级范式。

(比如满足2nf一定满足1nf)
DEMO
让我们先从一个未经范式化的表看起,表如下:
先对表做一个简单说明,employeeId是员工id,departmentName是部门名称,job代表岗位,jobDescription是岗位说明,skill是员工技能,departmentDescription是部门说明,address是员工住址
对表进行第一范式(1NF)
如果一个关系模式R的所有属性都是不可分的基本数据项,则R∈1NF。

简单的说,第一范式就是每一个属性都不可再分。

不符合第一范式则不能称为关系数据库。

对于上表,不难看出Address是可以再分的,比如”北京市XX路XX小区XX号”,着显然不符合第一范式,对其应用第一范式则需要将此属性分解到另一个表,如下:
对表进行第二范式(2NF)
若关系模式R∈1NF,并且每一个非主属性都完全函数依赖于R的码,则R∈2NF
简单的说,是表中的属性必须完全依赖于全部主键,所以只有一个主键的表如果符合第一范式,那一定是第二范式,而不是部分主键。

这样做的目的是进一步减少插入异常和更新异常。

在上表中,departmentDescription是由DepartmentName所决定,但却不能由EmployeeID 决定,故要departmentDescription对主键是部分依赖,对其应用第二范式如下表:
对表进行第三范式(3NF)
关系模式R<U,F> 中若不存在这样的码X、属性组Y及非主属性Z(Z Y), 使得X→Y,Y→Z,成立,则称R<U,F> ∈ 3NF。

简单的说,第三范式是为了消除数据库中关键字之间的依赖关系,在上面经过第二范式化的表中,可以看出jobDescription(岗位职责)是由job(岗位)所决定,则jobDescription依赖于job,可以看出这不符合第三范式,对表进行第三范式后的关系图为:
上表中,已经不存在数据库属性互相依赖的问题,所以符合第三范式。

相关文档
最新文档